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Abstract 
Innovations are widely accepted as fundamental drivers of economic growth by increasing 
productivity and creating new markets. However, empirical evidence on the long-term relationship 
between technological progress and economic growth remains scarce, with few studies considering 
shifts in technologies’ fundamental properties, such as their degree of complexity. Yet, higher 
levels of complexity are argued to increase technologies’ economic potential, and consequently, 
ignoring this dimension of technologies provides an incomplete picture of innovations’ growth 
effects. 

We address this research gap by exploring the relationship between economic growth and 
technological complexity over more than 170 years in the United States (US). Utilizing patent 
data, the concept of the complexity frontier, and partial wavelet analysis, we find that economic 
growth has not been driven by patented innovation and technological complexity for most of this 
period. However, since the beginning of the ICT revolution in the 1990s, it has significantly 
contributed to GDP growth. 

 

One Sentence Summary: Technological complexity drives economic growth 
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1. Introduction	
Technological advancement and innovation are widely accepted as fundamental sources of 
economic growth (Lucas, 1988; Nelson and Winter, 1982; Romer, 1990). New technologies boost 
the efficiency of established production processes and form the basis for many new products with 
comparatively high levels of value-added (Gordon, 2016; Romer, 1990; Solow, 1956). Innovation 
processes are cumulative and combinatorial, implying that new ideas build on existing knowledge 
and novelty is created through the recombination of existing technological capabilities (Aunger, 
2010; Howitt, 1999; Nelson and Winter, 1982).1 

Many classifications have been proposed, suggesting that specific capabilities are more 
economically valuable than others, capturing the heterogeneity of technological capabilities. For 
instance, scholars have argued that capabilities, including large elements of tacit knowledge, are 
vital for economic success (Cowan et al., 2000; Grimaldi and Torrisi, 2001; Polanyi, 1966). In 
more recent years, attention has shifted to complexity, where it is argued that the capabilities to 
develop and use complex activities are at the core of (economic) competitive advantages (Fleming 
and Sorenson, 2001; Hidalgo and Hausmann, 2009; Kogut and Zander, 1992). This is because, on 
one hand, it is difficult to learn and imitate these capabilities. On the other hand, they are essential 
for producing highly valuable goods and services and provide the basis to acquire capabilities in 
even more complex activities. 

However, the link between complexity and economic growth is not straightforward. Developing 
capabilities in complex domains requires higher R&D efforts compared to simpler ones. This may 
reduce these competencies’ total economic benefits (Broekel, 2019; Mewes and Broekel, 2022). 
They are also less likely to diffuse, implying that few actors and locations reap their benefits 
(Balland and Rigby, 2017; Balland et al., 2020), which may lower their overall contribution to 
growth. Nevertheless, the growth-enhancing effects of capabilities in complex domains find 
increasing empirical support, with several distinct empirical foci. Some studies concentrate on 
quantifying economies’ latent holistic capabilities to produce complex goods and services, known 
as economic complexity, and confirm its role in stimulating economic growth in countries 
(Hausmann et al., 2013; Hidalgo et al., 2009) and regions (Chávez et al., 2017; Pérez-Balsalobre 
et al., 2019). Another set of studies focuses on technological complexity, capturing the capabilities 
to invent and use higher levels of sophisticated technological knowledge. Similar to economic 
complexity, several studies show its positive effect on economic growth (Mewes and Broekel, 
2022; Rigby et al., 2022). However, some studies also report a negative relationship between these 
types of capabilities and growth (Antonelli et al., 2020). 

While most studies acknowledge that complexity primarily determines long-term economic 
growth, the analyzed periods rarely span more than two decades. The study by Sweet and Eterovic 
(2019) is a notable exception as it considers four decades. Moreover, few studies discuss or 
evaluate the interwoven and potentially bidirectional relationship between complexity and 
economic growth. 

The present study addresses these gaps. Utilizing patent data and the concept of the so-called 
complexity frontier proposed by Mewes and Broekel (2022), we empirically capture the 
capabilities of the US economy to invent and apply the most complex technologies. Secondly, we 
relate shifts of the frontier over more than 170 years to national economic growth using wavelet 

 
1 Knowledge is to be understood very broadly including ideas, understandings, codified information, and artifacts. 
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gain analysis, which allows a Granger-causal identification of the link between complexity and 
economic growth, as well as vice versa (Aguiar-Conraria et al., 2013, 2012; Klarl, 2016; Verona, 
2020). 

The US complexity frontier has moved upwards over time, indicating that the capabilities to invent 
and employ increasingly sophisticated technologies have been growing continuously. 
Additionally, the composition of the frontier illustrates how major technology groups rise and fall 
in their importance in shaping the complexity landscape over time. 

Crucially, our results suggest that for the longest time, other factors than the capabilities in the 
most complex technologies were more important for the growth of the US economy. Between 
1890-1907, economic growth drove the development of the complexity frontier instead of vice 
versa. However, from the 1970s onward, the picture has changed, and we find strong evidence that 
capabilities in the most complex domains contributed to economic growth. Accordingly, economic 
development seems to have entered the age of complexity, which has significant implications for 
innovation and R&D policy. 

The paper is structured as follows. First, the presentation of the theoretical basis highlights how 
capabilities in technologically complex domains can enhance or reduce economic growth. Section 
3 introduces the empirical approach to analyzing the relationship between technological 
complexity and economic growth. Subsequently, our results are presented and discussed in Section 
4. Section 5 concludes the paper with some final reflections and an evaluation of the study’s 
limitations. 

2. Theory	
2.1. 	A	new	perspective	on	complexity	

There is little doubt about technological progress being the major driver of long-term economic 
growth (Aghion and Howitt, 1992; Nelson and Winter, 1982; Romer, 1990). Technological 
development has greatly enhanced people's economic prosperity by expanding access to resources 
and energy, improving the efficiency of production and services, and enlarging the portfolio, 
functionality, and usefulness of products and services. Yet, technological progress is not 
homogeneous, nor does it happen in a monotonic fashion. Its intensity and impact vary over time, 
location, and technology (Aghion et al., 2009; Carlino et al., 2007; Kerr, 2009; Kondratiev, 1926; 
Šmihula and Von, 2010). Some of these variations have been attributed to breakthrough (Phene et 
al., 2006), radical (Kline and Rosenberg, 1986), and atypical innovation (Uzzi et al., 2013), as well 
as to innovation in key-enabling (Evangelista et al., 2018) and general-purpose technologies 
(Bresnahan and Trajtenberg, 1995). Despite fundamental differences in these conceptualizations, 
they all emphasize that it is not just the speed and magnitude of technological progress in general 
that shapes economic development but that it matters in which economic and technological 
domains innovations occur. 

In this context, the differentiation between simple and complex domains has recently (re)gained 
the attention of scholars. The idea that economic development is related to the sophistication of 
products and technologies employed in an economy has been around for some time (see, e.g., 
Antonelli, 1995; Fleming and Sorenson, 2001; and the review by Arthur, 2021). However, it was 
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Hidalgo et al. (2009)’s introduction of “economic complexity” that promoted the view of a stronger 
causal link from (economic) complexity to economic growth: 

“A possible explanation for the connection between economic complexity and growth is 
that countries that are below the income expected from their capability endowment have 
yet to develop all of the products that are feasible with their existing capabilities. We can 
expect such countries to be able to grow more quickly, relative to those countries that can 
only grow by accumulating new capabilities.“ (Hidalgo et al., 2009, p. 10575) 

In other words, countries with capabilities in economic activities that are relatively more complex 
than those in which other countries at similar levels of economic development have specialized 
can be expected to outgrow these in the future. The authors also introduce a method to empirically 
capture the complexity of such capabilities (the so-called method of reflection) and provide 
empirical evidence that these: 

“(ii) are strongly correlated with income per capita; (iii) are predictive of future growth; 
and (iv) are predictive of the complexity of a country’s future exports, making a strong 
empirical case that the level of development is indeed associated to the complexity of a 
country’s economy.“ (Hidalgo et al., 2009, p. 10575) 

Their work identifies and quantifies economies' (latent) capability to competitively produce 
complex products and services. It also establishes a direct link between complexity and economic 
growth by associating improvements in economic complexity with structural transformations from 
capabilities in relatively simple, low-tech domains to more advanced ones. Capabilities in more 
advanced domains are equated with higher productivity, implying that economic growth stems 
from economies moving from low- to high-productivity activities (Balland et al., 2022). Like 
traditional economic growth theories, economic complexity sees knowledge and the capabilities 
to do certain things as core ingredients for economic growth. However, while endogenous growth 
theory stresses the shareable aspect of knowledge (non-rival nature), economic complexity focuses 
on the unique, specialized nature of knowledge and capabilities, or, as Hidalgo (2023) puts it, their 
“non-fungibility.” To describe economies’ capabilities to produce complex products and services, 
economic complexity aggregates knowledge and capabilities across various dimensions, including 
technology, infrastructure, and institutions (Hidalgo et al., 2009). This is one of its (empirical) 
strengths, as it can capture economies’ “latent” capabilities by providing a kind of “propensity 
scores for systems [to experience economic growth] where the exact factors and their 
combinations are unknown” (Hidalgo, 2023, p. 4). 

