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Abstract

This paper presents new evidence on how countries are innovating in response to
the growing strategic importance of critical raw materials (CRMs). Using millions of
patent abstracts from the PATSTAT database, we apply a large language model (LLM)
to classify CRM-related inventions into four functional roles: use, refine, recycle, and
remove. A fifth category, wrong, flags false positives and improves classification accu-
racy. This approach moves beyond simple patent counts by identifying the specific roles
CRMs play in technological development, enabling a more nuanced view of innovation
strategies. Our classification reveals a significant increase in CRM-related innovation
over the past two decades, with notable variation across materials, functions, and coun-
tries. While use-related patents remain dominant, recent growth in recycle and remove
functions points to a shifting emphasis on circularity. Geographically, China leads
across all functions, while an upward trend in recycling activity is observed across sev-
eral advanced economies. A panel data analysis reveals that innovation in refining,
recycling, and removing CRMs is positively associated with innovation in their use,
suggesting functional complementarities that can enable both technological progress
and more sustainable material strategies. These findings have important implications
for policy, highlighting the value of supporting functionally diverse CRM innovation,
fostering international coordination, and adopting tools for real-time innovation moni-
toring. By combining text mining with AI-driven functional classification of patented
inventions, this study o↵ers a scalable method for tracking material-related innovation
and informing policies aimed at sustainability and technological resilience.

Keywords — Critical Raw Materials, Green and Digital Technologies, Large
Language Models, Text Mining

1 Introduction

The digital and energy transitions are increasingly recognised as material transitions,
entailing not only systemic technological change, but also fundamental shifts in the
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material foundations that sustain these processes (European Commission, 2023c). This
marks a broader shift “from emissions to resources” (Mertens et al., 2024, p.671): while
global attention remains focused on reducing greenhouse gas emissions, the pursuit of
carbon neutrality simultaneously amplifies concerns over the availability and governance
of critical raw materials (CRMs). CRMs comprise a group of minerals and metals, in-
cluding lithium, cobalt, and rare earths, that are essential to strategic technologies and
industries, yet face high supply risks due to scarcity, geographic concentration, and lim-
ited substitutability. From batteries to microchips, they are essential enablers of a wide
array of digital and low-carbon technologies, supporting key sectors such as renewable
energy, electric mobility, digital infrastructure, defence, and aerospace (European Com-
mission, 2023c; International Energy Agency, 2021, 2024). These materials are often
irreplaceable and are also used far more intensively than in fossil fuel systems—placing
them at the core of industrial, innovation, and geopolitical agendas (Graedel et al.,
2013; Herrington, 2021; International Energy Agency, 2024; Leader et al., 2019; Sova-
cool et al., 2020). For instance, producing a standard electric vehicle (EV) requires
roughly six times more raw materials than a conventional internal combustion engine
vehicle; while building an onshore wind farm involves approximately nine times the min-
eral input of a gas-powered plant (Gielen, 2021; International Energy Agency, 2021).
Rare earth elements (REEs), such as neodymium, dysprosium, praseodymium, and
terbium, are indispensable for permanent magnets used in wind turbines, EV motors,
robotics, and high-tech consumer products, such as smartphones and computer hard
drives, but also for defence applications including lasers, radars, sonar and guidance
systems. Lithium is critical for lithium-ion batteries powering EVs, energy storage
systems, portable electronics, and aerospace technologies such as satellites and drones.
Cobalt, nickel, graphite, and manganese are also vital for battery chemistries and energy
storage infrastructure; copper enables the expansion of electricity grids; and platinum
supports fuel cells and green hydrogen electrolysers (Hund et al., 2020; European Com-
mission, 2023c). As a consequence, global demand for raw materials is projected to
rise sharply in the coming decades (IRP, 2019; OECD, 2019), with demand for energy
transition materials alone potentially quadrupling by 2040 if the Paris Agreement tar-
gets are met (International Energy Agency, 2021). EU forecasts further predict that by
2050 demand for lithium, graphite, nickel, neodymium and dysprosium could increase
between two- and twenty-fold (European Commission, 2023c).

While it remains debated whether Earth’s crust contains su�cient accessible re-
sources to meet this demand surge (Grandell et al., 2016; Mertens et al., 2024; Pom-
meret et al., 2022), the required scale of extraction is already driving an expansion
of the mining sector with far-reaching environmental and socio-economic harms. The
mining and early processing of critical raw materials in source countries has been in fact
linked to ecosystem destruction and biodiversity loss due to deforestation, toxic pollu-
tion and waste, emissions, and water contamination, as well as extremely exploitative
labour conditions, human rights violations, and the displacement of local communities
(Arendt et al., 2022; Conde, 2017; Maŕın and Goya, 2021; Que et al., 2018; Wang and
Yang, 2024). These negative externalities are largely unaccounted for in global mar-
kets and fall disproportionately on countries in the Global South (Arendt et al., 2022;
Berman et al., 2017; Church and Crawford, 2018; Dowling and Otero, 2025; Norgate
and Haque, 2010; Sovacool et al., 2020). A growing body of literature emphasises how
the resource-intensive nature of the energy and digital transitions risks reproducing
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historical patterns of ecological degradation and global inequality—echoing the dynam-
ics of the “resource curse” and raising questions about whether resource-rich nations
may be drawn into a new phase of extractive dependency (Bonds and Downey, 2012;
Davis and Tilton, 2005; Dowling and Otero, 2025). Although the socio-environmental
risks associated with CRM extraction have been widely documented, policy attention,
especially in the Global North, has largely prioritised the stability and the security of
access to these critical resources.

The strategic importance of CRMs is now widely recognised by international in-
stitutions, including the European Commission (European Commission, 2024), the G7
(G7 Ministers’ Meeting on Climate, Energy and Environment, 2023), the World Bank
(Hund et al., 2020), the International Energy Agency (International Energy Agency,
2021, 2023a), and the OECD (Kowalski and Legendre, 2023). The emphasis towards the
high degree of geographical concentration and potential supply bottlenecks or disrup-
tions was further intensified by recent global shocks such as the COVID-19 pandemic,
the war in Ukraine, and escalating geopolitical tensions, which revealed the exposure of
CRM supply chains to volatility within broader global value chains (International Re-
newable Energy Agency, 2023; G7 Leaders, 2023). Among the most pressing concerns
is the e↵ort to de-risk China’s dominant position across both upstream and midstream
stages of key CRM supply chains. In fact, with approximately 90% of global rare earth
refining, over 60% of cobalt refining, and more than half of global lithium processing un-
der its control, China has emerged as the main global CRM actor, intensifying debates
over strategic dependency and the weaponisation of export restrictions, particularly in
high-tech sectors such as semiconductors and batteries (G7 Leaders, 2023; Zhou et al.,
2023). The European Union has positioned itself as a global leader in the push for
electrification and in its commitment to achieving climate neutrality by 2050, despite
having limited domestic CRM reserves and relying heavily on imports from a small
number of suppliers across multiple stages of the value chain—from raw and processed
materials to finished components of strategic technologies. To address this vulnerabil-
ity, the EU introduced the Critical Raw Materials Act (European Commission, 2023b;
European Commission, 2024), aimed at boosting domestic CRM mining and recycling
while securing diversified international partnerships to strengthen the resilience and sus-
tainability of its supply chains. In parallel, the G7 Five-Point Plan for Critical Minerals
Security (G7 Ministers’ Meeting on Climate, Energy and Environment, 2023), launched
in 2023, seeks to safeguard global decarbonisation e↵orts, energy security, as well as to
mitigate geopolitical risk by investing in circular economy solutions, while supporting
international cooperation to reduce dependency and ensure responsible CRM sourcing.

Although recent international initiatives have focused on reducing external depen-
dencies by increasing domestic extraction and diversifying imports, these e↵orts also
reflect a growing recognition of the limitations and risks associated with primary sourc-
ing alone. As a result, increasing policy and scholarly attention is being directed towards
complementary strategies to ensure a more secure, sustainable, and just supply of crit-
ical raw materials for emerging technologies (Gong and Andersen, 2024; International
Energy Agency, 2023b; Jowitt et al., 2018; Pommeret et al., 2022; Vikström et al., 2013;
Wang et al., 2014), with a special focus on circularity, material substitution, and im-
proved resource e�ciency through technological innovation. In fact, unlike fossil fuels,
which are consumed upon use, CRMs generally remain embedded in devices and in-
frastructure at the end of their lifecycle, o↵ering the potential for recovery, reuse, and
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recycling (International Renewable Energy Agency, 2023; International Energy Agency,
2023a,b), but the practical implementation of these strategies faces significant barriers.
Recycling rates for most CRMs are low due to technical complexity, high costs, and lim-
ited end-of-life volumes (International Energy Agency, 2021), while substitution e↵orts
are constrained by the unique functional properties of certain materials (International
Energy Agency, 2024). One such example is neodymium–iron–boron magnets, for which
there are currently no high-performance alternatives (Junne et al., 2020).

Despite the large body of literature on CRM supply chain and the foundational role
they play in enabling frontier technologies, the innovation literature has long remained
silent on the nexus between critical raw materials and technological change and only
recently has begun to explore it through patent analysis. Most existing studies rely
on keyword searches in patent texts to identify CRM-related inventions, o↵ering useful
indicators of CRM presence in patents and CRM exposure via countries patenting ac-
tivity. Li et al. (2024) provide the first large-scale mapping of rare metal dependence,
demonstrating an increasing material intensity in frontier technologies and showing that
the supply of rare metals influences the generation of new frontier technologies based
on these materials. Diemer et al. (2022) examine the technological and geographic as-
sociations between ICTs and critical materials, revealing asymmetries between source
countries and value creation. de Cunzo et al. (2023) examine the CRM dependence
of green technologies by mapping country-level exposure and global demand–supply
mismatches, highlighting the spatial disconnect between CRM production and the de-
ployment of CRM-intensive green innovations. More recently, Fusillo et al. (2025) and
Manera et al. (2025) advance CRM detection in patent texts by introducing a large lan-
guage model-based indicator to identify indirect references to CRM in inventions—for
instance, through mentions of CRM-intensive components—examining the extent to
which these inventions reflect potential substitution strategies and revealing sectoral
and regional exposure.

Against this backdrop, understanding the full structure of CRM supply chains—from
extraction to refining, use, and end-of-life—is essential. However, it is not only the struc-
ture, but also the direction of technological change across these stages that demands
closer scrutiny. Building on Li et al. (2024)’s hypothesis of an interdependence between
material supply and technological progress, analysing how innovation evolves in rela-
tion to CRMs can reveal where pressures, bottlenecks, or breakthroughs are emerging,
and which functions these materials fulfil within technological systems. Although re-
cent studies have begun to map CRM occurrences in patents, they typically focus on
simple mentions without systematically investigating the functional roles that CRMs
play within inventions, a gap this paper seeks to address. Adopting a function-sensitive
perspective enables a more granular examination of how innovation systems respond to
critical raw material constraints, highlighting whether firms and countries are reinforc-
ing CRM dependency or pursuing strategies of e�ciency, substitution, and circularity.
Understanding these dynamics is crucial to analyse shifts in patenting strategies driven
by supply chain pressures and environmental priorities, and for informing the design
of industrial, innovation, and sustainability policies. Until recently, the ability to ex-
tract this level of information from large-scale patent data was limited. However, the
emergence of large language models now o↵ers powerful tools to uncover the nuanced
ways in which CRMs are embedded within inventions, providing a new lens to trace
how material-critical innovation is unfolding.
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To this aim, we develop a novel multi-step methodology that combines traditional
keyword filtering with state-of-the-art large language model classification to map CRM-
related invention activity into five functional categories: use, refine, recycle, remove, and
wrong. The first four capture the distinct roles that critical raw materials play across
the supply chain and within technological systems. The wrong category, by contrast,
is designed to flag cases where a CRM is not functionally related to the invention—its
mention being incidental or spurious, often arising from textual ambiguities. Including
this category enhances the precision of our classification and reduces noise introduced
by keyword-based detection, o↵ering a robust, scalable, and replicable framework for
understanding and monitoring the material foundations of new technological trajecto-
ries. In particular, we address three main research questions aimed at understanding
the structure, geography, and interdependencies of CRM-related innovation:

