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Between the mid-19th and mid-20th century, the US transformed from an agri-
cultural economy to the frontier in science, technology and industry. We study how
the US transitioned from traditional craftsmanship-based to today’s science-based
innovation. To do so, we digitize half a million pages of patent yearbooks that de-
scribe inventors, organizations and technologies on over 1.6M patent and add demo-
graphic information from US census records and information on corporate research
activities from large-scale repeated surveys on industrial research labs. Starting
in 1920, the 19th-century craftsmanship-based invention was, within just 20 years,
overtaken by a rapidly emerging new system based on teamwork and a new spe-
cialist class of inventors, engineers. This new system relied on a social innovation:
industrial research labs. These labs supported high-skill teamwork, replacing the
collaborations within families with professional ties in firms and industrial research
labs. This shift had wide-ranging consequences. It not only altered the division
of labor in invention, but also reshaped the geography of innovation, reestablishing
large cities as epicenters of technological progress and introduced new barriers to
patenting for women and foreign-born inventors that have persisted into the 21st
century.

1 Introduction

Sustained technological progress requires overcoming, what Jones (2009) refers to as, the
burden of knowledge. Accordingly, shifting the frontier of our knowledge requires ever
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deeper investments in learning. This is particularly the case for technological innovation,
which often involves combining existing ideas and technologies in new ways (Schumpeter,
2017; Weitzman, 1998; Youn et al., 2015). In such a world, innovation is limited by our
ability to search out and evaluate the opportunities encapsulated in an ever expanding set
of increasingly complex technological combinations (Weitzman, 1998). This has led to a
concern over a slowdown in the rate of technological progress (Gordon, 2016). However,
it also means that changes in the way a society organizes knowledge and learning can
have out-sized impacts on the pace of technological progress. For instance, Hanlon (2022)
shows that part of the explanation for the British origins of the industrial revolution is
the emergence of engineers as a new class of inventors. These engineers relied on the
application of scientific principles to specialize in innovation and design. By the mid-
19th century, engineers had become a dominant force in British invention. We will argue
that 100 years later US invention is similarly pushed to new heights, but this time by an
organizational innovation: the industrial research lab.

The burden-of-knowledge hypothesis is supported by various trends: the age at which
inventors start patenting steadily rises (Jones, 2009) and team sizes increase (Jones, 2009;
Jung and Ejermo, 2014), whereas research productivity decreases such that technological
progress requires increasing research and development (R&D) expenditures (Bloom et al.,
2020). However, as society’s collective body of knowledge grows, it also inevitably gets
distributed across more and more people. The concomitant specialization increases the in-
terdependencies among team members (Ne↵ke, 2019), leading to rising coordination costs
(Becker and Murphy, 1992). Consequently, overcoming an increasing burden of knowl-
edge requires more than individual learning; it also requires organizational innovations
that help coordinate the vast amounts of distributed knowledge that specialized learning
generates.

This draws attention away from the increasing demands on the skills and experience of
individual researchers and toward organizational arrangements that manage an invention
process increasingly characterized by teamwork. We will show that a particularly promi-
nent example of this is the industrial research lab (Furman and MacGarvie, 2007; Mowery,
1990; Mowery and Rosenberg, 1999; Reich, 1985). In their heydays, these research labs
were a core component of the US innovation system. Corporate labs, such as AT&T’s
Bell Labs or Dupont’s Experimental Station, employed hundreds of researchers with PhD
degrees across engineering, physics, chemistry and mathematics. They produced various
Nobel prize winners and sometimes even entirely new academic disciplines, such as the
pioneering work on information theory by Bell Lab’s Claude Shannon. These labs were
not just better funded than most universities, o↵ering state-of-the-art research facilities,
but also connected to broad long-term missions that took their cues from their parent
firms’ markets. This allowed corporate labs to connect basic research to real-world prob-
lems. Arora et al. (2020) even attribute the acceleration in US labor productivity growth
between 1920 and 1970, as well as its subsequent decline, to the rise and fall of industrial
research labs.
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In this paper, we provide evidence that supports Arora et al.’s contention that in-
dustrial research labs played a key role in the success of US invention in the first half of
the 20th century. Using information on all but the universe of patents granted between
1856 and 1945, linked to census records and repeated economy-wide industrial research
lab surveys, we show that these labs played a pivotal role in a rapid increase in the share
of patents listing radically new combinations of technologies. We furthermore show that
industrial research labs are part of a broader systemic shift in the US innovation system
that historians of technological change have described as a move to science-based inven-
tion (Mowery and Rosenberg, 1999). Moreover, we locate this change at a reasonably
precise point in time: the start of the 1920s.

In this decade, we witness a confluence of changes. When it comes to inventors, we
observe a rapid rise of engineers on patents, the emergence of academic patenting and a
sudden transition to teamwork. In terms of the inventions themselves, this coincides with
an explosion of new combinations of technologies listed on patents. Furthermore, we show
that the new approach to invention that took shape in the 1920s was exclusionary, with
drastically lower participation rates of women and foreign-born inventors.

When we turn to the organizational context in which patents are produced, we find
that almost all of the rise in teamwork between 1920 and 1945 can be attributed to
the emergence of research organized in firms and labs. Moreover, our analysis suggests
that industrial research labs facilitated teamwork, supporting repeat- and long-distance
collaborations. Finally, we show that research labs were disproportionately associated
with inventions that relied on radically new combinations of technologies. Importantly,
whereas this pattern is very pronounced for team-based patents, it is not apparent in
patents of engineers. Taken together, we interpret this as evidence that research labs
helped overcome a burden of knowledge bottleneck in the 1920s by o↵ering new ways to
coordinate highly skilled inventor teams.

Our paper contributes to various debates in the literature on innovation and techno-
logical change. First and foremost, it highlights the importance of organizational inno-
vation and how changes in the coordination of teamwork can reverberate throughout the
economy, from specialization and the division of labor to the geography of innovation.
Methodologically, it relates to large-scale e↵orts to study historical US patents (Esposito,
2023) and to link them to census data (Akcigit et al., 2017a). Seen through the lens of
economic history, we are able to corroborate several narratives about how the US trans-
formed technologically and economically, such as the increasing dominance of large firms
(Chandler Jr, 1993) and their industrial research labs (Gertner, 2012), as well as the rise
of the Rustbelt (Lamoreaux et al., 2007). Our contribution to this literature is that we
quantify these phenomena and pinpoint them relatively precisely in time. For instance,
Lamoreaux and Sokolo↵ (2001) describe how in the 19th century, firms often outsourced
their R&D to contract-inventors, whereas only in the 20th century do they start doing
more research in-house. We corroborate this: whereas, already in the late 19th century,
patents are often assigned to firms, the take-o↵ of patenting by engineers and teams in
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large corporate labs was exceedingly rare before 1920. Furthermore, our data allow us
to relate research inputs (the people – including their occupations and ages – and teams
involved in a patent) and the organizational context in which they operate (research labs,
firms, families) to the technological content that is patented. This shows that although
associating radical innovation with the genius of lone inventor-entrepreneurs and more
incremental innovation with organized corporate R&D, as in the literature on Schum-
peterian regimes (Winter, 1984), may have been accurate post World War II, it does
not reflect the nature of invention in the period when corporate R&D first emerged. Fi-
nally, we contribute a historical perspective to the contemporary literature on gender in
innovation (Bell et al., 2019; Delgado and Murray, 2022; Ding et al., 2006; Ross et al.,
2022), showing that the new science-based innovation regime exacerbated the exclusion
of women from patenting.

2 Research labs

Research laboratories play an important role in the history of science. Scientist workplaces
had existed for hundreds of years. However, the scientific research laboratory as a physical
place custom built for scientific inquiry, experimentation and teaching is a much more
recent phenomenon. Although there were many precursors in, for instance, England and
France, the scientific laboratory to some extent only truly came into being in early 19th
century German chemistry (Rocke, 2021). The canonical example is Justus von Liebig’s
chemical laboratory founded in the German town of Giessen in the 1820s (Michaelis,
2003). This lab acted as an inspiration for scientists in- and outside Germany, attracting
scores of visitors who came to study its layout and operations (Schmidgen, 2021).

Toward the end of the 19th century, the idea of a research lab had also spread to
the private sector. As in the academic laboratories, an important role was played by
German chemistry. In the 1870s and 1880s, large companies in the German dye industry,
such as BASF and Hoechst, established laboratories devoted to research as integral parts
of their corporate structures (Travis et al., 1992). These labs were part of a system
of university research programs, government and industry-sponsored research institutes,
such as the Kaiser Wilhelm Society, forerunner of today’s Max Planck institutes, and
industrial R&D programs that had developed in the German-speaking territories (Lenoir,
1998; Pithan, 2021). A key aspect of this system was the industrial sponsorship of research
within universities, which aimed to benefit firms by collaborating with professors and
their graduate students. Such collaborations were leveraged to establish in-house R&D
organizations that set the standard for future science-based industries. For instance,
Hounshell (1996) describes how Friedrich Bayer A.G. (later I.G. Farben) had developed
a comprehensive R&D structure by 1891. This consisted of a central research laboratory
equipped with cutting-edge scientific instruments, a scientific and patent library, and
a seminar room, complemented by more specialized application laboratories, sta↵ed by
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scientists with doctorates from German research universities.
These highly organized corporate laboratories stood in stark contrast to the labora-

tories of famous inventor-entrepreneurs elsewhere, such as Thomas Edison in the US or
William H. Perkin in the UK (Travis et al., 1992). Although their laboratories were very
productive in terms of inventions, they were not created as organizational units within
large industrial firms to further the activities and competitive position of these firms. On
the contrary, in the US, many of the inventor-entrepreneurs did not aim to commercialize
their inventions themselves, but rather to sell them as independent inventors on a well-
developed market for technology (Lamoreaux and Sokolo↵, 2001). Consequently, in the
19th century, most US research labs resembled, and were extensions of, workshops of such
individual inventors. For instance, Edison’s “invention factory” at Menlo Park (NJ) was
controlled by Edison himself, not by his company, General Electric (GE). In fact, when
GE set up its own research lab in 1900, it had no direct connection to Edison’s lab (Travis
et al., 1992).

This changed in the early 20th century with the rise of the kind of corporate research
labs that had been pioneered in Germany. At start of the 20th century, a wave of merg-
ers in the wake of the 1890 Sherman Antitrust Act had led to the formation of very
large corporations (Chandler Jr, 1993). The increased scale of operations of these firms
had made technological improvements, which could be applied to the entire production
volume, much more valuable, providing a strong rationale for investments in corporate
R&D (e.g., Klepper, 1996). At the same time, World War I (WWI) changed how the US
perceived corporate research. The war and its boycotts of German products dramatically
exposed the reliance on German labs and their chemicals, dyes, and other key materials
(Carlson, 2013). In response, the US government initiated a program to help firms com-
pete with German companies after the war. For instance, based on his study of DuPont
and Kodak, Hounshell concluded that “without question, then, World War I led to a
widespread quickening of interest in and enthusiasm for industrial R&D in the United
States” (Hounshell, 1996, p. 21). The result was a flurry of dedicated industrial research
labs, physically separated from manufacturing sites and sta↵ed by workers with expertise
in science and advanced engineering. After WWI, the number of labs thus grew rapidly:
by 1931, 1,600 companies reported operating labs with a total of 33,000 employees (Carl-
son, 2013). As a consequence, by the 1930s, the role of the individual inventor had been
largely supplanted by teams of researchers working in corporate labs (Reich, 1985).

3 Data

To study long-term changes in US invention, we focus on inventive activity between 1856
and 1945. We combine information from three di↵erent sources: patent yearbooks, the
complete US Census from 1850 to 1940 (with the exception of the 1890 census, which was
destroyed in a fire), and large-scale surveys of industrial research labs between 1920 and
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1950. To extend our analysis until the year 2000, we supplement these data with records
from EPO-PATSTAT and PatentsView. In this section, we give a high-level overview of
how we collect, process and merge these data, providing further details in Appendix A.

3.1 Patents

We start our data collection by digitizing scans of the Annual Reports by the Commis-
sioner of Patents, henceforth referred to as (patent) yearbooks.1 These yearbooks contain
information on all patents granted by the USPTO in a given year, including the name
and location of residence of inventors and the individuals or organizations to whom a
patent’s intellectual property was assigned (“assignees”). Using multiple copies of each
yearbook, we collect about half a million scanned pages. We convert these images to
text strings, using image processing and optical character recognition (OCR) algorithms.
Next, we apply named-entity recognition algorithms to identify patent numbers, grant
dates, names and places of residence of inventors, as well as the names and locations
of assignees. The result is a structured dataset that describes 1,591,361 million patents
granted by the USPTO between 1856 and 1953.

The structure of the patent yearbooks changes in 1954, omitting grant dates, assignees
and inventor locations. For the period 1954-1968, we therefore use information from
the European Patent O�ce’s EPO-PATSTAT database (European Patent O�ce, 2020).
This dataset provides inventor and assignee names, but omits information on inventors’
locations of residence. Moreover, from 1969 to 1975, EPO-PATSTAT no longer reliably
reports countries of residence, which renders the data unusable for our purposes. For
the period 1976-2000, we use the USPTO’s own PatentsView database (USPTO, 2022),
which provides names and locations of inventors, as well as of assignees.

3.2 Technology classes

Each patent application receives a set of technology codes from the United States Patent
Classification (USPC classes) to assign applications to so-called “art units” within the
USPTO and to help patent examiners in these units search the prior art (Righi and
Simcoe, 2019). Importantly, these USPC classes are neither determined by the inventors,
nor by the examiners of a patent, but by outside contractors.

