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Abstract

This work investigates the role of external exchanges of green knowledge on the
regional development of new green technological specializations. We extend the re-
combinant knowledge framework to commodity-embodied knowledge and posit that
inter-industry inter-regional flows of commodities, in which new green knowledge gets
incorporated, are a channel through which regions can increase their opportunities of
specializing in new green technologies and diversify in a more exploratory manner. We
further expect these dynamics to be stronger when foreign rather than domestic embod-
ied flows are concerned. By combining the EUREGIO input-output database with patent
data, we test our hypotheses on a sample of 237 EU (NUTS2) regions over the period
2000-2019. We measure the regions’ centrality in the network of inter-regional flows of
embodied green knowledge (GreenF lowNet) and exploit regional network centrality in
a model of related diversification for green technologies. Results show that the centrality
of regions in the network is positively associated with green diversification, making
this process more exploratory. We also find that the regional ability to acquire new
green-techs is mainly associated with the centrality in outward flows of green knowledge
towards other regions rather than inward ones. Lastly, we find that regions’ green-tech
diversification seems to be enabled (at the extensive margin) primarily by their centrality
in the foreign network and accelerated (at the intensive margin) by their centrality in
the domestic one. Policy implications are drawn accordingly.
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1 Introduction

The development and adoption of new environmental technologies constitute a pivotal catalyst

for advancing the green transition (EC, 2019; IEA, 2020). Nevertheless, the accessibility

of these emerging green technologies varies significantly among countries and even more so

among sub-national regions (Barbieri et al., 2023). This asymmetry adds to the varying

levels of vulnerability that regions exhibit to the changes entailed by the green transition

(Rodríguez-Pose and Bartalucci, 2023), and raises the concern of its "spatial justness" (Garvey

et al., 2022). This issue calls for the attention of policymakers who are encouraged to address

it, particularly by implementing regional policies that target the drivers of regional green-tech

diversification.

A rapidly accumulating body of research on the topic indicates that this diversification

takes shape as a form of technological branching (Tanner, 2014), wherein regions specialize

in new green technologies that are cognitively closer, i.e., related, to their pre-existing ones

(Montresor and Quatraro, 2020). This makes regional green-tech diversification inherently

path-dependent and, while it aids regions already on the green trajectory, it runs the risk of

disadvantaging regions lagging behind in both green and non-green technological capabilities.

This may in turn exacerbate the lack of justness in the green transition.

In this scenario, it becomes important to understand which additional factors can facilitate

green-tech diversification and possibly attenuate (i.e., negatively moderate) the role of

relatedness, rendering it more exploratory. The extant literature has primarily focused on the

beyond-relatedness determinants of green-tech diversification within the regional boundaries

and identified them in a set of internal factors. However, these internal factors are strongly

linked to the local degree of socio-economic development, on which regions have limited

scope to act in the short-run. In the same respect, a more manageable set of determinants is

represented by external factors through which regions – and the peripheral ones in particular

– can reach knowledge and capabilities developed beyond their boundaries, which can be

possibly transferred and absorbed for the sake of their new green-tech development (Boschma,

2022). Yet, the extant literature on green-tech diversification has paid only limited attention to
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these external factors and is mostly confined to the role of Foreign Direct Investments (FDIs).

Conversely, other external factors, which have been shown to facilitate the technological

diversification of regions in generic terms (Balland and Boschma, 2021a), have not yet been

addressed in the analysis of the green-tech one.

Among these, an important missing factor is represented by the flows of innovative

knowledge that regions exchange among them as embodied (i.e., incorporated) in their

respective flows of intermediate commodities. Indeed, previous studies have shown that

these intersectoral flows of intermediate commodities can act as carriers of the innovative

knowledge developed by a focal industry. However, the extent to which this transmitted

knowledge enriches the knowledge base of regions and facilitates their capacity of combining

local and external knowledge for diversification purposes, has been marginally and indirectly

investigated so far, and only with respect to generic technologies (Fusillo et al., 2023). Given

the pervasiveness of such flows, which span across several and heterogeneous locations through

domestic and international trade (Karlsson et al., 2019), this gap is particularly unfortunate.

By drawing on the literature about input-output based innovation networks and extending

the recombinant innovation framework to commodity-embodied knowledge, we contribute

the analysis of regional green-tech diversification in three respects. Firstly, we maintain that

the embodied exchange – both inward and outward – of green knowledge among regional

industries represents an important channel through which the regional knowledge base can be

enriched with new recombination opportunities for the development of new green technologies.

Secondly, we argue that by getting exposed to the network of inter-regional flows of (industry)

embodied green knowledge, regions can diversify into new green technologies that are more

cognitively distant from their existing ones. Thirdly, we also maintain that the extent to

which the previous arguments hold is greater when foreign rather than domestic flows of the

kind are considered.

We combine the EUREGIO input-output database with patent data from OECD RegPat,

and test these arguments on a sample of 237 EU (NUTS2) regions over the period 2000-2019.

From a methodological point of view, we first build up the network of inter-regional flows of
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embodied green knowledge (GreenFlowNet) and measure each region’s degree centrality, in

total, in-degree, and out-degree terms. We then employ these centrality indicators in a model

of related diversification for green technologies, augmented with the interaction between

centrality and the relatedness indicator between new green and existing technologies.

Results confirm our expectations on the role of the GreenFlowNet in green-tech technolog-

ical diversification, but primarily for outward flows of green knowledge towards other regions

rather than inward ones. Furthermore, we find that regions’ green-tech diversification appears

enabled (at the extensive margin) by their centrality in the foreign GreenFlowNet – capturing

flows among regional industries across different countries – and accelerated (at the intensive

margin) by their centrality in the domestic GreenFlowNet – made up of flows between regional

industries within the same countries. Policy implications are drawn accordingly.

The remaining of the paper proceeds as follows. Section 2 illustrates the background

literature and our research hypotheses. Section 3 presents the data employed, the construction

of focal indicators, and a description of the empirical strategy. Section 4 provides estimation

results and delves into further empirical analyses and robustness checks. Section 5 provides

concluding remarks, exploring the main policy implications of the results.

2 Background literature and research hypotheses

Within the field of innovation geography, the body of literature on regional technological

diversification has experienced substantial growth over the past decade (Shearmur et al., 2016).

Building on evolutionary economic geography principles, a key tenet of its analysis posits

that regions primarily – and ideally – diversify by branching from their existing technologies.

In essence, to mitigate the risks associated with overly hazardous and potentially unsuccessful

diversification endeavors (Balland et al., 2019), regions develop new technologies that are

marked by higher cognitive relatedness to their pre-existing ones, as they leverage similar

capabilities (Boschma, 2017).

Drawing on and refining prior literature, recent analyses have shifted attention to the

regions’ ability to engage in eco-innovation and diversify their green technologies – a domain
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where our understanding remains limited (for a review, see Losacker et al. (2023)). Adopting

a relatedness approach, extant studies have generally found that regions diversify also their

green technologies through branching (Tanner, 2014), relying on both green and non-green

pre-existing capabilities (Montresor and Quatraro, 2020). However, like in the case of

technological diversification in general, different factors have been found to combine with,

and moderate – usually negatively (i.e. attenuating) – the impact of relatedness on green-tech

branching. The majority of the available studies have focused on internal factors to the

regions that can play this role.1 Conversely, only limited attention has been paid to factors

that affect the green-tech diversification of regions by acting across their boundaries, i.e.,

external factors. The primary emphasis has been on the role of Foreign Direct Investments

(FDIs), both in inward (received by regions) and outward (made abroad by regional actors)

terms. The argument posits that multinational corporations can serve as conduits for global

“pipelines" of green knowledge, intersecting with the local “buzz" of domestic knowledge

and thereby enhancing regional green-tech capabilities (Bathelt et al., 2004). Castellani

et al. (2022) have found that inward innovative FDIs (i.e., in R&D activities) occurring

in green industries, positively impact a region’s specialization in green technologies. This

effect is larger in regions whose prior knowledge base is highly unrelated to environmental

technologies. Indeed, it is only for high levels of unrelatedness that the same kind of FDIs

help regions acquire a green-tech specialization ex novo. Along a similar line, in Bello et al.

