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Abstract

In this paper we explore the impact of place-based innovation policy in Europe.
We focus on the effects of Smart Specialisation strategies on the labour productivity
of regional economies. We design an analytical framework that takes into account the
entrepreneurial discovery process through which the policy is implemented, and connect
the technological relatedness of regions with their specialisation choices. We use an IV
estimation approach capable of handling endogeneity problems, and apply it to an ex-
tensive dataset of 102 NUTS2 regions extracted from the European Commission Smart
Specialisation Portal. The results show that Smart Specialisation strategies increase
labour productivity as long as the priorities are set in sectors related to pre-existing
technological capabilities, indicating the fundamental importance of path-dependency
in diversification choices. The findings deepen our understanding of regional develop-
ment and innovation strategies, and have relevant implications for the implementation
of appropriate policy instruments.

Keywords: Related diversification; Specialization; Regional policy; Innovation
policy; Place-based Policies

JEL codes: O33; R11
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Introduction

How do regional economies evolve their industrial structures and areas of relative spe-

cialisation? And when regions diversify their activities, what impact should we expect on

the performance of local economies? These questions have long been the focus of much re-

search as well as intense policy debate. On the one hand, there are comparative advantages

stemming from specialisation, and on the other there are opportunities for Schumpeterian

structural change associated with the exploration of new sources of competitive advantage.

These two potential drivers of growth often coexist across a number of regional development

policy interventions, and it has proved very difficult to identify robust and generalisable

solutions. Europe is an interesting case because it has experienced significant change in its

policy approaches, and because it contains highly heterogenous institutional and economic

contexts on which EU policies apply. In the wake of the Lisbon’s agenda, renewed attention

was given to the design of place-based development strategies (Rodríguez-Pose and Wilkie,

2019; Barca, 2009). These strategies are thought of as policies adapted to idiosyncratic

characteristics of regions which cannot be completely designed and implemented from the

top-down. Thus, the third European Union Cohesion Policy cycle (2014-2020) kept as its key

target the promotion of sustainable, smart, and inclusive growth across all EU regions, but

introduced the principle that in order to obtain policy support, each region had to develop

and submit the the EU its own Regional Innovation Strategy. This is the so-called ’Smart

Specialisation’ strategy of the region (Foray, P. A. David, and B. Hall, 2009).

The premises of the policy rely on the ex-ante identification of the economic strengths

and potential of the region, and on the expansion of the growth opportunity set in the direc-

tion of new competitive advantage in high-value activities (Boschma, 2014; Deegan, Broekel,

and Fitjar, 2021). The regions’ potential must be translated into priorities, i.e. into choices

about the economic sectors in which each region should invest. The identification of priori-

ties occurs through a bottom-up approach known as the Entrepreneurial Discovery Process

(Foray, P. A. David, and B. H. Hall, 2011; Foray, Goddard, and Beldarrain, 2012). This pro-
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cess outlines a path of specialisation or diversification guided by the decision to explore new

production possibilities, which should be negotiated with a broad range of entrepreneurial

stakeholders, including firms, higher education institutions, research organisations, and in-

dependent innovators. Through the Entrepreneurial Discovery Process, regions assess their

existing knowledge assets and explore in which complementary and more or less adjacent

domains they should expand their technological capabilities (P. David, Foray, and B. Hall,

2009). The process implies that Smart Specialisation cannot be implemented as a "one-

size-fits-all" policy (Kroll, 2015) because regions have different past and present industrial

structures and technological trajectories. Regions can choose only a limited amount of prior-

ities, and the selection and implementation of Smart Specialisation objectives has not been

easy for local policy-makers, especially in regions with poor-quality governance (Aranguren

et al., 2019).

An interesting aspect of Smart Specialisation policy is also that, while it was rooted in an

economic geography framework (McCann and Ortega-Argilés, 2011; McCann and Ortega-

Argilés, 2015; Boschma, 2017), it was developed alongside a growing and variegated stream

of literature on the concept of economic ’relatedness’ (Content and Frenken, 2016; Boschma,

2017)). By the principle of relatedness regions can diversify into technologies and industries

that are contiguous and complementary to their existing capabilities, rather than diversify

on a portofolio basis through investments in domains that are unrelated, but potentially

profitable given that positive growth outcomes may be observable in other regions (Balland

et al., 2019).

To the best of our knowledge, a very limited amount of research focuses on the link

between the mechanisms of priorities selection and the performance effects of the policy.

In particular, if the priorities that are chosen through the technological relatedness princi-

ples translate into a symmetrical and effective evolution of the regional industrial structure.

Following this line of inquiry, Bathelt and Storper (2023) points out that relatively little

attention has been given to the contexts and mechanisms through which related variety
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shapes regional economic development. While research efforts on this topic have noticeably

accelerated, there is a risk of misalignment between theory, evidence and policy design, if

one cannot disentangle the endogeneity of diversification choices from their economic con-

sequences. Doing so requires the development of a framework that can bring together the

selection and the development sides of the policy, thus providing at the same time the means

to identify the effects of specialisation choices, and in particular the role of relatedness, and

the means to measure the economic effect of the policy.

To address this gap in the literature, we build a novel analytical framework that links

together technological capabilities, regional industrial structures and economic performance.

This approach can have general applicability in the evaluation of place-based innovation

policies because it accounts for the ex-ante trajectories of technological and industrial evo-

lution of the region. Moreover, we make a novel empirical contribution by showing whether

and how the Smart Specialisation policy has been effective in European regions. We show

that regions that operated a place-based selection of priorities outperformed regions that

made similar choices unconditionally with respect to their existing capabilities. Moreover,

multiple development paths, i.e. paths shaped by very different choices of priorities, have

proved effective in the European area.