At the highest level of aggregation, the USPC classification consists of 3-digit classes.
In our datasets, we identify 474 such classes. Classes are further subdivided into about
150,000 unique subclasses.2 We refer to these subclasses as “6-digit” codes, even though
some subclasses may contain more or fewer digits. The USPTO regularly expands and

1A sample page of these yearbooks is provided in Fig. A1A.
2Classes tend to distinguish among technologies, whereas subclasses “delineate processes, structural

features, and functional features of the subject matter encompassed within the scope of a class.” https:
//www.uspto.gov/sites/default/files/patents/resources/classification/overview.pdf, p I.1.
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Table 1: Vintage technology classes (3-digit)

code 3-digit technology vintage
532 Organic compounds – part of the class 532-570 series 2001
726 Information security 1997
506 Combinatorial chemistry 1992
709 Multicomputer data transferring 1992
717 Data processing, software dev. 1992
295 Railway wheels and axles 1836
190 Trunks and hand-carried luggage 1836
142 Wood turning 1836
2 Apparel 1836
384 Bearings 1836

modernizes the USPC system to reflect changes in technology. When it does so, it retroac-
tively reclassifies all patents. This ensures that technology codes are harmonized across
the entire period of analysis.

We use these technology codes for two purposes. First, following Hall et al. (2001)
and Marco et al. (2015), we group patents into six broad technological sectors, based
on a patent’s primary technology code.3 Second, we use the combination of primary
and secondary classes (without making a distinction between the two) as a high-level
description of the invention’s content.

Finally, we determine the “vintage” of technology classes. To do so, we ask in which
year each class reached a cumulative 1% of all patents that list this class by 2015. Because
the number of patents increases rapidly over time, we use a weighted cumulative count
that weights each patent by the inverse of the total number of patent grants in a year,
such that each year is weighted equally in the determination of technological vintages.
Tables 1 and 2 show the five most and least recent technology classes in terms of this
vintage.

3.3 Demographic information of inventors

To learn more about the inventors on a patent, we merge them to US census records. To
do so, we make use of the full-count non-anonymized census records between 1850 and
1940 provided by IPUMS (Ruggles et al., 2021).

3These categories are: Mechanical ; Chemical ; Electrical & Electronic; Computers & Communication;
Drugs & Medical ; and Other technologies. The primary class on which they are based “[...] is indicative
of the invention as a whole or the main inventive concept using the claims as a guide.” See https:
//www.uspto.gov/sites/default/files/patents/resources/classification/overview.pdf, p I.5.
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Table 2: Vintage technology classes (6-digit)

code 6-digit technology vintage
359/200.3 Optical: systems and elements – Grooved shaft 2013
351/159.36 Optics – Means to limit movement 2012
185/41C Motors: spring, weight, or animal powered – Centrifugal 2012
705/339 Data processing – Central recipient pick 2011
348/287 Television – Conductive grid at target 2011
295/4 Railway wheels and axles – Rack rail 1836
126/506 Stoves and furnaces – With food cooker 1836
144/36 Woodworking – Planing and matching 1836
408/71 Cutting by rotating axially moving tool – Rotary, work 1836
144/69 Woodworking – Auger cutter 1836

3.3.1 Census matching

We proceed in three steps. First, we find for each inventor a set of candidate matches in
the two census waves closest to the patent’s grant date. For instance, for a patent granted
in 1902, we try to find matches in the 1900 and 1910 censuses. At this point, candidate
matches are based exclusively on how similar their last names are to the inventor’s last
name. Next, we generate a set of distances between the inventor and these candidate
matches, including string distances for first names, initials and last names and kilometer
distances between an inventor’s place of residence as listed on the patent and the place
of residence of each match candidate in the census.

Second, we create a ground truth dataset, by matching a small number of inventors
by hand whose patents are listed on Wikidata. The additional information we gain this
way about inventors’ places of birth, dates of birth and names of family members makes
it much easier to select the correct match among the candidate matches.

Third, we train two xgboost algorithms on this ground truth sample. The first pro-
duces match plausibility scores, based on name and place of residence information. The
second adjusts these scores to di↵erentiate between inventors with multiple highly plau-
sible matches, and those that have a unique plausible match, downgrading the former
relative to the latter. We repeat these steps for match candidates in both census waves
and then select the overall best match. In the analyses below, we rely on a sample of
high-confidence matches. The exact procedure and the out-of-sample performance of the
xgboost models are described in Appendix A.3.
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3.3.2 Gender, family ties and ethnicity

The census records allow us to study how socio-demographic characteristics of inventors
change over time. Of particular interest are an inventor’s occupation, age and place of
birth. In principle, the census also records an individual’s gender. However, we opt
to infer the most likely gender from inventors’ first names. This allows us to analyze
gender dynamics also for inventors that could not be matched to census records, including
inventors of patents granted after 1945.

Similarly, although census records contain family ties, we instead infer such ties from
inventors’ sharing the same last name. Doing so may result in some false positives,
especially when last names are very common. To assess this problem, we construct null
models in which last names are shu✏ed across patents.4 This exercise suggests that the
likelihood of two inventors’ sharing the same last name by chance is negligible in our main
period of interest.5

At the same time, family members need not share the same last name. Hereafter,
“family ties” will therefore refer to family relations in which last names are typically
shared (e.g., married couples, brothers, father and son, etc.).6

For the period after 1945, we have no country-of-birth information for inventors.
Therefore, we also proxy ethnic backgrounds using algorithms trained on Wikipedia and
recent census data to infer the origins of last names (for details, see Appendix B.5). We
focus on Hispanic and East-Asian surnames, because these are relatively easy to identify
using such algorithms.

3.4 Organizational context

The patent yearbooks provide some information on the organizational context in which
an invention was developed. In particular, we know whether at the moment of the patent
grant, the patent’s intellectual property rights were transferred to an assignee or retained
by the inventors. Using named-entity recognition, we distinguish between patents as-
signed to individuals and those assigned to organizations. It is not straightforward to
distinguish between di↵erent types of organizations based on the information at hand.

4That is, we estimate how often two inventors would share the same last name, had they been allocated
to patents at random. To do so, we shu✏e inventors’ last names within a year and within groups of
inventors whose last names have the same geographic origin. This ensures that each patent retains the
same number of inventors, while allowing for higher copatenting rates among members of the same ethnic
community (Almeida et al., 2015). This procedure is described in detail in Appendix B.2.

5The share of spurious family ties becomes significant only in the second half of the 20th century, with
the rise of, for instance, Indian and East-Asian surnames in the patent records (see Appendix B.2).

6Relying instead on family relations derived from the census is problematic in its own right. Census
records only list family relations within a household. Therefore, identifying the full set of family relations
not only requires matching multiple inventors on a patent to census records, but also matching di↵erent
census waves to each other. Incomplete matches in either step reduce the number of identifiable family
relations drastically and in possibly biased ways.
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However, a closer inspection of assignee names suggests that before the 1950s the vast
majority of organizational assignees were firms. Therefore, in our analysis, we refer to all
organizational assignees as firms. In some robustness checks, we drop patents for which we
could establish that they were assigned to non-firm organizations, such as governments,
military entities or universities.

To gain additional information on how firms organize their inventive activity, we turn
to a series of surveys conducted by the National Research Council: the Industrial Re-
search Laboratories of the United States reports. To be included in these surveys, firms
had to operate a dedicated “laboratory” with “separate and permanently established re-
search sta↵ and equipment”, excluding “firms that indicated they only occasionally carry
out research, using teams temporarily recruited for the purpose or assembled from their
operating sta↵s” (p. 2 National Research Council, 1956, see also Furman and MacGarvie
(2007)).

Separate reports of this survey were published in 1920, 1927, 1931, 1933, 1938, 1940,
1946, 1948, 1950 and 1956. Each report contains the name of each lab, a short description
of its main activity, the lab’s city or address, the (managing) directors and important
researchers and, in some editions, the lab’s major equipment and number of employees
(Fig. A1C). Furthermore, the 1940 and 1946 editions also record founding years of labs.
We will use these surveys to assess whether a patent assignee operated a research lab at
the time the patent was granted.

To do so, we obtain scanned versions of these reports from the Hathi Trust Founda-
tion. Next, we use OCR to digitize their contents and subsequently apply named-entity
recognition to extract the name of each lab. We then match labs to assignees on patents
based on string similarity between lab and assignee names. This yields a total of 2,504
assignees for which we can establish that they operated an industrial research lab.

In the remainder, we will refer to patents as “firm-based” if they are assigned to
organizations. Furthermore, if the organizational assignee had a known industrial research
lab in operation at the time the patent was granted, we refer to the patent as “lab-based”.
All other patents, i.e., patents that are unassigned or assigned to individuals, are called
“standalone” patents.

It is important to note that the reason why inventors assigned their patents to firms
changes throughout the 19th and 20th century. For instance, whereas 19th century inven-
tors often had no employment relation with their assignees, selling intellectual property
rights to partners that provided capital or who were better positioned to commercialize
the technology, 20th century inventors were typically employed by the assignee, often in
corporate research units (Lamoreaux and Sokolo↵, 2001). Moreover, especially in this
later period, the above definitions are likely to underestimate the number of patents in
which firms or labs played a significant role in coordinating the innovation process. First,
the definitions above do not take into account that some inventors may not assign their
patents to their employers. The opposite is in principle also possible: firms may com-
mission (a team of) inventors, without employing them. However, this practice was most
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common in the 19th century. Second, to identify lab-based patents, we have to be able
to match research labs to patent assignees. However, our surveys do not represent a com-
plete census of research labs, but focus on the most prominent labs in the US. Moreover,
we may fail to match assignees to their research labs whenever patents are assigned to
entities with names that are very di↵erent from their firm’s research lab.7 To mitigate
some of these problems, we manually checked whether we managed to identify correct
matches for the largest assignees in our patent records, as well as for the most prominent
research labs of this period.

3.5 Sample restrictions

To match patents to technology codes, we rely on patent numbers. Because these num-
bers are only listed in the patent yearbooks since 1856, our analysis starts in that year.
Furthermore, we focus on the period 1856-1945, for which we can merge demographic
information from the census, as well as information on labs from the industrial research
lab surveys.

Because we can only match inventors to the US census, we drop patents for which not
all inventors reside in the US. Furthermore, we require that patent numbers and grant
dates allow us to identify a patent’s technology classes. This means that we have to drop
patents between 1969 and 1975, for which we lack country of residence information.

When analyzing census-derived variables, we rely on a sample of well-matched inven-
tors, aged 16 and older. For questions that involve inferred genders, we limit the sample
to inventors whose gender can be inferred from their first names with high confidence (see
Appendix B.4). For all other analyses, we impose no further restrictions.

Finally, we refrain from analyzing inventors’ individual careers, which would require
disambiguating inventors across patents. We leave this as a task for future research,
but, instead, create a sample of disambiguated co-inventor dyads. This is easier than
disambiguating inventor names, because it is very unlikely that we observe the same pair
of last names on multiple patents by chance. An exception are pairs of inventors with
very common last names. Furthermore, if co-inventors are related, their last names are
not independent. Therefore, we drop all inventor dyads where one of the two last names
is found in over 500,000 of the 650M census records,8 or, for same-name dyads, where the
shared last name is found in over 50,000 records. Details are provided in Appendix B.3.

3.6 Time windows

Because the number of granted patents grows at a roughly exponential pace, data are
much sparser for earlier than for later periods. This complicates striking a balance between

7Note that of the 7,990 research labs, we are able to match 2,504 to the assignees in the patent records.
8Note that we establish how common a last name is using census, not patent records. To do so, we

pool census records across all available waves.
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temporal resolution and precision of estimates. To resolve this, we create windows, based,
not on calendar time, but on temporal rank. To do so, we sort all patents by their
grant dates and divide observations into groups of identical size, each containing Nw

observations. Each window is then associated with the average grant year of the patents
it spans. This allows us to plot changes in point estimates with standard errors that
are roughly constant across windows. Note that we can choose Nw for each time series
separately, which allows di↵erent precision-resolution trade-o↵s within a single graph.

4 US patenting: novelty and inventors

The number of patents granted by the USPTO has grown rapidly over the course of the
19th and 20th century. To analyze how the nature of inventions changed, we focus on their
novelty. The novelty of patented inventions has been assessed in various ways, ranging
from qualitative assessments by experts to analyses of forward and backward citations
(Verhoeven et al., 2016). However, these approaches either scale poorly – as in the case
of expert assessment – or require data that are not available for the period we analyze
– as in the case of patent citations, which only become used in the mid 1940s and truly
widespread in the 1980s. Therefore, we infer how novel an invention is from a patent’s
technology classes. In particular, we ask whether a combination of technology classes had
already been reported on an earlier patent, as originally proposed by Fleming (2001, see
also, Clancy (2018); Pezzoni et al. (2022); Strumsky and Lobo (2015)).9 While providing
an admittedly limited assessment of an invention’s novelty, because technology codes are
determined by independent contractors, not by the inventors or other interested parties,
the advantage is that this assessment is objective.

We assess novelty at the level of 3-digit and 6-digit combinations of technology classes.
Whereas new combinations of 6-digit technology classes often represent incremental in-
novations, new combinations of 3-digit technology classes should on average mark more
radical departures from the existing state of the art.

Fig. 1 shows how the share of incrementally and radically novel patents changes over
time. After falling in the late 19th and early 20th century, the share of patents that
list new technological combinations rapidly increases between 1920 and 1950, a period
which Akcigit et al. (2017b) refer to as a “golden age of innovation” that witnesses the
“rise of American ingenuity”. Moreover, the rapid rise in novel combinations is not
limited to a specific technological area, but visible in all six of Hall et al.’s (2001) broad
technological sectors (Fig. 2). Interestingly, the likelihood that patents list radically
novel technological combinations starts falling again in the 1950s, whereas novelty that

9We consider a combination as new, even if it had already been used as a subset of technology classes
on earlier patents. For instance, if patent B is the first to list codes 142 (“Wood turning”) and 173 (“Tool
driving or impacting”), we regard this as a new combination of codes, even if an earlier patent A already
listed the codes 142 and 173, while also listing 147 (“Coopering”).
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Figure 1: Novelty. Share of patents that list new combinations of 3-digit (blue) or 6-digit
(red) technology classes.

includes more incremental change keeps rising until at least the 1980s. We return to this
observation in section 6.4. However, we first analyze how the population of inventors
changes.