(2023) inward innovative FDIs from home-countries’ MNCs to host-regions are found to be

significantly and positively associated with the backward citations that the green patents

of the latter make to the patents obtained in the former. Quite interestingly, this does not

occur with respect to outward innovative FDIs. However, outward FDIs can be claimed to

serve in establishing external connections and in facilitating local access to external resources

through other channels. Indeed, Belmartino et al. (2023) find a positive relationship between

environmental innovation in European regions and their outward FDIs, especially when the
1Among these factors the most studied concern: the regions’ endowment of Key Enabling Technologies

(KETs) (Montresor and Quatraro, 2020) and of Artificial Intelligence (AI) knowledge (Cicerone et al., 2023);
the political support they give to environmental issues (e.g. in times of elections) (Santoalha and Boschma,
2021); and the intensity of local digital skills (Santoalha et al., 2021).
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latter target regions with higher availability of green patents and trademarks.

While important, FDIs are not the only channel through which regions can gain access to

external knowledge, especially of a green kind, to facilitate their green-tech diversification.

External knowledge flows can pass through the inter-regional mobility of other non-local actors

than MNCs, like migrant inventors (Miguelez and Morrison, 2023) and foreign entrepreneurs

(Neffke et al., 2018; Elekes et al., 2019). Local actors themselves can also entertain or/and

be exposed to extra-regional linkages. This can occur both in knowledge creation – like in

cross-regional inventors’ collaborations – and in knowledge diffusion – through processes of

knowledge transfer across regions. In both domains, inter-regional relationships have been

found to affect regional innovation and technological diversification in general terms (Balland

and Boschma, 2021b; Kogler et al., 2023). Furthermore, and possibly in a more pervasive

way, regions also engage in trade relationships, which stimulate the regions’ development

of new industries (Andersson et al., 2013; Boschma et al., 2017). As recently argued by

Boschma (2022), regions draw important opportunities to diversify their technologies by

participating to Global Value Chains (GVC), and the same holds true for their belonging to

Global Production and Innovation Networks (GPN and GIN) that spread across the World

(Cooke, 2013). Nevertheless, the relevance of external relationships linked to this kind of

networks has been overlooked in the analysis of regional green-tech diversification so far.2

Aiming to fill this gap, we propose to extend and refine with respect to the green-tech

realm the recent contribution proposed in Fusillo et al. (2023), who relate regions’ technolog-

ical diversification, in general terms, to their exposure to the global network of embodied

R&D knowledge (GNRD). Following the embodied diffusion channel of technology (Papa-

constantinou et al., 1996), industrial providers that invest in R&D make their intermediate

commodities more innovative; and their industrial customers benefit (in the form of rent

spillovers) from the innovative knowledge these commodities “embody" by buying them.

Exchanges of R&D-embodied knowledge among the industries of different countries create a
2An exception is the work by Bachtrögler-Unger et al. (2023), which, however, employs a different

framework and considers the role of co-inventorship across regions for the regional development of twin (i.e.,
digital and green) technologies.
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global network of embodied R&D (GNRD) (Fusillo et al., 2024). Through these relationships,

innovative knowledge can be created, moved and benefited across the World also for the

sake of technological diversification. Accordingly, Fusillo et al. (2023) find that regions, by

increasing their “exposure" to the most “central” nodes of this GNRD (through the target of

their local inventive activities), can both increase their diversification capacity and render it

more exploratory in the search of new technologies.

The approach proposed in this study can be extended and refined to investigate the role

of the same kind of external driver in regional green-tech diversification. The starting point

of this extension is the consideration that regional industries – rather than country-industries

as in Fusillo et al. (2023, 2024) – can be deemed the most salient unit of analysis at which

to map the flows of embodied knowledge from which regions can benefit for diversifying.

Indeed, through the engagement of their firms in R&D, patenting, and other green inventive

activities, regional industries can access new green technological knowledge that can be both

used locally (within the region) and transferred externally (outside the region). In the latter

case, the embodied diffusion of innovation across industries of different regions does appear

particularly relevant. Through the development of new green knowledge, the industries of a

focal region can increase the “greenness” of the commodities obtained by their firms – e.g.,

in terms of energy and resource efficiency, or of used pollutants. In turn, the underlying

knowledge through which such greenness has been improved can be benefited by the customer

industries of other regions through the acquisition of the relative ameliorated commodities.3

In analytical terms, the flows of embodied green knowledge that regional industries exchange

among them generate a network that we can term the GreenFlowNet. Within the network,

new green knowledge is created and circulated, from which regions can benefit more (in

developing new green technologies), the more “central” their sub-network of industries is in
3It is worth stressing that this kind of embodied diffusion of green knowledge also occurs among the

industries of the same regions. Nevertheless, given the diversity in industrial structures among regions
and the variations in innovation among regional systems, the most significant and impactful novelty in the
acquired embodied knowledge is likely to originate externally: that is, through inter-regional (industry)
exchanges encompassing both domestic interactions (regions within the same country) and foreign interactions
(regions from other countries). Indeed, intra-regional flows of the same kind arguably accrue from learning-
by-interacting of local industries and thus augment the regional capacity of mastering new green technologies
only marginally.
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it.4

Elaborating upon the recombinant knowledge framework (Weitzman, 1998), supporting

the relatedness approach to technological diversification, the described benefit from centrality

in the GreenFlowNet is twofold and leads us to formulate two main research hypotheses, plus

one. Firstly, we can argue that the most central a region – through its regional sub-system

is in the GreenFlowNet, the more pervasively its local industries exchange embodied green

knowledge with outer (extra-regional) industries, and the more intensively they can access

diverse bits of knowledge to be combined and recombined in the development of new green

technologies (Montresor and Quatraro, 2020). In principle, this can occur with respect to both

the acquisition and the diffusion of the kind of knowledge under consideration. In the former

case, more inward-central regions (i.e., central by looking at inward flows) absorb more diverse

green knowledge inputs by acting more intensively as buyers of environmentally improved

commodities developed elsewhere. In the latter case, more outward-central regions are so

to say exposed to more diverse green knowledge by serving more intensively as suppliers of

environmentally improved commodities that are demanded elsewhere. As both channels can

be equally knowledge conveying, we do not have a theoretical a priori about their distinctive

effect, which would be however interesting to disentangle. Accordingly, we put forward our

first research hypothesis:

HP1: Regions that are more central in the GreenFlowNet – either in inward or outward terms

(or both) – have a higher capacity to acquire new green technologies.

The second benefit concerns its capacity to attenuate the path-dependence from their

pre-existing technologies. In technical terms, this centrality can be expected to downplay the

diversification-enabling effect played by the cognitive proximity (i.e., relatedness) between

pre-existing and new green technologies (Boschma, 2017). Mimicking the arguments put

forward in relation to other external channels of knowledge diffusion, like FDIs (Castellani

et al., 2022), we can argue that the centrality at stake can play such a role. Indeed, not
4For the sake of clarity, we refer to the centrality of a region – i.e., of its sub-network of industries, in the

GreenFlowNet as a proxy of its importance. A detailed discussion on this meaning is presented in Section 3.
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only can more central regions be expected to have more diverse green knowledge inputs to

be combined and thus a wider recombinatory potential. A more varied green knowledge,

made available by more (externally) interacting suppliers and customers of green-improved

commodities, also fuels the “architectural" knowledge on which regions rely to recombine

their modular one into new green technologies. In other words, the architectural knowledge

base of more central regions is capable of recombining their pre-existing modular knowledge

with more degrees of freedom and enabling them to diversify in the green realm in a more

exploratory manner, i.e., in less cognitively related new green technologies. Once more, this

could occur either for inward and outward central regions in the GreenFlowNet and leads us

to put forward our second research hypothesis:

HP2: Regions that are more central in the GreenFlowNet – either in inward or outward terms

(or both) – are capable to acquire new green technologies that are less cognitively related

to their pre-existing ones.

In addition to these two hypotheses, a third one can be put forth in order to enrich them.