The paper is organised as follows. In the next section, we provide a concise review of the

theoretical foundations of Smart Specialisation. We then describe the data and empirical

strategy. Next, we present our findings on regional specialisation decisions and their impact

on regional performance. The paper concludes by discussing the implications of Smart

Specialisation policies and their development.

Literature Review

Economic geographers and economists interested in technical change have long argued

that both space and history matter in the production, diffusion and use of knowledge (Dosi et

5



al., 1988; Feldman and Kogler, 2010). Moreover, space and history interact deeply with the

cognitive dimension of economic activities so that, because of the tacit nature of an important

share of productive knowledge (Polanyi, 2012), economic agents absorb and share knowledge

in specific local contexts so that local economies can construct comparative advantage by

intensifying social (informal) network interactions (Breschi, Lissoni, et al., 2003), investing in

knowledge exchanges with universities and research organisations (R. N. Freeman, 1987), and

by adapting their institutional frameworks (R. R. Nelson, 1995). Comparative advantages

can be built by strengthening existing specialisations or by expanding into new knowledge

domains (Foray, P. A. David, and B. H. Hall, 2011). The expansion into new domains

can entail different diversification choices depending on the distance of these domains from

existing areas of specialisation. The literature on ’related diversification’ stresses the idea

that there are advantages in diversifying in sectors, technologies, skills, and output with

characteristics that are similar or complementary to the ones that already exist in the region

(Frenken, Van Oort, and Verburg, 2007; Boschma and Iammarino, 2009). Scholars have

identified different approaches and different levels of analysis to study regional diversification

trajectories (Teece et al., 1994; Neffke, Henning, and Boschma, 2011; Boschma, Minondo, and

Navarro, 2013; Boschma, 2015). These approaches rely on the intuition that technological

classes, new products, workers’ skills, and traded goods and services are parts of complex

systems whose components can be more or less related to one another (Hidalgo et al., 2007).

From a policy perspective, the concept of related diversification can help to understand

the direction in which new specialisations could – or should, in normative terms – evolve

(Iacobucci and Guzzini, 2016).

The empirical literature has analysed extensively the concept of relatedness and its role

in economic growth (see the review papers by Content and Frenken (2016) and Boschma

(2017)). The literature tends to conceptualise relatedness as a measure of the cognitive

proximity between different components of a complex system. There is evidence of posi-

tive effects of relatedness on economic performance. Related industrial structures have been
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associated with higher employment rates (Frenken, Van Oort, and Verburg, 2007; Bishop

and Gripaios, 2010; Rigby, Roesler, et al., 2022), higher GDP growth rates (Saviotti and

Frenken, 2008), increments in labour productivity (Boschma and Iammarino, 2009), and

stronger economic performances after crises (Rocchetta and Mina, 2019; Rocchetta, Mina,

et al., 2022). Moreover, regions characterised by a higher degree of relatedness in their in-

dustrial structure are more likely to branch into new related industries (Neffke, Henning,

and Boschma, 2011). For example, Neffke and Henning (2013), using data on labour force

flows across industries, shows that firms are more likely to branch into sectors whose work-

ers’ skills are more similar to their core activities. These results are corroborated by the

empirical literature on technological diversification, which exploits the high dimensionality

of patent data to characterise the knowledge base of regions (Feldman and Kogler, 2010).

This evidence tends to confirm that a region is more likely to acquire new specialisations

in new technological fields if these are closer to the pre-existent knowledge bases (Kogler,

Rigby, and Tucker, 2013; Rigby, 2015; Balland et al., 2019).1 The notion of related variety

has acquired over time more relevance in the justification of Smart Specialisation policy,

even though a strong connection with the innovation systems literature emerged only later

(McCann and Ortega-Argilés, 2011; McCann and Ortega-Argilés, 2015). Once this link was

made, scholars often conceptualised Smart Specialisation borrowing from the literature on

the construction of regional comparative advantages (Boschma, 2014), and on the role of

related diversification (Asheim, Grillitsch, and Trippl, 2017; Santoalha, 2019).

The development of Smart Specialisation can be considered as an explicit declination

of the idea of place-based policy for the European area (Barca, 2009). Smart Specialisa-

tion was conceived as an innovation-enhancing policy that aimed to create self-sustaining,

1It is also possible to detect non-linearities. For example, Rocchetta, Ortega-Argilés, and Kogler (2022)
highlights that relatedness is likely to have an inverted U-shaped effect on economic performance, because a
minimum degree of proximity is desirable to enhance knowledge diffusion, but excess proximity might lead
to negative economic outcomes. Too much technological relatedness, indeed, negatively correlates with the
ability of regions to adjust to emerging disruptive sectors (De Noni, Ganzaroli, and Pilotti, 2021) and may
lead to lock-in (Boschma and Iammarino, 2009; Broekel and Boschma, 2012).
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knowledge-based growth, built on existing capabilities (Foray, P. A. David, and B. Hall,

2009; Foray, 2009; Foray, Goddard, and Beldarrain, 2012). It is place-based precisely be-

cause it is designed to match the local "skills’ supply with skills’ future demand" in order to

increase productivity (P. David, Foray, and B. Hall, 2009). As a policy, Smart Specialisation

was intrinsically linked with the third cycle of European Cohesion Policies (2014-2020) and

for this reason this particular policy wave is referred to as "S3". During this policy cycle,

the European Commission conditioned access to the European Regional Development Fund

(ERDF) to the submission of a Regional Innovation Strategy (RIS) (European Union, 2013a;

European Union, 2013b). Interestingly, however, the deployment of RIS documents occurred

at a time when there was no clear theory behind it, marking Smart Specialisation as a "policy

running ahead of theory" (Foray, P. A. David, and B. H. Hall, 2011). Place-based policies

can indeed be versatile tools to exploit local characteristics to achieve sustainable growth

(Barbieri, Perruchas, and Consoli, 2020) and Smart Specialisation in particular has been

seen as a useful approach for pursuing the EU wide-ranging sustainability targets (Mazzu-

cato, 2013). In this respect, Smart Specialisation policies are also attracting more and more

attention outside the EU area (Veldhuizen and Coenen, 2022).