However, this strength comes with a “catch-all” perspective that keeps specific capabilities and 
their relative importance latently hidden in theory and empirics. This can be desirable in certain 
contexts, e.g., policy advice. In other contexts, it is not helpful, e.g., for understanding the causal 
forces underlying economic growth. The present paper is interested in the latter. It seeks to dissect 
the growth contributions of specific capabilities, particularly the ability to invent and use complex 
technologies - a factor argued to drive economic growth. Complex technologies are defined here 
as those in domains with intricate systems and advanced knowledge, requiring extensive expertise, 
interdisciplinary cooperation, and significant resources. Our work aligns with Mewes and Broekel 
(2022) in examining how technological complexity, a well-established topic in economics (see, 
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e.g., Fleming and Sorenson, 2001; Saviotti, 2011), connects to economic expansion. Authors like 
Balland and Rigby (2017), Crespo et al. (2017), and Mewes and Broekel (2022) have highlighted 
this connection, suggesting that economies adept at harnessing complex technologies gain 
competitive edges and access to higher growth trajectories. We explore this assertion in greater 
depth in the following discussion. 

2.2. Technological	complexity	stimulates	economic	growth	
The link between capabilities in complex domains and economic growth is grounded in Hidalgo 
et al.'s (2009) theory, which states that countries with income below their capability potential have 
yet to utilize their existing capabilities fully. Such countries are poised for rapid growth by 
developing new products that their existing capabilities make possible. We extrapolate this 
argument to the realm of complex technological capabilities, suggesting that harnessing these 
underutilized capacities can similarly spur economic growth. Economies may show a mismatch 
between their actual economic performance (e.g., GDP) and their inherent capabilities. In other 
words, there are situations when an economy possesses the capabilities to produce more or to 
create more valuable outputs that are not yet actualized. This may occur because products and 
services arising from complex technological capabilities are underdeveloped or diffused slowly. 
In such instances, we anticipate that the economy will grow as it begins to capitalize on these 
untapped potentials. 

We highlight three main "growth-enhancing" channels through which advanced technological 
capabilities may drive economic expansion. 

The first is the differences in economic competition between products and services based on 
complex and simple technologies. Goods and services whose production requires capabilities in 
complex technologies tend to be characterized by lower competitive pressure, allowing their 
producers to extract higher economic rents, stimulating further investments, and ultimately leading 
to higher growth (Mewes and Broekel, 2022). Developing and applying complex technologies are 
resource-intensive and costlier than simpler technologies (Galbraith, 1990; Pintea and Thompson, 
2007; Zander and Kogut, 1995). Typically, advancing complex technologies takes more time, 
implies higher rates of failure and the utilization of more costly infrastructure, as well as the 
integration of a greater variety of specialized expertise and reliance on collaboration (Cohen, 2010; 
Galende, 2006; Mastrogiorgio and Gilsing, 2016; Powell and Giannella, 2010; Rivkin, 2000; 
Stephan, 2010). Fewer actors are equipped and inclined to undertake these riskier investments, 
resulting in less competition than in simpler technological areas (Teece, 1986). This is further 
strengthened by competitive advantages in complex technologies being less likely threatened by 
imitation (Cohen, 2010). In sum, capabilities in more complex technologies are associated with 
lower competition. This may stimulate economic growth through producers accumulating larger 
economic rents that are partly (re-) invested in further expansion. 

The second growth-enhancing effect of complex technologies stems from their ability to solve 
more sophisticated problems and fulfill advanced needs, providing larger functionalities and more 
flexibility than simpler technologies. Products and services developed using such technologies are 
often more capable and versatile, as seen in the literature (Griffin, 1997; Valverde and Sole, 2015). 
Simply put, the more complex the technology, the more advanced the product, and typically, the 
greater the utility. Consider the smartphone as an example; it combines communication, 
entertainment, and information into one device, offering more use than devices dedicated to single 
functions. Its multifunctionality and advanced features translate to higher consumer value, 
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prompting a willingness to pay more. Artificial Intelligence (AI) is another case in point. The 
complex technologies it relies on, like machine learning and neural networks, lead to a product 
that's incredibly adaptable across different problems. Moreover, such products usually combine 
multiple complex technologies, which means the complexity of one technology is often linked to 
and increased by its integration with other (complex) technologies (Gambardella et al., 2021). 
Complex technology capabilities' versatile and transferable nature spurs innovation and growth 
across different sectors. For example, electronics miniaturization, perfected for smartphones, is 
now used in medical devices, space exploration, and IoT devices. Machine learning algorithms 
have gone from powering search engines to aiding in medical diagnoses and driving autonomous 
vehicles. In summary, having the know-how in complex technologies leads to creating more useful 
and, thereby, more valuable products. At the same time, this know-how is applicable to a broader 
set of problems, generating economies of scale and scope. These wider applications and re-uses of 
technology and the higher value of the products contribute to overall economic growth (Hidalgo 
et al. 2009). Additionally, some complex technologies allow for more resource-efficient 
production methods, adding another layer of growth impact (Zou et al., 2022). 

The third source from which capabilities in complex technologies contribute to economic growth 
draws from Hidalgo et al.'s (2009) perspective, which posits that successfully mastering complex 
technologies in the past positions actors better to make further advances. This premise is 
underpinned by the notion that knowledge acquisition and learning are inherently cumulative. 
Skills and insights gained from developing one complex technology can be applied and extended 
to learn and create even more sophisticated technologies in the future (Balland and Rigby, 2017; 
Balland et al., 2020; Mewes and Broekel, 2022). 

Beyond the straightforward concept of cumulative learning, another way in which acquiring 
capabilities in complex technologies contributes to growth mirrors the principles of the dynamic 
capabilities framework (Katkalo et al., 2010; Teece et al., 1997). According to this framework, 
mastering complex technologies equips actors with specific skills, knowledge, institutions, and 
infrastructure that jointly form an adaptive and responsive capability, enabling them to identify 
and acquire new and adjust old skills quicker and more efficiently. This ability to continuously 
adapt and reconfigure resources and capabilities in response to changing environments is crucial 
for sustained competitive advantage and economic growth. Expanding on this argument, mastering 
one complex technology creates a foundation for innovation, as it often requires the development 
of new processes, tools, and collaborative networks. This foundation provides a fertile ground for 
further technological advancements. As actors innovate and solve problems within one domain, 
they generate a ripple effect of knowledge and skill enhancement propagating through industries 
and sectors. For instance, early developers of computer chips now lead in advanced semiconductor 
technologies, showing how initial capabilities can advance. This evolution reflects a virtuous cycle 
where each technological achievement paves the way for the next, propelling economic growth 
through a sustained innovation and skill development trajectory (Dosi, 1988; Hidalgo, 2015; 
Teece, 1988; Teece et al., 1997). 

Some arguments contrast with these three sources for capabilities in complex technologies 
fostering economic growth. Most importantly, there are ever-increasing research efforts. Between 
1953 and 2017, the total R&D spending in the US grew from about 5 billion US dollars to more 
than 656 billion US dollars, i.e., more than tenfold (AAAS, 2022). While the output (patents and 
publications) has substantially risen as well, Schmookler (1966) and Strumsky et al. (2010) 
document a substantial decrease in R&D productivity, something Bloom et al. (2017) later 
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confirmed. Strumsky et al. (2010) argue that this decreasing productivity is related to technological 
complexity:  

“…research problems over time grow increasingly esoteric and intractable. Innovation, 
therefore, grows increasingly complex, and correspondingly more costly.” (Strumsky et 
al., 2010, p. 497) 

The underlying mechanism is not only that research plucks the “lowest fruit” first (Strumsky et 
al., 2010), but also that complex technologies are characterized by more extensive and more 
diverse sets of distinct (knowledge) components that are extensively interrelated in heterogeneous 
ways. Innovation is, therefore, more difficult in more complex technologies because their greater 
numbers of different components and interrelations allow for an exponentially larger number of 
combinations that do not work, which must be eliminated through research (Fleming and Sorenson, 
2001). Hence, the costs of the discovery process increase disproportionately with complexity. This 
implies that when all technologies become more complex on average, the same rate of inventions 
can only be realized with growing R&D investments (Rescher and Michalos, 1979; Strumsky et 
al., 2010). In addition to the greater magnitude of resources required for their discovery, more 
complex technologies also demand greater management capabilities for their application, which 
must be acquired through costly path-dependent learning and experiences over long periods (Dosi, 
1988; Nelson and Winter, 1982). 

Another reason for the potential growth-hampering effects of (rising) technological complexity is 
their potentially lower diffusion speed. As mentioned above, acquiring the skills to learn, master, 
or even replicate complex technologies is a formidable task, often achievable by only a select few. 
This is because it necessitates specialized and related resources and capabilities that are not widely 
available and are expensive to develop. Consequently, this limitation hinders the spread of 
complex technologies more so than simpler ones and intensifies the obstacle of geographic 
distance (Balland and Rigby, 2017). The broader economic impact of technologies is more 
pronounced when they are adopted by more actors who, in doing so, enhance their capabilities. 
Therefore, complex technologies' slower and spatially constrained dissemination could 
significantly dampen their potential to stimulate economic growth. Furthermore, the constrained 
diffusion of these technologies and their potent local effects on economic development will likely 
exacerbate economic disparities. Regions that successfully harness complex technologies can 
surge ahead, reaping the benefits of innovation and productivity gains. In contrast, regions that lag 
in adopting these technologies fall further behind, widening the gap. This divergence can fuel a 
cycle of increasing economic inequality as the benefits of technological advancements become 
concentrated in areas already equipped with the necessary infrastructure and skilled workforce 
(Pinheiro et al., 2022), many of which tend to be urban regions (Broekel et al., 2023). 