As anticipated, with respect to a focal region, the extra-regional linkages of embodied green

knowledge that constitute the GreenFlowNet can be either domestic – i.e., pertaining to

other regions located in the same country – or foreign – i.e., referring to regions located in

other countries. As extensively shown by the literature about national systems of innovation

and by its recent evolution into global ones (Fusillo et al., 2024), cross-country differences

in industrial structures and in innovation performances still matter and add an additional

and possibly stronger element of discontinuity to cross-regional ones. Accordingly, it can be

argued that the green-knowledge novelty to which the regions’ centrality in the GreenFlowNet

gives access is greater when its foreign rather than domestic flows are considered. Accordingly,

we formulate our third hypothesis as follows:

HP3: The effects to which HP1 and HP2 refer are stronger for the foreign rather than the

domestic flows of the GreenFlowNet.
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3 Empirical analysis

3.1 Data

Our empirical analysis rests on a new dataset of 237 European (NUTS2) regions and 14

industries from 2000 to 2019, assembled by combining different sources. The primary data

source of our analysis, employed to build up the GreenFlowNet, is represented by the EUropean

REGional Input-Output (EUREGIO) database. This is the first time-series – annual, from

2000 to 2010 – of global Input-Output tables offering regional granularity across the extensive

trading block of the European Union. The tables integrate data from World Input-Output

Dataset (WIOD) (2013 release) with regional economic accounts and interregional trade

estimates developed by PBL and with survey-based regional input-output data for select

countries(Thissen et al., 2018).

Our second main data source is the OECD REGPAT data (February 2022 version),

from which we extract patent data, regionalized according to the address of the inventors.

Following recent literature, the green technologies to which our dependent variable of green-

tech diversification refers, as well as other regressors and controls, are identified by exploiting

the Y-tagging Cooperative Patent Classification (CPC) scheme of technology classes assigned

to patent documents at the 4-digit level (Favot et al., 2023). More precisely, patents are

identified as green if they are classified in at least one of the “Climate Change Mitigation

technologies” defined by the EPO CPC classes Y02-Y04S.

Lastly, we complemented this information with regional- (and country-) data, such as

population and gross domestic product (GDP, at the current market prices), from Eurostat

and the index of environmental policy stringency from the OECD (OECD, 2016).

3.2 Variables construction

3.2.1 Dependent variables

The dependent variables of our analysis measure the green-tech diversification of regions by

looking at the green technologies that enter region r at time t, with t spanning from 2000 to
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2019. Following the extant literature (e.g. Montresor and Quatraro, 2020), such an entry is

denoted by a dummy variable GreenTechEntrys,r,t, which takes value 1 if region r acquires

a Revealed Technological Advantage (RTA) in a generic green-tech s at time t, which it did

not have at t� 1, and 0 otherwise.5 Formally:

GreenTechEntrys,r,t = 1 if RTAs,r,t = 1 and 0  RTAs,r,t�1  1 (1)

where RTAs,r,t is defined as follows:

RTAs,r,t =

PATs,r,tP
t PATs,r,tP
r PATs,r,tP

t

P
r PATs,r,t

(2)

with PATs,r,t denoting the number of patents region r holds in technology s at time t,

with the standard implication that the region is (not) specialized in the same technology

when (0  RTAs,r,t  1) RTAs,r,t = 1.

Following Fusillo et al. (2023), we measure diversification (in the green tech) both at

the extensive and intensive margin. At the extensive margin (EM), we focus on the focal

region’s capacity to enter the green-tech realm, regardless of the intensity at which it does

it. Accordingly, we measure green-tech diversification at the EM with a dummy variable

GreenTechEntryEMr,t, defined as:

GreenTechEntryEMr,t = 1 if GreenTechEntrys,r,t = 1 for at least one s,and 0 otherwise

(3)

At the intensive margin (IM), we instead focus on the strength with which the focal

region diversifies its technologies in the green realm. To do that, we define the following
5This is a reference time lag in the literature (Montresor and Quatraro, 2020), for which other lags have

been tried (k = 1, ...3), without substantially altering the results
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variable GreenTechEntryIMr,t:

GreenTechEntryIMr,t =
X

s

GreenTechEntrys,r,t (4)

In other words, GreenTechEntryIMr,t simply counts the number of GreenTechEntrys,r,t

that occurred at time t.

3.2.2 Explanatory variables

Our main regressor aims at measuring the importance that region r reveals in the GreenF lowNet

at t: i.e., the network identified by the inter-regional flows of embodied green knowledge that

regional industries exchange among them.

First, to build up the GreenF lowNet we rest on the hypothesis, widely accepted in the

relevant literature (Montresor and Marzetti, 2008), that the (green-tech) knowledge developed

by the focal regional industry diffuses to other regional industries proportionally to their

input-output exchanges of intermediate commodities.6 This hypothesis can be operationalized

with the following matrix multiplication, whose outcome represents the adjacency matrix

behind the construction of the GreenF lowNet:

GreenFlowNett = GreenKnowt ⇥At (5)

In equation 5, GreenKnowt is the diagonal vector (nm⇥ nm) of the green-tech knowledge

obtained by the regional industries (where n and m represent the numbers of regions and

industries, respectively), over the temporal span 2000-2019. Following the extant literature

(Acs et al., 2002), the green knowledge of regions can be detected by counting the number of

green patents whose inventors reside in them. As for their allocation across regional industries,
6For the pros and cons of this hypothesis, see Montresor and Vittucci Marzetti (2007); Montresor and

Marzetti (2008).
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we instead resort to the Algorithmic Links with Probabilities (ALP) approach developed by

Lybbert and Zolas (2014) and use the probability weights with which green patents refer to

industries, for each year and for each region.7

At in equation 5 is the matrix of input-output coefficients obtained on the basis of the

inter-sectoral flows of intermediate commodities measured by the EUREGIO dataset at

time t. Its generic element, adz,ew,t, measures the value of the intermediate commodities

produced at t by industry d in region z, which is acquired by industry e in region w to

obtain one unit of its final output (see Miller and Blair, 2009). Following the proportionality

assumption in knowledge embodiment, these coefficients represent the weights through which

the green knowledge obtained by regional industries can be distributed across the other ones.8

Unfortunately, as anticipated, EUREGIO data availability only enables us to build up the

At matrix over the period 2000-2010. Accordingly, despite the availability of patent data

allows us to measure the GreenKnowt until 2019, the use of yearly input-output coefficients

in Eq.5, would prevent the possibility of obtaining the GreenF lowNett beyond 2010. To

avoid this temporal loss and maximize the temporal coverage of our empirical estimation,

we decided to amend Eq.5 by using an alternative AAvg matrix, obtained by calculating the

average values of the At elements over 2000-2010. In so doing, we rely on the fact that,

being a structural feature of national and regional economies, input-output coefficients can

be expected to change only gradually over time and mainly in the long run. The average

values of these coefficients find the 2000-2010 decade are arguably not excessively dissimilar

from those of the years from 2000 to 2019. Accordingly, the coefficients of AAvg can be

retained as a reliable proxy of the structural relationships along which the GreenKnowt

obtained in the same years circulate in an embodied way and affect GreenTechEntryr,t and

GreenTechEntryCountr,t.

In sum, the GreenF lowNett matrix obtained from Eq.5 allows us to measure the kind
7Precisely, we map CPC technology classes at the 4-digits level into the corresponding ISIC rev.4 industry

classification, together with their probability weights. Then, since EUREGIO data only covers 14 industries
(table ), we aggregate and match patent counts (at the ISIC rev.4 industry classification) with the 14
EUREGIO industries, following the concordance table provided in Table A6 in paper Appendix.

8Further details on the choice of these and possibly other input-output based weights are provided in
Montresor and Vittucci Marzetti (2007); Montresor and Marzetti (2008).
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of flows we are focusing on. Its generic element GreenF lowNetdz,ew, in fact, denotes the

amount of green knowledge obtained by industry d in region z, which diffuses to industry e in

region w. It may well be that z = w, capturing inter-industry flows within the same region,

or that z and w refer to the same country, or to different countries. The GreenF lowNett

matrix can thus be treated as a weighted adjacency matrix, configuring a weighted directed

network whose nodes refer to region-industry pairs.