One essential stage in the implementation of the policy is the decision-making process

that generates the set of region-specific priorities on which funding will be spent. This process

is described in the Smart Specialisation guidelines (Foray, Goddard, and Beldarrain, 2012)

as the Entrepreneurial Discovery Process (EDP). Priorities should be set for those sectors

in which each regional economy has more potential to gain new competitive advantage.

This might be – but does not have to be – in related areas of activity. Interestingly, it is

not a given that all stakeholders share the same idea of where ’related’ growth opportunities

might reside, and whether relatedness should concern purely technological capabilities rather

than innovation design and market capabilities (Castaldi and Drivas, 2023). Moreover, the

challenge of selecting appropriate priorities might be especially difficult for laggard regions

with lower-quality governance (McCann and Ortega-Argilés, 2015; Aranguren et al., 2019).
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A few empirical studies have recently focused on the role of relatedness in regional growth

within a Smart Specialisation strategy framework. Rigby, Roesler, et al. (2022) employs a

relatedness-complexity framework (Balland et al., 2019) to model Smart Specialisation and

to study its effects on regional employment. Rocchetta, Ortega-Argilés, and Kogler (2022)

finds evidence that the development of related technologies improves labour productivity.

Deegan, Broekel, and Fitjar (2021) shows that the likelihood of including an economic do-

main (NACE sector) in RIS is positively correlated to skill relatedness and complexity of

such a sector, and there is no substitution nor complementary effect among these two dimen-

sions. Marrocu et al. (2023) evaluated the specialisation paths of regions, comparing policy

decisions with regional comparative advantages and related diversification paths. Panori,

Kakderi, and Dimitriadis (2022) attempts to identify the possible specialisation decisions

of 16 regions based on technological opportunities. In so doing, they propose a method

to link the IPC codes of patents produced in the region with NACE2 codes. Di Cataldo,

Monastiriotis, and Rodríguez-Pose (2022) assesses instead how S3 strategies are influenced

by differences in economic and institutional characteristics across regions of Europe. All

these analyses provide very interesting insights. However, as noted by Bathelt and Stor-

per (2023) with respect to related diversification strategies, robust evidence is still lacking

on the mechanism through which the selection of investment priorities endogenously affects

technological diversification and how this translates into economic performance.

In this paper, we aim to fill this gap by building first an analytical framework that takes

into account the ex-ante selection of industrial strategies. This framework explicitly links

the industrial side of the policy with the regions’ technological capabilities as they enter the

Entrepreneurial Discovery Process. This allows us to identify how policy implementation

affects economic performance conditional on the selection of appropriate investment targets.

It is now possible to conduct robust policy evaluations because we have enough observations

coming from the diffusion of the policy (2014-2020), and enough years to detect effects.2

2An interesting exception is Crescenzi and Giua (2020), who evaluated a programme of subsidies for
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Building on insights from both the related diversification and the Smart Specialisation lit-

erature, we are now going to illustrate our empirical approach, which we believe could have

broader and more general applicability in the evaluation of other place-based innovation

policies.

Data and Econometric Strategy

A key challenge for evaluating place-based policies is to identify the channels and the

mechanisms behind the policy decision. In the case of Smart Specialisation the decisions are

made through the Entrepreneurial Discovery Process. This makes it necessary to identify

which prescriptions the EDP should follow. In principle, Smart Specialisation through EDP

should prioritise sectors close to the ones where innovators already operate and with more

favourable growth expectations. However, this does not necessarily happen in practice, and

local stakeholders can make a variety of choices. In evaluating the policy, we must take into

account three specific features of its design.

Firstly, Smart Specialisation rejects the idea of ’one-size-fits-all" policies (Di Cataldo,

Monastiriotis, and Rodríguez-Pose, 2022). This means that every region will design a spe-

cific innovation strategy. One aspect of such strategies concerns the choice of industries to

include. We are going to refer to the specific decision to include a sector in the strategy

as an ’industrial specialisation decision’ or ’industrial inclusion’. Thereby, regions combine

these decisions to create a unique strategy depending on regional-specific factors. Secondly,

we need to disentangle the effects of underlying technological dynamics on industrial special-

isation decisions. These dynamics can affect estimates in two ways. On one hand, regions

select industries according to the potential they see in them. For this reason, regions (should)

choose industry fields that are expected to contribute more than the others to growth. On the

collaborative industrial research co-funded by Cohesion Policy instruments in less developed Italian regions
in the period 2007-13. This programme can be considered an early application of Smart Specialisation
principle, even though it was not part of S3 policies.
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other hand, underlying technological capabilities influence simultaneously specialisation deci-

sions and economic growth. The trajectory of development that is chosen is path-dependent

and shapes future growth prospects (Rigby and Essletzbichler, 1997). The EDP is then at

the same time determined by the regional industrial evolution, and a determinant of future

developments. Thirdly, S3 strategies may not be fully aligned with Smart Specialisation

principles, and some regions might make decisions based on criteria that deviate from purely

economic considerations, or these considerations might be significantly influenced by power

asymmetries between local stakeholders (e.g. workers may be under – or over-represented in

the governance charged with strategic decisions), as suggested by Aranguren et al. (2019).