In sum, significant arguments challenge the potentially growth-enhancing effects of capabilities in 
complex technologies. While the positive relationship between capabilities in complex economic 
domains and economic growth is supported by more and more empirical evidence (Albeaik et al., 
2017; Gala et al., 2018; Hidalgo et al., 2009), a picture is only slowly emerging concerning 
capabilities in complex technologies. Mewes and Broekel (2020) recently analyzed European 
regions and identified a positive contribution of these capabilities to economic growth. Li and 
Rigby (2022) add further support, showing that Chinese regions diversifying their capabilities into 
more complex technologies experience higher growth. Both studies focus on the most recent times 
and cover periods of 15 and 25 years, respectively. Whether the identified positive relationship has 
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been a shaping force in long-term economic development remains to be determined. This 
motivates the present paper and its central hypothesis: 

H1: The capabilities to advance and use technological complexity stimulate economic 
growth. 

To test this hypothesis, we assess the relationship over the last 170 years for the USA. During this 
time, the US economy has undergone substantial structural shifts, moving from a primarily 
agrarian to a manufacturing-based and eventually to a service-based economy (Iscan, 2010). 
Moreover, until the end of the 19th century and the beginning of the 20th, much economic growth 
was clearly based on increasing capital, natural resources, and labor (Abramovitz and David, 1999; 
Mowery, 2010). Consequently, capabilities in complex technologies likely played a less critical 
role. In addition, the knowledge and innovation-generation process evolved massively during this 
long time span. For instance, only some inventors had formal technical qualifications in the middle 
of the 19th century (Khan, 2006). Most primarily worked by themselves. Professional research 
labs and collaboration as central elements of modern R&D only became relevant in the middle of 
the 20th century in response to the growing complexity (van der Wouden, 2020). We, therefore, 
expect that the relationship between the capabilities in complex technologies and economic growth 
is not constant over time but rather underwent substantial reconfigurations. 

H2a: The relationship between capabilities to advance and use complex technologies and 
economic growth is time-variant. 

H2b: The positive link between the capabilities to advance and use complex technologies 
and economic growth (H1) is strong in more recent periods. 

We will test the hypotheses using a novel dataset outlined in the following section, covering 
technology complexity and key aspects of the US economy over 170 years. 

 

3. Empirical	approach	
 

3.1. Patent	data	and	the	complexity	frontier	
To start our analysis, we assess the complexity of technologies by using patent data from the 
United States Patent and Trademark Office (USPTO). The pros and cons of using patent data to 
approximate technological competencies, progress, and innovation are extensively debated 
(Griliches, 1990). The most important deficits are that it does not give any insights into non-
patented innovation and that it does not capture the actual application of technologies. 
Nevertheless, patents are the only large-scale data source providing detailed information about 
technological knowledge over a long time span. In this study, we use the information on all utility 
patents granted between 1836 and 2016 with at least one inventor from the US. Each patent is 
assigned to one or multiple Cooperative Patent Classification (CPC) technology classes. The 
hierarchical CPC scheme is our basis for distinguishing technologies at the four-digit level, a 
common approach in the literature (Broekel, 2019; Buarque et al., 2020). We exclude all patents 
associated with the “Y” CPC classes, as they comprise patents not clearly classified according to 
technological properties, which reduces the sample to 5,646,235 patents and 654 technology 
classes. 
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There is no standard way of assessing the complexity of technologies or patents. Multiple 
approaches are available. Most frequently, scholars rely on an adaptation of the economic 
complexity approach by (Hidalgo et al., 2009) to patent data to calculate a complexity index at the 
level of patent technology classes (Balland and Rigby, 2017). Another prominent approach is 
Fleming and Sorenson's (2001) N/K complexity measure at the level of individual patents (Balland 
et al., 2020; Sorenson et al., 2006; van der Wouden, 2020). However, recent assessments of these 
measures by Broekel (2019) and Pintar and Essletzbichler (2022) revealed some problematic 
properties of the resulting indices, including indices based on the economic complexity framework 
being unstable over time and older technologies being assessed as more complex in the case of the 
N/K measure. Furthermore, studies at the regional level failed to establish a positive association 
of both with economic growth for both approaches (Antonelli et al., 2020; Mewes and Broekel, 
2022). Given these issues, we use the structural diversity measure proposed by Broekel (2019). 
Applied to patent data, unlike the other two measures above, it has been shown to resemble basic 
characteristics usually associated with technological complexity (Broekel, 2019), is relatively 
stable over time (Pintar and Essletzbichler, 2022), and has been used by Mewes and Broekel (2022) 
to confirm a positive relationship between territories’ capabilities in complex technologies and 
their economic growth. 

In essence, Broekel (2019) contends that complexity emerges from the heterogeneity and 
integration of knowledge domains. Consider the smartphone as an example: ostensibly a 
communication device, it represents a nexus of knowledge from computer science, electrical 
engineering, material science, and optics for features like the camera. It also encompasses insights 
from psychology and ergonomics to enhance user interface design. While the principles within 
each domain may be straightforward in isolation, their convergence within smartphone 
development introduces significant complexity. This is attributable not solely to the variety of 
domains involved but to the intricacies of fusing them into a seamless, functional entity. 

Therefore, a patent focusing on a single element, such as touch screen technology, might exhibit 
lower complexity than one encapsulating the collective integration necessary for a fully 
operational smartphone. Lobo et al. (2010) suggest using the number of patent classes on patents 
as a rudimentary measure of technological complexity. However, this approach falls short of 
capturing the comprehensive expertise and the synthesis challenge of these diverse fields within 
an entire technology. A more nuanced conceptualization of complexity is captured in the measure 
developed by Broekel (2019) that considers the heterogeneity of the knowledge required in all 
applications of a specific technology and the variations in how this heterogeneity must be 
integrated. 

Building on this, we employ the two-step approach by Mewes and Broekel (2022) to approximate 
an economy’s capabilities in inventing, learning, and mastering complex technologies. The first 
step involves quantifying the complexity of each technology class (technology in the following) 
in a given year. The second step synthesizes this data into a singular index representing the 
economy’s capacity to invent and utilize complex technologies effectively, which is labeled the 
“complexity frontier”.2  

 
2 More formally, the complexity frontier represents the capabilities in the most complex technologies. Nevertheless, 
given that this frontier transcends the confines of individual technologies and may encompass only segments of the 
patents related to a particular technology, we avoid using the term 'the most' to describe these capabilities. 
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Calculation of complexity: For each of the 654 technologies (i) and each year, the index value of 
structural complexity is calculated based on its so-called combinatorial network (Broekel, 2019). 
This network resembles the idea of technologies being systems of knowledge elements (the nodes) 
that are interrelated (the edges) to fulfill the technology’s purpose. In general, technologies that 
feature many distinct elements (a large number of nodes) that are intensively interconnected 
(edges) tend to be more complex (Simon, 1962). However, Broekel (2019) points out that these 
networks are additionally characterized by multiple distinct network (sub-)topologies (e.g., stars, 
lines, circles, lattices, etc.). Networks with more distinct topologies contain more information, 
making them harder to invent, learn, and utilize, all of which represent characteristics of more 
complex technologies. A quantification of this diversity of topologies in technologies’ 
combinatorial networks, which is positively correlated to the number of nodes and edges, can thus 
be used as a complexity index. Broekel (2019) employs the network diversity score (Emmert-
Streib and Dehmer, 2012) to obtain such an index and shows that the resulting values of 
technological complexity mirror many stylized facts associated with technological complexity. 

In our methodology, we develop a combinatorial network for each technology (classified by 4-
digit CPC codes), where the connections between patent classes (10-digit CPC codes) that co-
occur on patents are indicative of links (combinations) among patent classes, serving as proxies 
for the technology’s (knowledge) elements. Importantly, these elements extend beyond the 10-
digit CPC codes within the primary 4-digit CPC category to encompass all that co-occur on patents 
associated with the focal technology. This approach implicitly accounts for the complexity of a 
technology, which may stem from the need to integrate it with other technological domains. 

To account for the fluctuating nature of technology-specific patent numbers, we apply a three-year 
moving window approach whereby all patents assigned to the focal patent class between t-2 and t 
are considered in the construction of the combinatorial network at time t. The resulting undirected 
network is binarized, and a random sample of sub-networks GM is drawn from it using a walk-trap 
approach. For each sampled network, an individual diversity score (iNDSi,c) is calculated as 
!!"#$%&	∗	$()*+,%&-

%!"#$%&∗	%.
, with !&'()*+	being the share of modules (the number of modules M divided by 

the number of nodes n), ",-./0*+1 being the ratio between the numbers of graphlets of size three 

and four, #&'()*+ being the variance of module sizes m and #2 is the Laplacian (L) matrix’s 
variability. The final SDi is the average of the iNDSi,c across the sample of networks GM calculated 

as	34∑ &'()5,74
8/∈80 . Crucially, the central elements of the network diversity score by Emmert-

Streib and Dehmer (2012) resemble properties of complex networks. However, its precise 
definition is the outcome of numerical optimization to maximize differentiation between simple, 
ordered, and complex networks. 

The value SDi is multiplied by minus one and taken in logs to obtain an index with easily readable 
values and larger values indicating higher degrees of complexity (Broekel, 2019; Emmert-Streib 
and Dehmer, 2012). At the end of the first step, 654 annual values of technological complexity are 
obtained. 