1. How is innovation in critical raw materials distributed across functions, materials,
and technologies?

2. Which countries are leading CRM-related innovation across functions?

3. How is technological innovation in CRM refining, recycling and removing linked
to that in CRM use?

Operationally, we first identify CRM-related patents within the European Patent Of-
fice (EPO) Worldwide Patent Statistical Database (PATSTAT) using a keyword search
strategy based on the 2023 European Commission’s CRM list (European Commission,
2023a) geolocalised throuhg an ad hoc strategy described in Section 4. Second, we
construct a human-validated training set, labelling patents according to the functional
role that CRMs fulfil in the invention. Third, we implement a two step fine-tuning
procedure of the domain-adapted transformer model BERT for Chemical Industry to
classify the corpus of CRM-related patents into the five functional categories. This
allows us to address the first two research questions. Finally, to address the third re-
search question, we conduct a panel data analysis examining how country patenting in
CRM refining, recycling, and removing are associated with the development of CRM
use-related patents. Our findings reveal a sharp increase in CRM-related innovation
between 1999 and 2018, with significant variation across materials, functions, technolo-
gies, and countries. Use-related inventions dominate, but innovation in the recycling,
refining, and removal functions accelerated in recent years, highlighting a gradual shift
toward circularity strategies. Lithium, graphite, and copper drive much of this growth,
reflecting the technological momentum behind electrification and energy storage. China
leads CRM innovation in all functional categories, underscoring its growing technologi-
cal influence, while advanced economies like the US and South Korea show increasing,
albeit limited, specialisation in recycling patents. Moreover, our analysis suggests that
functional trajectories are not inherently in competition. In contrast, innovation in
refining, recycling, and removing CRMs is positively associated with use-related inno-
vation, indicating that circular and upstream strategies can go hand in hand with, and
even reinforce, CRM-based technological advancement.

The remainder of the paper is structured as follows. Section 2 delves deeper into the
di↵erent stages of the CRM supply chain and their correspondence with the functional
categories we identify in patents mentioning CRMs. Section 3 and Section 4 detail the
data and the LLM-based empirical strategy we employ. Section 5 presents our empirical
findings. Section 6 concludes.
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2 The supply chain of critical raw materials

Critical raw materials underpin a wide range of low-carbon and digital technologies
and are increasingly understood as both essential enablers and potential sources of
strategic vulnerability in the transition toward more sustainable industrial systems.
These vulnerabilities stem mainly from the structure of their supply chains, which are
geographically concentrated and institutionally fragmented. On the one hand, this
creates heightened exposure to supply disruptions and geopolitical tensions; on the
other, the mining and extraction of critical materials often generate substantial socio-
environmental harms in resource-rich regions, including ecosystem degradation, local
conflict, and human rights violations.

Understanding the real-world dynamics of CRM supply chains is essential for inter-
preting the roles that critical raw materials play in patented inventions. To this aim, in
what follows, we connect four key stages of these supply chains, extraction, processing,
manufacturing, and end-of-life recovery, 1with the four2 CRM functional categories use,
refine, remove, and recycle we identify in patents. As schematically illustrated in Figure
1, each function reflects an innovation strategy oriented toward specific stages of the
CRM supply chain.

2.1 Extraction: Supply Concentration and Sustainability Risks

The supply chain begins with the extraction stage, where CRM ores are mined. This
phase is heavily concentrated in a small group of resource-rich countries. For instance,
over 65% of global cobalt originates from the Democratic Republic of Congo (DRC),
where it is primarily extracted as a by-product of copper and nickel (U.S. Geological
Survey, 2022). Similarly, 77% of the world’s lithium supply comes from Australia and
Chile—Australia being the leading producer through hard-rock mining, while Chile
relies on lithium-rich brine evaporation—and China dominates the extraction of rare
earth elements, along with other key materials such as phosphorus, gallium, and indium
(European Raw Materials Alliance, 2021; International Energy Agency, 2021). Beyond
geographic concentration, extraction is also marked by concentrated ownership, with a
small number of multinational firms exerting disproportionate control over production
volumes, pricing, and access to strategic deposits (Arendt et al., 2022; Dou et al.,
2023). A key example is China’s strategic involvement in extraction beyond its borders,
with Chinese firms holding significant stakes in cobalt mining operations in the DRC
(Van den Brink et al., 2020).

Alongside concerns over supply security, the extraction stage also entails serious
environmental and social risks. For example, in the DRC, cobalt extraction is often
linked to informal mining, human rights violations and child labour, as well as to
severe ecological degradation—ranging from ecosystem disruption to water contamina-
tion (Beales et al., 2021; Mancini et al., 2021; Marin and Palazzo, 2025; Sovacool et al.,
2020).3 In South America’s lithium triangle—covering parts of Chile, Argentina, and

1See (European Commission, 2020b) for reference.
2The wrong function, included to flag for false positives in the keyword search, is not related to

CRMs. Thus, we exclude it from the discussion of the CRM supply chain.
3On the human and toxic pollution costs of cobalt mining in the Democratic Republic of the Congo,

see also: https://raid-uk.org/report-environmental-pollution-human-costs-drc-cobalt-d
emand-industrial-mines-green-energy-evs-2024.
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Figure 1: Schematic representation of the CRM supply chain and corresponding CRM
functional categories in patented inventions. The figure maps the core stages of the
critical raw material supply chain—extraction, processing, manufacture, and end-of-life
recovery—onto the four CRM innovation functions identified in patent data: use, re-
fine, remove, and recycle. Red arrows indicate where each function intervenes along
the supply chain. Refining technologies support the transition from raw extraction to
usable materials; remove operates both during processing (e.g., impurity separation)
and at end-of-life (e.g., targeted disassembly or hazardous material extraction); use is
linked to the integration of CRMs into manufactured products; and recycling captures
the reintegration of recovered materials into earlier supply stages. The dotted arrow
between manufacture and end-of-life recovery indicates that CRM-containing technolo-
gies and products do not enter the waste stream immediately, but only after potentially
long operational lifespans.

Bolivia—extraction via brine evaporation has resulted in acute water depletion, jeop-
ardizing fragile desert ecosystems, displacing Indigenous communities and undermining
their water access for agriculture and grazing (Giglio, 2021; Jerez et al., 2021; Marin
and Palazzo, 2025).
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2.2 Processing and Refining: Strategic Control and Enabling

Technologies

Once extracted, CRMs enter the processing stage, where they are refined in high-purity
materials suitable for advanced manufacturing. This stage plays a pivotal role in the
supply chain and aligns closely with our refine function. In particular, refine-related
innovations typically focus on improving the quality, purity, or performance of CRMs,
enabling their integration into downstream applications and reducing losses or ine�-
ciencies during transformation. In addition, the remove function is also relevant at this
stage, capturing innovations aimed at separating materials, impurities, or by-products
that arise during the processing phase. Similarly to extraction, processing is also highly
geographically concentrated. China holds a dominant position, refining more than half
of the world’s lithium and cobalt, and up to 90% of rare earth elements (European
Commission, 2023c; Jowitt, 2022). China’s control of global refining capacity raises
geopolitical concerns, as it introduces systemic dependencies and potential bottlenecks
in downstream supply chains. Other relevant hubs include Chile, which accounts for
approximately one-third of global lithium refining, and South Africa, which processes
more than 90% of the world’s iridium (Jowitt, 2022).

CRM processing is highly energy-intensive and generates toxic and even radioac-
tive waste, as documented in rare earth operations in China (Hofmann et al., 2018;
Lee and Wen, 2017).4 These risks highlight the importance of technological advances
in both refining processes and material removal. For instance, innovations in the re-
move function—such as those enabling cleaner separation, selective purification, or the
elimination of hazardous by-products—are increasingly relevant not only for improving
processing e�ciency, but also for advancing environmental sustainability and support-
ing circularity objectives within CRM supply chains.

2.3 Manufacturing and use: Technology integration and inno-

vation intensity

Following processing, CRMs enter as material inputs to the manufacturing stage, where
refined materials are incorporated into intermediate components and final technolo-
gies—such as batteries, magnets, motors, and semiconductors. This phase is linked to
the use function in our framework, which not only accounts for the dominant share
of CRM-related patenting activity, but is also directly associated with the increasing
demand for CRMs, as it involves the direct material integration into high-performance
technologies. At this stage, industrial leadership is heavily concentrated in Asia. China
accounts for over 90% of global solar wafer production, 70% of solar PV system as-
sembly, and it is currently the only country with a fully integrated supply chain for
permanent magnets (European Commission, 2023c). Japan is also an important actor
in magnet manufacturing, supported by longstanding intellectual property protections
from firms such as Hitachi, which have historically limited international competition
(Smith et al., 2022). In contrast, Western countries have struggled to scale up their
manufacturing capacity for CRM-intensive components. In particular, despite targeted

4On the toxic waste e↵ect of rare earth mining, see also Michael Standaert’s article on Yale Envi-
ronment 360 : https://e360.yale.edu/features/china-wrestles-with-the-toxic-aftermath
-of-rare-earth-mining.
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policy initiatives, the EU produces just 2% of global solar PV systems and remains
largely dependent on foreign supply chains for batteries, permanent magnets, and other
advanced technologies (European Commission, 2023b).

2.4 End-of-life recovery: Removal and recycling challenges

As products reach the end of their life cycle, critical raw materials can be recovered
through disassembly, separation, and reintegration into production processes. In our
framework, innovation e↵orts targeting this stage are captured by both the remove and
recycle functions. Remove-related innovations typically appear in patents addressing
the early steps of recovery—for instance, through disassembly techniques or the re-
moval of impurities prior to recycling. The recycle function instead captures innovation
focused on the reintegration of recovered materials into production. While material
recycling is one of the most crucial strategies for reducing dependence on primary ex-
traction and advancing circularity, it currently represents the weakest link in the CRM
supply chain. Recycling rates are constrained by ine�cient collection systems, high
costs, economic disincentives, and technical barriers that limit e�cient material sepa-
ration in complex and non-standardised devices. As a result, they remain below 1% for
lithium and rare earth elements, and below 10% for most critical materials (Interna-
tional Energy Agency, 2021; Swain, 2017).

To explore these dynamics more concretely, we focus on three illustrative cases dif-
fering in their material properties, levels of technological maturity, and supply chain
integration: lithium, rare earth elements, and cobalt. For lithium, the growing vol-
ume of spent lithium-ion batteries has spurred investment in recycling technologies
(Ambrose and Kendall, 2020; Harper et al., 2019; International Energy Agency, 2021;
Swain, 2017). Advances in separation and leaching processes show promise (Baum et al.,
2022; Jin et al., 2022), but recovery rates remain low, constrained by the heterogeneity
of battery chemistries and formats that complicate economies of scale (Bae and Kim,
2021; Huang et al., 2018). Recycling of rare earth elements and cobalt is also expanding
but remains limited. Rare earth recovery focuses mainly on Neodymium–Iron–Boron
magnets, nickel–metal hydride batteries, and LEDs, with industrial-scale progress con-
centrated in Japan, the United States, and Germany (De Oliveira et al., 2021; Mertens
et al., 2024; Mudali et al., 2021; München et al., 2021). In the case of cobalt, secondary
sources accounted for just 5% of global supply in 2022, though projections suggest sig-
nificant growth in the coming decades (Cobalt Institute, 2023). China and the United
States show the highest recycling rates to date, but industrial-scale cobalt recovery
remains at an early stage, with research e↵orts focused on batteries, catalysts, and
metallurgical waste streams (Chandra et al., 2022; International Energy Agency, 2021;
U.S. Geological Survey, 2022; Zeng et al., 2018, 2022).

Taken together, these cases illustrate the uneven maturity of CRM recycling across
materials and countries: despite growing research and policy attention, recovery tech-
nologies remain fragmented, with progress concentrated in a few regions and appli-
cations. As boosting secondary production becomes a strategic priority, innovation in
both recycle and remove functions will play a key role in reshaping CRM supply chains.