4.1 Age and learning curves

In line with Jones’ (2009) burden-of-knowledge hypothesis, we find an increase in the
average inventor age in the late 19th and early 20th century that accelerates in the 1920s
(Fig. 14c).10 This acceleration coincides with a change in the relation between inventors’
age and the number and vintage of the technology classes on their patents. We interpret
these relations as “learning curves” that reflect how long it takes inventors to become able
to combine a large number of technologies or to use the most recent technologies.

We estimate learning curves for four di↵erent cohorts – inventors born between 1840
and 1859, 1860 and 1879, 1880 and 1899 and 1900 and 1919 – fitting the following regres-
sion equation:

yp(i) = ↵t(p(i)) +
X

c2C

�cAit(p(i))Cc(i) + "p(i), (1)

10Note that Jones studies an inventor’s age at the time of their first patent. In contrast, our data
refer to the average age of inventors on any patent. We therefore use data collected by Kaltenberg et al.
(2021) to calculate the equivalent number for the period 1975-2018. In this period, average inventor age
also rises, from about 40 to 50. Interestingly, however, the average age of inventors in 1975 of about 40
is well below the age we record for the pre-WWII period. Inventor age must therefore have fallen some
time after WWII. Jung and Ejermo (2014) document a similar fall in inventor age in the late 1990s and
early 2000s for Sweden, attributing this to a change in technological paradigm.
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Figure 2: New combinations by broad technology class. Each graph shows the
share of new 3-digit (black) and 6-digit (gray) technologies by the six broad primary classes
defined in Hall et al. (2001).

where yp(i) is either the number of distinct technology codes listed on inventor i’s patent
p(i), or the most recent technological vintage among them, i.e., the vintage of the “youngest”
technology code listed on the patent. Increases in y are thus associated with the use of
more, or, more recent, technologies. As regressors, we include year fixed e↵ects, ↵t, and
interactions of the age, Ait(p(i)), of inventor i in the year the patent was granted, t(p(i)),
with cohort dummies, Cc(i) 2 C, where C is the set of cohorts.11 To ensure that our sample
covers the same age range for all cohorts, we restrict the analysis to inventors aged 15 to
35. This means that we study patents of, for instance, the 1880-1899 birth cohort between
1895 and 1935.

Results are shown in Table 3. Cohorts that enter the labor market in the 20th century
display markedly di↵erent learning curves compared to earlier cohorts. Whereas for the
1880-1899 and 1900-1919 cohorts, the number and vintage of technologies increases with
age, learning curves of earlier cohorts are flat.12

11Note that, because we do not disambiguate inventors, our learning curves are defined at the level of
cohorts, not individuals.

12These statements should be taken relative to other contemporaneous cohorts. Overall, vintage and
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Figure 3: Average age of inventors.

Table 3: Learning curves

Vintage #technologies
3 digits 6 digits 3 digits 6 digits

1840 0.0054 (0.0277) 0.0082 (0.0344) -0.0015 (0.0017) 0.0009 (0.0035)
1860 -0.0135 (0.0142) 0.0096 (0.0192) 0.0019 (0.0008)* 0.0016 (0.0018)
1880 0.0602 (0.0154)*** 0.0699 (0.0206)*** 0.0024 (0.0008)** 0.0054 (0.0016)***
1900 0.4657 (0.0277)*** 0.4273 (0.031)*** 0.0063 (0.0012)*** 0.0137 (0.0026)***

Parameter estimates for age e↵ect of eq. (1). Cohorts are listed in rows, dependent variables in columns.
Robust standard errors in parentheses. ⇤: p < 0.05, ⇤⇤: p < 0.01, ⇤⇤⇤: p < 0.001.
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a. b.

c. d.

Figure 4: Learning curves. Each panel displays learning curves, fitted within-sample,
for four di↵erent cohorts: 1840-1959 (blue), 1860-1879 (orange), 1880-1899 (green), 1900-
1919 (red). The top panels show learning curves in terms of technological vintage, the
bottom panels in terms of the number of technologies on a patent. The left column shows
results at the level of 3-digit, the right column of 6-digit technology classes. The shaded
areas represent 95% confidence intervals, using robust standard errors.
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Fig. 4 repeats the analysis, widening the age range to 15-65 and adding quadratic
terms to allow for nonlinearities. This corroborates the findings in Table 3. In the earliest
cohorts, young inventors tend to use more, and more modern, technologies than their
older contemporaries. However, as they age, these cohorts fall behind younger inventors.
In the 1880-1899, and even more so in the 1900-1919 cohort, this changes drastically. In
these cohorts, which enter the labor market in the 20th century, at a young age, inventors
use fewer technologies and less recent vintages than the older cohorts they coincide with.
However, as they grow older, they overtake older cohorts, peaking in their thirties. This
suggests that, after 1900, and even more so, in the 1920s, inventors need more time to
become acquainted with modern technologies and to combine them in larger – presumably
more complex – combinations.

4.2 Occupations

The 1920s also mark an abrupt change in the occupational backgrounds of inventors.
Whereas 19th century invention was still dominated by blue collar workers and mechanics,
in the 1920s, a new type of inventor emerges: the engineer. Engineers quickly come
to dominate US invention: in the 1940s they are responsible for 25% of patents, while
accounting for only 0.7% of the US labor force (Fig. 5a and 5b).13

The rise of engineers coincides with the fledgling start of academic patenting. Fig.
5c shows the share of patents granted to inventors who are identified as professors in
the census. Interestingly, these “academic patents” often represent early examples of
university-industry collaboration. Of the 1,462 patents granted to professors between
1900 and 1945, 49% were assigned to organizations. However, in 91% of such cases, the
organizations were firms. In contrast, only 9% of academic patents had been assigned to
universities. In fact, universities only meaningfully start claiming ownership of patents in
the 1940s (Fig. 5d, see also Arora et al., 2021). Moreover, these first university patents
were not, as in later decades (e.g., Henderson et al., 1998), predominantly held by the
largest research universities, but by universities in the American Rustbelt (see Table 4).

number of technologies increase steadily over time, regardless of the cohort. However, by adding year
fixed e↵ects, we strip away such secular trends and instead compare individuals across cohorts in the
same year.

13Because census occupations are self-reported, the observed rise of engineers may to some extent
be artificial, merely reflecting a change in nomenclature or occupational identity, not a change in the
actual occupational backgrounds of inventors. We explore this possibility in Appendix B.1, where we
use census data to find potential precursors to engineering occupations. To do so, we look at how
individuals change occupations across census waves. This yields a “skill-relatedness” network (Ne↵ke
and Henning, 2013; Ne↵ke et al., 2017) that connects occupations between which exceptionally many
individuals transition compared to a random benchmark. Including occupations that are closely related
to engineering occupations does not change the pattern observed in Fig. 5a (see Fig. B1).
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a. b.

c. d.

Figure 5: Labor inputs in invention. a: Share of inventors who are engineers. b: Over-
representation of occupational sectors among inventors vis-à-vis the US population: �

p

ot
/�

pop

ot
,

where �
p

ot
is the share of patents held by inventors with occupation o in year t and �

pop

ot
the

share of workers in the US population with occupation o in year t, interpolating between census
waves in non-census years c: Share of inventors that list professor as their occupation (“aca-
demic patents”). d: Share of academic patents assigned to universities. Shares are calculated in
samples where inventors could be matched with high confidence to census records. Lines display
95% confidence intervals.

18



Table 4: Share of academic patents by university (1900-1945)

University share
Purdue University 0.206
Iowa State University 0.114
University of Wisconsin-Madison 0.063
Stanford University 0.057
Dartmouth College 0.048
University of Minnesota 0.044
University of Illinois 0.038
University of Tennessee 0.032
University of Michigan 0.025
Ohio State University 0.022

Share of patents by university between 1900 and 1945 that were (1) granted to inventors identified as
professors in the US census and (2) assigned to a university.

4.3 Teamwork

With the shift to engineering occupations, we also witness the start of the steady rise
in teamwork that would persist throughout the 20th century (see, for instance, Wuchty
et al., 2007, for the period 1975-1995). Fig. 6 shows that this process was not gradual,
but took o↵ abruptly in the early 1920s. Until then, the share of patents granted to teams
had, if anything, been slightly decreasing.

Not only the prevalence of teams changed, but also their nature. To show this, we
create a dataset of coinventor dyads, i.e., of all pairwise combinations of inventors listed
on a patent.14 Note that until 1945, the vast majority of team patents, over 90%, are filed
by teams of two inventors, with another 6% filed by teams of 3 inventors. Most teams are
therefore represented by a single dyad.15

Table 5 shows the most frequent combinations of occupations in inventor teams.16

Whereas 19th century collaborations tend to take place between between senior and ju-
nior roles – such as between skilled craftsmen and operators or between operators and
common laborers – in the 1920s, collaboration shifts to teams of similarly, highly skilled

14This analysis is restricted to inventor dyads where we can match both inventors with high confidence
to a census record.

15The share of team patents filed by two inventors drops from 94% in the 19th century to 90% in the
1940s.

16We exclude same-occupation pairs, as well as occupation pairs that involve farmers and managers,
because such pairs are less informative about the expertise that is combined in teams: farmers represent
a very large share of 19th century employment and management occupations tell us little about the
technical skills of team members.
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Figure 6: Teams. Share of patents granted to teams of inventors. Lines display 95%
confidence intervals.

professionals, such as teams of two engineers, a chemist and a chemical engineer or a
draftsman and a mechanical engineer.

Further analyzing the sample of coinventor dyads, we observe two quantitative changes
in team composition. First, the age di↵erence between team members shrinks in the early
decades of the 20th century (Fig. 7a). Second, teams become more homogeneous over
time in terms of their areas of expertise. This is shown in the share of dyads where both
inventors share the same occupation (Fig. 7b) and in the increase in skill relatedness
between a dyad’s occupations (Fig. 7c). Both measures suggest that teams become more
homogeneous in occupational backgrounds, with the skill relatedness analysis showing
that this process starts in the early 1920s.

5 Corporate research and the rise of teamwork

What is driving these changes in US invention? In this section, we argue that a key role
is played by the emergence of organized corporate research, with the industrial research
lab as its embodiment. These labs were responsible for much of the increased role of
engineers: by 1940, 40% of patents by inventor-engineers came out of industrial research
labs (Fig. 8). More importantly, these labs were key facilitators of teamwork. To support
this claim, we show that:

1. the rise in teamwork between 1920 and 1945 is almost completely due to teamwork
in firms and even more so in firms with labs,
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Table 5: Most common occupational pairs in coinventor dyads

occupation 1 occupation 2 frequency
1856-1900
Machinists Operative and kindred workers (n.e.c.) 65

Operative and kindred workers (n.e.c.) Salesmen and sales clerks (n.e.c.) 30

Laborers (n.e.c.) Operative and kindred workers (n.e.c.) 27

Operative and kindred workers (n.e.c.) Carpenters 27

Laborers (n.e.c.) Machinists 17

1920-1945
Stationary engineers Engineers, mechanical 110

Engineers, electrical Engineers, mechanical 106

Draftsmen Engineers, mechanical 98

Professional, technical and kindred workers (n.e.c.) Chemists 91

Chemists Engineers, chemical 66

Five most common occupation pairs in coinventor dyads, excluding same-occupation pairs (1856-1900:
57; 1920-1945: 74) and occupation pairs with missing occupations, managerial occupations (1856-1900:
126; 1920-1945: 160) or occupations in farming (1856-1900: 153; 1920-1945: 108).

Figure 7: Team composition. Samples are restricted to inventor dyads for which both
inventors can be matched to the census. a: Average age di↵erence in coinventor dyads. b: Share
of coinventor dyads in which both inventors record the same occupation in the census records. c:
Average skill relatedness between the occupations in a dyad. Values larger than one signify that
occupations are skill related (see Appendix B.1): labor flows between the occupations exceed
their random benchmark. Values below one signify that occupations are unrelated: labor flows
fall short of the random benchmark.
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Figure 8: Workplaces of engineers. Share of inventors with engineering occupations
who work as standalone inventors (red), for firms without research labs (blue) or for firms with
research labs (green).

2. labs are associated with more frequent repeat-collaborations,

3. labs allow teams to collaborate over longer distances, and

4. teams are more likely to patent radical innovations, but only if they work for firms,
and especially for firms with research labs.

The rise of teamwork. In support of the first claim, Fig. 9a shows that today’s
widespread practice of team-based invention originally relied on a remarkable early-20th
century organizational innovation: the industrial research lab. Whereas in the 19th cen-
tury, teamwork was often supported by family ties, firm-based teamwork gained promi-
nence only in the 20th century. Then, in the 1920s, team-based invention shifted to
industrial research labs. These labs quickly di↵used and became dominant: in the 1940s
over 40% of team patents came from firms that operated research labs.17 What is more,
lab-based inventors were 20% more likely to work in teams than inventors in firms without
known research labs and over two times as likely as standalone inventors. In fact, Fig. 9b

17Note that this is likely an undercount, given that we will not have been able to identify all firms with
research labs in our dataset.
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shows that the sudden rise in teamwork in the 1920s is wholly driven by increased team-
work in corporate research: whereas, after 1920, firm- and, especially, lab-based patents
increasingly rely on teamwork, the prevalence of teamwork in standalone patents barely
changes.

a. b.

Figure 9: Team coordination. a: Share of team patents that are coordinated by firms
without labs (blue), firms with labs (green) or family ties (red). b: Share of patents that are
team patents.

Repeat-collaborations. Firm- and lab-based teams were also more likely to engage in
repeated collaborations than standalone teams. This is shown in Fig. 10a, which plots
the likelihood that two co-inventors patent repeatedly together in the same decade, using
the disambiguated inventor dyads described in section 3.5. That is, we calculate which
share of disambiguated co-inventor dyads occurs on multiple patents in the same decade.
Repeat-collaborations are almost twice as likely for team patents assigned to firms or labs
than for patents produced by standalone teams.