In the second step, we calculate the so-called complexity frontier (CF), which was implicitly 
introduced by Mewes and Broekel (2022). To describe an economy's capabilities in complex 
technologies at a certain moment, these authors argue that relying on the (weighted) average across 
all technologies it possesses capabilities in will give a misleading picture. Such reliance would 
diminish an economy’s competencies in complex technologies when it is simultaneously 
specialized in simple ones. Therefore, the authors suggest assessing the highest level of 
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technological complexity that an economy can advance and manage, which we term the 
“complexity frontier.” This frontier represents the maximum complexity that can potentially be 
incorporated into new products and services. Consequently, advancing this frontier creates 
opportunities for more sophisticated products and services expected to drive economic growth. 

 
In practice, we construct the complexity frontier of the US economy by ordering all occurrences 
of four-digit CPC classes (i) on the patent applications of a specific year (t) according to their value 
of structural diversity (SDi,t). When patent classes appear on multiple patents, they are listed 
multiple times. The resulting vector Mt can be thought of as all utilization instances of all 
individual technologies (four-digit CPC classes) in invention processes in year t sorted by 
technologies’ levels. Multiple instances of the same technology on the same patent are disregarded, 
implying that all unique appearances of technologies on patents are equally weighted. 
Subsequently, the vector is sorted in descending order, giving the ranked complexity distribution 
of technologies’ usages. On this basis, the annual values of the complexity frontier value (CFt) are 
calculated as the median complexity value of the x-percent most complex occurrences (Mt,x). 
Figure 1 visualizes the approach. In the following, we focus on the 5% percentile (CF5t) whereby 
alternative specifications are used as robustness checks. The values of CF5 represent our main 
explanatory variable. 

 

Figure 1: Construction of the complexity frontier 
 

3.2. Additional	data	
To identify the relationship between the US economy’s competencies in complex technologies 
(complexity frontier) and its economic growth, we need to approximate the latter over 170 years 
and consider alternative confounders. 

Our dependent variable is annual GDP growth estimated with information on the annual US Gross 
Domestic Product per capita (real GDP per capita (cgdppc series), GDP/c in the following). We 
obtained the data from the Maddison Historical Statistics Project Database 2018, which is identical 
to the Penn World tables (Bolt et al., 2018). This data is adjusted for price effects and provides 
comparable values from 1836 to 2016. 

The most crucial confounder variable is the intensity of inventive activities, which we approximate 
with the total number of patents awarded annually. In addition to allowing for differentiation 
between the quantity and the quality (complexity) dimension of inventions, it can also be seen as 
a (rough) proxy for total R&D efforts and potential size effects in the construction of the 
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complexity variable (Broekel, 2019). Nevertheless, it shares all the problems of using patent data 
discussed above. 

To further isolate the effects of complexity on economic growth, we also consider some of the 
most important trends that have shaped aggregate economic growth during this time. These include 
the growth of the total population, shifts in the share of service employment, changes in the average 
years of schooling, and variations in the share of the urban population. 

The total population per year is obtained from the Penn World tables (Bolt et al., 2018). The 
increasing tertiarization of the economy, which shapes its growth path (Teixeira and Queirós, 
2016), is approximated with the employment share of service employment. This data is available 
from 1869 to 2005 from the Herrendorf et al. (2014) dataset (Herrendorf et al., 2014). However, 
until 1920, values are provided only for the end of the respective decade. To obtain the necessary 
annual values, we rely on the Compound Annual Growth Rate (CAGR) approach and calculate 
the missing annual values between 1869 and 1920 based on the information for 1881, 1891, 1901, 

1911, and 1920. For each decade, the annual growth rate is calculated by *( = :&1#
:2&(311

4
45 − 1. The 

values for individual years are defined by .1,1;]=+,7>,+>([	 = .=+,7>> ∗ (1 + *(1@=+,7>>). For the 

time after 2005, the share of service employment is taken from the Human Development Reports 
data.3 The period 2005-2010 lacks annual information. Hence, the missing values are calculated 
with the CAGR approach using the information for 2005 and 2010. From 2010 to 2016, this source 
provides annual data. 

Another critical factor is the population’s general level of education (Lee and Lee, 2016; Romer, 
1990), which we capture by the average years of schooling for the population 15-64 years. The 
data comes from the Barro-Lee dataset (Lee and Lee, 2016).4 It contains values for five-year 
periods from 1870 to 1990. Again, we calculate corresponding annual values using the Compound 
Annual Growth Rate (CAGR) approach for the missing individual years. Annual values for years 
after 1990 are extracted from the Human Development Reports.5 

Lastly, we consider the degree of urbanization, which is widely seen as a crucial driver of creative 
activities and economic growth (Balland et al., 2020; Glaeser, 2011; Youn et al., 2016). We use 
the share of the US population living in urbanized regions from Our World in Data.6 This source 
provides values for the full decades from 1790 to 1950. Annual values from 1869 to 1950 are 
estimated as outlined above. From 1950 to 2016, annual values are available. Figure 2 gives 
insights into the correlation structure, and Table 1 presents some basic descriptives. 

Clearly, other factors have played decisive roles in the development of the US economy, including 
the growing capital intensities, actual R&D investments, economic policies, westward expansion, 
and natural resources. However, no consistent time series data is available for the studied period. 
While many of these factors likely correlate to the considered control variables, identifying these 
confounders remains limited. Therefore, we employ specific wavelet tools to address this issue. 

 
3 http://hdr.undp.org/en/indicators/150706 (10.08.2022). 
4 https://barrolee.github.io/BarroLeeDataSet/LeeLee/LeeLee_attain_MF1564.xls (10.08.2022). 
5 http://hdr.undp.org/en/indicators/103006 (10.08.2022). 
6 https://ourworldindata.org/grapher/urbanization-last-500-years (10.08.2022). 

http://hdr.undp.org/en/indicators/150706
https://barrolee.github.io/BarroLeeDataSet/LeeLee/LeeLee_attain_MF1564.xls
http://hdr.undp.org/en/indicators/103006
https://ourworldindata.org/grapher/urbanization-last-500-years
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Figure 2: Correlation of core variables 

 	
n min max range median mean var std.dev 

year 184 1836 2019 183 1,927.5 1,927.5 2,836.7 53.3 

GDPpc 181 2,507 53,015 50,508 8,850 16,226.2 227,148,698 15,071.5 

Population 181 157,53000 324,656,000 308,903,000 117,857,000 133,568,193 8.3705E+15 9,149,0346.4 

Education 153 1.1 13.4 12.3 8.7 8.9 9.4 3.1 

Urban 153 0.1 82.3 82.2 0.6 4.8 327.6 18.1 

Service 154 0.2 79.4 79.2 0.5 5.6 375.4 19.4 

Patents 182 2 151,108 151,106 23,757 30,464.6 82,102,3583 28,653.5 

CF5 180 2.5 13 10.5 8.2 8.7 8.2 2.9 

Table 1: Descriptives 

3.3. Wavelet	analysis	
The sparsity of control variables makes it difficult to isolate the effect of complexity on growth. 
Fortunately, continuous wavelet tools (CWT) provide some relief. These tools have been applied 
in various fields of economics, such as political economy, health economics, and macroeconomics 
(Aguiar-Conraria et al., 2013, 2012; Luis Aguiar-Conraria et al., 2018; Luís Aguiar-Conraria et 
al., 2018; Antony and Klarl, 2020; Flor and Klarl, 2017; Klarl, 2016). To our knowledge, this paper 
is the first to use wavelet tools in the field of innovation economics. Unlike standard time series 
analysis methods, CWT can identify both short- and long-term relationships simultaneously, 
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making it particularly suitable for analyzing the relationship between the complexity frontier and 
economic growth (Andersson, 2016). 
 
CWT can account for relationships subject to multiple shocks (such as technological shifts) of 
different magnitudes and frequencies. It is possible that, for the same time period, a technological 
shock induces different causal lead-lag patterns between complexity and growth over various time 
lags (frequencies). This flexibility overcomes the limitations of traditional time-series methods and 
spectral analysis. 
 
The data on the complexity frontier and economic growth exhibit oscillatory patterns and potential 
“statistical noise.” Wavelet analysis represents time series through a set of wave-like oscillations 
(wavelets), where all wavelets share the same functional form but differ in amplitude, length, and 
location on the time series. Some wavelet functions describe short-term patterns, while others 
describe long-term patterns. This differentiation, called “frequency” or “scale,” allows for a 
comprehensive analysis. Repeating wavelets at different frequencies reduces the time series to its 
main patterns, simplifying the data and reducing potential noise. 
 
When applied to two (or more) time series using the same wavelet function, it is possible to assess 
the similarity of the wavelets needed to describe each series. This is known as complex wavelet 
coherence, which measures the overlap or correlation between the wavelet representations of the 
time series. The degree of coherence is assessed by identifying potential Granger causal lead-lag 
relationships for different frequencies. This means that two time series can be Granger-causally 
related in their short-term or long-term patterns. Importantly, the researcher does not need to 
specify these patterns' precise characteristics, lengths, or temporal leads and lags (phase-
difference); the analysis identifies and reports all possible configurations. 
 