In sum, linking the extraction, processing, manufacturing, and end-of-life recovery
stages of the CRM supply chain to the functional categories identified in CRM-related
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patents enables us to interpret patented inventions as technological responses to sys-
temic vulnerabilities. Use innovations are linked to the manufacturing stage, reflecting
how CRMs are directly integrated into frontier technologies, serving as key drivers of
technological advancement but also as primary channels through which countries deepen
their material dependence. Refine innovations enable more e�cient supply inputs. Fi-
nally, although still underdeveloped, recycle and remove innovations reflect emerging
circular strategies that are beginning to show signs of acceleration. Embedding these
patent functions within the CRM supply chain structure helps clarify where innova-
tion is concentrated, and where strategic and technical gaps persist. This framework
provides the basis for the empirical analysis that follows, which examines the global
dynamics of CRM innovation and its alignment with long-term goals of sustainability
and mineral security.

3 Data

3.1 Patent data

We retrieve patent data from the PATSTAT database (European Patent O�ce, 2021),
which contains over 100 million patent documents from patent o�ces around the world.
Patents are a widely used proxy for inventive activity. Although they capture inven-
tion rather than the full innovation process, and the propensity to patent varies by
sector, patent data remain one of the most comprehensive, harmonised, and accessible
sources for tracking technological development (Arts et al., 2013; Dechezleprêtre et al.,
2011; Griliches, 1998; Lanjouw et al., 1998). They provide rich, structured information
on inventors, applicants, and technological fields, classified under standardised systems
and spanning long time series. In this study, we organise patent documents into IN-
PADOC patent families to avoid double counting of the same invention. Each family
groups technically related applications—such as those filed in di↵erent jurisdictions or
extensions over time—and is identified by a shared family ID.

In the context of CRM-related innovation, patents are particularly valuable because
they allow for the systematic analysis and interpretation of technical mentions of ma-
terials within inventions. While patents cannot track technology adoption or di↵usion
directly, CRM-related innovation often occurs in extraction, chemical, and industrial
processes, i.e. sectors where patenting is common, especially in green and digital tech-
nologies. For this reason, patent data provide a reliable lens to trace the evolving
technical frontier of material-intensive innovation.

For our study, we select patents with abstracts–i.e. short technical descriptions of
the inventions–written in English, and extract information on the year of first filing, the
Cooperative Patent Classification (CPC) codes assigned, and the country of origin of
inventors and applicants. In particular, CPC codes provide a structured representation
of the technological content of each invention, and are used in this study to enrich
the language model classification and interpret patterns of technological specialization.
The CPC system5 was launched in 2013 by the European Patent O�ce (EPO) and
the United States Patent and Trademark O�ce (USPTO) to harmonise classification
schemes. CPC is highly granular, comprising around 250,000 entries, and is organised
into nine main sections labelled with single letters A–H and Y (see Table 1). Section

5See https://www.cooperativepatentclassification.org/home.
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Y is especially relevant, as it includes the Y02 subclass, which identifies technologies
related to climate change mitigation or adaptation-areas that tend to be more CRM-
intensive than others (de Cunzo et al., 2023).

Label Description

A Human necessities
B Performing operations; Transporting
C Chemistry; Metallurgy
D Textiles; Paper
E Fixed constructions
F Mechanical engineering; Lighting; Heating; Weapons; Blasting
G Physics
H Electricity
Y General tagging of new technological developments

Table 1: CPC technology sections. The first column lists the letters with which each
section is labelled, while the second column lists the corresponding descriptions.

4 Methods

4.1 Keyword search of CRMs in patent abstracts

As a first step in our text analysis, we target the materials included in the 2023 Critical
Raw Materials list published by the European Commission (European Commission,
2023a), which are reported in Table 2. These 31 materials are considered critical based
on their economic importance and supply risks6. To identify CRM-related patents, we
run a keyword search for mentions of these materials across all English-language patent
abstracts filed in PATSTAT between 1999 and 2018.

To carry out the keyword search, we follow a set of specific criteria and methodolog-
ical adjustments aimed at improving the precision and reliability of CRM identification.
First, for many CRMs, we search for both the full material name and its chemical ele-
ment symbol. However, we exclude element symbols consisting of a single letter—such
as ”B” for boron or ”W” for tungsten—as these can easily be confused with unrelated
abbreviations in patent abstracts. Similarly, we exclude specific two-letter symbols,
such as ”As” for arsenic, which are identical to common English words and cannot
be reliably distinguished in text searches. The investigated element symbols are listed
alongside the corresponding CRMs in Table 2. Second, for platinum group metals and
rare earth elements, we search for both generic terms (e.g., ”rare earth,” ”REE”) and
individual material names within each category. Third, given the di�culty of distin-
guishing ”silicon metal” and ”titanium metal” from generic mentions of silicon and
titanium, we search for both the specific metal terms and the corresponding element
names in the abstracts.

6Originally, the 2023 EU CRM list comprises 34 materials. In our analysis, however, we group
scandium, light, and heavy rare earths into a single rare earth category, and we merge phosphorus
with phosphate rock.
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Critical Raw Material keywords list

aluminium/bauxite (Al) antimony (Sb) arsenic baryte
beryllium (Be) bismuth (Bi) boron/borate cobalt (Co)
coking coal copper (Cu) feldspar fluorspar
gallium (Ga) germanium (Ge) hafnium (Hf) graphite
helium (He) lithium (Li) magnesium (Mg) manganese (Mn)
nickel (Ni) niobium (Nb) PGMI phosphorus
REEII silicon metalIII strontium (Sr) tantalum (Ta)
titanium metalIII tungsten vanadium

I Under PGM we group the detections associated with the following list of keywords: iridium
(Ir), osmium (Os), palladium (Pd), platinum (Pt), rhodium (Rh), and ruthenium (Ru).

II Under REE we group the detections associated to the following list of keywords: ree, rare
earth, cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), holmium
(Ho), lanthanum (La), lutetium (Lu), neodymium (Nd), praseodymium (Pr), samarium (Sm),
scandium (Sc), terbium (Tb), thulium (Tm), yetterbium (Yb), and yttrium

III For silicon and titanium metals, we also investigate silicon (Si) and titanium (Ti) alone.

Table 2: CRM keyword list (and corresponding material elements) investigated in
patent abstracts. The list refers to the fifth list of CRMs published in 2023 (Euro-
pean Commission, 2023a; European Commission, 2023b).

4.2 CRM function categories

The core novelty of our methodology is the use of large language models to classify
CRM–abstract pairs—obtained through the keyword search—into five distinct func-
tional categories. This classification allows us to distinguish the role that each critical
material plays within the context of the patented invention. While the technical details
of the LLM-based classification process are discussed in the next sections, here we de-
fine the five functional categories based on the specific relationship between the CRM
and the invention.

A Use: the CRM is integral to the invention, either as a material directly used in
the manufacturing process or as a key input enabling the invention’s intended
purpose.

B Recycle: the invention focuses on recovering and reusing the CRM from waste
streams, discarded products, or secondary sources, with the goal of extending its
lifecycle and reducing reliance on primary extraction.

C Refine: the invention involves refining, purifying, or otherwise processing the
CRM from existing sources into a usable form, typically to improve its quality or
performance.

D Remove: the CRM is targeted for separation, elimination, or reduction from a
material, process, or environment, either to reduce harmful e↵ects, enable purifi-
cation, or facilitate subsequent recovery.
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E Wrong : the CRM is not functionally related to the invention. Its mention is
incidental or spurious, often due to textual ambiguities.7

4.3 Classifying CRM functions with Large Language Models

After matching CRM keywords within patent abstracts, we obtain 3,866,770 associa-
tions between a CRM and a patent filed in PATSTAT between 1999 and 2018. Each
patent can, in principle, be linked to more than one CRM. The goal of the pipeline
described in this section is to determine, for each CRM–patent pair, the most likely
functional role of the material among the five categories defined previously. Our clas-
sification approach builds on the BERT for the Chemical Industry model (Chemical-
BERT-uncased8), a large language model pre-trained on over 40,000 technical docu-
ments from the chemical industry and 13,000 chemistry-related Wikipedia entries. To
adapt the model to our specific task, we implement the following two-step fine-tuning
procedure.

1. Patent Domain Adaptation. We fine-tune the language model on the patent do-
main using a technique developed by Aroyehun et al. (2025), which augments
each patent abstract with auxiliary special tokens representing its associated CPC
technological codes. This step allows the model to better capture the structured
relationship between patent text and technological classifications.

2. Function Classification Fine-Tuning. We further fine-tune the domain-adapted
model for a supervised classification task, training it to assign each CRM–patent
pair to one of the five functional categories defined earlier. The model is trained
on a manually validated dataset of CRM–abstract pairs, each labelled with one
of the five functions according to the role the material fulfils in the invention (see
Appendix A).

Each of these steps is discussed in more detail in the following subsections.

4.3.1 Patent Domain Fine-Tuning

In the first step, we adopt the methodology introduced by Aroyehun et al. (2025),
fine-tuning the language model to better capture the specific linguistic patterns of the
patent domain. To further enhance the model’s contextual understanding, we expand
its vocabulary by adding auxiliary tokens corresponding to CPC technological codes.
Specifically, we introduce one token for each 4-digit CPC A–H code, and one additional
token for each code at the most granular level of aggregation within the Y section. This
token augmentation strategy balances the total number of new tokens added with the

7E.g., the CRM symbol “Ti” for titanium being misidentified when used to denote temperature in
patent abstracts.

8Chemical-BERT-uncased is a BERT-based language model further pre-trained from the checkpoint
of SciBERT(Beltagy et al., 2019). It was adapted using a specialised corpus of over 40,000 technical doc-
uments from the chemical industry and 13,000 chemistry-related Wikipedia articles, including Safety
Data Sheets and Product Information Documents. The pre-training involved over 250,000 chemical
domain-specific tokens and more than 9.2 million paragraphs, using a masked language modelling ob-
jective, to better capture the technical terminology and linguistic structure of chemical and materials
science texts. Chemical-BERT-uncased is available at: https://huggingface.co/recobo/chemical
-bert-uncased.
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need for a more detailed representation of the environmental dimensions of patented
inventions, as captured by the Y02 codes.

We collect approximately 8 million patents from the PATSTAT database (de Rassen-
fosse et al., 2019), spanning from 1980 to 2014, each containing an English abstract and
the associated CPC codes. For each patent document, we create a structured input sam-
ple in the format shown in Table 3, where an additional separator token distinguishes
the list of CPC tokens from the abstract text. Finally, we fine-tune the base language
model with a standard Masked Language Modelling task. As discussed in Aroyehun
et al. (2025), this approach enables the language model to learn a more structured rep-
resentation of the patent domain by incorporating explicit attention mechanisms that
link textual content with technological classifications, such as CPC codes we employ.

CPC Codes Abstract Text Formatted Sample

A01B, C01F, Y02P 10/134 The present invention. . . <A01B token>

<C01F token>

<Y02P10/134 token>

<tech separator token>

The present

invention...

Table 3: Example of a patent sample showing CPC codes, abstract text, and the
corresponding formatted input used for the domain adaptation fine-tuning.

4.3.2 Function Classification Fine-Tuning

In the second step of fine-tuning, we leverage the labelled dataset described in Ap-
pendix A, which contains approximately 11,000 human-validated associations between
patent-CRM pairs and their corresponding functional categories. This sample is fur-
ther augmented with data-augmentation techniques–we refer to Appendix A for more
details on the labelling. To perform this task, we format the inputs as detailed in Table
4. We attach a classification head to the domain-adapted language model, and we per-
form a full fine-tuning of both the language model’s weights and the classification head
with a cross-entropy loss of the 5 possible predicted classes against the labelled class.
Thus, the model receives a formatted sample as an input and outputs a 5-dimensional
probability vector, containing the estimated probability of each of the 5 functions.