Long-distance collaboration. To show that firms and labs support long-distance col-
laboration, we collapse the sample of team patents to the level of city pairs, counting how
many collaborations take place between any given pair of US cities. Next, we analyze the
spatial decay in patent collaborations between city o and city d, estimating gravity models
with city of origin and city of destination fixed e↵ects. To do so, we use Pseudo-Poisson
Maximum Likelihood (PPML) estimation (Silva and Tenreyro, 2006) for:
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a. b.

Figure 10: Team facilitation. a: Stability of inventor dyads: likelihood of repeated col-
laboration in a decade (i.e., that two inventors patent together more than once in the same
decade), using the disambiguated inventor dyads described in section 3.5. Markers are centered
on the average observed grant year. b: Estimated distance decay parameters for collaborations
between US cities. Vertical lines display 95% confidence intervals. Colors: team patents coordi-
nated by firms without labs (blue), firms with labs (green) or family ties (red).
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Cod = exp [�o + ⌘d + �dod] + "od, (2)

where �o and ⌘d are origin and destination fixed e↵ects and dod is the logarithm of the
Haversine distance between o and d. We estimate this model separately for standalone
teams, teams in firms without research labs and teams in industrial research labs. We do
so repeatedly over a moving time window that covers 10 years before and after the year
reported on the horizontal axis.

The fact that the estimated distance decay parameter is uniformly negative shows that
collaboration is constrained by distance. However, distance is much less of a constraint
for lab-based and, to a lesser extent, for firm-based teamwork.

Novelty. Do research labs also patent more novel inventions? To analyze the drivers
of the changes in novelty of Fig. 1, we loosely follow a knowledge production function
approach (Pakes and Griliches, 1980). In particular, we ask whether the new labor in-
puts that emerge in the 20th century (engineers and teams) are associated with a higher
propensity for a patent to list novel technological combinations and to what extent this
depends on the organizational context (firms or research labs) in which these inputs are
used.

To do so, we proxy labor inputs with dummies that capture whether or not one or more
of the patent’s inventors are engineers and whether the invention was granted to a single
inventor or to a team of inventors. We then interact these inputs with dummies that code
the patent’s assignee type, distinguishing between standalone patents, firms, and firms
with industrial research labs. Next, we fit linear probability models with as a dependent
variable a dummy that indicates whether or not a patent lists a novel combination of
technology classes:

yd
p
= ↵t(p) + �eEp + �tTp +

X

o2f,l

�oOop +
X

o2f,l

�o⇥EOopEp +
X

o2f,l

�o⇥TOopTp + "p, (3)

where yd
p
is a dummy variable for whether or not a patent lists a new combination of

either 3- or 6-digit technology classes (d 2 {3, 6}), t(p) is the year in which patent p
was granted, Ep a dummy for whether or not any of the inventors were engineers and
Tp a dummy for team patents. Furthermore, Op is a dummy group that describes the
organizational arrangement (assignee type) behind the patent, where f indicates firms
and l industrial research labs. The omitted category refers to standalone patents.

We estimate this model in a sample of patents for which at least one inventor could
be matched to census records. Full regression tables are reported in Appendix D. Here,
we summarize outcomes by describing how novelty e↵ects di↵er across organizational
contexts. The left panel of Fig. 11 shows how the engineering e↵ect varies across organi-
zation types (i.e., �̂e+ �̂o+ �̂o⇥E). The right panel does the same for the team e↵ect (i.e.,
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�̂t+ �̂o+ �̂o⇥T ). E↵ect estimates are always relative to a baseline of patents by standalone,
solo inventors in non-engineering occupations.

a. b.

Figure 11: Novelty of patents and labor inputs. The left panel analyzes patents
by engineers, the right panel team-based patents. Markers plot the di↵erence in mean novelty
at the 3-digit level between patents by engineers, respectively, teams and a baseline composed
of standalone patents by solo inventors who are not engineers. Red: standalone patents, blue:
patents of firms without industrial research labs, green: patents of industrial research labs.
Estimates refer to one of three samples: patents granted between 1856 and 1920, patents granted
between 1920 and 1945 and patents granted between 1856 and 1945. Vertical lines display 95%
confidence intervals.

Both, engineers and teams, are more likely to patent new technological combinations.
However, whereas the engineering e↵ect di↵ers little across assignee types,18 the team
e↵ect is contingent on the organizational context. In fact, standalone teams are no more
likely to patent a new technological combination than the baseline of standalone, non-
engineer, solo inventors. Once teams work for firms – and even more so once they work
for firms that operate industrial research labs – the likelihood that a patented invention is
novel goes up substantially. To put our estimates into context: in the period 1856-1945,
on average 5.4% of inventions list novel technological combinations. Lab-based teams are
3.3 percentage points more likely to do so, representing an over 60% increase over this
average.

18Note that this means that the engineering e↵ects and the firm and lab e↵ects are not additive. In
fact, the interaction e↵ect of firm and engineering dummies is negative and its size exactly o↵sets the
engineering e↵ect. As a consequence, in firms, engineers do not generate more novelty than their other
colleagues. For labs, the engineering and lab e↵ects are less than additive, but don’t fully cancel out.
Engineers in labs do therefore patent slightly more novel inventions than other types of inventors.
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This analysis shows that, although firms and labs lead the shift to patenting by engi-
neers and teams, when it comes to novelty generation, they only seem to have an impact
on teams, not on engineers. This points to the importance of the organizational innovation
in coordinating teams that the modern research lab represented.

These findings are robust to a number of changes in the regression design. First, we
do not see much di↵erence in e↵ects estimated in di↵erent time periods. This suggests
that what changes in the 1920s is not the nature of engineering- or team-based patents,
but rather their prevalence and the changing prevalence of firms and labs in coordinating
inventor teams. Second, controlling for technology-time fixed e↵ects that interacting year
dummies with the six broad technology classes defined by Hall et al. (2001) does not
qualitatively change outcomes (see Appendix D).19

6 Consequences for the US innovation system

6.1 System 1 and system 2 invention

Taken together, our findings suggest that the shift to engineers and lab-based teamwork
played an important role in the rapid combinatorial exploration that started in the 1920s.
To describe the spatial and societal consequences of this shift, we define two archety-
pal systems of invention. System 1, representing the craftsmanship-based system that
dominates the 19th century, consists of patents by solo, standalone inventors without en-
gineering backgrounds. System 2, representing the science-based system that only really
takes o↵ in the 1920s, consists of patents that are either invented by engineers, or created
in research labs or by firm-based teams.20

These definitions somewhat mimic the innovation literature’s distinction between Schum-
peter Mark I and Mark II innovation patterns. However, whereas Schumpeter Mark I
innovation is typically associated with creative destruction and radical change and Mark
II innovation with cumulative progress and incremental change (Breschi et al., 2000), our
findings suggest the opposite: in the first half of the 20th century, it is the organized teams
in firms and labs of system 2 that introduce radically new combinations of technologies,
not the solo, standalone inventors of system 1.

19Team e↵ects are reduced by about one third when we add year-technology fixed e↵ects, suggesting that
firm and lab-based teams are more common in technological areas that witness more novel technological
combinations.

20That is, to belong to system 1, a patent needs to fulfill all of the following three criteria: (1) list
only one inventor, who (2) has no engineering occupation and (3) no organizational assignee. Instead,
system 2 patents fulfill at least one of three criteria: the patent (1) lists an engineer among its inventors,
or (2) is filed by a team and assigned to a firm, or (3) is assigned to a firm with a research lab.
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Figure 12: Geography. a: Concentration of inventive activity: e↵ective number of cities
– defined as e

H , where H is the entropy of the distribution of patents across cities – divided
by the e↵ective number of cities in terms of population. b: Share of patents in the 25 most
populous cities in the US. c: Correlation between vectors that reflect the overrepresentation
(location quotients) of patenting across cities vis-à-vis their population. Gray: all patents, red:
system 1 patents, green: system 2 patents.

6.2 Geography

System 1 and 2 invention are not only associated with di↵erent degrees of novelty, but
also exhibit divergent spatial patterns. In Fig. 12a, we show changes in the geographical
concentration of patenting. To do so, we calculate the e↵ective number of cities in US
patenting. That is, we calculate the exponentiated entropy of the distribution of patents
across cities:21

Hp

t = e
�

P
r2R

�
s
rt log �

s
rt
, (4)

where �s

rt
is the share of patents of system s 2 {1, 2} filed by inventors residing in city r in

period t. We normalize Hp

t by the analogous quantity for the distribution of population
across cities to account for the large population shifts taking place in this period.

Relative to how population spreads out across the US, patenting becomes more spa-
tially concentrated over the course of the 19th century. However, in the 20th century, this
process reverses and invention starts di↵using to more and more cities, first in system 2
and then somewhat later also in system 1.

This pattern is mimicked by the role that large cities play in innovation. Fig. 12b
shows the share of patents filed by inventors in the 25 largest cities in the US.22 Whereas
in the 19th century, these cities slowly become less dominant in the patent record, at the

21The “e↵ective number of cities”, H
p
t , quantifies the number of cities that would yield the same

observed entropy, had patenting been distributed equally across them (Jost, 2006).
22Fig. C1 of Appendix C shows that focusing on the largest 10 or 50 US cities yields similar results.
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Figure 13: Overrepresentation of system 1 and 2 across US cities. Graphs show
which system is overrepresented in each of 933 US cities, where overrepresentation is defined as
the ratio of the city’s share of patents in one system over the share of the city’s patents in the
other system. Green colors mean that system 2 is overrepresented, red colors system 1. The less
transparent the color, the greater the overrepresentation. Marker sizes depict the city’s share of
all US patents.

turn of the century, this trend reverses. By 1940, large cities have regained their mid-19th
century primacy. Again, the reversal is led by system 2, with system 1 following some
years later.

Fig. 12c further illustrates how system 2 leads a geographical shift in invention, that
is later followed by system 1. It plots the correlation between the vectors of location
quotients, LQs

rt
= �

s
rt/�pop

rt of system 1 and system 2, where �pop

r
is city r’s share of US

population. The locational vectors of system 1 and 2 diverge until the mid-1920s, but
then start converging again.

Finally, Fig. 13 plots maps of the geography of system 1 and system 2. Cities with an
overrepresentation of system 1 patents (i.e., whose share of system 1 patents exceeds their
share of system 2 patents) are colored red, whereas green markers indicate that system 2
patents are overrepresented in the city. These maps show that system 2 is overrepresented
in an area that is nowadays known as the “American Rustbelt”, but that at the time
represented the cutting edge of the US economy. In this sense, system 2 invention was an
integral part of this emerging hotspot of US innovation (see also Lamoreaux et al., 2007).

6.3 Demographics and unequal participation

Immigrants play and have played an important role in US innovation (Akcigit et al.,
2017b; Kerr, 2013; Lissoni and Miguelez, 2024). In line with this, Fig. 14a shows that
immigrants are overrepresented in the population of inventors for most of the period we
study. However, this is not uniformly the case. In fact, in the late 19th century, immigrant
inventors’ overrepresentation diminishes and for a short period, foreign-born inventors are
underrepresented in the patent records. From the 1920s on, foreign-born inventors once
again become strongly overrepresented. Moreover, as shown in Fig. 14b, which plots the
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overrepresentation of inventors from the six most important countries of birth in terms
of inventors, this aggregate dynamic hides much variation. For instance, unlike UK-born
inventors, inventors born in Sweden or Germany, both of which industrialized relatively
late, rose to prominence only in the early 20th century. Similarly, we see an inflection
point in the time-series of Russian-born inventors after the Russian revolution (Fig. 14b).

a. b.

Figure 14: Demographics. a: Overrepresentation of foreign-born individuals in patent
records: �p

ft
/�
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is the share of patents held by foreign-born inventors in year t and
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the share of foreign-born individuals in the US population in year t, interpolating between

census waves in non-census years. b: Overrepresentation of foreign-born individuals in patent
records for the six largest countries of origins among US inventors: �
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their share in the US

population in year t, interpolating between census waves in non-census years.

If we instead distinguish patents by their organizational contexts, we observe remark-
able di↵erences between the firm- and lab-based patents of system 2 and the standalone
patents of system 1 (see Fig. 15a). In the 1920s, the share of foreign-born inventors rapidly
decreases across the board, mostly reflecting a relative decline of foreign-born individuals
in the US population. However, foreign-born inventors’ patenting shares drop much faster
in firms and labs than on standalone patents.

To expand this analysis beyond the years for which we have census records, we analyze
the patents of inventors with Hispanic and East Asian surnames, using the geographical
origins of last names as proxies for inventors’ ethnicity. Moreover, because we lack infor-
mation about research labs after 1945, we can only distinguish between standalone and
firm-based patents. Comparing these two types of patents, we observe stark di↵erences
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Figure 15: Immigrant participation rates in system 2. a: share of foreign-born
inventors by assignee type (1856-1945). b: upper panel: share of inventors with Hispanic
surname, lower panel: share of inventors with East-Asian surnames (1856-2000). Colors: red:
standalone patents, purple: firms; blue: firms without research labs; green: research labs.

between inventors with Hispanic and East Asian surnames: whereas, relative to stan-
dalone patenting, inventors with Hispanic surnames are underrepresented in firm-based
invention, inventors with East-Asian surnames are overrepresented (Fig. 15b).

In contrast to immigrants, women are notoriously underrepresented in patenting (e.g.,
Ding et al., 2006). Fig. 16 shows that this was even more so in the past. Based on
inventors’ inferred genders, we find that, although the share of female inventors slowly
increases over time, it remains below 2% throughout the 1856-1945 period.23 Moreover,
this rise comes to an abrupt halt at the end of WWI, after which female inventor shares
start falling again.