Our goal is to assess if Smart Specialisation policies, and by implication related diversi-

fication choices, foster regional productivity in the EU. To do so, we collect data from the

European Commission’s portal on S3 policies ’S3 Platform’.3 Using the EyeRIS3, it is pos-

sible to scan the regions’ RIS3 documents and their summary sheets. More specifically, the

summary sheets report the structure of the strategy and related industrial specialisations.

Every strategy is divided into priorities and every priority is centred around a specific objec-

tive. The industrial specialisations are the economic domains associated with any priority

target.4 For every priority, industrial specialisations are identified by their NACE2 code

Rev. 2. We collect S3 data on 102 NUTS2 regions.5 The average number of priorities in

the strategies is 5.5. On average, every priority is associated with 4.6 industrial sectors.

We restrict our analysis to the manufacturing sectors (NACE1 code ’C’). Even though tech-

nological dynamics can affect also the service sector, the development of new technologies

and the use of patents, which are going to measure, involves manufacturing activities more

3https://s3platform.jrc.ec.europa.eu/ (European Commission, 2013)
4These data present important limitations for the analysis of Smart Specialisation policies. The biggest

one is that we cannot observe how and to which extent a sector is included in the strategies. We observe
only if the sector is reported in at least one priority. We cannot establish if these decisions are implemented,
how many European funds were granted, and if and how they were spent.

5The entire set of regions in the portal is 196 units. However, because of several incomplete time series
for complementary data we need for estimation purposes, 94 units had to be dropped. Our final sample
includes regions in Austria, Czechia, Germany, Denmark, Spain, France, Italy, Netherlands, Portugal and
Romania.
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than services (Boschma, 2017). Moreover, there is no established way to link technology

classes with specific service sectors, whereas the literature provides much greater details for

manufacturing sectors (Eurostat, 2008; Panori, Kakderi, and Dimitriadis, 2022).

Figure 1: Distribution of NACE2 specialisations

In figure 1 we can observe the distributions of numbers of industrial sectors included

in the strategy by the regions. There are 23 NACE2 manufacturing sectors. The median

number of specialisations in our sample is 4. As we can see, over 102 regions only 22

present an S3 strategy with 6 or more industrial specialisations. Four of them present 10

specialisations, while 7 regions included no manufacturing specialisations in their strategy.

This is not surprising, since many regions focused on the services industries in their RIS

documents. We decided to include them in the sample as well, even if their strategies might

be unaligned to Smart Specialisation dynamics we aim to analyse. We believe, indeed,

that dropping them would result in a selection bias since these are all highly productive

regions. The most frequent manufacturing NACE2 sectors are food industries (C10) with

75 occurrences, electrical equipment (C27) with 53 occurrences, and machinery industries

(C28) appearing in 44 strategies. This underlines that regions create targeted strategies that

involve a limited number of industrial sectors. There are few exceptions, but most of regions

decided to specialise in less than 6 manufacturing sectors.
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Smart Specialisation policies suggest that diversification should follow the principle of

relatedness. They should also capture latent growth opportunities and improve productivity

by targeting higher value-added sectors. Moreover, policy decisions do not target related

technologies, but industries. Assume a basic (empirical) model for policy evaluation as

described in equation (1):

Yrt = ↵r +
X

k

�kD
(k)
rt +Xrt� + urt (1)

Yrt is an outcome indicating regional economic performances, Xrt captures regional char-

acteristics, while D
(k)
rt represents all the industrial specialisations. Let D

(k)
rt be equal to 1 if

the region r included sector k in its RIS3 and the year is after 2013, and 0 otherwise. The

impact on labour productivity of the decision to specialise in sector k, then, is on average

�
k. However, estimating this parameter is challenging. There are, indeed, two factors that

can act as confounders in this empirical setting.

�̂k = E[Yrt|D(k)
rt = 1, Xrt = x]� E[Yrt|D(k)

rt = 0, Xrt = x]

�̂k = �k +
X

j 6=k

�j

h
E[D(j)

rt |D
(k)
rt = 1]� E[D(j)

rt |D
(k)
rt = 0]

i

| {z }
Interdependent Sectors

+

+ E[urt|D(k)
rt = 1]� E[urt|D(k)

rt = 0]| {z }
EDP Dynamics

(2)

The first confounder in equation (2) is the Interdependent Sectors factor. This depends

on how these strategies are built. Indeed, industrial specialisations co-occur with different

frequencies in priorities. The probability of having an industrial specialisation in one priority

is not independent from other industrial specialisations. Indeed, some sectors are more

complementary than others and they tend to be more frequently associated when a priority

aims at a particular target. This might be because sectors are in different parts of the same

value chain. The same technological shocks simultaneously affect upstream and downstream
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activities. Also, some sectors might contribute to the same priority, affecting different aspects

of the specialisation objective. Finally, a specialisation strategy may induce the reallocation

of competencies towards more productive sectors. This may affect similar industrial sectors

even if these are not the main focus of the policy. For all these reasons, we cannot assume

that industrial specialisations are independent, but we can assume that this dependency

is stronger among some sectors and weaker among others. For this reason, we aggregate

NACE2 industries into industrial areas to reduce this Interdependent Sector bias. Thereby,

we obtain 9 clusters from the original 20 NACE2 manufacturing sectors.6 We chose this

data-driven approach because the association we got from clustering had sound theoretical

validity. The hierarchical clustering algorithm we used is described in detail in the Appendix.

The composition of industrial groups allows us to perform our empirical analysis without

losing information. In table 1 we report the aggregation in industrial areas we are going to

use in our analysis. Specialisation in some industrial areas is assumed to be independent

from specialisation in any other. In Figures 2 and 3 we can observe how the specialisations

in the broader industrial areas are distributed in the regions of our sample. Unsurprisingly,

agro-food and components represent the most common specialisations. The second and third

most frequent specialisations are in the automotive and health industries. The least common

industrial area are wood and paper industries.