4.3.3 Validation

In this section we discuss the overall quality of the classification that we obtain with
the described pipeline. First, we split our labelled dataset in a training, validation, and
test set. Specifically, we keep 70% of the manually labelled data in the training set,
use 15% for validation during training, and 15% for testing. The examples obtained
via data augmentation, as described in Appendix A, are added to the training set only,
resulting in approximately 15,000 examples in the training set and approximately 1,700
examples in the validation and test set.

In Table 5, we report standard classification metrics—specifically precision, recall
and F1 score—computed on the test set to evaluate the performance of the fine-tuned
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Material CPC Codes Abstract Text Formatted Sample

Manganese A01B, C01F, Y02P
10/134

The present inven-
tion. . .

<A01B token>

<C01F token>

<Y02P10/134 token>

<tech separator token>

Manganese

<material separator token>

The present

invention...

Table 4: Example of a patent sample showing a material matched through keyword
search in the patent abstract, CPC codes, abstract text, and the corresponding format-
ted input used for the classification fine-tuning.

language model in assigning CRM–patent pairs to their correct functional categories
(use, refine, recycle, remove, or wrong). The table also includes the confusion matrix,
illustrating the distribution of true versus predicted functional categories in the test set.
Precision measures the proportion of correct positive predictions among all predicted
positives, while recall measures the proportion of correct positives among all actual
positives. The F1 score is the harmonic mean of precision and recall, balancing the
two metrics. The confusion matrix summarises the number of correct and incorrect
classifications across all categories. The per-function precision and recall scores are
consistently high, with the lowest values—0.73 and 0.74, respectively—observed for the
recycle function, resulting in an F1 score of 0.73. For all other functional categories, the
scores are higher, with near-perfect classification performance for the use and remove
functions. Approximately 6% of the examples—100 out of 1,691—are misclassified in
the test set, resulting in an overall precision of 94%.

Classification Metrics Confusion Matrix
Precision Recall F1 Wrong Recycle Remove Use Refine

Wrong 0.74 0.76 0.75 35 0 0 10 1
Recycle 0.73 0.74 0.73 0 37 0 12 1
Remove 0.90 0.98 0.94 0 0 53 1 0
Use 0.97 0.96 0.97 12 14 6 1385 20
Refine 0.79 0.78 0.78 0 0 0 23 81

Table 5: The left part of the table shows per-class Precision, Recall and F1 score on
the test set. The right part of the table is the confusion matrix: element in row i and
column j is the count of how many examples with true label i have been labelled j by
the model.

We assess the performance of the classifier as satisfactory, particularly in view of the
complexity of the classification task. In Table 6, we provide two examples that highlight
the nuances involved in assigning functional categories to CRMs within patent abstracts.
In both cases, two di↵erent CRM mentions are identified within the same patent, and
the model correctly assigns distinct functional categories to each material within the
specific context of the invention.

The first example concerns a process for surface treatment of aluminium, where an
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oxidised layer is first removed and the surface is subsequently sealed with titanium. The
model correctly classifies aluminium as undergoing refinement and titanium as being
used as an input. Notably, although the word “removed” appears in close proximity to
“aluminium” (“...an oxide layer on the aluminium surface is removed...”), the model is
not misled into classifying aluminium under the remove function. The second example
involves an invention where cobalt is used in the formation of anodes employed in
the refinement of copper ores through electrowinning—an electrolytic process used to
extract metals from solution. Here, the model accurately distinguishes between the
use of cobalt and the refine of copper, demonstrating strong domain understanding
by correctly inferring the function of electrowinning, even though it is not explicitly
described as a copper refinement process in the abstract.

These examples very clearly illustrate the significant advantage of using a properly
fine-tuned language model over classification methods based purely on keywords and/or
CPC codes, which would be unlikely to capture such functional distinctions in complex
and context-dependent cases.

Abstract Material Predicted Function

A process for the surface treatment of
aluminium for producing an electric
contact and a corresponding
component, in which, in a first step,
an oxide layer on the aluminium
surface is removed, for example by
pickling, and, in a second step, the
surface is sealed by wet-chemical
means with a conversion layer,
comprising metal ions of zirconium or
titanium before renewed formation of
an oxide layer occurs, is proposed.

Aluminium Refine

Titanium Use

A lead calcium tin alloy to which
cobalt has been added is described.
The alloy is useful in the formation of
anodes to be used in electrowinning
cells. Electrowinning cells containing
the cobalt alloys are particularly
suited for electrowinning metals, such
as copper, from sulfuric acid
electrolytes. The cobalt-containing
anodes improve the e�ciency of
oxygen evolution at the anode during
electrowinning and reduce corrosion of
the anode.

Cobalt Use

Copper Refine

Table 6: Examples of predicted functions for multiple materials mentioned in two patent
abstracts.
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5 Results

In this three-part section presenting our empirical findings, we begin by addressing our
RQ1 in Section 5.1, providing a descriptive analysis of CRM-related innovations across
functional categories, and documenting the emergence of new technological strategies
related to circularity and sustainability. We then turn to the RQ2 in Section 5.2,
examining the geographic distribution of CRM-related patents, identifying national
patterns of specialisation and change over time, and highlighting which countries are
emerging as leaders in specific CRM innovation functions. Finally, to answer the RQ3,
in Section 5.3 we explore functional interdependencies through a panel data analysis,
assessing how upstream (refine) and circular (recycle, remove) patenting is related to
downstream CRM use.

5.1 Mapping CRM Innovation Across Functions, Materials,

and Technologies

To explore how technological innovation in critical raw materials is distributed across
functions and materials, we present a descriptive overview of the distribution of CRM
patent activity across the four functional categories—use, recycle, refine, and remove.
By following the pipeline discussed in Section 4, we begin by identifying CRM mentions
in all PATSTAT patent abstracts between 1999 and 2018, using a targeted keyword
search. This yields 3,866,770 CRM–abstract associations, corresponding to 1,873,724
distinct CRM-related patent families. Before introducing the functional classification,
we first examine which CRMs are most frequently mentioned over time and interpret
the resulting patterns in light of the technological domains where they are known to
play a critical role. Figure 2 displays the 1999–2018 evolution of CRM mentions in
patent abstracts for the top 10 CRMs, based on total patent family counts and indexed
to 1999 (1999 = 1).

From the Figure it is possible to appreciate that, across all materials, CRM-related
patenting shows a pronounced upward trend, particularly from 2008 onward—a period
that also witnessed a broader surge in global patenting activity. While this growth
partly reflects general increases in innovation intensity, the rising prominence of CRMs
in patents from around 2010 onwards across most materials is consistent with recent
literature on CRM innovation (de Cunzo et al., 2023; Diemer et al., 2022; Li et al.,
2024) and with rising global interest in clean energy technologies and digital innova-
tion. Within this broader pattern, the figure reveals heterogeneous trajectories across
materials. Lithium emerges as the most dynamic CRM, with patent mentions in-
creasing more than tenfold over the period, reflecting its critical role in lithium-ion
batteries and the broader electrification of transport and energy systems. Graphite
follows closely, with an eightfold increase, driven by its essential function as an anode
material in lithium-ion batteries and its use in other high-performance energy storage
applications. Copper, which shows a sixfold growth, remains indispensable for power
transmission, electric vehicle manufacturing, and the development of smart grids, owing
to its superior electrical conductivity. Aluminium, also displaying a sixfold increase, is
fundamental to lightweighting strategies in electric mobility and renewable energy in-
frastructure, particularly in solar and wind energy generation (European Commission,
2023c; International Energy Agency, 2021; Scrosati and Garche, 2010). Titanium, and
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Figure 2: Evolution of CRM patent families (1999=1). Evolution of CRM mentions in
patent abstracts over the period 1999-2018, normalised to their 1999 level. Highlighted
are the top 10 CRMs based on the total number of patent families with at least one
detection over the period under analysis.

manganese show more moderate but steady growth, while nickel, magnesium, silicon,
and rare earth elements follow similar but slightly flatter trajectories.

We proceed to the functional classification of CRM innovation, which constitutes
the core contribution of this paper. Following the methodology outlined in Section 4.3,
the 3.87 million CRM–abstract pairs are classified into one of five functional categories.
As reported in Table 7, among the resulting 1,873,724 CRM-related patent families,
the 95.5% is classified as use, the 2.1% as refine, the 0.5% as recycle, and the 1.6% as
remove. An additional 1.6% is identified as false positives (wrong) and excluded from
further analysis.9 These absolute counts underscore the clear dominance of CRM-use
patents, where materials are directly used as material inputs for the invention.

At first glance, the overwhelming predominance of the use function might sug-
gest limited relevance for other CRM roles. However, the trends shown in Figure 3
reveal a more nuanced picture. Although recycle, refine, and remove account for a

9Please note that the sum of function-tagged families exceeds the total number of unique CRM-
related families, as a single patent can reference multiple CRMs with distinct functional roles.
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Function Number of Patent Families Share (%)

Use 1,789,081 95.5
Refine 38,602 2.1
Recycle 10,235 0.5
Remove 30,710 1.6
Wrong (False Positive) 29,515 1.6

Table 7: Classification of CRM-related patent families by functional category

smaller share of total patenting activity, their trajectories over time indicate impor-
tant shifts in innovation dynamics—especially in the period after 2010. In fact, while
use innovations remain dominant over 1999–2018, all four functional categories ex-
hibit substantial growth. Recycle and remove functions display the steepest relative
increases—approximately tenfold and sixfold, respectively—compared to a fourfold rise
in use and refine. Although some of this expansion reflects broader trends in global
patenting, the disproportionately rapid growth of recycle and remove innovations sug-
gests a strategic shift toward circularity, recovery, and material e�ciency. In particu-
lar, this evolving pattern aligns with growing policy attention to CRM reuse, supply
resilience, and environmental sustainability—especially for materials with complex pro-
cessing requirements or geopolitical sensitivity.

To explore the relationship between functional categories and specific materials, Fig-
ure 4 presents a cross-sectional decomposition of function shares for the top 10 CRMs,
as identified from the CRM-specific trends of Figure 2. As expected, use dominates
across all top materials, consistently accounting for more than 95% of functional classi-
fications. However, notable heterogeneity emerges within the residual shares associated
with recycle, refine, and remove functions. Lithium, manganese, and nickel display rel-
atively higher shares of recycling-related patents, reflecting increasing innovation e↵orts
aimed at recovering end-of-life batteries and associated materials (Harper et al., 2019).
In contrast, rare earth elements exhibit a stronger emphasis on refining, consistent with
the complex technical requirements and geopolitical sensitivities surrounding the pro-
cessing of these materials. Copper and nickel also show a relatively greater proportion
of patents associated with both refining and removal functions, suggesting heightened
attention to process improvements and circularity in their value chains.

These functional patterns are corroborated by the technological classification anal-
ysis extensively detailed in Appendix B. Refining patents across CRMs are primar-
ily concentrated in metallurgical processing subclasses—especially C22B and Y02P
10/20—while lithium and graphite recycling is strongly associated with electrochem-
ical cell technologies (H01M and Y02W 30/84). Removal-related innovations are of-
ten linked to water treatment and metal recovery codes (C02F and Y02P 10/20),
reflecting environmental remediation and purification goals. Use-related patents, by
contrast, span a broader range of application-driven subclasses—most notably Y02E
60/10, H01M, C22C, and H01L—highlighting how CRMs are increasingly embedded in
energy storage, alloy design, and semiconductor devices.

Taken together, these patterns illustrate a complex and evolving CRM innovation
landscape. While use continues to dominate in absolute terms, the growing shares of
recycle, refine, and remove functions highlight an expansion of innovation strategies for
CRM recovery, substitution, and process optimisation. Finally, by linking functional
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Figure 3: Evolution of CRM patent families per function category relative to 1999.
Evolution of the number of patent families over the period 1999-2018 across the 4
functions use, remove, recycle, refine. The plot is relative to 1999 levels.

roles to CPC classifications our analysis reveals not only the scale but also the tech-
nological structure of CRM innovation, shedding light on how specific materials are
embedded in di↵erent domains of technological development.