By referring to this network, we can eventually measure the positioning of regions in

terms of network centrality. Among the different possible measures of centrality available in

network analysis (Borgatti, 2005), the simplest and most employed proxy of the importance

of nodes in terms of their connectivity is the Degree Centrality. In a binary network, degree

centrality simply measures the number of links incident upon a node. In a network in which

links are directed, degree centrality can be split into in-degree and out-degree, as nodes may

have a different number of inwards and outwards connections, respectively. Degree centrality

can also be extended to the case of weighted connections. In such a case, degree centrality

measures the sum of the weights of the links incident upon a node, and its calculation can

be further extended, and its decomposition into inward and outward applied to, weighted

directed linkages.

As described above, the GreenF lowNet is a weighted directed network, with nodes

corresponding to region-industries pair. However, our interest lies in the centrality position

of a region in the network. Further, because of the nature of the links in the GreenF lowNet,

we aim at capturing the extent to which regions are embedded into the array of embodied

green knowledge flows both in terms of range and amount of such exchanges. Hence,

we measure the centrality of regions in the GreenF lowNet by calculating the weighted

group degree centrality (Borgatti, 2006). To do so, we build up the regional indicator

of TotalDegreeCentralityrt, which sums the weights of the links of non-group members

(extra-regional industries) connected to group members (regional industries) by incoming

and outgoing edges at t with respect to each region r. Furthermore, we also calculate for

each region and indicator of group- InDegreeCentralityrt and OutDegreeCentralityrt by
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only considering, respectively, incoming edges or outgoing edges with respect to each region

r at time t. A higher value of InDegreeCentralityrt thus informs us about the extent to

which a region acquires embodied green knowledge flows from outside. On the other hand,

higher values of OutDegreeCentralityrt are associated with a larger outreach (diffusion) of

regional industries in providing green knowledge to other regions via its embodiment into the

intermediate good exchanges.9 At the same time, a region with a higher in-degree centrality

may not necessarily also have a higher out-degree centrality.

Following our Hp1 we expect these three centrality indicators of the GreenF lowNet to

be positively correlated with the regions’ capacity to diversify their green technologies and,

following Hp2, to negatively moderate the impact of relatedness on the same capacity. As for

Hp3, we calculate the same centrality indicators with respect to two "artificial" sub-sets of the

GreenF lowNet, which capture its domestic and foreign portions. The network of domestic

flows (GreenF lowNetDomestic) is obtained by retaining the industry knowledge flows of

the GreenF lowNet that, for every country, each region exchanges with those of the same

country, that is, by still maintaining external links, but not going beyond the country border.

The network of foreign flows (GreenF lowNetForeign) is instead obtained by considering

only the embodied flows of industry knowledge that, for each region of a certain country, go

to (or come from) regions of other countries.

Our second focal explanatory variable is represented by the average relatedness density of

new green technologies to those pre-existing in the regional knowledge space: Avg_RDr,t.

Following consolidated regional branching literature and its application to the green-tech

diversification case (Hidalgo and Hausmann, 2009; Neffke et al., 2011; Montresor and Quatraro,

2017, 2020), the construction of the average relatedness density indicator entails the following

steps. First, we define a measure of proximity between each technology i and j at a given

time, �i,j,t, exploiting the co-occurrence of 4-digit CPC classes in regional patent documents.

In line with previous literature, proximity is defined as the minimum pairwise conditional

probability that a region has a specialization (RTAi > 1) in technology i provided that it is
9Weighted group degree centralities are calculated through the algorithm provided by the keyplayer

package in RStudio.
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already specialized (RTAj > 1) in technology j :

�i,j = min(P (RTAi > 1|RTAj > 1), P (RTAj > 1|RTAi > 1)) (6)

Secondly, we derive the density of the proximity indicator between each new green-

technology specialization i and all technologies j in which a region r was specialized in

t� 1:

RDr,i,t =

P
i 6=j Xr,j,t�1 · �i,j,tP

i 6=j �i,j,t
(7)

Lastly, for each region, we calculate the average relatedness density of these distances by

weighting them with the RTAs the region gained in green technologies:

Avg_RDr,t =
X

J 6=i

RDr,i,t
Xr,i,tP
i 6=J Xr,i,t

(8)

The interpretation of Avg_RDr,t is the standard one in these studies. The higher

this indicator is, the more cognitively closer are the new green technologies that enter

the regional knowledge space to those that already populate it. Accordingly, in line with

previous literature, we expect this to be positively correlated with GreenTechEntryEMr,t

and GreenTechEntryIMr,t.

In addition to our two focal regressors, we include a set of control variables. First,

following the debate on the positive effect of higher income on environmental awareness (see,

among others, Kruize et al., 2007; Santoalha and Boschma, 2021), we include GDP per capita

to account for the economic wealth of the region. We then include the stringency of the

environmental policy at a country level, assuming regions with higher levels of environmental

stringency would be more inclined to produce greener technologies to comply with the
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standards.

3.3 Empirical strategy

The empirical strategy employed to test our three hypotheses rests on two models. The first

model refers to the regional green-tech diversification at the extensive margin and, by using

GreenTechEntryEMr,t as dependent (dichotomic) variable, estimates with a two-way fixed

effects Linear Probability Model (with binary choice) the following equation 9:

GreenTechEntryEMr,t = ↵ + �1 · Avg_RDr,t�1 + �2 ·DegreeCentralityr,t�1

+ �3 · Avg_RDr,t�1 ·DegreeCentralityr,t�1

+ �4 · Controlst�1 + FEr + FEt + "r,t (9)

where subscripts r and t refer to regions and time respectively. In equation 9, DegreeCentralityr,t�1

denotes what we have defined as TotalDegreeCentralityr,t�1 in a first specification; the

InDegreeCentralityr,t�1 and OutDegreeCentralityr,t�1 as two independent regressors in a

second specification; the previous two versions of degree centrality in the GreenF lowNetDomestic

and in GreenF lowNetForeign network in a third specification. FEr and FEt denote, re-

spectively, region- and year-fixed effects included to control for remaining unobservable

time-invariant region-specific factors and time factors. ✏r,t is an idiosyncratic error term.

The second model employs as dependent (count) variable GreenTechEntryIMr,t and

estimates with a two-way fixed effects OLS model the following equation:

GreenTechEntriesIMr,t = ↵ + �1 · Avg_RDr,t�1 + �2 ·DegreeCentralityr,t�1

+ �3 · Avg_RDr,t�1 ·DegreeCentralityr,t�1

+ �4 · Controlst�1 + FEr + FEt + "r,t (10)
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Model in equation 10 is also estimated by first considering TotalDegreeCentralityr,t�1 as

the main focal regressor, and then by considering in another specification InDegreeCentralityr,t�1

and OutDegreeCentralityr,t�1 as separated independent regressors. In all models, to allevi-

ate endogeneity issues, we lag the regressors by one period with respect to the dependent

variable.10

In line with our first hypothesis, we would expect �2 to be significant and positive. The

higher the centrality of a region in the network of inter-regional green knowledge (industry)

flows, the wider its set of opportunities to branch existing green technologies into new ones.

As discussed in Section 2, we would also expect that, following our Hp2, a more central role of

the region in the network at stake could make its green-tech diversification more exploratory

in nature and less affected by the binding role played by pre-existing technologies. We thus

expect that DegreeCentralityr,t�1 might negatively moderate the role of Avg_RDr,t�1 and

that �3 is statistically significant with a negative sign. As for our Hp3, the expectation is

that �2 turns out to be higher when DegreeCentralityr,t�1 is constructed with respect to

foreign than for domestic flows in the GreenF lowNet.

Summary statistics of the variables employed are reported in Table 1.

[TABLE 1 ABOUT HERE]

4 Results

4.1 Green-tech diversification and embodied green knowledge flows

Tables 2 and 3 report the results of our estimates when total regional degree centrality – i.e.,

considering both inward and outward regional flows – is modeled as explanatory variable in

regional green-tech diversification at the extensive and intensive margins, respectively. In

both cases, column (1) refers to the model including controls and average relatedness density,
10It is worth noting that lagging independent variables might not rule out other potential sources of

endogeneity. For this reason, we avoid interpreting the relationships found with our estimates making
causality claims.
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column (2) to the model augmented with the centrality measure, and column (3) to the

model with the interaction term between average relatedness density and centrality.