The second confounder in (2) comes from the EDP process itself. EDP defines how tech-

nology evolution will affect policy decisions. However, some sectors could be experiencing

dynamics that may transform them into core regional activities, regardless of whether they

were included in Smart Specialisation Strategies or not. Indeed, regions make industrial

priorities choices also based on these dynamics, so we cannot assume that the choices made

are random. However, what we can assume is that the probability of an industrial area

being included in RIS3 depends on its relatedness to the regional "core". For this reason, in

6The NACE2 sectors for manufacture are 23, but ’Printing and reproduction of recorded media’ (C18),
’Manufacture of coke and refined petroleum products’ (C19), and ’Manufacture of fabricated metal products,
except machinery and equipment’ (C25) did not appear in any region’s RIS3.
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Table 1: Data-driven clustered sectors

Industrial Area NACE2 sectors associated

Agro-food
Manufacture of food products (C10)
Manufacture of beverages (C11)

Light Industries

Manufacture of textiles (C13)
Manufacture of wearing apparel (C14)
Manufacture of leather and related products (C15)
Manufacture of other non-metallic mineral products (C23)

Wood and Paper

Manufacture of wood and of products of wood
and cork, except furniture; manufacture of articles
of straw and plaiting materials (C16)
Manufacture of paper and paper products (C17)

Materials

Manufacture of chemicals and chemical products (C20)
Manufacture of rubber and plastic products (C22)
Manufacture of basic metals (C24)

Health

Manufacture of basic pharmaceutical products,
and pharmaceutical preparations (C21)
Other manufacturing (C32)7

Metals Manufacture of basic metals (C25)

Components

Manufacture of computer, electronic and optical products (C26)
Manufacture of electrical equipment (C27)
Manufacture of machinery and equipment n.e.c. (C28)

Automotive
Manufacture of motor vehicles, trailers and semi-trailers (C29)
Manufacture of other transport equipment (C30)

Furniture Manufacture of furniture (C31)

6 Most of the other manufacturing activities are ’Manufacture of medical and dental in-
struments and supplies (C32.5).

the first step, we derive the likelihood that each region specialises in each sector following

the relatedness principle. According to it (P. David, Foray, and B. Hall, 2009; McCann

and Ortega-Argilés, 2015), regions should build their strategies diversifying in the related

industries with better opportunities. This represents the selection stage of our Smart Spe-

cialisation analytical model. We adopt this approach by exploiting the finding of Deegan,

Broekel, and Fitjar (2021). Indeed, they show that an industrial specialisation is correlated

with the skill-relatedness of that sector. This leads us to formulate the following hypothesis:
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Figure 2: Distributions of the specialisations across automotive, components, light, and
agro-food industries.

H1: Industrial areas that are more technologically related to the regional in-

dustrial core are more likely to be included in an S3 strategy.

In the second step, we estimate the impact of these decisions on labour productivity

growth. This represents the evaluation stage of our analytical model. The method allows

us to measure the impact of Smart Specialisation strategies conditional on the extent to
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Figure 3: Distributions of the specialisations across materials, health, and wood and paper
industries.

which regions followed the policy principles. The literature leads us to expect that regions

specialising in industries with technological capabilities that are more related to existing

knowledge bases will generate higher productivity gains. We therefore propose the following

hypothesis:

H2: Regions that specialise in industries that are more related to their existing
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technological capabilities are more likely to experience higher productivity gains.

To test these hypotheses, we employ an IV approach to proxy the selection stage as

the first stage and use the fitted values in the evaluation stage. The advantage of this

approach is that it makes it possible to model this process based on exogenous factors and

to use their variations to observe the impact on labour productivity. We use as instrument

the Technological Relatedness in Production (TRP) index. We build this index using the

Relatedness Density approach (Boschma and Iammarino, 2009; Balland et al., 2019) and the

patent class-industry conversion tables from Eurostat (2008). We follow the same conversion

approach as Panori, Kakderi, and Dimitriadis (2022). This variable captures how related an

industrial area is to the rest of the regional knowledge base. To compute this variable, we

derive a rule that associates to every IPC code the corresponding NACE2 code in which it

finds an industrial application. It must be noted that a single patent can be associated with

more than one IPC code. This means that the same patent can find application in more than

one industrial sector. Using the relatedness approach, we can exploit the co-occurrences of

different industrial tags in the same patent to define how close two industrial areas are in the

regional knowledge base. If the industrial area j in region r is particularly related to all the

others, it will be "dense" in relatedness. This means that such an industry is well-connected

in the regional knowledge space, sharing technological capabilities with other branches of the

industrial structure. The Smart Specialisation literature often singled out the role of related

density as an indicator of proximity to the regional "core". For this reason, we argue that,

from an entrepreneurial discovery perspective, a related industry is also an industry in which

it is easier for the region to acquire a competitive advantage. In table 2, we can observe how

the TRP is distributed across industrial areas.8

As we can see, TRP is indexed between 0 and 1 across regions, separately for every sector.

Agro-food, furniture, and wood and paper present the most right-skewed distributions. This

8Metals is not reported since no region chose it as a specialisation area.
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Table 2: Instrument variables summary statistics

Statistic N Mean Min Pctl(25) Median Pctl(75) Max

Automotive 102 0.561 0.000 0.186 0.689 0.885 1.000
Components 102 0.285 0.000 0.120 0.273 0.440 0.987
Food 102 0.369 0.000 0.000 0.333 0.625 1.000
Furniture 102 0.304 0.000 0.000 0.273 0.500 1.000
Light 102 0.431 0.000 0.222 0.456 0.639 1.000
Materials 102 0.382 0.000 0.212 0.349 0.515 1.000
Health 102 0.385 0.000 0.172 0.309 0.556 1.000
WoodPaper 102 0.281 0.000 0.000 0.097 0.500 1.000

is not surprising, since they are all low technology-intensive sectors.