In the following analysis, the partial wavelet gain is of particular interest because it aligns with 
textbook econometrics: It can be interpreted as the coefficient in the multiple linear regression of 
the complexity frontier on economic growth and additional control variables. Three key pieces of 
information are obtained from the analysis: the partial phase difference, which provides insights 
into the direction of effects and lead-lag patterns; wavelet coherency, which indicates whether 
these patterns are statistically significant; and the partial wavelet gain, which quantifies the effect 
strength. For a more technical introduction to continuous wavelet analysis and a formal derivation 
of the partial wavelet gain, we refer the interested reader to Appendix A.1. 
 

4. Results	
4.1. The	development	of	the	complexity	frontier	

Based on the wavelet gain analysis of GDP per capita (GDP/c) and economic complexity, we 
assess models at various complexity thresholds (1%, 5%, 10%, and 50%) to determine the most 
suitable for interpretation. The results for the 5% threshold model are shown in Figure 7, with 
other specifications in Figure 13 in the Appendix. 

The 5% threshold model demonstrates clear and distinct high coherence values at significant 
periods, particularly around 17 and 35 years, indicating strong co-movements between GDP/c and 
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complexity. Additionally, the partial phase-difference curve for the 5% model exhibits smoother 
and more stable transitions over time compared to other thresholds, suggesting a more consistent 
and stable relationship. The gain values in this model are also higher and more stable than those at 
other thresholds, further reinforcing the robustness of the relationship between GDP/c and 
complexity at the 5% threshold. While the 1% and 10% scenarios show similar patterns to the 5% 
model, the 5% threshold outperforms them slightly in terms of stability and clarity. Conversely, 
the 50% threshold scenario performs worse, with more spread-out coherence values and lower, 
less stable gain values. These characteristics make the 5% model the most reliable and compelling 
for illustrating the dynamic interplay between economic growth and complexity. Moreover, it 
indicates that the relationship is most pronounced at this threshold. The poorer performance of the 
50% threshold (median) strengthens the argument of Mewes & Broekel (2022) that an economy’s 
technological capabilities relevant for economic growth are better approximated by the upper end 
of the complexity spectrum rather than the average complexity of the technologies it utilizes. 

Consequently, for the presentation and discussion of the results, we focus on the complexity 
frontier with respect to the 5% percentile, i.e., the complexity value representing the average 
complexity of the 5% most complex technology usage instances.7 

Figure 3 illustrates the development of the complexity frontier (CF5, red line) compared to other 
key variables (population, patents, GDP). It highlights that the complexity frontier grows faster 
than the number of patents, implying that the growth in technological complexity outpaces the 
quantity of innovation. Generally, the frontier increases (almost) monotonically, confirming the 
idea of increasing levels of technological complexity over time (Aunger, 2010; Broekel, 2019). It 
does feature a bump around the 1970s-80s, with the absolute level of complexity somewhat 
decreasing until a subsequent rise at the end of the 1980s. Overall, the frontier provides empirical 
support for the “complexity thesis” discussed in studies on cultural evolution (Vaesen and Houkes, 
2017). 

 
7 Appendix A.2 features a more detailed presentation of the other thresholds’ findings. 



 

16 
 

 
Figure 3: Development of key variables 

 

During the 170 years, significant technological upheavals occurred, including the rise of electrics, 
chemistry, and computers. This raises the question of whether such changes are also evident in the 
evolution of technological complexity. The importance of each technology can be approximated 
by its relative contribution to the technology frontier. Since the frontier represents the 5% 
utilization instances of the most complex technologies in a year, we can calculate the share of 
instances each technology (4-digit CPC class) accounts for. These shares’ values are smoothed 
over time using a loess regression with a span of 0.1 to highlight trends. To improve the 
visualization, they are transformed such that their sum corresponds to the complexity frontier value 
for that year (CF5). Particularly informative insights emerge when these technologies are 
aggregated into broader technological fields and sectors, revealing clearer trends that may not be 
apparent when examining individual technologies alone. 

Following Balland et al. (2020) and Schmoch et al. (2003), Figure 4 visualizes the relative 
contribution of 10 aggregated sectors (proportionally presented by the colored ribbons), and Figure 
5 shows the aggregation to 35 fields.8 Both visualizations highlight the massive technological 
shifts that have taken place. At least three phases are visible in which single sectors dominate the 

 
8 One technology field is excluded from the analysis due to insufficient patent numbers. Visualizations without the 
smoothing of share values are presented in Appendix A.3 (see Figures 14 and 15). 

2.5

5.0

7.5

10.0

12.5

1850 1900 1950 2000
Year

Lo
g(

va
lu

e)

Complexity
GDPpc
Patents
Population

Development of key variables



 

17 
 

frontier. Mechanical and civil engineering dominated in the first phase (until the 1920s). The 
second phase, from the 1920s to the 1990s, can be described as the chemical revolution, with 
technologies related to macromolecular chemistry and polymers exploding in the 1920s and 
subsequently dominating the frontier. Computer and telecommunication technologies initiated the 
third phase (in the 1990s), which shows semiconductor-related technologies (H01L) contributing 
disproportionately (compared to their overall patent shares) to the frontier until 
telecommunications (H04J) and digital communications (H04W) started to have higher shares 
from around the 2010s onward. 

Looking at the aggregation of technologies into 35 technological fields (Figure 5) reveals a 
pronounced relationship between the evolution of the frontier and changes in the composition of 
contributing technologies. Early increases in complexity (1837-1900) were driven by diversified 
contributions from basic communication processes, electrical machinery, and audio-visual 
technology. A significant spike around 1950 corresponds with the emergence of computer 
technology, medical technology, and materials/metallurgy, highlighting the impact of these fields 
on overall complexity. The late 20th century saw another rise, driven by semiconductors, 
pharmaceuticals, and digital communication. In recent decades, high levels of complexity have 
been sustained by the emergence and growth of advanced technologies like semiconductors and 
IT methods. 

If one is willing to accept macromolecular technologies as a representation of the oil, car, and 
aircraft sectors, one can find some resemblance of the idea of the so-called K-waves (Kondratieff 
cycles) in the shifting composition of the complexity frontier. Accordingly, the technical 
revolution from 1880 to 1920 was characterized by advances in chemistry, electrotechnical 
industry, and machinery. At least the latter's growing importance is also visible in the complexity 
frontier. Subsequently, between 1940-1970, the scientific-technical revolution fueled the rise of 
the oil-, synthetic materials-based sectors and motorization (macromolecular technologies) 
(Šmihula and Von, 2010). It was followed by the age of computerization (1973 onward) that 
overlaps with the ICT revolution in 1985-2000 and the subsequent growth of telecommunications, 
cybernetics, and informatics (Freeman and Louca, 2001; Šmihula and Von, 2010). The K-waves 
are very general, and their scientific basis and empirical evidence are intensely debated. However, 
the frontier cannot be seen as an empirical test for the validity of the K-waves argumentation, as 
the latter is not related to the concept of complexity. Consequently, we merely acknowledge certain 
correspondences between what this literature argues and the visual impressions of the complexity 
frontier. 

The frontier also features a movement away from technologies filed under ‘Other Fields’ from 
1925 onward and Mechanics (Other special machinery). Both just kept a marginal presence in the 
frontier after this time. However, the latter suddenly re-emerges with a noticeable contribution to 
the frontier in the 1980s and 1990s. This is driven by increased patenting associated with classes 
B29C9 and B29K.10 These are elementary classes for inventions related to composite materials 
such as Kevlar. This increase in these classes’ complexity mirrors the rise of modern composites 
invented in the 1960s, which found their way into a wide range of applications in the 1980s to 
2000s, including the automobile, aircraft, construction, and military technologies (ŠERIFI et al., 

 
9 Shaping or joining of plastics; Shaping of substances in plastic state, in general; After-treatment of the shaped 
products, e.g., repairing. 
10 Indexing scheme associated with subclasses B29B, B29C, or B29D, relating to moulding materials or to materials 
for reinforcements, fillers, or preformed parts, e.g., inserts. 
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2018). In recent years, several technologies expanded their contribution to the frontier noticeably, 
joining the dominating Digital Communications technologies. This includes the propulsion of 
electrically-propelled vehicles (B60L), laboratory apparatus (B01L), and the conjoint control of 
vehicles (B60W), which, accordingly, may have the potential to shape technological evolution in 
the near future. 

 

Figure 4: Complexity Frontier, sectorial composition 
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Figure 5: Complexity Frontier, field composition 
 
 
 

 
 

Figure 6: Distribution of patents across fields 
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This descriptive look at the frontier highlights its ability to magnify major technological shifts that 
are otherwise less (if at all) visible. For instance, the rise of macromolecular chemistry in the 1960s 
and 1970s and that of semiconductors does not become apparent when looking at the general 
distribution of technologies among all patent applications (see Figure 6). The next subsections will 
assess whether it also helps explain economic growth. 