As expected, in both estimations and all models, Avg_RD reveals a positive and statisti-

cally significant coefficient. In line with previous research (Montresor et al., 2022; Santoalha

and Boschma, 2021), this result confirms that the region’s capacity to diversify its technologies

in the green realm is greater when green-tech entries are cognitively closer to the technologies

in the regional knowledge space. In brief, the development of new green technologies is

path-dependent and occurs in the form of branching.

Retaining the average level of the relatedness variable, in Model 2 of both tables, the

total centrality of regions in the network of inter-regional embodied green knowledge is

statistically significant and positive. This supports our Hp1 when inward and outward flows

are indistinguishably retained.

When we move to Model 3, which conditions the effect of regions’ centrality in the

NetwGreenF low on relatedness, not only turns our focal regressor statistically significant.

But it also negatively moderates the role of the average relatedness density on green-tech

diversification.

All in all, our first two hypotheses – Hp1 and Hp2 – appear confirmed when we pull

together inward and outward flows of the GrenF lowNet.

Quite interestingly, the results reported in Tables 2 and 3 support our two hypotheses

at both margins, with no appreciable differences between the extensive and the intensive

one. However, the two processes of green-tech diversification are still different, as reflected by

some heterogeneity in the controls. Indeed, while GDP per capita appears significant and

negative in the two cases - pointing to a possible greater scope of relatively less developed

regions in acquiring new green-techs from a still incomplete knowledge base - the stringency

of environmental policy appears to help regions only in diversifying at the intensive margin.

[TABLE 2 ABOUT HERE]

[TABLE 3 ABOUT HERE]
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Table 4 delves into the specificity of the network connectivity, illustrating estimation

results with respect to different centrality measures: in-degree centrality out-degree centrality.

At both the extensive and the intensive margin, an interesting result emerges. The positive

association between degree centrality and green-tech diversification appears driven by its out-

degree component. At the extensive margin (Table 4, columns 1 and 2), in-degree centrality

apparently and unexpectedly reduces the regional capacity to green-tech diversify, and it

complements, rather than substituting, the green-tech diversification role of relatedness (i.e.,

AvgRD). However, the significance of the two coefficients is weak. At the intensive margin,

(Table 4, columns 3 and 4), this latter role also vanishes, and green-tech diversification

correlates only with the out-degree centrality of regions in the GreenF lowNet: both directly

and indirectly (i.e., by negatively moderating the positive effect of AvgRD).

All in all, our two hypotheses (Hp1 and Hp2) appear confirmed mainly with respect

to the out-degree centrality of regions in the network at stake. This is quite interesting

and suggests that, for the sake of green-tech diversification (Hp1) and of its exploratory

degree (Hp2) (especially at the intensive margin), it is not so important for regions to be

pivotal in acquiring embodied green knowledge from the outside. Rather, what seems to

be crucial is the regions’ importance in diffusing outside new green knowledge developed

internally. In other words, the inter-regional exchanges of the GreenF lowNet appear to spur

green-tech diversification mainly by exposing regional suppliers to the demand for greener

local commodities by extra-regional customers; rather than by making regional customers

exposed to the offer of greener commodities by extra-regional suppliers. In this last respect,

the green knowledge developed internally is apparently more relevant than that acquired

externally for the sake of green-tech diversification.

[TABLE 4 ABOUT HERE]

Moving to the test of our Hp3, the relative importance of regional centrality in foreign vs.
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domestic GreenF lowNet appears different with respect to extensive and intensive green-tech

diversification. At the extensive margin, the degree centrality of regions (in general terms)

appears to matter only with respect to the foreign portion of the GreenF lowNet (columns 1)

and 2) in Table 5), for which our general results (i.e, for the entire GreenF lowNet) appear

confirmed. Indeed, at the same margin, degree centrality in the domestic network is not

significantly correlated with green-tech diversification and does not significantly moderate

the role of relatedness either. In brief, by supporting our Hp3, foreign flows do matter more

than domestic ones for regions to gain a new green-tech diversification; as unlike the former,

the latter do not seem to matter.

At the intensive margin, previous results get reversed. Indeed, the degree centrality of

regions in the domestic network correlates with GreenTechEntryIM more than that in the

foreign network (columns 3) and 4) in Table 5). Furthermore, the centrality of regions in the

domestic network is the only one that significantly and negatively moderates relatedness, as

from our Hp2. In other words, domestic flows matter more than foreign ones for regions to

increase the number of new green-tech entries and they are the only ones that matter for

doing that in a more exploratory manner.

Results about Hp3 are particularly interesting, as they suggest a sort of "labour divi-

sion", between centrality in the foreign and domestic GreenF lowNet, in facilitating regional

green-tech diversification. On the one hand, the former (foreign), which possibly conveys in

regions the more diversified kind of external embodied green knowledge, appears to act as an

enabler of green-tech diversification: more central regions in the foreign GreenF lowNet are

in fact more capable to enter in the green-tech realm, while this does not happen for their

centrality in the domestic network. On the other hand, degree centrality in the domestic

GreenF lowNet serves as an accelerator of green-tech diversification: more central regions in

this network are more capable to acquire a greater number of new green technologies; the

same role is also played by regions centrality in the foreign GreenF lowNet, but to a lesser

extent.
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[TABLE 5 ABOUT HERE]

All in all, while the (total) centrality of regions in the foreign GreenF lowNet is the only

one that matters both for the sake of their extensive and intensive green-tech diversification,

our Hp3 appears confirmed only at the extensive margin. With respect to the intensive

margin, unlike Hp3 predicts, it is instead the centrality in the domestic network that matters

more both in affecting green-tech diversification (Hp1) and in making it more exploratory

(Hp2).

4.2 Robustness checks and further analysis

In order to check for the robustness of our previous findings, we carry out a number of

robustness checks. Furthermore, interesting nuances emerge when we carry out additional

analysis to those presented in the baseline.

First, to overcome the assumption regarding the stability of the input-output coefficients

of matrix At in building up the GreenF lowNet (as from Eq.5) over the period 2000-2019, we

have re-run our estimates by letting input-output coefficients vary over the period 2000-2010

– for which data are indeed available–. We then compare these estimates with the results

obtained by averaging input-output coefficients over the same restricted period. Tables A1

and A2 show that, at both the extensive and the intensive margin, respectively, Hp1 and

Hp2 are confirmed with the specification we made in the baseline. The correlation between

green-tech diversification and regional total degree centrality is significant and positive (Hp1),

and the same centrality negatively moderates the positive correlation between relatedness and

green-tech diversification (Hp2). Yearly-based results (Columns (4) and (5)) are consistent

with average-based ones (Columns (1), (2), and (3).)

As a second robustness check, we re-estimate the model that counts the number of new

green-tech entries (i.e., diversification at the intensive margin) using a FE Poisson model.

Table A3 shows that the results are consistent with the baseline.

In the third and last robustness check, we augment our baseline model by retaining
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among the controls the extent to which regions are central in the complement network to the

GreenF lowNet, that is, Non�GreenF lowNet. This network is constructed by using the

same methodology adopted to obtain the GreenF lowNet (see Section 3.2.2) but considering

all the regional industry patents, excluding the green ones. In this way, we measure inter-

industry flows across regions of embodied non-green knowledge. Indeed, this could help

us understand whether it is the environmental nature of the (industry-specific embodied)

knowledge that is exchanged among regions that matter for the sake of their green-tech

diversification or, rather, their openness of any kind and even non-green. Tables A4 and

A5 show that our results are robust to the inclusion of this last control. Furthermore, quite

interestingly, being central in the Non�GreenF lowNet does not seem to help regions with

their green-tech diversification. On the contrary, though with weak statistical significance, this

kind of centrality apparently reduces the regions’ capacity to master new green technologies,

especially at the intensive margin. Speculatively, this could be accounted for by the fact that

this centrality rather helps regions with their non-green-tech diversification.

5 Concluding remarks

The regional capacity to diversify existing green technologies represents a crucial leverage for

local sustainable growth. This green-tech diversification allows regions to escape lock-in traps

in pre-existing knowledge domains and trigger resilient reactions to move effectively along the

desired green transition. Extant research has shown that regional green-tech diversification

requires a wide range of factors, among which the attention has been placed on the regional

capacity to branch out existing technological competencies into new, related ones by extending

and diversifying existing technological competencies into new, related areas. Conversely, the

literature has paid limited attention to regional external drivers, such as regional participation

in Global Value Chains and, in particular, in Global Knowledge Networks of different kinds.