Our estimation strategy consists of a 2SLS approach. In the first step, we proxy the

specialisation decisions across seven industrial areas.9 In the second step, we estimate the

effects of the different industrial choices on labour productivity growth. The equation in (3)

describes the regression model we use for the first stages.

SPE
(2013)
jr = ↵ + �TRPjr + 'c + 'j + ujr (3)

We include country-level fixed effects to adjust for national-level policy preferences and

sector-level fixed effects to control for sectors included with more frequency. We use the

fitted values for the different SPE
(2013)
jr in the second stage. We estimate seven different

regressions, to avoid multicollinearity between treatment variables.10 The regressions we

estimate in the second stages are described by equation (4).

9We discard Furniture from the analysis since it was chosen as an industrial specialisation are only by
three regions.

10Instruments and fitted values are highly correlated, making it difficult to consistently estimate a regres-
sion with all the industrial specialisations at the same time.
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�log(Prodrt) = �c + �
j
1
[SPE

(j)

r + �2Postt + �3
[SPE

(j)

r ⇥ Postt+

+ �1log(Prodrt�1) + �2KISrt + �3log(R&Dpercaprt�1) + ✓t + urt

(4)

For the regional controls and the outcome variable, we extract data from Eurostat. We

use data from 2009 to 2019. We use as treatment period the time window between 2013

and 2019. The reason for including the year 2013 is the bottom-up design of the policy as

stakeholders could take part in decision-making process and influence decisions. They could

also anticipate policy decisions as these were being designed. If we exclude 2013 and run

the analyses using 2014-2019 as the treatment period, results remain stable. We use labour

productivity as the dependent variable. Following prior art (Rocchetta, Ortega-Argilés,

and Kogler, 2022) we measure it by dividing the Gross Value Added in each region by the

number of hours worked per full-time equivalent unit. As controls we employ the variables

R&D per capita and KIS. The first is the sum of private and public R&D expenditure

per capita purchasing power standard for the 2005 currencies values. The variable KIS is,

instead, the share of workers employed in medium-high or high knowledge-intensive sectors.

These controls are needed to observe the intensity of innovation inputs. In particular, R&D

represents the intensity of innovation investments, while KIS represents the intensity of

labour force employed in knowledge-related production. For this reason, they help us to

control a suspected source of endogeneity which is the intensity of innovative activities in

the regions.

As we can see, the average labour productivity growth rate is 2.1% across all the samples.

Its distribution is quite concentrated between the first and third quartiles with few outliers.

In particular, the negative outliers are concentrated during the years of debt crisis in the

countries that were most affected by it. Extreme outliers above 15% are mostly regions in

the Central and Eastern European Countries (CEEC) starting from a lower base relative to

the others.
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Table 3: Summary statistics of the regional variables

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

�log(Prod) 1,224 0.021 0.029 �0.111 0.006 0.031 0.197
log(Prod) 1,224 3.438 0.493 1.461 3.342 3.724 4.285
KIS 1,176 3.104 1.677 0.600 1.900 3.800 10.300
R&D per capita 1,224 380.171 345.054 6.000 162.975 500.825 2,089.300

This table reports the summary statistics for labour productivity (log), labour productivity growth, the
share of employees in medium-high and high Knowledge Intensive Sectors, and total R&D expenditure per
capita purchasing power standard at 2005 (log).

Results

In table 4 we test the first hypothesis H1. We have conjectured that industries that are

more related to existing technological capabilities are more likely to be included in the S3

strategies. To test it, we need to evaluate the coefficient of the instrument TRP in the first

stage. Since the TRP exhibits a positive and significant coefficient, our first hypothesis is

validated. This implies that the likelihood of an industrial inclusion is higher for industrial

areas closer to the existing knowledge base. In particular, coeteris paribus a sector completely

unrelated to the core of a regional knowledge space is nearly 15% less likely to be included

than a perfectly related sector. This is consistent with the idea that Smart Specialisation

builds on the principle of related diversification. Our instrument is, thus, correlated with the

specialisation decisions. Since this is the first stage of our strategy we are also interested in

that this is not a weak instrument. We perform an F test on the difference between 16.671

and 10. The critical value for F17,696;0.005 is 1.97 and we can reject the null hypothesis that

the instrument is weak, and we move on to the second stage.

In table 5 we test hypotheses H2 in which we conjectured that regions that indicate their

priorities following a related diversification principles are the ones that experience higher

productivity gains from implementing S3 policies. We can observe in the table the effect

of the different industrial inclusions on regional labour productivity growth. We report the

OLS and IV estimates for three models. The first model is displayed in the first two columns.
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Table 4: Smart Specialisation decision rule across industrial areas

Dependent variable:
Specialisationjr

Constant 0.301⇤⇤⇤
(0.086)

TRPjr 0.163⇤⇤⇤
(0.054)

Country Fixed Effects

Industries Fixed Effects

Observations 714
R2 0.289
Adjusted R2 0.272
Residual Std. Error 0.418 (df = 696)
F Statistic 16.671⇤⇤⇤ (df = 17; 696)

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
This table reports the estimates coefficients for the TRP of each indus-
trial group and the relative growth of their employment share on the
decision of including the industrial group in the S3 strategy. Country
and industrial cluster fixed effects are added. Bootstrapped standard
errors in parentheses.

The coefficients we show are simple Diff-in-Diff estimates. In the second two columns, we

control for NUTS2 and year-fixed effects. In the final two columns, we add regional controls,

such as lagged productivity levels, the share of workers employed in medium-high and high

Knowledge Intensive Sectors (KIS) and R&D expenditure per capita. We present both

OLS and IV because their comparison makes it easier to give a plain explanation of Smart

Specialisation mechanisms. In the Appendix, we report the tables with results for each

separate estimation.