5.2 Geographic patterns in CRM innovation

In this section, we investigate the geographic dimension of CRM-related innovation,
analysing how countries specialise across di↵erent functional categories. Linking patent
data to the country of origin of inventors and applicants allows us to identify the lead-
ing actors in CRM innovation and uncover distinct national patterns of technological
specialisation across functional categories, shedding light on how di↵erent economies
are positioning themselves in the evolving landscape of material-critical technologies.
To geolocalise patent families, we adapt the methodology proposed by de Rassenfosse
et al. (2013), tailoring it to our family-level analysis. First, when inventor country infor-
mation is available, we assign the family to all countries of the listed inventors. Second,
when the inventor information is missing, we use the applicant’s country. Third, if
neither inventor and applicant countries are available, we geolocalise the family based
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Figure 4: Material composition by function category. Histogram plotting the distribu-
tion of patent families across functions for the top 10 CRMs of Figure 2.

on the country of the patent o�ce associated with the earliest filed application within
the family.

Table 8 presents the distribution of CRM-related patent families across functional
categories in the top innovating countries. The table includes nine individual countries
and the European Union, considered as a single entity by aggregating patents from
its 27 member states (EU27 hereafter). This approach allows us to assess European
innovation e↵orts in light of the EU’s strategic policy agenda on critical raw materials
(European Commission, 2024). Collectively, these countries plus the EU27 account for
99.2% of all CRM-related patent families filed between 1999 and 2018, thus capturing
nearly the entire global CRM patenting.

Looking at Table 8, China clearly emerges as the dominant force, accounting for
more than 60% of all CRM-related patent families. This reflects China’s leading po-
sition across multiple stages of the CRM supply chain—from extraction to processing
and downstream applications (European Commission, 2023c). This large dominance
also signals a broader caveat: global aggregate patent trends may disproportionately
reflect China’s trajectory, underscoring the importance of decomposing analyses geo-
graphically. Beyond China, distinct country-specific patterns emerge. Resource-rich
countries such as Russia (Safirova, 2024) and Ukraine (Safirova, 2025)10 stand out for
their relatively high shares of refining-related patents (6.04% and 13.58%, respectively),

10For an overview of Ukraines’s mineral industry see also the US Geological Survey table: https://
www.usgs.gov/media/files/mineral-industry-ukraine-2017-18-xlsx-tables-only-release.
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Country Use Refine Recycle Remove

China 1,130,210 (95.49%) 24,988 (2.11%) 6,850 (0.58%) 21,594 (1.82%)
Japan 332,292 (97.36%) 3,765 (1.1%) 1,435 (0.42%) 3,802 (1.11%)
South Korea 108,035 (96.87%) 909 (0.82%) 556 (0.5%) 2,023 (1.81%)
European Union 75,313 (95.42%) 2,274 (2.88%) 416 (0.53%) 929 (1.18%)
United States 75,579 (96.19%) 1,401 (1.78%) 268 (0.34%) 1,323 (1.68%)
Russia 39,866 (92.17%) 2,612 (6.04%) 235 (0.54%) 539 (1.25%)
Taiwan 22,494 (95.93%) 465 (1.98%) 194 (0.83%) 296 (1.26%)
United Kingdom 10,149 (96.76%) 179 (1.71%) 33 (0.31%) 128 (1.22%)
Ukraine 8,509 (84.26%) 1371 (13.58%) 75 (0.74%) 144 (1.43%)
Canada 4,987 (90.8%) 291 (5.3%) 87 (1.58%) 127 (2.31%)

Table 8: Distribution of CRM-related patent families across functional categories by
country. For each country, the table reports the number of patent families in each
function, with corresponding percentage shares shown in parentheses.

suggesting the presence of industrial processing capabilities developed alongside their
extraction sectors (Blum et al., 2023; Liventseva, 2022). Japan, while ranking among the
top CRM innovators, concentrates overwhelmingly on use patents (97.36%), consistent
with its industrial focus on high-tech manufacturing and advanced electronics. South
Korea shows a similar profile, although with a slightly higher engagement in recycling
and removal functions. Finally, western countries—including the United States, United
Kingdom, and the EU27—show more balanced engagement across non-use functions,
particularly in refining and removing. However, their absolute volumes are modest
compared to global leaders, suggesting that their innovation strategies may be less
CRM-intensive or more reliant on global supply chains–e.g. via the import of CRM
intensive technologies.

To enrich this cross-sectional picture, we examine the dynamic evolution of country-
level CRM innovation over time in Figure 5, presenting the evolution of CRM-related
patent families across the four functions for the top 10 countries, broken down into four
five-year intervals. The patent counts are indexed to each country’s level in the initial
period (1999–2003), allowing us to more clearly track growth trends across functions.
The dynamic analysis reinforces China’s dominance in CRM innovation, with steep
increases observed across all functions. CRM-related recycling patents go from just
70 families in 1999–2003 to 4,664 in 2014–2018—a 66-fold increase. Refining patents
display a 21-fold increase, and remove-related innovations a 37-fold increase over the
same period. Use-related patents also experienced a large increase, growing by a fac-
tor of 27—from 25,925 to 717,853 families. No other country exhibits a comparable
trajectory across functional categories. In contrast, Japan’s position in CRM-related
innovation appears to be rooted in earlier periods, with a noticeable decline in patent
activity after 2008. Unlike China, whose leadership has intensified over time, Japan’s
role has progressively declined—potentially reflecting an industrial restructuring or a
shift in its position within CRM supply chains. The contrast is particularly striking in
the use function: in 1999–2003, Japan filed over four times the number of families com-
pared to China (108,338 vs. 25,925), while by 2014–2018, Japan’s output had dropped
to under 10% of China’s (58,081 vs. 717,853). South Korea shows more modest but
positive growth, particularly in recycling, where patent volumes more than tripled. As
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Figure 5: Evolution of CRM-related patent families across functions in the top 10
countries–see Table 8. The number of CRM-related patent families is computed in
four distinct 5-year intervals (1999-2003, 2004-2008, 2009-2013, 2014-2018) and their
evolution is relative to the first period 1999-2003.

for the resource-rich countries—Ukraine and Russia—their relatively high shares in re-
fining, observed in Table 8, present an initial growth phase, followed by a decline after
2008. In Russia’s case, CRM-related innovation increases slightly in the use function
alone, going from 7,327 patent families in 1999-2003 to 9,095 in 2014-2018. Western
countries—such as the EU27, United States, United Kingdom, and Canada—show a
general decline in CRM use-related patenting over time. However, in the most recent
time-window, the US, the UK, and Canada record modest growth in recycling-related
innovations, suggesting a partial shift in innovation focus toward circularity-oriented
strategies, though at lower absolute levels compared to leading countries.

Summing up, the geographic analysis reveals distinct national trajectories in CRM-
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related innovation. China has rapidly expanded its innovation capacity across all func-
tions, establishing itself as the dominant and most diversified actor. Other countries
show more selective patterns: Japan’s early leadership has faded; Russia and Ukraine
remain narrowly focused on CRM refining; and Western economies, despite lower patent
volumes, exhibit a late pivot toward recycling and circularity. These trajectories re-
flect underlying di↵erences in industrial structure, resource endowments, and strategic
positioning within global supply chains.

5.3 Functional interdependencies in critical raw material in-

novation

We examine functional interdependencies in CRM innovation, assessing how advance-
ments in recycling, refining, and removing technologies relate to downstream innovation
in CRM use. To test this relationship, we estimate a panel fixed e↵ects regression model
using data from 20 countries over the period 1999–2018.

5.3.1 Model specification

To build our panel, we select only the top 20 countries in CRM patenting over the
period 1999-2018.11 Cumulatively, this group of countries covers the 99.2% of total
CRM patent families over the entire period—i.e., 1,857,984 out of the total 1,873,724.
For each country and year, we compute the number of patent families in the functional
categories use, recycle, refine, and remove for all the CRMs investigated–as detailed
in Table 2–for a total of 12,400 observations comprising 20 countries, 20 years, and 31
CRMs. To assess how innovation in recycle, refine, and remove functions relates to
innovation in CRM use, we estimate the following panel fixed-e↵ects model.

log(Usecmt) = �1 log(Recyclecmt) + �2 log(Refinecmt) + �3 log(Removecmt)

+ �Xcmt + �t + µcm + "cmt
(1)

where c indexes countries, m critical raw materials, and t years. The dependent
variable, log(Usecmt), is the log-transformed number of patent families classified under
the use function for CRM m in country c and year t. The key explanatory variables–i.e.
log(Recyclecmt), log(Refinecmt), and log(Removecmt)–are the log-transformed counts of
patent families associated with the recycle, refine, and remove functions for the same
country-CRM-year unit. The model includes year fixed e↵ects (�t) to control for global
shocks and trends common across all units, and country–CRM fixed e↵ects (µcm) to
capture unobserved time-invariant heterogeneity specific to each country–CRM pair.
Xcmt denotes a set of time-varying controls: country GDP per capita (GDPct), R&D
expenditures (R&Dct), and total patenting volume (PatentV olumect), all measured at
the country–year level; the inflation-adjusted price of CRM m (Pricemt); a dummy
variable (Activecmt) equal to one if country c has non-zero innovation activity in any
non-use function for CRM m in year t; and a production dummy (Producercmt) equal

11The country selection is based on the number of CRM patent families over the period 1999-2018,
and includes China, Japan, South Korea, United States, Russia, Germany, Taiwan, France, United
Kingdom, Ukraine, Canada, India, Netherlands, Italy, Switzerland, Spain, Belgium, Australia, Austria,
and Sweden.
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to one if country c produces any quantity of CRM m in year t. Standard errors are
clustered at the country–CRM level to account for serial correlation within units over
time.

We apply a log-transformation to patent counts for the four functional categories
to address the substantial skewness in the distribution of innovation activity across
countries, materials, and years. A potential concern in our empirical specification is
endogeneity, particularly in the form of reverse causality. In principle, innovation in
use could influence subsequent innovation in recycle, refine, or remove functions, just
as improvements in secondary functions could facilitate greater material use. Moreover,
unobserved factors—such as technology-specific demand shocks or shifts in regulatory
frameworks—could simultaneously drive both use and other innovation activities, lead-
ing to omitted variable bias. However, we emphasise that the objective of our analysis is
not to establish causal relationships but rather to identify robust patterns of association
across functions.

To further assess the directionality and robustness of the observed relationships, we
conduct additional regressions, including models that invert the direction of analysis
(regressing recycle, refine and remove on use) as well as alternative estimation strategies
such as Poisson and OLS models (see Appendix C). These checks confirm the stability
of our main results across specifications, while also suggesting that the reverse relation-
ship—from use to other functions—is weaker and less systematic. Table 9 summarises
the descriptive information of the variables in our panel.

mean sd min max
Log(Use) 2.82 2.017 0 10.9
Log(Recycle) 0.212 0.598 0 5.96
Log(Refine) 0.515 0.932 0 6.57
Log(remove) 0.342 0.787 0 7.57
GDP per capita 38036 15813 2524 75222
R&D expenditure 2.00 0.848 0.449 4.52
Patent volume 83743 277673 1373 3.06e6
CRM real price 5.61e5 2.62e6 24.2 2.03e7
Active dummy 0.431 0.495 0 1
Producer dummy 0.284 0.451 0 1
Observations 12400

Table 9: Summary statistics.

5.3.2 Regression results

Table 10 presents the results of four fixed-e↵ect regression specifications assessing the
relationship between CRM use innovations vis-à-vis recycle, refine, and remove inno-
vations. Column (1), our baseline model, reports our main specification estimating
log-log relationships between functional patent counts. Column (2) replaces continuous
patent counts–for recycle, refine, and remove–with binary indicators for the presence
of patenting activity in each function. Columns (3) and (4) introduce a one-year and
five-year lag of the main explanatory variables respectively, to better capture temporal
dynamics and address concerns about reverse causality. All specifications include year
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fixed e↵ects to control for global trends, and country–CRM fixed e↵ects to control for
unobserved heterogeneity. Standard errors are clustered at the country–CRM level.
Adjusted R-squared values (R2) range from 0.30 to 0.39, and the number of observa-
tions varies between 10,087 in columns (1) and (2), 9,577 in column (3), and 7.558 in
column (4), depending on the lag construction.