In contributing to filling this gap, in this paper, we have focused on the exchanges of

embodied green knowledge that regions make among them through the flows of intermediate

commodities occurring among their industries. In particular, by extending the relatedness
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approach to regional technological diversification, along the lines suggested by Fusillo et al.

(2023), we have argued that these embodied green knowledge flows constitute a network,

enabling regions to increase their green-tech diversification capacity and make it more

exploratory. We have tested these expectations empirically with respect to 237 EU regions

(NUTS2) observed from 2000 to 2019. The analysis has been carried out by building up a

new dataset, which combines the EUREGIO input-output database with green patent data

from OECD RegPat, and by employing network analysis indicators in a related diversification

model.

Our analysis yields three main results, bearing important policy implications. Firstly, we

found that more central regions in the embodied extra-regional exchange of green knowledge

are more capable of gaining new green technologies. In other words, such a centrality helps

regions diversify in the green-tech realm. Furthermore, it also makes regions more capable

to diversify in an exploratory manner, that is, by targeting new green technologies that are

cognitively more distant from pre-existing ones. This result has important policy implications,

as it suggests to regional policy-makers an additional leverage to escape the risk of lock-in in

pre-existing (possibly brown) technologies. This passes through the policy support to their

inter-regional and international trade of intermediate commodities, which should be retained

in the policy-mix to pursue smart and sustainable growth.

Secondly, we found that regional green-tech diversification is fostered, along the lines of the

previous result, by the regions’ selling, rather than acquiring embodied green-tech knowledge

in the network that regional industries create. In terms of policy implications, this result

suggests that policy-makers can foster the entry of new green technologies in their regions by

supporting the local providers of intermediate commodities, which could incorporate local

green knowledge, rather than the local customers of green knowledge developed elsewhere

and incorporated in foreign intermediate commodities.

Thirdly, our results show interesting heterogeneity with respect to the geographical

extension of the inter-regional flows of embodied green knowledge we have considered. Being

more central in the network of foreign flows of this kind is the only channel through which
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regions can increase their capacity to make the shift in the green-tech realm, that is, specializing

in any new green technology. Conversely, a higher centrality in the network of domestic flows

makes regions more capable to acquire a higher number of new green technologies, i.e., of

accelerating the green-tech transition in intensive terms. Centrality in the foreign network

can ease this process but to a lower extent compared to the centrality in the domestic one.

Drawing on this result, local policy-makers should consider that targeting the domestic rather

than the foreign network in terms of centrality should be informed also and above all by the

need their regions express with respect to the green-tech transition, in turn, related to their

position along it.

The results of our empirical analysis are not free from limitations. A first limitation

concerns the kind of knowledge flows on which we focus with our GreenF lowNet. Indeed,

although following consolidated literature, in the construction of the GreenF lowNet we

implicitly assumed that the green knowledge gets embodied in the production of the industry

to a full extent. Further, the input-output matrix At is specified following the proportionality

assumption in knowledge embodiment. An alternative approach would be to describe produc-

tion relationships in terms of vertically integrated sectors (Montresor and Vittucci Marzetti,

2007; Montresor and Marzetti, 2008). This would imply assuming that green knowledge in a

sector flows proportionally to all the production exchanges between industries in different

regions, considering all the interconnected production rounds, thus combining both direct

and indirect green knowledge flows between two industries. However, for the purpose of

our analysis, both direct and indirect linkages among region-industries pair are relevant

in mapping the regional importance in the network of green knowledge exchanges, thus,

we choose not to use the concept of vertically integrated sectors in our analysis. Yet, the

extension toward a disembodied kind of green knowledge flows, would represent an interesting

avenue for future research.

A second limitation concerns the fact that the EUREGIO data are highly aggregated

in terms of industrial coverage, with data available for 14 industries. This may lead to an

over-aggregation of industries, which, in turn, could have resulted in a potential overestimation
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of the green knowledge exchanges. Future research may overcome such limitation by calling

for greater efforts toward the provision of extensive regionalized worldwide input–output

tables, such as the development of multi-regional input-output tables (e.g., RHOMOLO) and

the provision of more advanced estimation techniques (going beyond the RAS method).

The last concern is related to the choice of the appropriate centrality indicator to measure

the importance of regions in the network of green knowledge exchanges. Indeed, different

network centrality measures are meant to capture different aspects of the positioning of

nodes within the network and its consequent impact. Future research might exploit such

heterogeneity by comparing different centrality measures, and aiming at assessing their

potential differential role in stimulating regional technological diversification and development.
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Tables

Table 1: Summary statistics

N Mean St. Dev. Min Max

Green Tech Entry EM 3,683 0.610 0.488 0 1
Green Tech Entry IM 3,683 1.063 1.109 0 7
Avg RD 3,683 0.960 1.041 0.000 5.027
Total Degree Centrality 3,683 31.291 98.619 0.994 1,443.511
In Degree Centrality 3,683 9.514 5.308 0.994 37.211
Out Degree Centrality 3,683 21.777 98.670 0.000 1,434.287
GDP cap 3,683 0.026 0.012 0.003 0.102
Env. Policy String. 3,683 2.867 0.687 0.528 4.722
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Table 2: Green-tech diversification at the extensive margin (EM) and total degree centrality.

GreenTech Entry EM
(1) (2) (3)

Avg RD 0.4510⇤⇤⇤ 0.4480⇤⇤⇤ 0.7051⇤⇤⇤
(0.0167) (0.0165) (0.0486)

GDP cap -5.964⇤ -6.129⇤⇤ -6.268⇤⇤
(3.128) (3.104) (2.971)

Env. Policy String. 0.0045 0.0116 0.0077
(0.0192) (0.0193) (0.0193)

Tot. Degree Cent. 0.1131⇤⇤⇤ 0.1878⇤⇤⇤
(0.0324) (0.0344)

Avg RD ⇥ Tot. Degree Cent. -0.0765⇤⇤⇤
(0.0121)

Observations 3,683 3,683 3,683
R2 0.69723 0.69826 0.72078
Within R2 0.61783 0.61913 0.64756

Region FE X X X
Year FE X X X
Dep var: regional entry in a generic green-tech. Explanatory variables are lagged by one
year, GDP per capita and Total Degree Centrality are log-transformed. All models are
estimated through a linear probability model. Heteroskedastic-robust standard errors,
reported in parentheses, are clustered at the NUTS2 level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 3: Green-tech diversification at the intensive margin (IM) and total degree centrality.

GreenTech Entry IM
(1) (2) (3)

Avg RD 0.4350⇤⇤⇤ 0.4274⇤⇤⇤ 0.6698⇤⇤⇤
(0.0157) (0.0152) (0.0468)

GDP cap -3.001 -3.407 -3.538
(3.528) (3.422) (3.326)

Env. Policy String. 0.0472⇤⇤ 0.0647⇤⇤⇤ 0.0610⇤⇤⇤
(0.0222) (0.0221) (0.0217)

Tot. Degree Cent. 0.2792⇤⇤⇤ 0.3496⇤⇤⇤
(0.0475) (0.0481)

Avg RD ⇥ Tot. Degree Cent. -0.0721⇤⇤⇤
(0.0117)

Observations 3,683 3,683 3,683
R2 0.58065 0.58607 0.60339
Within R2 0.48416 0.49083 0.51213

Region FE X X X
Year FE X X X
Dep var: (log) number of regional entry in green-techs. Explanatory variables are
lagged by one year, GDP per capita and Total Degree are log-transformed. All models
are estimated using two-way fixed effects OLS. Heteroskedastic-robust standard errors,
reported in parentheses, are clustered at the NUTS2 level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 4: Green-tech diversification at the EM and IM, in-degree vs. out-degree centrality.