OLS estimates in the first model are mostly non-significant. Only light industries, health,

and wood and paper indicate a positive effect. This means that, on average, regions that

included these sectors in their strategies experienced growth in labour productivity 0.9, 1.5,
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Table 5: Effects of industrial choices on labour productivity

Dependent variable: �log(Prodt)

(1) (2) (3)
OLS IV OLS IV OLS IV

Automotive 0.002 0.035⇤⇤⇤ 0.002 0.035⇤ 0.001 0.038⇤⇤
(0.003) (0.013) (0.004) (0.019) (0.004) (0.017)

Components 0.001 0.061⇤⇤⇤ 0.001 0.061⇤⇤ 0.001 0.065⇤⇤⇤
(0.003) (0.016) (0.004) (0.019) (0.004) (0.024)

Light Industries 0.009⇤ 0.060⇤⇤⇤ 0.009 0.063⇤⇤ 0.008 0.049⇤⇤
(0.005) (0.014) (0.007) (0.026) (0.006) (0.027)

Agro-food 0.002 0.066⇤⇤⇤ 0.002 0.066⇤⇤ 0.002 0.067⇤⇤⇤
(0.004) (0.017) (0.003) (0.027) (0.004) (0.025)

Materials 0.004 0.061⇤⇤⇤ 0.004 0.061⇤⇤⇤ 0.005 0.063⇤⇤⇤
(0.003) (0.014) (0.005) (0.023) (0.005) (0.021)

Health 0.007⇤⇤ 0.049⇤⇤⇤ 0.007 0.049⇤⇤ 0.006 0.051⇤⇤⇤
(0.003) (0.015) (0.004) (0.021) (0.004) (0.020)

Wood & Paper 0.015⇤⇤ 0.054⇤⇤⇤ 0.015 0.054⇤⇤ 0.017 0.056⇤⇤⇤
(0.006) (0.015) (0.014) (0.023) (0.014) (0.021)

Regional FE

Year FE

Regional Controls

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
This table reports the coefficients of the interaction SPE(j)

r ⇥Post2013t across all the choices
of industrial inclusion on labour productivity growth. We report OLS and IV separately for
each set of estimations. Every row represents the coefficients from a separate regression.
In column (1) we display the estimates from the simple Difference-in-Difference models.
In column (2) we add regional fixed effects (NUTS2 regions) and year fixed effects. In
column (3) we add regional controls. Additional controls are log(Productivityt�1), KISt,
log(R&Dpercapitat). Standard errors in parentheses in column (1). Clustered standard
errors at the regional level in parentheses in columns (2) and (3).
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and 0.6 percentage points respectively higher than the regions that did not include them.

OLS estimates, however, become completely non-significant when fixed effects are added.

This implies that Smart Specialisation strategies had a null average effect across regions.

OLS represents the average statistical difference in regional labour productivity growth rates

between regions that included industry k in their strategy and regions that did not. These

average differences are Average Treatment Effects (ATEs). These differences however cannot

establish if the industrial inclusion is a good fit given the regional structure. We can only

see if the region included it or not. In this sense, OLS estimates capture the effect of a

specialisation unconditional to the regional ex-ante trajectories.

To test our second hypothesis we need to run the second stage of our estimation. IV

estimates, by construction, allow us to detect a different parameter from ATE, since they

are Local Average Treatment Effects (LATEs). These estimates isolate the effects of the

policy when the degree of technological relatedness of the industrial sector is high. This

comes from a different weighting scheme of IV estimators concerning OLS. The parameter

IV estimates represent the exogenous variations of the instrument on the outcome variable

(reduced form). Each variation of the instrument receives a different weight based on how

much the fitted value and the endogenous values correlate in the first stage. These weights

are higher if the specialisation k in region r (endogenous value) was done according to the

related diversification principle (corresponding fitted value). A specialisation decision in a

region where the industry has no strict technological links with the industrial base will receive

a lower weight than a region where the industry is more related. The IV estimate then will

be a weighted average of the S3 effects for those units whose specialisations followed Foray,

P. A. David, and B. Hall (2009)’s principles more closely. For this reason, we argue that the

IV estimator is a good way to identify the effects of industrial specialisations conditional on

the technological relatedness channel.

Results from the IV estimates in table 5 reveal that Smart Specialisation has been very

effective for regions that included sectors according to related diversification principles. As
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we can see, IV estimates are consistent across all three models. All choices made follow-

ing regions’ technological diversification trajectory show an increase in labour productivity

growth rates between 3.8% and 6.7%. The industrial area with the highest expected growth

are components industries, agro-food industries, and materials. Automotive and light indus-

tries, instead, are the one showing the smallest effect on productivity growth acceleration.

Regions following relatedness in the definition of the strategy report positive effects from

these inclusions. It is worthy highlighting that all industries can have a positive effect on

regional productivity growth. These results confirm our second hypothesis.11 S3 strategies

were effective only when the industrial inclusion was based on a relatedness principle. It is

necessary, nonetheless, to stress that such prescriptions were very vague at the time of the S3

strategies design in 2013. This means that most of the regions defined their policies without

a theory underpinning them. Our analysis, thus, relies on an evaluation of the EDP process

in the light of ex-post theoretical categories. Furthermore, EDP is a process through which

agents interact and learn from others to define the policy. This implies that EDP can hardly

be analysed according to ’correct-or-wrong’ categories. The uniqueness of every region can

produce specific paths of specialisation/diversification that might be unfit for regions with a

similar industrial structure. Our analytical framework, however, allows us to exploit specif-

ically the variations of technological dynamics of the industrial structure and to compare

them with the policy decisions.