4.2. Complexity	and	Economic	Growth	
The presentation of the results of the wavelet-gain analysis diverges from the ordinary regression 
analysis tables. While all control variables are considered in the estimations, the results focus on 
insights into the core explanatory variable’s (here, the complexity frontier - CF5) relationship with 
the dependent variable (GDP). The properties of this relationship are expressed in the three plots 
jointly shown in Figure 7. The heat map on the left indicates the significance level of the link 
between the capabilities in complex technologies and GDP growth, with the x-axis representing 
the year and the y-axis the length (in years) of the considered temporal variance of the two 
variables (also known as frequency bands). The dotted grey line is the so-called cone of influence, 
i.e., the period covered by our data for which we can reliably assess the statistical significance of 
the relationship. The areas outside the cone represent situations characterized by insufficient 
numbers of observations. The plot in the middle visualizes the partial phase-difference, which 
gives insights into the direction of impact: values (the blue line) within the interval -pi/2 and pi/2 
indicate the complexity frontier impacting GDP growth, and values outside the interval suggest 
the impact going in the opposite direction. The last plot on the right-hand side represents the partial 
wavelet gain, which indicates the magnitude of the impact. For instance, a value of one means that 
if the complexity of the most complex technologies in which the economy has capabilities 
increases by one percent, it will translate into a one percent increase in GDP per capita. Given the 
richness of the information in these plots, we focus the results’ discussion on two time periods for 
which a statistically significant (p<0.05) relationship is identified. 

 

Figure 7: Complexity frontier (5% most complex) and GDP/c growth 
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4.2.1. Developments	between	1890-1907	
We find a significant (5% level of significance) relationship between the complexity frontier and 
economic growth between 1890 and 1907, considering a 10-15-year temporal variance. The 
relationship is significantly negative during this time, whereby GDP/c leads and Granger-causing 
the complexity frontier values. This is indicated by the partial phase difference being in the interval 
-pi/2 and -pi in the middle plot of Figure 7. The wavelet gain (right panel) indicates that an increase 
of GDP/c by 1% led to a decrease in the frontier value by 0.35% during this time. This period falls 
within the “technical revolution” from 1880 to 1920 (Šmihula and Von, 2010). At the end of the 
19th century, the growth of the US changed from being based on expanding capital, resources, and 
labor to knowledge-based growth (Abramovitz and David, 1999; Mowery, 2010). Driven by the 
desire to expand economic output further, resource-extraction sectors led investments in R&D 
activities in related fields (chemistry, machine tools, electricity), in which the US soon became a 
global force at the beginning of the 20th century (Mowery, 2010; Nelson and Wright, 1992). This 
expansion materialized in absolute patent numbers doubling during this time (see Figure 9). 
However, our analysis shows that it did not lead to substantial shifts and changes in the complexity 
frontier (see Figure 7 and Figure 8), which remained dominated by capabilities in the same 
technologies (civil engineering, other consumer goods, and mechanics). The frontier also didn’t 
shift upwards, implying that these technologies did not drive an upgrading of the economy’s 
capabilities in terms of inventing and utilizing more complex technologies (see Figure 7 and Figure 
8). Therefore, the negative relationship between GDP/c growth and the complexity frontier 
between 1890 and 1907 appears to be a consequence of the positive contribution of resource-
extraction sectors to economic growth and their investments into R&D in (comparatively) simpler 
technologies. This development coincides partially with the “productivity pause” between 1890 
and 1914, during which low productivity gains didn’t stimulate economic growth (David and 
Wright, 1999). According to our study, this phenomenon is evident in and seems to be related to, 
a sideways development (or even decrease) of the complexity frontier. 
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Figure 8: Complexity Frontier 1889-1915 

 

 

Figure 9: Patent numbers 1889-1915 
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4.2.2. 1990	onward	
The second period for which we observe a significant (5% level of significance) Granger-causal 
relationship between the complexity frontier and GDP growth is between 1990 and 2011. Increases 
in the complexity frontier (CF5) significantly contributed to economic growth during this time. 
While the relationship seems to have continued after 2011, we cannot reliably assess its 
significance after this year because the method requires a time window of at least five years, and 
our data ends in 2016. During this period, the rise of ICT technologies caused a sharp increase in 
patent growth (see Figure 11). However, the growing importance of these technologies is more 
visible when looking at the composition of the complexity frontier. Here, semiconductors 
downright squeezed out chemistry from the 1970s onward (Figure 10). According to the wavelet-
gain analysis, this improvement in the economy’s capabilities to handle more complex 
technologies translated into considerable economic growth (see wavelet gain plot in Figure 7). 
More precisely, an increase in the complexity frontier by 1%, which roughly corresponds to what 
occurred between 1990 and 2011, caused GDP to grow by 1.8%. This impact of expanding 
capabilities in complex ICT technologies on economic growth aligns with other studies that 
identified ICT to substantially contribute to productivity growth during this period (Brill et al., 
2018; Niebel, 2018; Oliner and Sichel, 2000). Yet, the impact is substantial and significantly larger 
in magnitude than what is reported for the regional level in Europe: Mewes and Broekel (2022) 
found that an increase in the capacity to handle technologies of 10% greater complexity is 
associated with an approximate 0.45% uptick in GDP growth. A potential explanation for this 
difference is that the US outgrew Europe economically during this period. Much of this is 
attributed to the comparatively greater presence and growth of the ICT sector and its technologies 
in the US (van Ark et al., 2003). 

In the wavelet analysis, the impact of the capabilities in complex technologies on growth is shown 
in both variables’ temporal variations overlapping in multiple scenarios. It is significant 
considering the 10 to 15 years temporal variance and the one over 15 to 17 years. Consequently, 
improved technological capabilities require some time to manifest into economic growth. 
Potentially, this is because the relevant technologies (ICT and related technologies) are general-
purpose technologies (Beaudry et al., 2015). Such technologies shape productivity development 
in a wide range of sectors, which implies that it takes a considerable time period before they diffuse 
in the economy, and their application has macroeconomic effects. 
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Figure 10: Complexity Frontier 1989-2011 

 

 

Figure 11: Patent numbers 1989-2011 
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4.2.3. The	intensity	of	inventive	activities	and	economic	growth	
Including the number of patents in the estimations controls for changes in R&D efforts, inventive 
success, and intellectual property protection strategies over time. It is also crucial to isolate the 
effect of the capabilities in complex technologies, as the measure of structural diversity is 
positively correlated with the number of patents. However, this variable may also reflect the 
general intensity of inventive activities in a given year. Put more loosely, when technological 
complexity is seen as a more qualitative dimension of inventive activities, absolute patent numbers 
rather represent their quantity (Mewes and Broekel, 2022). To validate that both variables truly 
pick up independent effects, we re-estimate the models with the values of the complexity frontier 
and the total number of patents switching their places. That is, we test for the relationship between 
GDP growth and the development of patent numbers over time with the complexity frontier as a 
control variable. Figure 12 visualizes the results. Interestingly, we observe a significant 
relationship between economic growth and patent numbers for the time before 1910 and for the 
period after 1990. 

 
Figure 12: Total number of patents and GDP/c growth 

At first glance, this seems similar to what is observed for the complexity frontier. However, there 
are two substantial differences. Firstly, the growth of patents is Granger-causally driven by 
changes in GDP in both periods (before 1910 and after 2000). It is only briefly reversed between 
1990-2000. In contrast, the capabilities in complex technologies remained an economic facilitator 
in all years after 1990. Secondly, even in the period where the influence of patents and the 
complexity frontier on economic growth is simultaneously significant (1990-2000), the wavelet 
gain (strength of influence) is much lower for patent numbers (ca. 0.3%) than for complexity (ca. 
1.8%). 

Consequently, the two dimensions (number of patents and capabilities in complex technologies) 
represent distinct influences, implying that the relevance of the technological capabilities for 
economic growth is not only a result of increased patenting. 
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5. Discussion	and	conclusion	
Innovation and technological progress are unquestioned in their importance for economic growth. 
Yet, quantitative empirical evidence that covers a long time and considers the heterogeneous 
nature of technologies and their variance in impacting economic growth is scarce. Motivated by 
this scarcity, the present work utilized patent data and Wavelet-Gain Analyses to investigate the 
relationship between advancements in technological capabilities and economic growth for the US 
economy from 1840 to 2016. The study especially considered changes in the economy’s capability 
to invent and utilize the most complex technologies because these are seen as decisive for adding 
new economic growth opportunities (Antonelli et al., 2020; Hidalgo et al., 2009; Mewes and 
Broekel, 2022). Our empirical investigation shows that economic development and the economy’s 
ability to expand its competencies in more complex technologies, i.e., pushing the complexity 
frontier, are not related for the longest time. Two exceptions are the period 1890-1907 and the time 
after 1990. Contrary to our expectations, between 1890 and 1907, economic growth enabled an 
expansion of the complexity frontier, i.e., economic expansion drove the capabilities to invent and 
utilize complex technologies. Only in the years after 1990 is our primary hypothesis (H1) 
confirmed. From this time onward, advancing capabilities in complex technologies translated into 
economic growth. Accordingly, since 1990, the US, and potentially other advanced economies, 
have entered the age of complexity-driven growth. Thereby, our study confirms existing insights 
into capabilities in complex technologies influencing economic growth for Europe from 2000 to 
2014 (Mewes and Broekel, 2022) and for China between 1991 and 2015 (Li and Rigby, 2022). We 
add a macroeconomic study covering a much longer (170 years) period to this existing evidence 
at the regional level. 

Yet, our study goes beyond existing empirical insights by providing empirical support for the time-
variant nature of the relationship between technological capabilities and economic growth 
(hypothesis H2a). Advancing technological capabilities has not always been the strongest direct 
driver of economic growth in the history of the USA. In particular, during the 19th and the 
beginning of the 20th century, much of its growth was caused by the expansion of its population, 
natural resources, infrastructure, and mass production (Abramovitz and David, 1999; Mowery, 
2010). This doesn’t mean that technological capabilities and capabilities in the most complex 
technologies didn’t matter. They were just not the decisive forces and potentially impacted growth 
by contributing to the effects of the other growth factors. Consequently, future research needs to 
explore the potential indirect contributions of these capabilities to economic development, such as 
economic transformation and diversification (Gala et al., 2018; Hartmann, 2018; Hidalgo et al., 
2009; Pugliese et al., 2017). 