Across all specifications, innovation in recycle, refine, and remove is positively asso-
ciated with innovation in CRM use. In the baseline model (column 1) a 1% increase in
refining-related patents is associated with a 0.2% increase in use-related patents. The
recycle and remove functions also display positive and statistically significant e↵ects,
with elasticities of approximately 0.09 and 0.14, respectively. These findings suggest
that upstream and circular innovations are complementary to CRM use innovation,
with refining playing the most substantial enabling role.

The dummy specification in column (2) provides additional insights by examining
whether the mere presence of innovation activity–rather than its intensity–correlates
with use innovation. All three functional dummies remain positive and highly signif-
icant, confirming the direction of association. Notably, the coe�cient for the recy-
cling dummy is larger than in the continuous baseline model, This suggests threshold
or activation e↵ects, whereby the onset of even minimal recycling activity may yield
disproportionate returns in CRM use innovation—a dynamic potentially relevant for
emerging economies and nascent technological domains.

Columns (3) and (4), which introduce one-year and five-year lags of the functional
variables respectively, help address concerns of reverse causality and better capture
the time structure of innovation e↵ects. In the one-year lag model (column 3) all
three functions are positive and statistically significant, although the magnitude of
the corresponding coe�cients is lower than in the baseline model. This supports the
robustness of our main findings, while also indicating that the influence of recycling,
refining, and removing on use-related innovation appears strongest in the short term.
In the five-year lag model (column 4), the coe�cient for refine remains positive and
significant, while those for recycle and remove lose significance—pointing to a time-
decay pattern. This suggests that circular innovation e↵ects may be more time-sensitive,
while refining exerts a more durable enabling role. It is important to note, however, that
introducing longer lags reduces the e↵ective sample size and may contribute to noisier
estimates. While the five-year results should therefore be interpreted with caution, the
overall patterns are robust: refine consistently supports CRM use innovation over time,
while recycle and remove appear to exert shorter-term influences. Taken together, these
results point to a pattern of functional interdependence within CRM innovation, with
varying temporal profiles across functions.

Our findings highlight a robust association between CRM use innovation and up-
stream (refine), circular (recycle), and mitigation (remove) functions, even after ac-
counting for CRM-country production statuses and innovation intensities, as well as for
potential distributional biases. This underscores the systemic nature of CRM-related
technological change: progress in circularity and resource e�ciency can reinforce rather
than substitute core technological development. In particular, the strong and persistent
role of refining underscores its importance as a technological enabler, while the posi-
tive but shorter-lived e↵ects of recycling and removal innovations suggest that circular
economy strategies can align synergistically with innovation-oriented goals. These find-
ings carry important policy implications: supporting circularity and material e�ciency
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through targeted innovation strategies may not trade o↵ against advancing technologi-
cal competitiveness in critical raw materials. Rather, both objectives can be mutually
reinforcing, o↵ering integrated pathways toward sustainable and resilient CRM gover-
nance.

(1) (2) (3) (4)
Log(Use) Log(Use) Log(Use) Log(Use)

Log(Recycle) 0.0878⇤⇤⇤ (0.0185)
Log(Refine) 0.201⇤⇤⇤ (0.0224)
Log(Remove) 0.142⇤⇤⇤ (0.0168)
GDP 0.161 (0.0825) 0.179⇤ (0.0834) 0.209⇤ (0.0841) 0.370⇤⇤ (0.120)
R&D 0.169⇤⇤⇤ (0.0335) 0.221⇤⇤⇤ (0.0356) 0.184⇤⇤⇤ (0.0336) 0.307⇤⇤⇤ (0.0409)
Patent volume 0.249⇤⇤⇤ (0.0142) 0.347⇤⇤⇤ (0.00812) 0.258⇤⇤⇤ (0.0121) 0.255⇤⇤⇤ (0.00987)
CRM real price 0.0166 (0.0127) 0.0214 (0.0126) 0.0180 (0.0111) 0.0207 (0.0156)
Active dummy -0.0117 (0.0212) -0.000957 (0.0254) 0.144⇤⇤⇤ (0.0194) 0.153⇤⇤⇤ (0.0239)
Producer dummy 0.0233 (0.0485) 0.0233 (0.0501) -0.00415 (0.0489) -0.0510 (0.0603)
Recycle dummy 0.125⇤⇤⇤ (0.0197)
Refine dummy 0.134⇤⇤⇤ (0.0208)
Remove dummy 0.108⇤⇤⇤ (0.0218)
Log(Recycle)lag1 0.0571⇤⇤ (0.0175)
Log(Refine)lag1 0.178⇤⇤⇤ (0.0201)
Log(Remove)lag1 0.102⇤⇤⇤ (0.0161)
Log(Recycle)lag5 0.0256 (0.0156)
Log(Refine)lag5 0.0523⇤⇤⇤ (0.0152)
Log(Remove)lag5 0.0322 (0.0169)
Constant 2.502⇤⇤⇤ (0.0769) 2.498⇤⇤⇤ (0.0814) 2.551⇤⇤⇤ (0.0742) 2.381⇤⇤⇤ (0.0857)
N 10087 10087 9577 7558
r2 a 0.389 0.362 0.375 0.303

Standard errors in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table 10: Regression of CRM use on recycle, refine, and remove. Column (1) baseline
model; (2) dummies; (3) 1-year lag; (4) 5-year lag.

5.3.3 Interaction between CRM innovation functions

We further explore the interrelationships among CRM functions by examining whether
innovation activities in recycle, refine, and remove functions complement or substitute
for one another in driving CRM use innovation. To test this, we estimate models that
include interaction terms between functional variables, allowing us to assess whether
innovation in one function modifies the marginal e↵ect of another on use. Table 11
presents the results. Columns (1) to (3) report models with interaction terms between
recycle and refine, recycle and remove, and refine and remove, respectively. The re-
sults show that the interactions between recycle and refine (column 1) and between
recycle and remove (column 2) are negative and statistically significant. This suggests
that when both functions are simultaneously active, their marginal contributions to use
innovation partially o↵set each other, indicating a degree of functional substitutabil-
ity. One interpretation is that technological improvements in refining may reduce the
need for recycling-based strategies (and vice versa), or that resource constraints induce
countries to prioritise one innovation pathway over another. In contrast, the interaction
between refine and remove (column 3) is negative but statistically insignificant.
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(1) (2) (3)
Log(Use) Log(Use) Log(Use)

Log(Recycle) 0.128⇤⇤⇤ (0.0200) 0.109⇤⇤⇤ (0.0207) 0.0940⇤⇤⇤ (0.0190)
Log(Refine) 0.214⇤⇤⇤ (0.0233) 0.206⇤⇤⇤ (0.0229) 0.207⇤⇤⇤ (0.0250)
Log(Remove) 0.156⇤⇤⇤ (0.0179) 0.158⇤⇤⇤ (0.0192) 0.155⇤⇤⇤ (0.0217)
Log(Recycle)*Log(Refine) -0.0246⇤⇤ (0.00838)
Log(Recycle)*Log(Remove) -0.0181⇤ (0.00736)
Log(Refine)*Log(Remove) -0.00825 (0.00744)
GDP 0.157 (0.0823) 0.161 (0.0826) 0.160 (0.0825)
R&D 0.166⇤⇤⇤ (0.0332) 0.167⇤⇤⇤ (0.0333) 0.168⇤⇤⇤ (0.0334)
Patent volume 0.262⇤⇤⇤ (0.0145) 0.256⇤⇤⇤ (0.0139) 0.252⇤⇤⇤ (0.0141)
CRM real price 0.0168 (0.0129) 0.0167 (0.0128) 0.0163 (0.0127)
Active dummy -0.0348 (0.0216) -0.0259 (0.0223) -0.0227 (0.0234)
Producer dummy 0.0210 (0.0480) 0.0223 (0.0481) 0.0225 (0.0483)
Constant 2.696⇤⇤⇤ (0.0723) 2.688⇤⇤⇤ (0.0728) 2.683⇤⇤⇤ (0.0727)
N 10087 10087 10087
r2 a 0.390 0.390 0.389

Standard errors in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table 11: Regression of CRM use on the interaction of other functions. Column (1):
recycle and refine interaction; (2) recycle and remove interaction; (3) refine and remove
interaction

In conclusion, these findings highlight the systemic complexity of CRM-related inno-
vation. While innovation e↵orts in individual functions reinforce use innovation when
considered separately, pursuing multiple functions simultaneously may be associated
with diminishing returns. This may reflect overlapping technological scopes, competi-
tion for limited R&D resources, or strategic trade-o↵s in national innovation priorities.
From a policy perspective, the results underline the importance of coordinating in-
novation support across CRM functions to maximise synergies and avoid unintended
crowding-out e↵ects in core technological applications.

6 Conclusions

The governance of critical raw materials has shifted from a technical niche concern to
a pressing global issue, now occupying front-page headlines. Recent geopolitical ten-
sions, exemplified by the debate on rare earths in Ukraine and broader concerns about
the resilience of the CRM supply chain, have underscored the profound strategic, en-
vironmental, and technological risks linked to material dependencies. As clean energy,
digital technologies, and green infrastructures become central to economic competitive-
ness, the foundational role of CRMs in enabling these systems has intensified. Their
limited substitutability, geographic concentration, and high environmental and social
costs of extraction raise complex challenges across industrial, environmental, and strate-
gic domains. This growing awareness has brought new urgency to understanding how
innovation systems engage with CRMs, not just in terms of securing supply, but in shap-
ing the technological trajectories upon which future sustainability and competitiveness
depend.

Understanding how innovation systems respond to mounting material and strategic
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pressures requires moving beyond questions of CRM presence in patented inventions to
examine the functional roles these materials play across the technological value chain.
To this aim, our study introduces a novel, function-sensitive methodology to system-
atically map CRM-related innovation across supply chain stages, technologies, and ge-
ographies. Building on recent advances in AI-based text analysis and patent mining
(Aroyehun et al., 2025; Madani and Weber, 2016; Zhang et al., 2022), we propose a
hybrid empirical strategy that combines keyword-based filtering with large language
model classification to map how CRMs are functionally embedded in technological in-
novation. First, we identify CRM-related patents in the PATSTAT database through
a targeted keyword search. This yields nearly 4 million CRM–patent abstract associa-
tions during the period 1999–2018. Second, to move beyond sheer material mentions,
we apply a LLM-based classifier to assign each CRM–patent pair to one of the four
functional categories of CRMs in each invention: use, refine, recycle, and remove. Each
of these functional categories is connected to one or more stages of the CRM supply
chain, either in the upstream extraction and processing, downstream manufacturing,
or circular end-of-life recovery. A fifth category, wrong, is used to detect false positives
introduced in the initial keyword filtering, improving the accuracy and robustness of
the CRM-patent classification. By clarifying the roles critical raw materials play in
technological innovation, this function-sensitive framework enables us to provide com-
parative and temporal insights across materials, technological domains, geographies,
and supply chain stages. It o↵ers a dynamic and granular lens on how innovation sys-
tems are adapting to material constraints, capturing not only the scale of CRM-related
innovation but also its strategic orientation—interpreting patented inventions as signals
of how these systems respond to the sustainability, security, geopolitical, and material
challenges shaping the global governance of CRM supply chains.

Our empirical analysis points to several key findings. Firstly, we explore how
CRM innovation is distributed across functions, materials, and technology domains.
At the function-level, while CRM use-related inventions dominate in absolute patent
counts, there is a notable and growing diversification towards circular and sustainability-
oriented functions, particularly recycle and remove. This trend suggests that, albeit in
small volumes, CRM innovation is evolving towards greater material e�ciency and re-
silience, responding to emerging environmental and supply chain pressures. At the
material level, lithium, graphite, rare earth elements, and copper emerge as the most
frequently mentioned CRMs in patented inventions—reflecting their central role in the
green and digital transitions, especially through applications in electrification and en-
ergy storage. These patterns are further reinforced by our analysis of CPC classi-
fications. Use-related patents span a wide range of technology applications, while
innovation in refine, recycle, and remove functions is more narrowly concentrated in
technical domains linked to material processing, recovery, and battery systems. For
instance, lithium and graphite recycling and refining patents are strongly rooted in
battery-related subclasses–such as H01M and Y02W 30/84–underscoring the pivotal
role of battery innovation as a driver of circular and enabling CRM strategies.