GreenTech Entry EM GreenTech Entry IM
(1) (2) (3) (4)

Avg RD 0.4417⇤⇤⇤ 0.4919⇤⇤⇤ 0.4190⇤⇤⇤ 0.5135⇤⇤⇤
(0.0161) (0.0795) (0.0145) (0.0754)

InDegree Cent. -0.1759 -0.1995⇤ -0.1721 -0.1741
(0.1170) (0.1159) (0.1343) (0.1300)

OutDegree Cent. 0.1286⇤⇤⇤ 0.1678⇤⇤⇤ 0.2196⇤⇤⇤ 0.2564⇤⇤⇤
(0.0173) (0.0173) (0.0211) (0.0213)

GDP cap -6.875⇤⇤ -7.395⇤⇤ -4.531 -4.863
(3.105) (3.097) (3.418) (3.404)

Env. Policy String. -0.0026 -0.0055 0.0432⇤⇤ 0.0403⇤
(0.0193) (0.0189) (0.0217) (0.0208)

Avg RD ⇥ InDegree Cent. 0.0485⇤ 0.0213
(0.0257) (0.0249)

Avg RD ⇥ OutDegree Cent. -0.0637⇤⇤⇤ -0.0570⇤⇤⇤
(0.0081) (0.0077)

Observations 3,683 3,683 3,683 3,683
R2 0.70480 0.74193 0.59945 0.62455
Within R2 0.62739 0.67426 0.50729 0.53816

Region FE X X X X
Year FE X X X X
Dep var: regional entry in a generic green-tech in columns 1 and 2 (extensive margin); (log) number
of regional entry in green-techs in columns 3 and 4 (intensive margin). Explanatory variables are
lagged by one year, GDP per capita and Degree centrality variables are log-transformed. Models
in columns 1 and 2 are estimated through a linear probability model; Models in columns 3 and 4
are estimated using two-way fixed effects OLS. Heteroskedastic-robust standard errors, reported in
parentheses, are clustered at the NUTS2 level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 5: Green-tech diversification at the EM and IM, degree centrality in domestic vs.
foreign network

GreenTech Entry EM GreenTech Entry IM
(1) (2) (3) (4)

Avg RD 0.4486⇤⇤⇤ 0.6327⇤⇤⇤ 0.4279⇤⇤⇤ 0.5848⇤⇤⇤
(0.0165) (0.0557) (0.0151) (0.0399)

Tot. Degree Cent. Foreign 0.1062⇤⇤⇤ 0.1648⇤⇤⇤ 0.1157⇤ 0.1449⇤⇤
(0.0359) (0.0420) (0.0679) (0.0674)

Tot. Degree Cent. Domestic -0.0019 -0.0003 0.1462⇤⇤⇤ 0.2310⇤⇤⇤
(0.0015) (0.0014) (0.0461) (0.0453)

GDP cap -6.013⇤ -6.233⇤⇤ -3.012 -4.013
(3.118) (2.999) (3.408) (3.577)

Env. Policy String. 0.0084 0.0047 0.0635⇤⇤⇤ 0.0598⇤⇤⇤
(0.0192) (0.0192) (0.0222) (0.0218)

Avg RD ⇥ Tot. Degree Cent. Foreign -0.0548⇤⇤⇤ 0.0128
(0.0180) (0.0166)

Avg RD ⇥ Tot. Degree Cent.Domestic -0.0009 -0.1024⇤⇤⇤
(0.0006) (0.0150)

Observations 3,683 3,683 3,683 3,683
R2 0.69788 0.71749 0.58617 0.61170
Within R2 0.61866 0.64341 0.49094 0.52235

Region FE X X X X
Year FE X X X X
Dep var: regional entry in a generic green-tech in columns 1 and 2 (extensive margin); (log) number of
regional entry in green-techs in columns 3 and 4 (intensive margin). Domestic degree refers to in-group
degree centrality in the network of domestic flows; Foreign degree refers to in-group degree centrality in the
network of foreign flows. Explanatory variables are lagged by one year, GDP per capita and Degree centrality
variables are log-transformed. Models in columns 1 and 2 are estimated through a linear probability model;
Models in columns 3 and 4 are estimated using two-way fixed effects OLS. Heteroskedastic-robust standard
errors, reported in parentheses, are clustered at the NUTS2 level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Appendix A

Table A1: Robustness: Green-tech diversification at the EM and total degree centrality over
2000-2010.

Green Entry EM
(1) (2) (3) (4) (5)

Av.Rel Dens 0.4370⇤⇤⇤ 0.4306⇤⇤⇤ 0.7028⇤⇤⇤ 0.4344⇤⇤⇤ 0.7005⇤⇤⇤
(0.0192) (0.0188) (0.0574) (0.0191) (0.0554)

GDP cap -18.47⇤⇤⇤ -19.33⇤⇤⇤ -18.24⇤⇤⇤ -18.67⇤⇤⇤ -17.78⇤⇤⇤
(6.149) (6.318) (6.204) (6.346) (6.372)

Env. Policy String. 0.0464 0.0460 0.0391 0.0444 0.0342
(0.0330) (0.0327) (0.0319) (0.0329) (0.0323)

Tot. Degree Cent. 0.1898⇤⇤⇤ 0.2714⇤⇤⇤
(0.0449) (0.0457)

Av.Rel Dens ⇥ Tot. Degree Cent. -0.0832⇤⇤⇤
(0.0141)

Tot. Degree Cent.Y 0.0736⇤⇤ 0.1434⇤⇤⇤
(0.0327) (0.0354)

Av.Rel Dens ⇥ Tot. Degree Cent.Y -0.0811⇤⇤⇤
(0.0133)

Observations 1,903 1,903 1,903 1,903 1,903
R2 0.69410 0.69658 0.72004 0.69476 0.71750
Within R2 0.57710 0.58053 0.61297 0.57801 0.60945

Region FE X X X X X
Year FE X X X X X
Dep var: regional entry in a generic green-tech. The sample is reduced to the period 2000-2010. Total degree
centrality in columns 1), 2), and 3) refer to the network with average-based input-output coefficients. Total degree
centrality Y, in columns 4) and 5), is calculated allowing input-output coefficients to vary yearly. Explanatory
variables are lagged by one year, GDP per capita and degree variables are log-transformed. All models are estimated
through a linear probability model. Heteroskedastic-robust standard errors, reported in parentheses, are clustered
at the NUTS2 level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

37



Table A2: Robustness: Green-tech diversification at the IM and total degree centrality over
2000-2010.

Green Entry IM
(1) (2) (3) (4) (5)

Av.Rel Dens 0.4298⇤⇤⇤ 0.4166⇤⇤⇤ 0.6787⇤⇤⇤ 0.4231⇤⇤⇤ 0.6783⇤⇤⇤
(0.0176) (0.0166) (0.0536) (0.0171) (0.0519)

GDP cap -13.03⇤⇤ -14.79⇤⇤ -13.74⇤⇤ -13.54⇤⇤ -12.68⇤
(6.263) (6.460) (6.445) (6.537) (6.631)

Env. Policy String. 0.0858⇤⇤ 0.0849⇤⇤ 0.0783⇤⇤ 0.0806⇤⇤ 0.0708⇤
(0.0384) (0.0382) (0.0376) (0.0384) (0.0380)

Tot. Degree Cent. 0.3900⇤⇤⇤ 0.4686⇤⇤⇤
(0.0578) (0.0576)

Av.Rel Dens ⇥ Tot. Degree Cent. -0.0801⇤⇤⇤
(0.0131)

Tot. Degree Cent.Y 0.1914⇤⇤⇤ 0.2583⇤⇤⇤
(0.0446) (0.0474)

Av.Rel Dens ⇥ Tot. Degree Cent.Y -0.0778⇤⇤⇤
(0.0124)

Observations 1,903 1,903 1,903 1,903 1,903
R2 0.58777 0.59679 0.61552 0.59159 0.60963
Within R2 0.45752 0.46939 0.49405 0.46255 0.48629

Region FE X X X X X
Year FE X X X X X
Dep var: (log) number of regional entry in green-techs. The sample is reduced to the period 2000-2010. Total
degree centrality in columns 1), 2), and 3) refer to the network with average-based input-output coefficients.
Total degree centrality Y, in columns 4) and 5), is calculated allowing input-output coefficients to vary yearly.
Explanatory variables are lagged by one year, GDP per capita, and degree variables are log-transformed. All models
are estimated using two-way fixed effects OLS. Heteroskedastic-robust standard errors, reported in parentheses,
are clustered at the NUTS2 level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A3: Robustness: Green-tech diversification at the IM, fixed-effects Poisson regression.