However, when we distinguish between di↵erent organizational contexts, this drop
turns out to be wholly attributable to firm- and lab-based patents (Fig. 17a). In contrast,
the share of women on standalone patents keeps rising. In fact, women are drastically
underrepresented in firm and lab-based patents compared to standalone patents. In the
1940s, female inventor shares are about a factor 5 lower among firm-based inventors than
among standalone inventors. In labs, the female share is a factor 7 below the standalone
share.24 The gender gap between the share of firm-based patents and standalone patents

23We restrict the sample here to inventors whose first name can be linked to a specific gender with
high confidence, using census information. For details on this procedure, see Appendix B.4. When we
repeat the analysis for inventors whose first names yield more ambiguous information on gender, female
participation rates shift upward, probably reflecting a greater miss-classification rate. However, temporal
patterns remain unchanged (see Fig. B3a).

24In Appendix D, Table D6, we study female participation rates using the regression model of eq. (3)
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Figure 16: Share of women. Share of women among all inventors whose first name allows
to infer gender with high confidence.

only starts closing in the late 1970s (Fig. 17b). However, in 2000, the share of female
inventors is still about 25% lower in firms than among standalone inventors.

Scholars have identified a number of potential drivers of gender gaps in patenting.
For instance, women may have fewer ties to industrial partners (Ding et al., 2006), lack
successful mentors (Delgado and Murray, 2022) or role models (Bell et al., 2019). Other
explanations refer to a lower patentability of inventions in fields where women are most
active (Ding et al., 2006) or to outright biases that exclude women from being listed as
coinventors (Ross et al., 2022). Although we cannot determine their deeper causes, our
analysis suggests that gender gaps in patenting materialize in part through women’s lack
of access to lab-based and firm-based R&D.

6.4 Novelty in the 1945-2000 period

We have so far mostly focused on the period 1856-1945, where we were able to enrich
the patent record with information about inventor demographics and about industrial
research labs. The rapid increase of patents that list new technological combinations in

with as dependent variable a dummy that evaluates to one if we can identify at least one inventor with
a first name that we identify as likely to be female among the patent’s inventors. Focusing on the fully
interacted model in column (5), we find that the likelihood of finding female inventors on a patent is lower
in firm- and, even more so, lab-based patents. Also patents that list engineers are less likely to list women.
However, women were more likely to be listed on team-based patents. This suggests that system 2 was
biased against women, both because of the fact that there were very few female engineers and that women
often did not participate in firm- or lab-based invention. Although teamwork counteracted this bias, it
did not eliminate it.
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Figure 17: Participation of women in system 2. a: share of inventors with first
names that are predominantly used by women in di↵erent organizational contexts (1856-1945)
b: share of inventors with first names that are predominantly used by women in standalone
versus firm-based patents (1856-2000).

this period seems to be mostly driven by a rise of patents by teams and engineers in firms
and research labs. However, if we extend our knowledge-production function approach to
the period 1856-2000, we find that the link between novelty and teamwork in corporate
R&D gets severed after the 1950s.

For this longer period, we can still observe whether or not patents are filed by teams
and whether or not they are assigned to firms. Fig. 18a shows results based on a simplified
version of the regression models used in the right panel of Fig. 11. After 1945, the greater
propensity of firm-based teams to patent novel combinations of technologies shrinks. This
reduction is greatest in the case of the radical novelty associated with new combinations
of 3-digit technologies. On this metric, in the last quarter of the 20th century, firm-based
teams even underperform standalone teams. After 1945, firms therefore no longer enhance
teams’ propensity to generate novel technological combinations.25

25A closer look at the regression tables in Appendix D shows that this is due to the interaction e↵ect
between the firm and team dummy turning negative. This happens already in the 1946-1968 period and
it does so for novelty at the 3-digit and 6-digit level. However, the firm dummy’s coe�cient itself remains
positive, except for radical novelty in the period 1976-2000. That is, whereas firm-based teamwork after
WWII is less likely to result in new technological combinations, this holds for firm-based patents only
in the last period and then only for radical, not incremental novelty. These findings remain unchanged
when we drop patents assigned to organizations other than firms.
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a. b.

Figure 18: Novelty of team patents: 1856-2000. Markers plot the di↵erence in
mean novelty at the 3-digit level (left panel) or 6-digit level (right panel) between teams and a
baseline composed of standalone patents by solo inventors. Red: standalone team patents, blue:
firm-based team patents. Estimates refer to one of five time periods: 1856-1920, 1920-1945,
1946-1968, 1976-2000 or 1856-2000.
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7 Discussion and conclusion

The 1920s are a pivotal point in the history of US invention, rapidly shifting from
craftsmanship-based to science-based innovation. This decade marks the start of a 30-year
period of exploration of new technological combinations, supported by systemic changes
in the way the US innovates. A number of these trends that can be interpreted as symp-
toms of an increasing burden of knowledge: the average age of inventors rises, learning
curves become steeper, and a new type of science-based innovation specialist arrives: the
engineer.

The 1920s also mark the start of the long ascent of teamwork in invention. This
teamwork was supported by the emergence of a new organizational entity: the industrial
research lab. Originating from Germany, these labs were not only responsible for some
of the rise in teamwork, but they also seemed particularly apt at coordinating teams in
repeated collaborations and over long distances. In fact, the research lab’s e↵ect on in-
novation seems to have operated more through facilitating teamwork than through the
scores of engineers they employed: although industrial research labs employed both dis-
proportionally many engineers and teams, only the latter were more likely to produce
novel combinations when working for labs. The organizational innovation that was the
research lab quickly di↵used and was soon adopted by the most prolifically innovating
firms: between 1940 and 1945, out of a total of about 17,000 patenting firms, 25% of all
patents and 43% of all firm-based patents in the US were assigned to just 1,244 firms that
operated research labs.

Our results likely understate the true importance of these labs. First, we will not
have been able to match all patent assignees to their labs, especially when firms filed
patents under names su�ciently distinct from those listed in our surveys. Second, firms
may have adopted research labs or similar organizational units, without being listed in
the survey. Third, inventors will not have assigned the intellectual property rights to all
of their inventions to their employers. In fact, employees often only had to assign such
rights for inventions related to the firm’s main line of business (see, for instance, Hertz,
1950, pp. 327-328).

Similar limitations apply to other aspects of our study. For instance, we were only
able to match about 46% of inventors to census records and, given the decennial nature of
the census, for those inventors we could match, these records may not always have o↵ered
up-to-date and accurate information.

Another class of limitations has to do with the fact that patents do not capture the full
extent of innovation nor of the e↵orts that individuals and firms put in. On the one hand,
it is well-known that much innovation goes unpatented (Archibugi, 1992). On the other
hand, in spite of legal obligations to do so, patents may not list all contributors. This
would o↵er a partial explanation for the low share of patents by women. However, it would
also mean that a number of solo-inventor patents were in reality the result of teamwork.
Such miss-measurement likely biased estimated coe�cients towards zero, making most of
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our estimates conservative.
Third, our study focused on US invention, ignoring inventions that were the result of

international collaborations. Although the majority of US inventor teams were entirely
based in the US, international collaborations can be observed already in the 19th century.
Although this is an interesting aspect of the evolution of US invention, we believe it
deserves a study of its own.

Fourth, our analysis sketches trends and correlations and can only hint at causal
relations. For instance, we don’t know whether the turn to science-based invention was
a result of technological change, increasing levels of education or driven by corporate
strategy. Our view is that these factors all played a role in enabling the emerging science-
based innovation system, reinforcing one another. For instance, the division of labor
in the growing teams that industrial research labs coordinated relied on the availability
of specialized inventors, who themselves were the product of expanded education in the
engineering schools of the Morrill Land Grant Acts.26 Moreover, organized corporate
research became much more profitable after a wave of mergers had created very large
firms in various sectors of the economy.

Finally, our study suggests a number of questions that could be studied in more detail
in future research. For instance: is organized corporate research conducive to radical
innovation? Taken at face value, our study contradicts the canonical view that the highly
organized nature of Schumpeter Mark II innovation is best suited for incremental, not
radical innovation, at least for the period in which this type of innovation first emerged.
In fact, the industrial research lab may have played a similar role in the golden age of
American ingenuity as Hanlon’s (2022) engineers did in the early industrial revolution of
the UK. In fact, engineers only become a dominant force in US invention in the 1920s, a
century after their counterparts had revolutionized UK invention, and at that point, they
did so as part of the growing workforce of industrial research labs.

However, we also observe that from 1950 on corporate R&D shifts toward incremental
innovation, with firms and in particular firm-based teams becoming less likely to produce
radically new combinations of technologies. This resonates with the finding in Wu et al.
(2019) that today’s very large research teams struggle to generate radically new ideas
in science and technology. One challenge of running large teams is that the number of
bilateral links increases with the square of the number of team members. A potential
explanation for the reduced capacity of corporate inventor teams to create radically new
technological combinations is that existing organizational forms cannot meet the rising
complexity of coordination. If so, overcoming the current burden of knowledge to ac-
celerate technological progress may require another round of organizational innovation.
Possible examples are new collaboration technologies, such as Slack, Zoom and other
online platforms. To play a similar role as the 1920s industrial research labs, these plat-
forms would have to help overcome current organizational bottlenecks in teamwork to set

26In fact, seven of the ten universities listed in Table 4 are land-grant colleges.
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in motion a new wave of radical technological change.
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A Data sources

Our analyses combine three di↵erent types of data. The main data set contains infor-
mation on patents issued by the United States Patent and Trademark O�ce (USPTO).
We add to this existing datasets from European Patent O�ce’s (EPO) PATSTAT and
the USPTO’s PatentsView. For US-based inventors, we combine these patent data with
demographic information from the US population censuses between 1850 and 1940. Fi-
nally, for US assignees, we add information on industrial research labs. Fig. A1 provides
a schematic overview of all data processing and merges that were carried out.
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Figure A1: A: Sample page of the 1880 Annual report of the Commissioner of Patents. B First page of patent number

2018/0282392 A1. C Sample page of 1931 edition of “Industrial Research Laboratories of the United States”. D Sample page of US

Census form. E Identification of most likely national origin of surnames. Hispanic surnames are identified using models trained on

the 2000 US Census (Sood and Laohaprapanon, 2018), East-Asian surnames using models trained on Wikipedia (Ambekar et al.,

2009). F: Projection of cross-occupation labor flow network on 2-dimensional UMAP embedding. G First names are associated

with genders by majority vote in about 650M census records. We focus on a sample where first names display little ambiguity

in gender, requiring that at least 90% of census records list the same the gender for the first name. H: Histogram of ŷ(a)
i (blue)

and ŷ(b)
i (red) in a random sample of about 68M potential matches. Some potential matches of seemingly high quality when using

only name- and geographical distances are downgraded in the second-stage xgboost model, which also accounts for the quality of

alternative matches. I: Match rate: share of inventors that can be matched with moderate accuracy (ŷ(b)
i � .95, orange) and high

accuracy (ŷ(b)
i � .99, green) to one of the two census waves closest in time to the patent’s grant date.
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A.1 Patent yearbooks

Patent yearbooks have been scanned by di↵erent universities.27 For most years, we can
therefore access multiple digital copies of the same yearbook. All image files for these
scanned copies were accessed through the Hathi Trust Foundation, except for scans ob-
tained from the Smithsonian Foundation, which were obtained directly from this founda-
tion. Together, this amounts to about half a million scanned pages.

To convert scans to text, we apply image preprocessing and optical character recogni-
tion (OCR) algorithms. Next, we correct errors in the extracted text by cross-validating
the output across di↵erent scans of the same yearbook, using a majority vote to decide
on the correct string.

We further process these strings, using natural language processing (NLP) algorithms
to separate inventor names and places of residence, assignee names and assignee locations,
short descriptions of the invention, patent numbers and grant dates. To do so, we first
manually create a ground truth that separates the aforementioned entities, which can be
found in the online code appendices. Some reports only list first names in full for the first
inventor, providing initials and last names for any additional inventors. However, these
yearbooks typically contain additional lines that provide full first and last names for the
other inventors as well. These lines can be identified by the string “(See <name of first
inventor>)”. Whenever possible, we supplement first-name information from these lines.
However, in some cases and years only initials are provided for second and subsequent
inventors, which complicates the merge to census records.

Patents can be assigned (i.e., transfer intellectual property rights) to individuals or
organizations other than the original inventors. If this happened before or at the time the
patent was granted, the yearbooks contain this information, following the string “assigned
to”. To distinguish between patents assigned to organizations (e.g., “assigned to Wright
Metal Incorporated”) and patents assigned to individuals (e.g. “assigned to Benjamin
Reece and Neary Claflin”), we once again rely on NLP, manually creating a ground truth
training set for named entity extraction. The vast majority of organizations in this period,
over 99%, are firms.

Because the same organization may be listed in di↵erent yearbooks under di↵erent
names (e.g. “General Electrics” versus “General Electric Inc.” versus “General Electric
Incorporated”) we manually align common terms (e.g., replacing “Mfg.” by “Manufactur-
ing”) and then apply a fuzzy name-matching algorithm that calculates string similarities
across all assignees. We use this to disambiguate organization names, merging names
likely to refer to the same organizations.

This process allows us to extract detailed information on patents, their inventors and
assignees for the period 1856-1953. In the analysis, we exclude the years 1873, 1874, 1878,

27These are the following universities: Harvard University, Princeton University, University of Cali-
fornia, University of Chicago, University of Illinois at Urbana-Champaign, University of Michigan and
University of Wisconsin.
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1908, 1909, 1951 and 1952. In 1874, yearbooks are missing altogether. In the other years,
first names of inventors are not reported, which complicates the match to census data.
Furthermore, we restrict the sample of patents to utility patents, excluding reissues or
translations of existing patents, provisional patents, design patents and (organic) plant
patents. Finally, we drop patents where one or more inventors are located outside the
US.

The Python code of these procedures - including ground truth training data sets - is
available in the Supporting Material, Repository 1.

A.2 Technology classes

Technology classes and subclasses in the USPC classification system are provided by
the USPTO for bulk download in the CASSIS Patents Assignments File and the Bulk
Data Products repository (https://bulkdata.uspto.gov/). These data provide grant
numbers and dates for all patents, as well as the list of primary and secondary technology
codes.

We match the patents in the yearbooks to these data using the patent number. How-
ever, OCR errors may lead to ambiguous and/or imperfect matches. In these cases, we
add the patent’s grant date to improve the match.