Our study also supports our last hypothesis, H2b, implying that the positive link between the 
capabilities to advance technological complexity and economic growth is more pronounced in 
recent periods. While our data only allows inferring about this relationship until about 2010 
statistically, it provides solid indications for it to continue afterward as well. The positive effect of 
the capabilities on growth coincides with the ICT revolution. These technologies are widely 
acknowledged as being highly complex as they “are highly cumulative and interactive, requiring 
a great deal of interoperability between components made by different firms, which has increased 
the importance of standards, collaboration among firms, and network effects in adoption“ (Hall 
and Rosenberg, 2010, p. 6). Inventing and utilizing these highly complex technologies pushed the 
complexity frontier, which our study empirically documents. Simultaneously, the effect of 
capabilities in complex technologies on growth became statistically significant. It empirically 
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confirms the ICT technologies’ contribution to economic growth, which Robert Solow famously 
questioned in the 1980s (Solow, 1987). Yet, our findings provide some support for this view, as 
its contribution was empirically not visible at the time. From the 1990s onward, its impact is 
statistically significant, implying that our findings add further evidence to the rise of ICT 
technologies contributing to economic growth even though it might still be less than that of 
previous technological revolutions (Gordon, 2018; Pilat, 2005). Yet, this strong influence may be 
specific to the USA, where a much larger share of the largest R&D performing and fastest growing 
firms were founded during this time than in European countries (Hall and Rosenberg, 2010). Given 
the importance of standardization for the applicability of ICT technologies, this finding links to 
their documented contribution to economic growth (Blind et al., 2022; Blind and Jungmittag, 
2008). It is beyond the scope of this paper to expand on this link, which we have to leave to future 
studies. 

In addition to being limited to the case of a single country, the USA, our study has further 
limitations that need to be pointed out. Most importantly, we rely on patent data to approximate 
inventive activities, technological focus, and the capabilities to invent and utilize complex 
technologies. Our findings are as reliable as these approximations reflect reality. While patent data 
is known to be subject to multiple biases and clearly gives only a partial representation of these 
dimensions (Griliches, 1990), so far, there are no alternative data sources that cover such a long 
period and that provide such a level of detail on technological developments. Consequently, we 
must leave it to future research to compare these insights with alternative approaches to capture 
economic development and technological capabilities. Recent works assessing economic and skill 
complexity are promising research starting points (e.g., Hidalgo et al., 2009; Waters and Shutters, 
2022). In addition, the approximation of technologies’ complexity is exclusively based on US 
patents, which may be an inadequate representation of what constitutes the most complex 
technologies when the USA was not the technology leader. 

Our investigation is also limited with respect to considering confounding factors for which long-
term data is scarce. While we are confident that the employed partial wavelet-gain analysis can 
still identify the causal relationship, we cannot completely rule out that some confounding factors 
may alter the empirical findings. Most importantly, we lack information on the distribution and 
magnitude of R&D investments and on the diffusion of technologies across the US economy. This 
prevents exploring the degree to which increasing complexity contributes to the decreasing R&D 
productivity observed by Strumsky et al. (2010) and Bloom et al. (2017). Theoretically, growing 
technological complexity makes research increasingly costly (Kim, 2015; Strumsky et al., 2010), 
induces longer development times (Griffin, 1997), and implies greater chances of failure (Singh, 
1997) than doing the same at a lower level of complexity. However, this has yet to be empirically 
confirmed at the level of an economy over an extended period because of the limited available 
data. 

Consequently, while it seems plausible that growing complexity reduces R&D productivity, 
motivating the massively growing R&D investments to ensure a relatively constant rate of 
progress, it remains speculative currently. However, our findings suggest that the net effect, 
complexity-induced costs vs. growth-enhancing force, is not negative. That is, we only find 
capabilities in complex technologies to facilitate economic growth at a time when it has reached 
the highest level (so far observed) and when the costs it induces on R&D should be at a peak as 
well. 
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Nevertheless, it clearly points to another limitation of the present study. We reduced the 
complexity frontier and its development into a single indicator reflecting the average complexity 
of the most complex technological activities. However, the frontier contains much more 
information than this. Most importantly, it highlights the changing order of technologies in terms 
of their levels of complexity over time. In the late 1930s, chemistry became the dominant 
technology in the frontier before it was replaced by semiconductors in the late 1980s. This change 
meant more than just a new spurt in complexity growth. For instance, it was accompanied by a 
shift in stock market valuations. In 1967, eight of the 20 largest companies (by market value) 
belonged to the Chemical or Oil & Gas sector. Only three of the top 20 were from the Tech sector. 
In 2017, eight companies were from Tech or Telecom, and only two were from Oil & Gas (Kauflin, 
2017). This shift also coincides with a change in the geography of innovation, which became most 
visible in the rise of the US West Coast as a new center of R&D and innovation (Saxenian, 1994). 
Hence, future research needs to widen the perspective and disentangle these developments and 
their relationship with technological complexity in more detail. 

Notwithstanding these limitations, our study suggests that technological complexity has the 
potential to become a central pillar in contemporary technology and innovation policies. While 
complexity is only indirectly considered in it, the EU’s smart-specialization strategy represents a 
forward step (Balland et al., 2018; Deegan et al., 2021). Our findings indicate that the relationship 
between capabilities in complex technologies and economic growth becomes evident over a 
medium to long-term horizon of ten to seventeen years. Consequently, technology policies that 
emphasize the development of complex technologies must be designed with a long-term 
perspective to capture their growth potential fully. 

Adapting to technological change is critical for countries looking to harness the benefits of 
capabilities in technological complexity. Policies should be agile and forward-looking, 
anticipating changes in the technology landscape and responding proactively. For example, 
regulatory frameworks should evolve to address the rapid advancements in complex technological 
domains, ensuring that innovation is not stifled by outdated regulations. Our paper illustrates a 
way of identifying such potent complex technologies. A recent analysis by Nast et al. (2024) of 
the USA's technological development over the past decades shows that contemporary 
governmental support schemes promote innovation in more complex technologies. Whether this 
is economically beneficial and whether similar patterns can be observed in other countries remains 
to be explored. However, the period during which Nast et al. (2024) identify governmental support 
pushing technological complexity coincides with the period in which our study shows that 
complexity drove economic growth. This alignment suggests that government support can be 
crucial in fostering technological advancements that contribute to economic growth. 

Regarding industrial policy, targeted support for industries operating within complex 
technological fields is essential. This could involve strategic R&D investments in sectors with high 
growth potential, fostering the development of industry clusters that promote knowledge exchange 
and innovation. Incentives such as subsidies, tax breaks, or direct investments can be instrumental 
in cultivating industries that leverage complex technologies for economic growth. 

To achieve sustainable growth, policymakers must also consider the dynamic nature of 
technological complexity. As industries evolve, so too must the policies that support them. This 
includes the development of a skilled workforce capable of advancing these technologies, as well 
as infrastructure that facilitates the growth of high-tech industries. By doing so, countries can 
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ensure that they not only keep pace with technological advancements but also lead in creating and 
applying new and complex technologies.  

Ultimately, the successful integration of complex technologies into the economic fabric of a 
country relies on the coordinated efforts of educational institutions, industry, and government. 
Countries can hope to achieve long-term economic prosperity only through a sustained 
commitment to understanding and applying the principles of technological complexity. 

However, considering the limited insights into the development of technological complexity over 
time and space, several crucial questions need to be answered first. Is it a sustainable policy to 
push the complexity further, which may generate more economic growth while making additional 
advancements in the future more difficult and costly? Is the research and development system 
designed to deal with even more complex technologies? Are complex and simple technologies 
complements or substitutes? 

Lastly, in the context of explaining economic growth, our study advocates the position of economic 
complexity (Hidalgo et al. 2009; Sweet and Eterovic, 2009; Balland et al., 2009) as a pivotal 
indicator from a capability standpoint, encapsulating the multidimensional capabilities required to 
navigate complexity. While our research emphasizes the technological aspect, we recognize the 
significance of other dimensions, notably skill and institutional complexity. We advocate for future 
research to elucidate the distinct impacts of these various complexity dimensions on economic 
growth, further enriching our understanding of the drivers behind economic advancement. 
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Appendix	
 

A.1 Continuous Wavelet Analysis: Technical details 
 
We provides a short introduction to the main elements of the CWT framework that is used in the 
paper’s empirical analysis. The starting point of the CWT framework is to search for a function 

that fulfills some properties for being used as a mother (or analyzing) wavelet, 3(4). The choice 
is a delicate task and context-specific. Crucially, the function must be well-localized in time and 
have zero mean. Under these conditions, this function can be seen as a small “wave” (hence, the 
term wavelet) rapidly losing strength with decreasing distance from the time-frequency center11.  
 