GreenTech Entry IM
(1) (2) (3)

Av.Rel Dens 1.081⇤⇤⇤ 1.061⇤⇤⇤ 1.578⇤⇤⇤
(0.0431) (0.0425) (0.1028)

GDP cap -2.824 -2.976 -1.458
(9.831) (9.594) (9.947)

Env. Policy String. 0.1105⇤ 0.1414⇤⇤ 0.1356⇤⇤
(0.0591) (0.0591) (0.0602)

Tot. Degree Cent. 0.4860⇤⇤⇤ 0.7844⇤⇤⇤
(0.1098) (0.1184)

Av.Rel Dens ⇥ Tot. Degree Cent. -0.1663⇤⇤⇤
(0.0268)

Observations 3,626 3,626 3,626
Squared Correlation 0.35265 0.35626 0.36411
Pseudo R2 0.21262 0.21453 0.21870
BIC 9,711.1 9,700.0 9,666.1

Region FE X X X
Year FE X X X
Dep var: number of regional entry in green-techs. Explanatory variables are lagged
by one year, GDP per capita and Total Degree are log-transformed. All models
are estimated using two-way fixed effects Poisson regressions. Heteroskedastic-robust
standard errors, reported in parentheses, are clustered at the NUTS2 level. ⇤p<0.1;
⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A4: Robustness: Green-tech diversification at the EM and total degree centrality in
the non-green network.

Green Entry EM
(1) (2) (3)

Av.Rel Dens 0.4510⇤⇤⇤ 0.4479⇤⇤⇤ 0.7075⇤⇤⇤
(0.0167) (0.0165) (0.0490)

GDP cap -5.964⇤ -6.359⇤⇤ -6.659⇤⇤
(3.128) (3.115) (2.950)

Env. Policy String. 0.0045 0.0103 0.0054
(0.0192) (0.0194) (0.0193)

Tot. Degree Cent. Green 0.1249⇤⇤⇤ 0.2086⇤⇤⇤
(0.0320) (0.0339)

Tot. Degree Cent. Non-Green -0.0834 -0.1408⇤
(0.0790) (0.0779)

Av.Rel Dens ⇥ Tot. Degree Cent. Green -0.0772⇤⇤⇤
(0.0122)

Observations 3,683 3,683 3,683
R2 0.69723 0.69845 0.72133
Within R2 0.61783 0.61938 0.64826

Region FE X X X
Year FE X X X
Dep var: regional entry in a generic green-tech. No-Green Total degree refers to the
in-group centrality in the network of non-green embodied knowledge flows, obtained
by multiplying the input-output matrix by a diagonal vector of non-green knowledge.
Explanatory variables are lagged by one year, GDP per capita and Total Degree
are log-transformed. All models are estimated through a linear probability model.
Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the
NUTS2 level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A5: Robustness: Green-tech diversification at the IM and total degree centrality in the
non-green network.

Green Entry IM
(1) (2) (3)

Av.Rel Dens 0.4350⇤⇤⇤ 0.4273⇤⇤⇤ 0.6738⇤⇤⇤
(0.0157) (0.0152) (0.0475)

GDP cap -3.001 -3.900 -4.184
(3.528) (3.399) (3.261)

Env. Policy String. 0.0472⇤⇤ 0.0619⇤⇤⇤ 0.0572⇤⇤⇤
(0.0222) (0.0221) (0.0215)

Tot. Degree Cent. Green 0.3044⇤⇤⇤ 0.3838⇤⇤⇤
(0.0481) (0.0486)

Tot. Degree Cent. Non-Green -0.1781⇤ -0.2326⇤⇤
(0.0948) (0.0919)

Av.Rel Dens ⇥ Tot. Degree Cent. Green -0.0733⇤⇤⇤
(0.0120)

Observations 3,683 3,683 3,683
R2 0.58065 0.58684 0.60469
Within R2 0.48416 0.49177 0.51373

Region FE X X X
Year FE X X X
Dep var: (log) number of regional entry in green-techs. No-Green Total degree refers
to the in-group centrality in the network of non-green embodied knowledge flows,
obtained by multiplying the input-output matrix by a diagonal vector of non-green
knowledge. Explanatory variables are lagged by one year, GDP per capita and Total
Degree are log-transformed. All models are estimated using two-way fixed effects OLS.
Heteroskedastic-robust standard errors, reported in parentheses, are clustered at the
NUTS2 level. ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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EUREGIO ISIC (rev.4)

ss1 Agriculture A01 Crop and animal production, hunting and
related service activities

ss2 B05 Mining of coal and lignite
ss2 B06 Extraction of crude petroleum and natural gas
ss2 B07 Mining of metal ores
ss2

Mining_quarrying_and_
energy_supply

B08 Other mining and quarrying
ss3 C10 Manufacture of food products
ss3 C11 Manufacture of beverages
ss3

Food_beverages_and_
tobacco C12 Manufacture of tobacco products

ss4 C13 Manufacture of textiles
ss4 C14 Manufacture of wearing apparel
ss4

Textiles_and_leather_etc
C15 Manufacture of leather and related products

ss5 C19 Manufacture of coke and refined petroleum products
ss5

Coke_refined_petroleum_
nuclear_fuel_and_chemicals_etc C20 Manufacture of chemicals and chemical products

ss6 C26 Manufacture of computer, electronic and optical products
ss6 C27 Manufacture of electrical equipment
ss6

Electrical_and_optical_equipment_
and_Transport_equipment C30 Manufacture of other transport equipment

ss8 C16
Manufacture of wood and of products of wood and cork,
except furniture; manufacture of articles of straw and
plaiting materials

ss8 C17 Manufacture of paper and paper products
ss8 C18 Printing and reproduction of recorded media

ss8 C21 Manufacture of basic pharmaceutical products
and pharmaceutical preparations

ss8 C22 Manufacture of rubber products
ss8 C23 Manufacture of other non-metallic mineral products
ss8 C24 Manufacture of basic metals

ss8

Other_manufacturing

C25 Manufacture of fabricated metal products,
except machinery and equipment

ss9 F41 Construction of buildings
ss9 Construction F42 Civil engineering
ss10 J58 Publishing activities

ss10 J59 Motion picture, video and television programme production,
sound recording and music publishing activities

ss10 J60 Programming and broadcasting activities
ss10 J61 Telecommunications
ss10 J62 Computer programming, consultancy and related activities
ss10

Distribution

J63 Information service activities
ss11 I55 Accommodation
ss11 Hotels_and_restaurants I56 Food and beverage service activities
ss12 H49 Land transport and transport via pipelines
ss12 H50 Water transport
ss12 H51 Air transport
ss12 H52 Warehousing and support activities for transportation
ss12

Transport_storage_
and_communication

H53 Postal and courier activities
ss13 K64 Financial service activities, except insurance and pension funding

ss13 K65 Insurance, reinsurance and pension funding,
except compulsory social security

ss13
Financial_intermediation

K66 Activities auxiliary to financial service and insurance activities
ss14 L68 Real estate activities
ss14 M69 Legal and accounting activities
ss14 M70 Activities of head offices; management consultancy activities

ss14 M71 Architectural and engineering activities;
technical testing and analysis

ss14 M72 Scientific research and development
ss14 M73 Advertising and market research
ss14 M74 Other professional, scientific and technical activities
ss14 M75 Veterinary activities
ss14 N77 Rental and leasing activities
ss14 N78 Employment activities
ss14 N79 Travel agency, tour operator, reservation service and related activities
ss14 N80 Security and investigation activities
ss14 N81 Services to buildings and landscape activities

ss14

Real_estate_renting_
and_business_activities

N82 Office administrative, office support and
other business support activities

ss15 S94 Activities of membership organizations
ss15 S95 Repair of computers and personal and household goods
ss15 S96 Other personal service activities
ss15 T97 Activities of households as employers of domestic personnel

ss15 T98 Undifferentiated goods- and services-producing activities
of private households for own use

ss15

Non_Market_services

U99 Activities of extraterritorial organizations and bodies

Table A6: EUREGIO and ISIC industrial concordance table
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