Finally, we aggregate technology classes into broader categories using the classifica-
tion of (Hall et al., 2001). Because this classification is not available for all patents, we
infer a correspondence between NBER subcategories and USPC main classes, using the
primary technology classes for patents that are classified in both systems. We use this
correspondence to add the aggregated NBER classes to as many patents as possible.

A.3 Census data

We obtain US census records from the Integrated Public Use Microdata Series, or IPUMS
(Ruggles et al., 2021). These records, about 650 million in total, contain the answers to
census questions for all US residents for the years 1850, 1860, 1870, 1880, 1900, 1910,
1920, 1930 and 1940. 1890 is unavailable because a fire destroyed most of the records
of that year. In our analysis, we use information on first and last names, years of birth,
places of residence, industries and occupations.

Matching inventors to the US census To match inventors to census records, we
proceed in five steps:

1. For each inventor, we find a set of candidate matches based on the string distance
between the inventor’s last name and all last names in a US census wave. On average
there are 326,697 candidate matches for each patent-inventor combination.
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2. We create a ground truth for a subset of inventor-individual matches, relying on
inventors whose patents are listed on Wikidata, which adds detailed information on
date and place of birth, places of residence, as well as spouses, children and parents.

3. We train a first-round xgboost model on this ground truth that predicts correct
matches from information on distances between an inventor and all candidate matches
in the census, using as predictors string distances for first names, last names and ini-
tials, as well as the geographical distance between the place of residence in IPUMS
and on the patent. This model provides for each inventor-candidate pair a score
that describes the quality of each match candidate: ŷa.

4. We train a second-round xgboost model on a di↵erent set of ground truth observa-
tions that uses as predictors ŷ(a)

ij
, as well as the top k ŷ(a)

ij0 scores across all match
candidates associated with inventor i. This yields for each inventor-candidate pair
a second match score ŷ(b)

ij
.

5. We link inventors to individuals by choosing the individual in the US census with
the highest ŷ(b)

ij
across all candidates j.

The first-round model e↵ectively decides how di↵erent distances between inventor and
census individuals should be weighted when choosing among multiple match candidates.
The second-round model helps determine how much confidence we should have in a match,
taking into consideration that confidence should be low if either ŷ(a)

ij
is low, or if there are

multiple candidates j with more or less equal values of ŷ(a)
ij

.
Fig. A2 shows how well our models perform within our ground truth dataset. To do

so, we split inventors into a 75% train and a 25% test dataset and then add all potential
match candidates from the census to the corresponding inventors. We fit our models using
the train dataset and use the fitted model to predict out-of-sample for each inventor in the
test dataset which is the best match among all available candidates. We denote this match
candidate by the subscript j⇤(i). Next, we calculate the deciles of ŷ(b)

ij⇤(i) in the test sample,

ŷ(b)
d

for d 2 {0.1, 0.2, ..., 1.0}. Finally, we plot the share of correctly matched inventors

on the y-axis against the share of the sample that we match if we choose ŷ(b)
ij⇤(i) � ŷb

p
in

descending order of ŷ(b)
d
.

The graph shows that up to 60% of inventors can be matched with very high accuracy
to census records. After this, the match rate starts falling. Our decision to match inventors
to census individuals whenever ŷ(b)

ij⇤(i) � 0.99 amounts to a true positive rate of 0.92 in our

ground truth data. in contrast, choosing a cut-o↵ such that ŷ(b)
ij⇤(i) � 0.95 implies a true

positive rate of 0.89.
Fig. A1H shows the histograms of ŷ(a)

i
and ŷ(b)

i
in a random sample of about 68M

potential matches taken from the entire population of inventors and their match candi-
dates (i.e., not limited to our ground truth data). In this paper, we only use matches
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Figure A2: Out-of-sample performance of matching algorithm Vertical axis
shows the true positive rate in out-of-sample matches between inventors and candidate matches
in the US census for deciles of the top second-stage match scores across all of an inventor’s

match candidates, ŷ(b)
ij⇤(i), in descending order of match quality. The horizontal axis shows the

share of all inventors that were matched at the corresponding levels of ŷ(b)
ij⇤(i) or higher.

for which ŷ(b)
i

� .99. Although the second stage xgboost estimates, ŷ(b)
i
, do not improve

match quality, they do downgrade a number of seemingly high-quality matches. This
typically happens when inventors with common names have multiple close matches in the
census data. Because a multiplicity of good matches actually complicates selecting the
right match, the second stage correctly lowers the estimated quality of such matches.

We repeat this analysis, matching each inventor to the two nearest census waves, except
for patents after 1940, where inventors are matched only to the 1940 wave. Next, we select
the match candidate with the highest ŷ(b)

i
of all candidates in either wave, conditionally

on the associated individual being at least 16 years old. In case one of the two matches
is younger than 16 years, we select the other match, provided that ŷ(b)

i
� .95. If both

matches involve individuals younger than 16 years, we do not match the inventor to the
census. The match rate at both levels of accuracy over time is given in Fig. A1I.

A.4 Industrial research labs

Data about industrial research labs are extracted from the National Research Council’s
Industrial Research Laboratories of the United States surveys (Fig. A1C). Waves of this
survey were conducted in 1920, 1927, 1931, 1933, 1938, 1940, 1946, 1948, 1950 and 1956.
These surveys provide information on the name of each lab, its main activity, location,
(managing) directors and important researchers.

We digitize these surveys using OCR algorithms. Next, we clean the names by remov-

47



ing common words such as ‘company’ and ‘limited’ and we calculate the Jaro-Winkler
string similarity between every lab and patent assignee. Finally, we match records if the
similarity is greater than 0.95 or if the similarity is greater than 0.90 and at least one of
the words in the names matches perfectly.28

To determine when a given assignee started operating a research lab, we use informa-
tion on the founding years from the 1940 and 1946 editions. For labs that are not reported
in these editions, we set the founding date to the year of the first survey that mentions
these labs. Finally, when labs are mentioned in editions that predate the founding year,
we override the founding years by the year of the earliest edition that mentions the lab.

The Python code and output of this exercise are available in the Supporting Material,
Repository 2.

B Variable construction

B.1 Occupations

The census data contain harmonized occupation codes in the occ1950 classification created
by IPUMS from transcribed text that the census enumerator had originally noted down.
With over 250 di↵erent job titles, the occ1950 classification is too detailed to use in the
descriptive analyses of this study. Therefore, we aggregate these job titles into broader
classes. One concern is that the prevalence of some occupational titles changes, even
when jobs do not. In particular, the occupations that are reported in the census are
ultimately based on self-reported jobs. As a consequence, the emergence of engineers in
the census may not only be due to an actual expansion of engineers in the population, but
also because more individuals start describing themselves as engineers. To address this
concern, we group occupations into classes, based on an analysis of labor flows between
the detailed occupations of the occ1950 classification.

To create labor-flow-based occupation groupings, we first create a matrix F with
elements Fij that contain the total number of individuals who move from occupation i to
occupation j in the subsequent census wave. To do so, we start by selecting all individuals
with non-missing occupation codes. Next, the level of detail at which occupations are
described can vary across census waves. This is the case for Professors (codes 10-29)
and Scientists (codes 61-69), which in some census waves are subdivided by field and in
others only reported as aggregates. We combine these two sets of occupations into the
two aggregate classes of professors and scientists.

Next, we construct for each pair of sequential decades the total number of individuals
who listed occupation i in the first decade and occupation j in the next decade. This
provides us with decadal cross-occupational labor flows. Note that due to the loss of the

28Similar procedures using other similarity measures, e.g. using the Levenshtein distance, with di↵erent
thresholds, yield similar results.
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1890 census in a fire, labor flows that start in 1880 end in 1900. Because the population
grows from 23M in 1850 to 132M in 1940, these counts will be dominated by job switches
in later decades. To remedy this, we normalize the flows in each decade by the sum total
of all flows in that decade to express them as shares that add up to 1 in each decade.
Next, we multiply these shares with the grand total of all flows across all decades divided
by eight, the number of decade pairs. This ensures that flows from each year are weighted
equally, while retaining the total number of job switchers across all decades.

To turn the flow matrix, F , into a matrix of flow intensities, we calculate skill relat-
edness (Ne↵ke and Henning, 2013). Skill relatedness quantifies whether an observed flow
between two occupations surpasses a random benchmark. Here, we follow van Dam et al.
(2023), who develop an information-theoretic framework to generate Bayesian estimates
of the amount of surprise involved in observing a flow Fij, given the total inflows into
occupation j and the total outflows from occupation i. To be precise, we will estimate
the point-wise mutual information pmi(i, j) = log qij

qiqj
, where qij is the probability of ob-

serving an individual moving from occupation i to j, qi the (marginal) probability that an
individual leaves occupation i and qj the marginal probability that an individual moves
to occupation j. We collect these estimates in matrix PMI.

We convert this measure of relatedness into a measure of distance by subtracting
matrix PMI from the maximum value across all its elements. Following recommendations
of Muneepeerakul et al. (2013) and Li and Ne↵ke (2023), we drop elements of PMI that
are not significantly (p = 0.01) larger than 0, taking such occupations to be unrelated.29

In distance matrix, D, these unrelated entries are set to a value of ten times the maximum
distance.

Using this distance matrix, we estimate a 10-dimensional Uniform Manifold Approx-
imation and Projection (UMAP, McInnes et al., 2018) embedding on which we project
all occupations (see Fig. A1F for a projection on a 2-dimensional embedding). Finally,
we use the Python implementation of Campello et al.’s (2013) HDBSCAN algorithm to
cluster occupations at two di↵erent, nested hierarchical levels. The resulting two-level
clusters are provided in Table B1. In the analyses, we only use the first, highest-level
clusters.

Table B1: Occupational classification - flow-based grouping

Mailmen

Mailmen: 84: Express messengers and railway mail clerks; 85: Mail carriers; 91: Telegraph
operators; 93: Ticket, station, and express agents

Continued on next page

29Note that we retain the direction of the flows and do not symmetrize this relatedness matrix. More-
over, diagonal elements are treated the same as any other element.
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Table B1: Occupational classification - flow-based grouping (Continued)

Transport Services

Transport Services: 64: Conductors, railroad; 78: Baggagemen, transportation; 83:
Dispatchers and starters, vehicle; 179: Brakemen, railroad; 180: Bus drivers; 182: Conductors,
bus and street railway; 195: Motormen, street, subway, and elevated railway; 204: Switchmen,
railroad; 225: Guards, watchmen, and doorkeepers; 230: Policemen and detectives; 236:
Watchmen (crossing) and bridge tenders

Printing

Printing: 106: Bookbinders; 112: Compositors and typesetters; 116: Electrotypers and
stereotypers; 117: Engravers, except photoengravers; 147: Photoengravers and lithographers;
151: Pressmen and plate printers, printing; 172: Apprentices, printing trades

Logging

Logging: 29: Foresters and conservationists; 52: Surveyors; 124: Inspectors, scalers, and
graders, log and lumber; 201: Sawyers; 246: Lumbermen, raftsmen, and woodchoppers

White Collar

Government: 67: Inspectors, public administration; 70: O�cials and administrators
(n.e.c.), public administration; 96: Auctioneers; 228: Marshals and constables; 233: Sheri↵s
and baili↵s

Financial: 1: Accountants and auditors; 79: Bank tellers; 80: Bookkeepers; 81: Cashiers;
87: O�ce machine operators; 94: Clerical and kindred workers (n.e.c.)

Other White Collar: 7: Authors; 10: Clergymen; 11: Professors; 17: Editors and
reporters; 28: Farm and home management advisors; 32: Librarians; 44: Recreation and group
workers; 45: Religious workers; 46: Social and welfare workers, except group; 48:
Psychologists; 50: Miscellaneous social scientists; 53: Teachers (n.e.c.); 62: Buyers and
department heads, store; 66: Floormen and floor managers, store; 71: O�cials, lodge, society,
union, etc.; 72: Postmasters; 74: Managers, o�cials, and proprietors (n.e.c.); 75: Agents
(n.e.c.); 76: Attendants and assistants, library; 82: Collectors, bill and account; 89:
Stenographers, typists, and secretaries; 95: Advertising agents and salesmen; 99: Insurance
agents and brokers; 101: Real estate agents and brokers; 102: Stock and bond salesmen; 103:
Salesmen and sales clerks (n.e.c.)

N.E.C.: 31: Lawyers and judges; 39: Personnel and labor relations workers; 47: Economists;
49: Statisticians and actuaries; 65: Credit men; 92: Telephone operators

Farming

Continued on next page
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Table B1: Occupational classification - flow-based grouping (Continued)

Farming: 60: Farmers (owners and tenants); 61: Farm managers; 238: Farm foremen; 239:
Farm laborers, wage workers; 240: Farm laborers, unpaid family workers

Engineers

Engineers: 4: Architects; 16: Draftsmen; 18: Engineers, aeronautical; 19: Engineers,
chemical; 20: Engineers, civil; 21: Engineers, electrical; 22: Engineers, industrial; 23:
Engineers, mechanical; 24: Engineers, metallurgical, metallurgists; 25: Engineers, mining; 26:
Engineers (n.e.c.); 181: Chainmen, rodmen, and axmen, surveying

Service Work

Health Care: 9: Chiropractors; 13: Dentists; 37: Optometrists; 38: Osteopaths; 40:
Pharmacists; 42: Physicians and surgeons; 54: Technicians, medical and dental; 55:
Technicians, testing; 57: Therapists and healers (n.e.c.)