 
11 The interested reader is refered to Aguiar-Conraria and Soares (2014) sections 2.3 and 2.9.1 for technical details 
about admissible wavelets.  
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We use the most popular wavelet, the so-called Morlet (or Gabor) wavelet, whose characteristics 

are optimal to deal with such patterns. It can be written as 3(4) = 5@3/B67C516@16/D, with 7E 
which is the wavelet's central angular frequency that is commonly set to 6 (Aguiar-Conraria and 
Soares, 2014; Flor and Klarl, 2017). This specification greatly simplifies the interpretation of our 
empirical results.12 The CWT maps the original time series, i.e., economic growth termed as 8(4) ∈
ℒD(ℝ), into a function of time and frequency13 (<F(=, ?)) using the two parameters = and ?: 

 

<F(=, ?) = 3
G|I|∫ 8(4)3	AJK

@K (1@LI )B4,                (1) 

whereby ? is a scaling factor that governs the length of the wavelet, and = is a translation parameter 
controlling the location of the wavelet. If |?| < 1, the length of the wavelet is compressed to 
measure short-run cycles (high frequency), while in case of |?| > 1, the length of the wavelet is 
stretched to measure long-run cycles.	  
 
As 3	A ( ∙) denotes the complex conjugation of 3(4), the CWT in (1) is also complex-valued and 
can be separated into its imaginary part, G(<F(=, ?)) and real part G(<F(=, ?)).  
The advantage of CWT is that we can directly obtain the phase and phase difference of the wavelet 
transform (the set of wavelets and their frequencies describing the time series) of each time series 
(such as complexity). In formal terms, the phase of an individual time series y(t) is computed as 

py= arctan	(M(O7(L,I))ℜ(O7(L,I))
). However, we are particularly interested in computing the phase difference 

as it describes the relationship between the two time-series, say x(t) and y(t). For this purpose, we 
first have to compute the so-called cross-wavelet transformation of the two time series 

{N(4), 8(4)} ∈ ℒD(ℝ) (see Hudgins et al., 1993) as  <RF ≡ <RF(=, ?) = <R(=, ?)<FQ(=, ?), where  

<R(=, ?) and <F(=, ?) are the CWT of a time series x(t) and y(t), respectively. In a second step, the 

phase difference for two time series, say {N(4)	RSB	8(4)} ∈ ℒD(ℝ) can be computed as follows:  

TR,F = arctan UMSO87(L,I)T
ℜSO87(L,I)T

V ∈ [−5, 5],                                           (2) 

where, for a given complex number z,  G(Y) and ℜ(Y) denote its imaginary and real part, 
respectively. (2) is also equal to the phase difference in the angular form TR,F = TR − TF. 

Intuitively, if the phase difference is zero, both time series move together because they have the 
same phase angle. If the phase difference is different from zero, two variables x(t) and y(t) move 
either in or out-of-phase, while one variable either leads or lags the other. Hence, it provides 
information on the direction of the effects and potential lead-lag patterns. 

Abbreviating x(t)=x and y(t)=y, for TR,F ∈ [0, UD], the two time series move in-phase, where N is 

leading 8; for TR,F ∈ [− U
D , 0], where 8 is leading N. For TR,F ∈ [UD , 5], the two time series move 

out-of- phase, where 8 leads	N, while for TR,F ∈ [−5,− U
D], N is leading 8. In other words, for the 

complexity and growth time series, performing this computation yields information about possible 
delays of the oscillations of their time series.  

 
12 To be more precise, for a given frequency !and scale ", we have ! = 9

:;< ≈
=
<	 (see Cazelles et al., 2008; Torrence 

and Webster, 1999) 
13 The squared norm of  &(() is referred to as the energy, while the space ℒ:(ℝ) is commonly known as the space of 
finite energy functions.  
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Our econometric approach features more than two explanatory variables, therefore requiring a 
multivariate extension. In other words, we introduce wavelet tools that can be used to explore co-
movements between complexity and growth by controlling for other influencing factors. We rely 
on the partial wavelet coherency (PWC), which, in essence, give insights into the statistical 
significance of the identified effects and lead-lag patterns. Given a vector of time series ^(4) =
[N3(4)′, ND(4)′, NV(4)′, . . . , NW(4)′],14 the PWC between, say N7(4) and NX(4) with 1 ≤ & ≤ b, 1 ≤
c ≤ b, after controlling the influence of all other variables in ^(4), reads as 
 

de3	X.WZ> ≡
|ℳ>4

# |

\ℳ44# \ℳ>>
#

 , 

 
with fgX = {2,… , b}{c} for 2 ≤ c ≤ b. ℳ is a (f × f) Hermitian matrix of all smoothed cross-

wavelet spectra, i.e. ℳ7X
( = ()7X)	7,X;3W

, where )7X is the smoothed version of the cross-wavelet 

spectrum <7X of two series N7(4) and NX(4).  ℳ7X
( is the co-factor of  the element (&, c) of  ℳ, that 

is ℳ7X
( = (−1)(7JX) det(ℳ7

X).  
Moreover, we refer to Mandler and Scharnagl and compute the so-called partial wavelet gain 
(PWG) of a variable N3(4) and ND(4) after controlling the influence of all other variables in ^(4) 
as follows: 

n3	X.W] > = de3	X.WZ>
\ℳ>>

#

\ℳ44#
,  

The partial wavelet gain n3D∙V…W is directly associated with textbook econometrics: It can be 

interpreted  the coefficient in the multiple linear regression of N3(4) on the set of f − 1 explanatory 
variables ND(4), ND(4), … , NW(4)  at each time and frequency. Consequently, it describes the 

strength of one time series impacting the other. 
 
Example: Three variable case 
Let’s assume that we want to explore the Granger-causal relationship between complexity and 
growth by controlling for the number of patents. This corresponds to a three variables case (f =
3). For these three time series N3, ND  and NV, the matrix of complex coherencies is given by  

 

ℳ = p
1 q3D q3V
qD3 1 qDV
qV3 qVD 1

r. 

To compute the partial wavelet coherence, we have to compute the following co-factors of ℳ: 

ℳ33
( = s 1 qDV

qVD 1 s=1-qVDqDV = 1 − dDVD , ℳDD
( = 1 − d3VD  and ℳD3

( =

(−1)3JD tq3D q3V
qVD 1 t = −(q3D −q3VqVD). Thus, for the three variable case, the partial wavelet 

coherence reads as: 
 

 
14 Note the change in the notation: y(t)≡	N3(4). 
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de3D.V ≡ |&46@&4?&?6|

\3@`6?6 \3@`4?6
, 

 
while the partial wavelet gain matrix between N3 and ND (after controlling for NV)	for different 
times and frequencies is given by: 
 

n3D.V ≡ de3D.V
\3@`4?6

\3@`6?6
. 

The example shows that n3D∙V corresponds to a regression coefficient matrix by regressing N3 on 
ND and NV at each time and frequency in the multiple linear regression model framework. 
 
Moreover, we rely on Torrence and Compo (1998) to test for the significance of the wavelet power 
spectrum. Regarding coherency and partial coherency, we use Monte-Carlo simulations for the 
significance tests. In our case, we fit an ARMA (1,1) model to each series and draw new samples 
by drawing from a Gaussian distribution with a corresponding variance that is equal to that of the 
estimated standard errors. We repeat these exercises several times (5,000 replications) and extract 
critical values. We have also experimented with higher orders of the ARMA (b̂, f	A)model and have 
also increased the number of replications to a maximum value of 10,000. These changes do not 
significantly affect our results.  

 

A.2 Robustness checks 
 
Figure 13 shows the results of the wavelet analysis when calculating the complexity value as the 
median of the 1%, 10%, and 50% (Median) percentiles complexity frontiers. The results for the 
1% and 10% percentiles, by and large, confirm those obtained using the 5% percentile. However, 
there are some important differences; the first one is that the area of significance in 1890-1907 is 
shaped a bit differently when using the 1% frontier definition, whereas the 5% and 10% 
specification return rather similar results. Noticeably, a second “heat spot” emerges when looking 
at the 1% specification, which also starts around 1890 but lasts until 1920, with a temporal variance 
of 24-27 years. However, this pattern only appears in this specification, and the corresponding 
wavelet gain is rather small (around 0.3%). In any case, it suggests that in the period in which GDP 
growth drove complexity (the 1890s to the 1910s), this was not limited to the most complex 
technologies but encompassed the wider set of highly complex technologies. The results for the 
median complexity (Complexity Top 50% in the third row in Figure 13) add to this with a strongly 
significant relationship between economic growth and median complexity between 1880 and 1910. 
The relationship is restricted to a 15-17 years-temporal variance in this case.  
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Figure 13: Alternative complexity frontier specifications (1%, 10%, and 50% most complex) and 

GDP/c growth 

The second most noticeable difference concerns the period 1990 to 2011, during which we 
established a significant relationship between complexity and economic growth using the 5% 
percentile frontier. This relationship is similarly visible in the 1% specification (although not as 
clearly). It does not become significant using the 10% and 50% percentiles of complexity 
specifications. Consequently, this relationship is linked to the most complex technologies, i.e., the 
frontier, driving economic growth. 
In sum, small variations in the percentiles considered in constructing the complexity frontier do 
not challenge our main results. However, moving away from the 5% threshold frontier (small 
percentiles) towards the median particularly weakens the statistical relationship between 
complexity and economic growth after 1990. This supports the idea that the complexity frontier is 
relevant for growth, not the medium complexity of used technologies at a certain time. 
 
 

A.3 Original complexity frontier 
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Figure 13: Original complexity frontier by sector (no smoothing) 

 
 
 

 
Figure 14: Original complexity frontier by technological field (no smoothing) 
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