Secondly, we investigate the distribution of CRM function-specific innovations across
countries. The geographic distribution of CRM-related innovation reveals an increas-
ingly polarised global landscape, characterised by high spatial concentration and dis-
tinct national specialisation profiles. Between 1999 and 2018, China advanced through-
out the CRM supply chain and consolidated its global leadership in CRM innovation,
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recording exponential growth in patenting activity across all functional categories. Hand
in hand with its strategic e↵orts to secure dominance in CRM extraction and refining,
the breadth and pace of China’s functional diversification indicate a deliberate attempt
to position itself at the technological frontier of CRM-intensive innovation, especially in
green and digital technologies. In contrast, Western countries, including the EU and the
US, exhibit declining trends in use-oriented CRM innovation and only recently modest
growth in the recycling and remove functions, potentially reflecting a slow but strategic
move away from CRM-intensive technologies, or a lag in adapting their technology base,
raising concerns about their long-term competitiveness in critical technology domains.

Thirdly, to better understand the functional interdependencies between upstream,
circular, and use-related innovations, we examine how patenting in CRM refining, re-
cycling, and removing is linked to CRM use. Employing a fixed-e↵ects panel estima-
tion–with patenting activity in the use function as the dependent variable and obser-
vations indexed by CRM, country, and year—we find that innovation in the refine,
recycle, and remove functions is positively associated with use-related innovation. This
suggests that upstream and circular e↵orts tend to reinforce, rather than substitute for,
core technological development, indicating that CRM innovation often unfolds through
system-wide, integrated advances rather than isolated breakthroughs. However, the
analysis also reveals significant interaction e↵ects—most notably a negative and sta-
tistically significant interaction between recycle and refine—indicating that these func-
tions may partially o↵set each other in their contribution to CRM use innovation. This
suggests that the benefits of combining innovation e↵orts across functions may be lim-
ited. When two functional areas like recycle and refine are both highly active, their
joint impact on use-related innovation is smaller than expected—possibly because they
target similar technological challenges or follow competing innovation paths. While
pursuing multiple innovation pathways can create synergies, these findings point to
potential trade-o↵s when allocating e↵ort across functions.

These findings carry several implications for innovation and industrial policy. De-
spite growing academic and policy attention to circularity, particularly regarding re-
cycling and reuse, our analysis reveals that use-oriented innovations still dominate
CRM-related patenting. Although recycling, refining, and removing activities are ex-
panding—especially since 2010—their absolute volumes remain modest, signalling that
market forces alone are unlikely to deliver the scale of circular and upstream progress en-
visioned in policy goals without targeted policy support. However, our results show that
supporting innovation in circularity functions should not be viewed as counter to indus-
trial competitiveness; rather, advancing recycling, refining, and removing capabilities
are foundational to securing the technological bases necessary for CRM use-related in-
ventions, and therefore to strengthening the broader innovation ecosystem. At the same
time, the observed mix of complementarity and partial substitutability among CRM
functions underscores the importance of coordinated policy frameworks that account
for functional interdependencies and minimise potential crowding-out e↵ects. Finally,
the geographic concentration of CRM innovation, particularly China’s cross-functional
leadership, highlights the limitations of policy approaches that focus narrowly on supply
diversification and domestic extraction. Broader technological sovereignty and supply
chain resilience objectives must be in fact aligned with e↵orts to reduce dependence on
primary extraction and mitigate its socio-environmental impacts, through sustained in-
vestment in circular and less CRM-intensive innovation pathways and the development
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of robust frameworks for responsible sourcing. This alignment is particularly urgent
in the European context, where the near-total reliance on external sources amplify
strategic vulnerabilities and poses a significant obstacle to the EU’s sustainability and
autonomy goals.

Although our study introduces a novel empirical framework for analysing CRM in-
novation dynamics, several limitations should be acknowledged, many of which point
to promising directions for future research into how material constraints shape tech-
nological trajectories. Our functional classification o↵ers a realistic representation of
critical raw material supply chains within patents, however, it could be further refined
by introducing additional categories such as CRM mining, substitution, and reduction.
Expanding the CRM functional categories would help further disentangling the strategic
orientation of patented inventions around material constraints and sustainability chal-
lenges, particularly within the dominant use category. Furthermore, while we map the
main CRM-related innovations across patent domains and our primary objective is to
demonstrate the potential of our hybrid text-analysis methodology to capture aggregate
functional patterns across countries and materials, future research should undertake a
more fine-grained analysis of how CRM functions evolve within strategic technological
domains, especially renewable energy, digital infrastructure, and defence, in order to
deepen our understanding of the key technological trajectories of CRM innovation. Fi-
nally, our econometric analysis provides robust evidence of associations between CRM
functions. However, it does not establish causal relationships, such as the impact of
innovations in recycling or refining on downstream technology adoption, which would
require more advanced identification strategies, which could leverage exogenous vari-
ation from material supply shocks or regulatory changes. Although such analysis lies
beyond the scope of this paper, future research may integrate function-sensitive patent
mapping with causal inference to obtain more actionable policy insights, particularly by
examining the distribution of CRM functions within strategic technological domains.

The CRM economy illustrates how sustainability imperatives, innovation dynamics,
and international competition are increasingly interconnected. Far from being passive
inputs, CRMs actively shape the direction and intensity of technological change, as
supply pressures reconfigure not only the pace of innovation but also its underlying
trajectories (Li et al., 2024). Therefore, as innovation systems shift their material foun-
dations and become increasingly exposed to resource constraints, understanding the
role of CRMs within technological change is essential for anticipating the evolution of
technological capabilities. Our function-sensitive, large language model-based approach
contributes to this task by o↵ering a novel and scalable framework for capturing the
evolving role of CRMs in patented inventions, enabling more systematic monitoring of
innovation responses across supply chain stages, materials, and geographies. By making
visible the functional interdependencies between upstream, downstream, and circular
innovation, this methodology provides critical insight for designing more coherent and
forward-looking policy frameworks. Ultimately, building resilient, sustainable, and fair
CRM supply chains will be crucial not only for achieving climate and digital goals,
but also for shaping the global distribution of technological capabilities and economic
power. In an era of profound technological and geopolitical transformation, address-
ing these interlinked challenges calls for integrated governance approaches that align
environmental targets with technological, industrial, and strategic objectives.
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A Labelled Dataset for Functional Role Classifica-

tion

To train the classification model on functional roles, we use a manually validated dataset
of CRM–patent abstract pairs, each labelled according to one of the five functional cat-
egories described in Section 4.2: use, refine, recycle, remove, or wrong (false positives).
The sample is based on the manually annotated dataset used for a robustness analysis
in de Cunzo et al. (2023). Each example links a specific CRM mention in a patent
abstract to its function within the invention. For each pair, we also retain metadata on
the detected keyword(s) and the associated CPC codes. The original sample includes
4,044 INPADOC patent family IDs, corresponding to 11,564 CRM–abstract pairs.12

As approximately 90% of the original examples fall under the use category, we apply
a data augmentation strategy to improve the balance across functional roles. We use a
back-translation method to increase the number of examples for the less frequent func-
tions—refine, recycle, remove, and wrong.13 This process involves translating each text
from English to another language X, and then back to English. A new CRM–abstract
pair is then created using the back-translated abstract and the original CRM keyword.
Table 12 reports the number and share of examples in each functional category before
and after data augmentation.

Function Category
Examples before data

augmentation (Share)

Examples after data

augmentation (Share)

Use 10205 (88.2%) 10205 (55.6%)
Recycle 357 (3.1%) 2142 (11.7%)
Refine 528 (4.6%) 3168 (17.2%)
Remove 198 (1.7%) 1188 (6.5%)
Wrong 276 (2.4%) 1656 (9.0%)

Table 12: Function composition of the training sample before and after the data aug-
mentation procedure

B Functional Innovation Patterns across CPC Tech-

nology Classes

Studying how CRM-related inventions map onto the CPC system across functional
categories provides insights into the technological directions of innovation for specific
materials. More specifically, understanding which CPC domains are associated with
particular CRM–function pairs helps reveal where innovation is concentrated, which
areas are maturing, and where e↵orts remain nascent. Figure 6 presents a heatmap of
patent family counts for the top 10 CRMs across functions and CPC sections.

12The CRM list di↵ers slightly from that used in this paper. de Cunzo et al. (2023) relies on the 2020
EU CRM list (European Commission, 2020a), while we adopt the 2023 update (European Commission,
2023a). However, most CRMs in the training sample are retained in the updated list.

13We use Helsinki-NLP’s OPUS-MT models Tiedemann et al. (2023), implemented with the Mari-
anMT architecture Junczys-Dowmunt et al. (2018).
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Figure 6: Heatmap of INPADOC family counts by CRM function across CPC sections
reported on the x-axis. Colour intensity follows a log scale—compressing large values
and revealing low-frequency cells—while white denotes zero occurrences. The dashed
yellow line separates sections A–H from section Y, which is reserved for climate change
adaptation and mitigation technologies.

As shown in the figure, CRM-related innovations are predominantly located in CPC
sections C (Chemistry; Metallurgy), H (Electricity), and Y (General tagging of new
technological developments). The signal in section Y is almost entirely concentrated
in the Y02 class, which covers Climate change mitigation and adaptation technologies
(CCMT). In contrast, sections such as D (Textiles; Paper) and E (Fixed Constructions)
show almost no CRM-related patents. Other sections—A (Human Necessities), F (Me-
chanical Engineering), and G (Physics)—contain CRM patents primarily within the use
function, and only for the selected sub-set of materials shown in the figure. These find-
ings suggest that CRM innovation, whether aimed at new devices, separation processes,
or end-of-life recovery, is overwhelmingly linked to chemical, metallurgical, electrical,
and sustainable technology domains.

Functional patterns vary: use-related patents are widely distributed across CPC
sections, reflecting how deeply embedded CRMs are in the development of finished
technologies, from batteries to electronics. In contrast, circular functions (recycle, re-
move) and enabling functions (refine) are more narrowly concentrated in specific tech-
nological areas and materials. For example, rare earths show recycling and refining
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activity primarily within specialised metallurgical and chemical processing codes, con-
sistent with their complex recovery challenges. Manganese removal patents cluster in
chemical-processing domains, while lithium recycling is concentrated in electrochemical
(H-section) technologies. Notably, graphite—despite being among the fastest-growing
CRMs in patenting activity–see Figure 2–shows very limited patent presence outside
the use function, highlighting its strongly application-driven role in energy storage and
conductive technologies. Together, these patterns map the intersection of material-
specific challenges with functional innovation strategies, showing how some CRMs are
moving toward circular and enabling innovations, while others remain focused on direct
application and device integration.

To provide a more granular view of the most CRM-intensive technology domains
by function, we disaggregate the data to the CPC subclass level. Figures 7 and 8
present the most frequently associated CPC subclasses for the top 10 CRMs across four
functions for non-green (A–H) and green (Y02) technologies, respectively.

Figure 7: Stacked bar chart of the top 4-digit CPC subclasses (A–H) by CRM function.
Only subclasses exceeding 5% share are labelled; all remaining codes are grouped under
“Others”. Bar colours denote their parent CPC A-H section.