Low Skill Service: 15: Dietitians and nutritionists; 34: Nurses, professional; 35: Nurses,
student professional; 77: Attendants, physicians and dentists o�ce; 97: Demonstrators; 104:
Bakers; 184: Dressmakers and seamstresses, except factory; 187: Fruit, nut, and vegetable
graders, and packers, except factory; 190: Laundry and dry cleaning operatives; 192: Milliners;
210: Housekeepers, private household; 211: Laundresses, private household; 212: Private
household workers (n.e.c.); 213: Attendants, hospital and other institution; 214: Attendants,
professional and personal service (n.e.c.); 216: Barbers, beauticians, and manicurists; 217:
Bartenders; 218: Bootblacks; 219: Boarding and lodging house keepers; 220: Charwomen and
cleaners; 221: Cooks, except private household; 222: Counter and fountain workers; 223:
Elevator operators; 226: Housekeepers and stewards, except private household; 227: Janitors
and sextons; 229: Midwives; 231: Porters; 232: Practical nurses; 235: Waiters and waitresses;
237: Service workers, except private household (n.e.c.)

N.E.C.: 143: Opticians and lens grinders and polishers; 244: Gardeners, except farm, and
groundskeepers

Arts And Design

Arts And Design: 5: Artists and art teachers; 14: Designers; 41: Photographers; 98:
Hucksters and peddlers; 121: Furriers; 122: Glaziers; 158: Tailors and tailoresses; 198:
Photographic process workers

Entertainment

Artists: 2: Actors and actresses; 12: Dancers and dancing teachers; 33: Musicians and music
teachers

Sports And Farm Work: 6: Athletes; 27: Entertainers (n.e.c.); 51: Sports instructors
and o�cials; 58: Veterinarians; 63: Buyers and shippers, farm products; 191: Meat cutters,
except slaughter and packing house; 241: Farm service laborers, self-employed

Continued on next page
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Table B1: Occupational classification - flow-based grouping (Continued)

N.E.C.: 215: Attendants, recreation and amusement

Shipyard Work

Nautical: 69: O�cers, pilots, pursers and engineers, ship; 178: Boatmen, canalmen, and
lock keepers; 200: Sailors and deck hands; 242: Fishermen and oystermen

Laborers: 245: Longshoremen and stevedores; 248: Laborers (n.e.c.)

N.E.C.: 111: Cement and concrete finishers

Textile Workers

Textile Workers: 131: Loom fixers; 185: Dyers; 202: Spinners, textile; 207: Weavers,
textile; 209: Operative and kindred workers (n.e.c.)

Blue Collar

Locomotive Workers: 118: Excavating, grading, and road machinery operators; 129:
Locomotive engineers; 130: Locomotive firemen; 155: Stationary engineers; 203: Stationary
firemen; 224: Firemen, fire protection

Oilers And Hoistmen: 113: Cranemen, derrickmen, and hoistmen; 196: Oilers and
greaser, except auto

Mining And Railroads: 125: Inspectors (n.e.c.); 137: Mechanics and repairmen,
railroad and car shop; 177: Blasters and powdermen; 193: Mine operatives and laborers; 194:
Motormen, mine, factory, logging camp, etc.

Carpentry: 110: Carpenters; 140: Millwrights; 146: Pattern and model makers, except
paper; 165: Apprentice carpenters

Metal Workers: 105: Blacksmiths; 120: Forgemen and hammermen; 123: Heat treaters,
annealers, temperers; 141: Molders, metal; 152: Rollers and roll hands, metal; 188:
Furnacemen, smeltermen and pourers; 189: Heaters, metal

Machine Workers: 127: Job setters, metal; 132: Machinists; 160: Tool makers, and die
makers and setters; 167: Apprentice machinists and toolmakers

Repair O�ce Machinery: 43: Radio operators; 135: Mechanics and repairmen, o�ce
machine; 136: Mechanics and repairmen, radio and television

Electrical: 115: Electricians; 128: Linemen and servicemen, telegraph, telephone, and
power; 142: Motion picture projectionists

Continued on next page
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Table B1: Occupational classification - flow-based grouping (Continued)

Motorized Transportation: 3: Airplane pilots and navigators; 133: Mechanics and
repairmen, airplane; 134: Mechanics and repairmen, automobile; 163: Apprentice auto
mechanics

Motorized Transportation: 183: Deliverymen and routemen; 205: Taxicab drivers and
chau↵ers; 206: Truck and tractor drivers; 243: Garage laborers and car washers and greasers;
247: Teamsters

Masonry: 108: Brickmasons, stonemasons, and tile setters; 149: Plasterers; 156: Stone
cutters and stone carvers; 164: Apprentice bricklayers and masons

Other Construction: 144: Painters, construction and maintenance; 145: Paperhangers;
150: Plumbers and pipe fitters; 159: Tinsmiths, coppersmiths, and sheet metal workers; 161:
Upholsterers; 170: Apprentices, building trades (n.e.c.); 173: Apprentices, other specified
trades; 174: Apprentices, trade not specified; 197: Painters, except construction or maintenance

N.E.C.: 90: Telegraph messengers; 100: Newsboys; 107: Boilermakers; 109: Cabinetmakers;
114: Decorators and window dressers; 138: Mechanics and repairmen (n.e.c.); 148: Piano and
organ tuners and repairmen; 154: Shoemakers and repairers, except factory; 162: Craftsmen
and kindred workers (n.e.c.); 166: Apprentice electricians; 168: Apprentice mechanics, except
auto; 169: Apprentice plumbers and pipe fitters; 171: Apprentices, metalworking trades
(n.e.c.); 175: Asbestos and insulation workers; 176: Attendants, auto service and parking; 186:
Filers, grinders, and polishers, metal; 199: Power station operators; 208: Welders and flame
cutters; 234: Ushers, recreation and amusement

N.E.C.

N.E.C.: 8: Chemists; 30: Funeral directors and embalmers; 36: Scientists; 56: Technicians
(n.e.c.); 59: Professional, technical and kindred workers (n.e.c.); 68: Managers and
superintendents, building; 73: Purchasing agents and buyers (n.e.c.); 86: Messengers and o�ce
boys; 88: Shipping and receiving clerks; 119: Foremen (n.e.c.); 126: Jewelers, watchmakers,
goldsmiths, and silversmiths; 139: Millers, grain, flour, feed, etc.; 153: Roofers and slaters; 157:
Structural metal workers

The flow-based clustering of occupations yields one group of occupations that contains
all engineering occupations. However, this group also includes three further occupations
that have strong labor-flow connections to engineering jobs: Architects, Draftsmen and
Chainmen, rodmen, and axmen, surveying (i.e., occupations related to land surveying).

To check the robustness of our results, we also consider a di↵erent way of grouping
occupations into broad sectors, using the hierarchical structure of the occ1950 codes.
Because of our interest in the rise of engineers among inventors, we subdivide the sector
“Professional, technical,” which contains the engineering occupations, into a number of
smaller subclasses. Furthermore, we separate apprentices as a subclass of the sector
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Table B2: Occupational classification - hierarchical grouping

Codes Class name
0 - 99 Professional, technical

41 - 49 Engineers
7, 10, 12-19, 23-29, 61-69, 81-84 Scientists
1, 4, 6, 31, 51, 57, 74, 77, 91 Artists
8, 32, 34, 58-59, 70-71, 73, 75, 97-98 Health care
0, 9, 55, 72 O�ce professionals
2-3, 33, 92, 94-96 Technical workers
36, 52-54, 56, 76, 78-79, 93, 99 Other professionals

100 - 123 Farmers
200 - 290 Managers, O�cials, and Proprietors
300 - 390 Clerical and Kindred
400 - 490 Sales workers
500 - 594 Craftsmen
600 - 690 Operatives

600 - 621 Apprentices
622 - 690 Operatives

700 - 720 Service Workers (private household)
730 - 790 Service Workers (not household)
810 - 840 Farm Laborers
910 - 970 Laborers
595, 979 - 999 Missing

“Operatives”. Table B2 summarizes these groupings.30

We can now determine which occupations are overrepresented in the patent records,
by comparing their shares among inventors to their shares in the working-age population.
To do so, we calculate the following quantity:

⇢ot =
Not/

P
o0 No0t

POP ot/
P

o00 POP o00t
(5)

where Not is the number of patents by inventors with occupation o in period t and POP ot

30The missing category consists of the following occupation codes: Members of the armed services ;
Not yet classified ; Keeps house/housekeeping at home/housewife; Imputed keeping house (1856-1900);
Helping at home/helps parents/housework ; At school/student ; Retired ; Unemployed/without occupation;
Invalid/disabled w/ no occupation reported ; Inmate; New Worker ; Gentleman/lady/at leisure; Other
non-occupational response; Occupation missing/unknown; and N/A (blank).
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Figure B1: Overrepresentation of broad occupation classes in patent records.
a: Overrepresentation of flow-based occupational clusters. b: Overrepresentation of occupa-
tional sectors.

the number of working-age individuals in the census records with occupation o in period
t. To determine POP ot outside census years, we interpolate linearly between two census
waves.

Fig. B1 plots the overrepresentation of flow-based clusters (B1a) and of broad oc-
cupational sectors (B1b) over time. It shows that engineers had always been heavily
overrepresented among inventors, but that this overrepresentation increases even more in
the 1920s. Another group of occupations that emerges in this period can be identified in
the flow-based clusters: arts and design occupations. In contrast, blue collar workers and
craftsmen become increasingly less overrepresented over time.

The Python code of this exercise is available in the Supporting Material, Repository
3.

B.2 Distinguishing family teams

There are two ways in which we can assess whether co-inventors are related in our dataset.
First, for patents until 1953, the matched census records allow us to construct family
ties. This approach has the advantage that it allows identifying a large variety of family
ties, such as siblings, cousins, uncles and nephews, grandparents and grandchildren, etc..
However, the construction of these family ties relies on matching inventors to the census,
and for more distant family ties, linking census individuals across multiple census waves.
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However, both of these types of linkages are imperfect, complicating the use of census
linkages to determine family ties.

Instead, therefore, we rely on a second approach and identify family ties based on
shared last names. That is, we assume that two inventors are related if they share the
same last name. Because not all family ties are necessarily associated with shared last
names, this approach results in an under-count of family-based teamwork. Moreover,
even when two inventors share the same last name, they are not necessarily related. Such
spurious family ties will be particularly common for inventors with common last names.
The nature of this problem changes over time. In the 1940s, the most common last name
is Smith and inventors with that last name hold 0.78% of all patents. This is followed
by Johnson (0.51%), Miller (0.47%), Brown (0.37%) and Anderson (0.35%). From the
1980s on inventors with last names that are common in certain East-Asian countries start
dominating this list. For instance, the top 5 surnames on patents in 2010 is composed
of Kim (1.17%), Lee (1.15%), Chen (.86%), Wang (0.77%) and Park (0.61%). This
reflects the high frequency of certain surnames in specific countries (especially in Asia).
For instance, we find that 19.9% of inventors residing in Korea record the surname Kim
and the five most common Korean surnames account for 49.3% of all inventors in Korea.
Similarly high percentages are found for inventors residing in Taiwan (top 5 surnames:
33.1% of total), China (30.5%), Malaysia (19.7%), Hong Kong (18.8%) and Denmark
(14.4%).

To correct our estimates of family-based team-patents, we create a random benchmark
in which we shu✏e inventor surnames across patents. However, we do this in such a way
that inventors whose name suggests a certain “ethnicity” can only swap patents with
inventors with the same inferred ethnicity. This acknowledges that inventors may be
more likely to form teams within an ethnic community.

To construct the ethnicity variable, we drop all inventors residing in the US, Canada or
Australia, because the populations of these countries have always included many migrants
from all over the world. Furthermore, because China, Taiwan, Hong Kong, Singapore and
Malaysia share many of the same last names, we group the inventors residing in these
countries into a single category. Similarly, we group all inventors in Spain and Spanish-
speaking Latin American countries, as well as Germany, Austria and Liechtenstein. Fi-
nally, countries with fewer than 100,000 patents are grouped in a residual category, RoW.
For every surname, we now determine the most likely geographical origin as the country
that accounts for the greatest share of inventors with that surname.31

Finally, we randomize surnames across inventor-patent combinations. To do so, we
shu✏e the surname column within (grant-year, name-origin) pairs. Fig. B2 shows that
for the period reported in Fig. 9, these null-model shares are negligible.

The Python code of this exercise is available in the Supporting Material, Repository

31This procedure leads to some problems for Indian surnames, which are also very common in the
UK. For these names, we make a number of manual adjustments that can be found in the code in the
accompanying Supporting Material.
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Figure B2: Null model comparison family teams. a: Share of teams that list inven-
tors with the same last name. b: Share of firm patents that list inventors with the same last
name. Blue: shares in observed data, red: shares in reshu✏ed data. Thin lines display 95%
confidence intervals.
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4.

B.3 Disambiguated inventor dyads

Disambiguating inventor names is complicated, due to the size of the US population
and the limited information that exists about each inventor. As long as first and last
name combinations are rare, inventor disambiguation across patents would in principle be
possible. However, the same individual may report slightly di↵erent names on di↵erent
patents and in the census, a problem compounded by spelling mistakes and OCR errors.
Because of this, we consider disambiguating inventors across patents to be beyond the
scope of this paper.

However, disambiguating pairs of co-inventors is much easier. To see this, let pn denote
the share of individuals in the US census with surname n. Consequently, if we randomly
pick two individuals from the census, the probability of observing a pair with surnames
a and b equals papb. Furthermore, we drop inventors whose last name is very common,
that is, we drop inventors with last names that are found over 500k times across all 9 US
censuses. Because there are roughly 650M records in these censuses, if we were to pick
two random individuals, the probability of drawing any given combination of two last
names is at most

�
600k

650M

�2
= 1

1.69M
.

However, in family-based teams, inventors often share the same last name. That is, for
family-based pairs, surname draws are not uncorrelated. To disambiguate these inventor
pairs, we drop all same-surname pairs if the surname is repeated over 50k times across
all censuses. Finally, we drop inventors with East-Asian or Indian surnames. This yields
a total of 133k unique inventor dyads across all patents granted between 1856 and 1949.

To explore the validity of this approach, we calculate the lifespan of each inventor
dyad. That is, for dyads that are associated with more than one patent, we calculate the
time between their first and last patent. We find that 99.9% of dyads that are listed on
more than one patent have a lifespan shorter than 24 years, which we deem plausible.