Focusing on non-green technologies (Figure 7), clear CRM–technology patterns
emerge. Refining patents are concentrated in subclass C22B (production and refin-
ing of metals), reflecting e↵orts to improve purification processes. A notable exception
is silicon, whose refining patents cluster in H01L (semiconductor devices), consistent
with its role in photovoltaics and microelectronics. Recycling patents largely mirror
this structure: C22B dominates for most CRMs, indicating the centrality of chemical
recovery methods. However, lithium and graphite diverge from this pattern, clustering
in H01M (electrochemical cells), which highlights battery-oriented processes such as hy-
drometallurgical leaching. Removal patents are more varied. Manganese, magnesium,
copper, and nickel frequently appear in C02F (water treatment), while silicon and tita-
nium removal patents cluster in H01L, reflecting etching and cleaning in semiconductor
processes. Lithium again aligns with H01M, consistent with battery-related purification
steps. For the use function, the technological spectrum is broader. Key subclasses in-
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clude C22B, H01M, H01L, and C04B (construction ceramics), showing that CRMs are
embedded in a wide array of applications—from energy storage and permanent magnets
to semiconductors and construction materials.

Figure 8: Stacked bar chart of the top 8-digit CCMT CPC codes by CRM function.
Only codes exceeding 5% share are labelled; all remaining codes are grouped under
“Others”. Bar colours denote their parent CPC Y02 subclass.

Turning to green technologies (Figure 8), we observe a strong dominance of the
Y02P subclass (processing of goods) in the circular (recycle, remove) and enabling (re-
fine) functions. A large share of CRM-related innovation in these functions falls under
Y02P 10/20, which captures technologies related to metal processing and recycling. The
predominance of this category suggests that technical know-how for purification and re-
covery is closely intertwined, highlighting metal recovery from waste as a key enabling
step for low-carbon transitions. Beyond Y02P, additional signals emerge in more spe-
cialised areas. In recycling, graphite and lithium are particularly prominent in Y02W
30/84 (recycling of batteries or fuel cells), reflecting the growing role of end-of-life bat-
tery technologies in driving targeted recovery innovations. For the remove function,
lithium also appears in Y02E 60/10 (energy storage using batteries), suggesting emerg-
ing links between purification e↵orts and battery-specific applications. Notably, the
same Y02E 60/10 subclass also captures the majority of CRM use patents, underscor-
ing the integration of materials such as lithium, cobalt, and nickel into next-generation
energy storage systems. Silicon stands out with a di↵erent profile: its top use patents
fall under Y02P 70/50 (manufacturing processes characterised by the final product),
likely reflecting its central role in high-e�ciency photovoltaics and LED technologies.
Taken together, these patterns reveal a highly focused technical orientation in refining
and removal under the Y02P “metal recovery” umbrella, while use-related innovations
diversify into Y02E energy storage systems and Y02W battery-specific recovery path-
ways for the selected materials.
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C Econometric Robustness Checks

This section presents additional econometric specifications that complement those dis-
cussed in Section 5.3, providing further robustness to our main results.

Table 13 examines the potential for reverse influence—whether innovation in CRM
use is associated with increased patenting in the other CRM-related functions. Specif-
ically, we regress patenting activity in the recycle, refine, and remove categories on
use, shown respectively in columns (1), (2), and (3). The model controls for the same
covariates as Equation 1, including GDP, R&D, CRM prices, patent volumes, and
country-level production and activity dummies. Across all models, use-related patent-
ing shows a positive and statistically significant association with subsequent innovation
in each of the other functions. However, these associations are generally weaker than
the corresponding e↵ects of recycle, refine, and remove on use found in the main analy-
sis (Table 10), suggesting that feedback e↵ects exist but may be secondary in strength
and consistency.

(1) (2) (3)
Log(Recycle) Log(Refine) Log(Remove)

Log(Use) 0.0450⇤⇤⇤ (0.0100) 0.131⇤⇤⇤ (0.0160) 0.0838⇤⇤⇤ (0.0118)
Log(Recycle) 0.199⇤⇤⇤ (0.0252) 0.160⇤⇤⇤ (0.0327)
Log(Refine) 0.156⇤⇤⇤ (0.0230) 0.0529⇤ (0.0243)
Log(Remove) 0.139⇤⇤⇤ (0.0283) 0.0584⇤ (0.0261)
GDP 0.00574 (0.0487) 0.0842 (0.0508) -0.0293 (0.0431)
R&D 0.120⇤⇤⇤ (0.0237) 0.150⇤⇤⇤ (0.0237) 0.0292 (0.0202)
Patent volume 0.189⇤⇤⇤ (0.0212) 0.146⇤⇤⇤ (0.0146) 0.141⇤⇤⇤ (0.0211)
CRM real price -0.00968 (0.0132) 0.0138 (0.0141) 0.00886 (0.00915)
Active dummy 0.0203 (0.0246) 0.498⇤⇤⇤ (0.0184) 0.208⇤⇤⇤ (0.0254)
Producer dummy -0.0512 (0.0315) 0.0275 (0.0416) 0.0117 (0.0307)
Constant -0.278⇤⇤⇤ (0.0598) -0.351⇤⇤⇤ (0.0814) -0.0604 (0.0606)
N 10087 10087 10087
r2 a 0.421 0.466 0.317

Standard errors in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table 13: Regression results of other functions on use. The dependent functions are
recycle in column (1), refine in column (2), and remove in column (3).

Table 14 presents robustness checks using alternative estimation strategies. Column
(1) reports our baseline fixed-e↵ects model excluding China, testing whether China’s
dominant patenting volumes disproportionately shape the results. Column (2) presents
results from a standard OLS regression. Column (3) reports estimates from a Poisson
model, which better accommodates the count nature of the dependent variable. Across
all three models, coe�cients on the functional variables remain positive and statistically
significant, reinforcing the direction and robustness of our main findings.

36



(1) (2) (3)
Log(Use) Log(Use) Number of Use families

Log(Recycle) 0.0400⇤ (0.0158) 0.365⇤⇤⇤ (0.0287) 0.118⇤⇤⇤ (0.0196)
Log(Refine) 0.158⇤⇤⇤ (0.0262) 0.625⇤⇤⇤ (0.0226) 0.186⇤⇤⇤ (0.0189)
Log(Remove) 0.0802⇤⇤⇤ (0.0169) 0.264⇤⇤⇤ (0.0243) 0.226⇤⇤⇤ (0.0279)
GDP 0.139 (0.0865) -0.279⇤⇤⇤ (0.0173) 0.734⇤⇤⇤ (0.163)
R&D 0.119⇤⇤⇤ (0.0322) 0.578⇤⇤⇤ (0.0220) 0.00172 (0.0659)
Patent volume 0.883⇤⇤⇤ (0.193) 0.121⇤⇤⇤ (0.0154) 0.174⇤⇤⇤ (0.0125)
CRM real price 0.0185 (0.0129) 0.103⇤⇤⇤ (0.0101) 0.00271 (0.00926)
Active dummy 0.0315 (0.0202) 1.077⇤⇤⇤ (0.0322) -0.102⇤⇤ (0.0310)
Producer dummy 0.00639 (0.0478) -0.0410 (0.0306) -0.0511 (0.0637)
Constant 2.633⇤⇤⇤ (0.0759) 0.764⇤⇤⇤ (0.0689)
N 9517 10087 9952
r2 a 0.127 0.637

Standard errors in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Table 14: Additional regression specifications. Column (1): baseline fixed e↵ects model
without China; Column (2): OLS model; Column (3): Poisson regression.
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URL: https://www. icog. es/TyT/index. php/2022/05/the-mineral-resources-of-
ukraine/(date of access: 08.10. 2023) .

Madani, F. and Weber, C. (2016), ‘The evolution of patent mining: Applying bibliomet-
rics analysis and keyword network analysis’, World Patent Information 46, 32–48.

Mancini, L., Eslava, N. A., Traverso, M. and Mathieux, F. (2021), ‘Assessing impacts
of responsible sourcing initiatives for cobalt: Insights from a case study’, Resources
Policy 71, 102015.

42



Manera, M., Fusillo, F., Orsatti, G. and Quatraro, F. (2025), Addressing the identifica-
tion of Critical Raw Material Patents Using Pretrained and Large Language Models,
Department of Economics and Statistics Cognetti de Martiis. Working Papers 202505,
University of Turin.
URL: ht tp s: // id ea s. re pe c. or g/ p/ ut o/ di pe co /2 02 50 5. ht ml

Maŕın, A. and Goya, D. (2021), ‘Mining—the dark side of the energy transition’, En-
vironmental Innovation and Societal Transitions 41, 86–88.

Marin, A. and Palazzo, G. (2025), ‘Civic power in mining conflicts: Barrier or catalyst
for a just energy transition?’, Environmental Research Letters .

Mertens, J., Dewulf, J., Breyer, C., Belmans, R., Gendron, C., Geo↵ron, P., Goossens,
L., Fischer, C., Du Fornel, E., Hayhoe, K. et al. (2024), ‘From emissions to resources:
mitigating the critical raw material supply chain vulnerability of renewable energy
technologies’, Mineral Economics 37(3), 669–676.

Mudali, U. K., Patil, M., Saravanabhavan, R. and Saraswat, V. (2021), ‘Review on e-
waste recycling: part ii—technologies for recovery of rare earth metals’, Transactions
of the Indian National Academy of Engineering 6(3), 613–631.

München, D. D., Stein, R. T. and Veit, H. M. (2021), ‘Rare earth elements recycling
potential estimate based on end-of-life ndfeb permanent magnets from mobile phones
and hard disk drives in brazil’, Minerals 11(11), 1190.

Norgate, T. and Haque, N. (2010), ‘Energy and greenhouse gas impacts of mining and
mineral processing operations’, Journal of Cleaner Production 18(3), 266–274.

OECD (2019), Global Material Resources Outlook to 2060: Economic Drivers and Envi-
ronmental Consequences, Organisation for Economic Co-operation and Development,
OECD Publishing, Paris.
URL: https://doi.org/10.1787/9789264307452-en

Pommeret, A., Ricci, F. and Schubert, K. (2022), ‘Critical raw materials for the energy
transition’, European Economic Review 141, 103991.

Que, S., Wang, L., Awuah-O↵ei, K., Chen, Y. and Yang, W. (2018), ‘The status of the
local community in mining sustainable development beyond the triple bottom line’,
Sustainability 10(6), 1749.

Safirova, E. (2024), The mineral industry of russia [advance release], Technical report,
U.S. Department of the Interior, U.S. Geological Survey.
URL: https://pubs.usgs.gov/myb/vol3/2020-21/myb3-2020-21-russia.pdf

Safirova, E. (2025), The mineral industry of ukraine [advance release], Technical report,
U.S. Department of the Interior, U.S. Geological Survey.
URL: https://pubs.usgs.gov/myb/vol3/2020-21/myb3-2020-21-ukraine.pdf

Scrosati, B. and Garche, J. (2010), ‘Lithium batteries: Status, prospects and future’,
Journal of Power Sources 195(9), 2419–2430.

43

https://ideas.repec.org/p/uto/dipeco/202505.html


Smith, B. J., Riddle, M. E., Earlam, M. R., Iloeje, C. and Diamond, D. (2022), Rare
earth permanent magnets: supply chain deep dive assessment, Technical report, US-
DOE O�ce of Policy (PO), Washington DC (United States).

Sovacool, B. K., Ali, S. H., Bazilian, M., Radley, B., Nemery, B., Okatz, J. and Mul-
vaney, D. (2020), ‘Sustainable minerals and metals for a low-carbon future’, Science
367(6473), 30–33.
URL: https://doi.org/10.1126/science.aaz6003

Swain, B. (2017), ‘Recovery and recycling of lithium: A review’, Separation and Purifi-
cation Technology 172, 388–403.

Tiedemann, J., Aulamo, M., Bakshandaeva, D., Boggia, M., Grönroos, S.-A., Nieminen,
T., Raganato, A., Scherrer, Y., Vazquez, R. and Virpioja, S. (2023), ‘Democratizing
neural machine translation with OPUS-MT’, Language Resources and Evaluation
58, 713–755.

U.S. Geological Survey (2022), Mineral commodity summaries 2022: Cobalt, Technical
report, U.S. Geological Survey.
URL: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-cobalt.pdf

Van den Brink, S., Kleijn, R., Sprecher, B. and Tukker, A. (2020), ‘Identifying supply
risks by mapping the cobalt supply chain’, Resources, Conservation and Recycling
156, 104743.
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