In Fig. 9c, we use this disambiguated dyads sample, Sdisamb, to analyze repeat col-
laborations. To do so we calculate for each decade the share of patents that resulted
from repeated collaborations. That is, we sum all patents by the disambiguated dyads in
Sdisamb that patent more than once in a given decade and divide this sum by the total
number of patents that were granted to any disambiguated dyads in this decade.

B.4 Gender

To assess the gender of inventors, we could rely on the matched census records. This
approach has two disadvantages. First, we would only be able to determine a gender
for the inventors that we can accurately match to the census records. Second, and more
importantly, our census records only allow us to match inventors until 1945. Instead,
therefore, we infer the most likely gender of an inventor based on their first names (see
Fig. A1G). To do so, we calculate which share of individuals with a given first name listed
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Figure B3: Robustness of female participation analysis. a: Share of inventors with
a first name that is used in at least 50% of census records by individuals that list their gender
as female, dropping all individuals whose first name coincides with male or female genders in
at least 90% of records. b1: Share of surnames that are probably of Hispanic origin (i.e., with
positive but below 90% probability). b2: Share of surnames that are probably of East-Asian
origin (i.e., with positive but below 90% probability). Gray: all patents, red: standalone patents,
purple: firm patents.

their gender as female or male in the US censuses between 1850 and 1940. Whenever this
percentage (in the US population not among inventors) exceeds 90%, we infer that the first
name is mostly used by women, respectively men. In these cases, we associate inventors
with such first names with the most common gender for these names in the census records.
Otherwise, we set gender to missing. We also set gender to missing if the first name is
shorter than 3 characters, to avoid inferring genders from initials misidentified as first
names.

To assess how consequential this choice is, we repeat the analysis in 17 for inventors
whose first names were often used by both men and women (i.e., where fewer than 90%
of individuals listed the same gender). For these cases, we now decide on the gender
by majority vote, i.e., inventors are classified as female if at least 50% of census records
with these first names list female as a gender, and otherwise as male. Fig B3a shows the
evolution of female inventor shares using this more ambiguous sample, corroborating the
patterns described in Fig 17.
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B.5 Surname national origins

To infer the national origins of surnames, we rely on predictions32 from models that have
been trained on datasets that contain surnames and their associated nationality by Sood
and Laohaprapanon (2018). We focus on Hispanic and East-Asian surnames, because
these are relatively easy to identify. Hispanic surnames are identified from models trained
on data from the 2000 US Census, and East-Asian surnames are identified from models
trained on Wikipedia data (Ambekar et al., 2009).

Both algorithms yield an accuracy score that can be interpreted as the estimated prob-
ability that a given surname is of Hispanic or East-Asian origin respectively. Whenever
this score doesn’t surpass 0.9, we refrain from labeling the surname as Hispanic or East-
Asian. As a consequence, the estimated inventor shares are undercounts. However, our
main interest is in how these shares di↵er between firm-based and standalone patents and
how this di↵erence evolves over time. For this purpose, we only need to assume that the
degree of undercounting does not vary systematically over time or with whether or not
an inventor patents on behalf of a firm.

To assess how robust this analysis is, we repeat the analysis for individuals with
surnames that are probably of Hispanic or East-Asian origin (Fig B3b and B3c). That is,
we calculate the shares of inventors whose surname suggest one of these two origins with
a probability that is nonzero, yet below 90%. The findings corroborate those reported in
Fig. 14.

C Graphs

C.1 General

Many graphs in the main text display how average characteristics of patents and their
inventors or assignees change over time. When choosing time windows over which to
average observations, we need to balance a su�ciently high temporal resolution with
reasonably precise point estimates of these means. This precision depends on the number
of observations in a given time interval. Because the number of observations, i.e., the
number of patented inventions, grows roughly exponentially, the width of the ideal time
window shrinks over time.

To resolve this, we create windows, not based on time, but on temporal rank. That
is, we sort all patents by their exact grant date and then divide the data into groups
of identical size, each containing N observations. Next, we calculate the average grant
year associated with each group and use this average year as the horizontal coordinate in
the graph. Meanwhile, estimated quantities are are plotted along the vertical axis, with
confidence intervals calculated as ±1.96 ⇥ (standard error of the mean). Note that
the group size di↵ers across, and sometimes even within graphs. This is due to the fact

32Obtained using the ethnicolr Python package by Sood and Laohaprapanon (2018).
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that some types of observations are more numerous than others. For instance, patents by
research labs are rather rare, especially in earlier years, whereas firm-based patents are
more common in most decades. Therefore, striking a useful balance between precision of
point estimates and time resolution leads to di↵erent group sizes for these two types of
patents.

C.2 Geography

In Fig. 12 panels a and c, we correct for the distribution of population across cities.
In panel a, we do this by dividing the e↵ective number of cities for the distribution of
patents across cities by the e↵ective number of cities for the distribution of population
across cities. In panel c, we correct for population dynamics by first creating locational
vectors. In particular, in each time window, we limit the set of cities to those that account
for at least 0.1% of the overall US population. Next, we divide the share of patents that
a city holds by the share of the US population it hosts. This locational vector captures
the overrepresentation of a city in inventive activity:

⇢cst =
Ncst/

P
c0 Nc0st

POP ct/
P

c00 POP c00t
(6)

where Ncst is the number of patents in city c, system s and period t, and POP ct the pop-
ulation of city c and period t. To determine POP ct between census years, we interpolate
linearly between two census waves.

We repeat this procedure once for the patents of system 1 and once for the patents of
system 2. Next, we calculate the correlation between the locational vectors of system 1
and 2. The result is plotted in Fig. 12c.

Furthermore, panel b of Fig. 12 shows the share of patents granted to inventors that
reside in one of the 25 largest city in the US, using the city rankings of the grant year.
Fig. C1 repeats this analysis for the largest 10 and 50 US cities, replicating the original
analysis of Fig. 12b in the center panel.

D Additional regression results

This section presents full tables and robustness checks for the regression analyses in the
main text. The regression models aim to associate the likelihood that a patent introduces a
new technological combination to the labor inputs (engineers and teams) and coordination
modes (firms and industrial research labs) of system 2. To proxy labor inputs, we ask
whether or not at least one inventor on the patent is an engineer. Furthermore, we ask
whether the patent was produced by a solo inventor or by a team of inventors. To assess
the mode of coordination behind a patent, we distinguish between patents that were
assigned to firms, patents that were assigned to firms with research labs and patents that
were assigned to individuals (either the inventors themselves or other individuals). Our

61



a. Top 10 Cities b. Top 25 Cities c. Top 50 Cities

Figure C1: Share of patents granted to inventors in the most populous US
cities. a: Top 10 cities; b: Top 25 cities; c: Top 50 cities.

primary goal is to assess whether certain types of organization enhance the capacity of
innovation inputs to produce novel combinations. That is, we are interested in interaction
e↵ects between inputs and organizational arrangements.

Furthermore, we distinguish between e↵ects on radical and on incremental novelty.
To do so, we run all analyses twice, once using novelty at the level of 3-digit technology
codes and once at the level of 6-digit technology codes. Finally, to determine whether
estimated parameters change over time, we split our data into four periods: the period
before the take-o↵ of research labs (1856-1919), the period in which research labs start
dominating invention (1920-1945) and the periods 1946-1968 and 1976-2000. Results are
summarized in Tables D1-D5.

D.1 1856-1945

To assess the robustness of these findings, we run models without fixed e↵ects (base
models), models with year fixed e↵ects (these are reported in the main text) and year-
NBER-sector fixed e↵ects, where the latter interact year dummies with the 6 technological
sector dummies in Hall et al. (2001). This yields the following specifications:

(A) baseline model + year fixed e↵ects (Table D1):

1. engineers : dummy for whether or not one of the inventors is an engineer;

2. team: dummy for whether or not the patent lists a team of inventors;

3. eng⇥team: interaction of 1 and 2;

4. firm: dummy for whether or not the patent was assigned to a firm;
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5. RnDlab: dummy for whether or not the patent was assigned to a firm with a
research lab;

6. eng⇥firm: interaction of 1 and 4;

7. eng⇥RnDlab: interaction of 1 and 5;

8. eng⇥team⇥firm: interaction of 1, 2 and 4;

9. eng⇥RnDlab: interaction of 1 and 5;

10. team⇥RnDlab: interaction of 2 and 5;

11. eng⇥team⇥RnDlab: interaction of 1, 2 and 5;

(B) baseline model + year ⇥ technological sector fixed e↵ects (Table D2);33

Note that we restrict the sample when fitting these models to patents where we can
match at least one inventor to census records.

The main focus of our analysis is on the role of engineers and teams as labor inputs
into the invention process and how these labor inputs are enhanced by new coordina-
tion mechanisms. Gauging such interaction e↵ects directly from the regression tables is
complicated.34 To show the role of interaction e↵ects more clearly, we plot some explicit
comparisons derived from the regression results in Figs D1-D4. These figures show how
the association of engineers or teams with the novelty of an invention depends on whether
these engineers or teams work for firms or research labs. The omitted category against
which e↵ects are compared consists of solo inventors, who are not engineers and who
patent outside firms and labs.

Our analysis corroborates that engineers tend to patent more often novel combinations,
regardless of the organizational context in which they operate (Figs. D1 and D2). This
shows that the results in the main text are robust when controlling for technology-year
fixed e↵ects. However, it should be noted that relatively few engineers file patents in a
standalone capacity: in the period 1856-1945, firms account for 72% of engineers and 76%
of teams that include engineers. Both shares rise over time, reaching over 80% by the
1920s.

Also the results on team patenting hold when controlling for technology-year fixed
e↵ects (Figs. D3 and D4). However, here we observe a slight reduction in point estimates
for firm-based and lab-based teams in model B.

D.2 1856-2000

Next, we analyze a smaller model to study how the e↵ects on a patent’s novelty change
over the entire time period from 1856 to 2000. Because we don’t observe demographic

33Technological sector refers to the 6 high-level groupings in Hall et al. (2001).
34For instance, to calculate the novelty e↵ect of a lab-based team of non-engineers in model 6 of Table

D1, we would need to add up the 2nd, 4th, 6th, 8th and 10th coe�cients and calculate the standard error
of this sum.
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Model A Model B

Figure D1: Summary of regression analyses: Engineer e↵ects (3-digit nov-
elty). Omitted category is patents by solo inventors outside firms. Vertical spikes display 95%
confidence intervals. Model A: baseline + year fixed e↵ects (reported in main text). Model
B: baseline + sector ⇥ year fixed e↵ects. Vertical spikes display 95% confidence intervals.

Model A Model B

Figure D2: Summary of regression analyses: Engineer e↵ects (6-digit novelty).
Omitted category is patents by solo inventors outside firms. Model A: baseline + year fixed
e↵ects (reported in main text). Model B: baseline + sector ⇥ year fixed e↵ects. Vertical spikes
display 95% confidence intervals.
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Model A
Model B

Figure D3: Summary of regression analyses: Team e↵ects (3-digit novelty).
Omitted category is patents by solo inventors outside firms. Model A: baseline + year fixed
e↵ects (reported in main text). Model B: baseline + sector ⇥ year fixed e↵ects. Vertical spikes
display 95% confidence intervals.

Model A Model B

Figure D4: Summary of regression analyses: Team e↵ects (6-digit novelty).
Omitted category is patents by solo inventors outside firms. Model A: baseline + year fixed
e↵ects (reported in main text). Model B: baseline + sector ⇥ year fixed e↵ects. Vertical spikes
display 95% confidence intervals.
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information or research labs in this period, we limit the analysis to estimating e↵ects of
teams and firms. Furthermore, so far, we have grouped all assignees other than individuals
into one category, which we labelled “firms”. However, some of these assignees are actually
better classified as other types of organizations, such as universities and government
agencies. This is only an issue after 1945: before 1945, fewer than 1% of organizational
patents are assigned to other organizations than firms. Therefore, when expanding the
sample from 1856 to 2000, we test the robustness of our results, dropping all patents that
were assigned to non-firm organizations and rerun our regression analyses. This yields
the following specifications:

(A*) baseline model + year fixed e↵ects (Table D3):

1. team: dummy for whether or not the patent lists a team of inventors;

2. firm: dummy for whether or not the patent was assigned to a firm;

3. team⇥firm: interaction of 1 and 2;

(B*) baseline model + year ⇥ technological sector fixed e↵ects (Table D4);35

(C*) baseline model after dropping patents assigned to non-firm organizations (Table
D5).

Tables D3-D5 describe the outcomes. We summarize the results in figures that show
how the team e↵ect changes between firm-based and standalone patents (Fig. D5-D6).
These figures illustrate the robustness of the findings reported in Fig. 18 of the main text.
Neither adding technology-year fixed e↵ects, nor dropping patents assigned to non-firm
organizations changes results by much.

35Technological sector refers to the 6 high-level groupings in Hall et al. (2001).
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Model A* Model B* Model C*

Figure D5: Team e↵ects 1856-2000 (3-digit novelty). Omitted category is patents
by solo inventors outside firms. Model A*: year fixed e↵ects (reported in the main text);
Model B*: sector ⇥ year fixed e↵ects. Model C*: year fixed e↵ects, patents assigned to
non-firm organization dropped. Vertical spikes display 95% confidence intervals.

Model A* Model B* Model C*

Figure D6: Team e↵ects 1856-2000 (6-digit novelty). Omitted category is patents
by solo inventors outside firms. Model A*: year fixed e↵ects (reported in the main text);
Model B*: sector ⇥ year fixed e↵ects. Model C*: year fixed e↵ects, patents assigned to
non-firm organization dropped. Vertical spikes display 95% confidence intervals.
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D.3 Gender

Finally, we use the regression model of eq. (3) to analyze the likelihood, not that a patent
lists a new combination of technologies, but that the patent lists an inventor that we
identify as female based in their first name. Table D6 shows the results. Given that the
three-way interactions are significant in these models, the results we refer to in footnote 24
in the main text refer to model (5) for the period 1856-1945.
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