Due to data limitations, we are aware that we observe only a part of the mechanisms

leveraged by Smart Specialisation. More specifically, we can see only if a sector is included

or not in the regional strategies. However, we can still observe how industrial specialisation

decisions affect regional performances. These decisions propagate from the sectoral to the

regional level due to channels that are not influenced by the characteristics of the policy.

11We are aware that these results do not represent a strictly causal estimation of specialisation decisions.
However, our identification strategy allows us to exploit the exogenous variations coming from the regional
characteristics that help defining the EDP. The reduced form, then, represents the effects of relatedness of
across industries on labour productivity growth.
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There are several channels at play. Firstly, we have a channel for efficient recombination of

competencies. Indeed, EDP can be seen as a dynamic of unveiling regional potentialities of

achieving new specialisations. A ’correct’ EDP will point out a different reallocation of tech-

nical and technological competencies towards more complex but related productions. The

inclusion of the right industry into the strategy implies that this reallocation can be achieved

with less effort. Indeed, the relatedness-complexity framework (Balland et al., 2019) sug-

gests that specialising in related industries is less risky because of the similarities between

capabilities. Furthermore, these similar capabilities can be employed in new, more complex,

and thus more productive, areas, boosting overall regional productivity. Secondly, especially

in laggard regions (Kroll, 2015), Smart Specialisation had the effect of strengthening good

practices and new routines. While we cannot observe which and how these routines were

implemented, they will spread faster in the industries included in the RIS documents as long

as these industries are closer to the core in a relatedness sense. In this way these new routines

are embedded in the regional innovation systems, propagating from the specialisation indus-

tries. Finally, we think of a signalling channel. Inclusion decisions, indeed, highlight which

sectors a region wants to prioritise. This prioritisation is by itself an important aspect of

the policy itself. Since Smart Specialisation policies (should) follow a bottom-up approach,

investors and agents of the innovation process are, at the same time, signalling and being

signalled about the potentialities in the regional economies. We can think about this in dif-

ferent ways. One way is that EDP for private agents consists (also) of an exchange of signals

and information about the industries’ potential. Firms involved in EDP might update their

expectations and allocate investments based on policy decisions. If the industries flagged in

the EDP are technologically related to the regional industrial base and they showed good

economic performances, these investments have been more effective and generated stronger

productivity gains. Another way is to think about this, even though this is less likely, is to

envisage a signal towards external investors who do not participate in the EDP, since a pos-

sible external investor could perceive the inclusion of an industry as a signal of its economic
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performances or the availability of related capabilities in the region.

Robustness checks

Weighted Least Squares

As a robustness check on the estimation method, we use a Weighted Least Squares ap-

proach. We weigh observations using the share of employment for each industrial choice.

The idea is that regions with a higher share of employees working in j will be more im-

pacted by its inclusion in the S3 strategy. For this reason, it would be misleading to weigh

every region in the same way. Since the share of employment is expected to grow with the

specialisation decision, we use the value in 2013 to conduct our analysis. The choice of

2013 as a reference year depends on the fact that the Great Recession in 2008-2009 and the

European debt crisis in 2011-2012 can undermine the weights due to uneven impacts across

industrial sectors. Moreover, we cannot choose a year that follows the industrial inclusion

because of the risk of endogenous weights. Table 6 reports estimates from the baseline model

with NUTS2 and year-fixed effects and regional controls. The first column shows Weighted

Least Squares estimates. In the second column, the coefficients represent the results of the

Weighted Instrumental Variable regressions.

Estimates in table 6 are mostly consistent with the findings in table 5. Only the health

industries lose a great part of their effect in the IV specification. In any case, results in the

weighted regressions are robust with our baseline results in table 4. In the Appendix, we

report tables containing the results for each separate estimation.

"Leave-one-country-out" models

We then investigate if our main results are driven by a few regions, possibly concentrated

in a few countries. We estimate the same models as in table 3 with 4 different subsets of

data. We perform our analyses excluding the regions of one country at a time. In table 7
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Table 6: Weighted Least Squares estimates

Dependent variable: �log(Prodt)

WLS WIV

Automotive 0.0001 0.076⇤⇤⇤
(0.004) (0.017)

Components 0.005 0.056⇤⇤⇤
(0.003) (0.014)

Light Industries 0.010⇤ 0.123⇤⇤⇤
(0.005) (0.018)

Agro-food -0.001 0.049⇤⇤⇤
(0.005) (0.017)

Materials 0.004 0.053⇤⇤⇤
(0.004) (0.015)

Health 0.004 0.027⇤
(0.003) (0.014)

Wood & Paper 0.022⇤⇤⇤ 0.082⇤⇤⇤
(0.005) (0.016)

Regional FE

Year FE

Regional Controls

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
This table reports the coefficients of the interaction
SPE(j)

r ⇥ Post2013t across all the industrial choices on
labour productivity growth. We report Weighted Least
Squares estimates (1) and Weighted Instrumental Variable
estimates (2) for the model. We use weights computed on
the share of employment by cluster in 2013. We control
for NUTS2 fixed effects and year fixed effects. Additional
controls are log(Productivityt�1), KISt, R&Dpercapitat.
Clustered standard errors at the NUTS2 regional level in
parentheses.

we show the results from the first stages. As we can see in the first column, the TRPjr is

consistent with our baseline results across all different sub-samples. There are no significant

changes between the models. The role of technological relatedness, indeed, shows a discrete
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Table 7: Results from "leave-one-country-out" models

Dependent variable: Specialisationjr

TRPjr F-test

W/o Austria 0.162⇤⇤⇤ 15.319⇤⇤⇤
(0.060) (df = 15; 642)

W/o Czechia 0.139⇤⇤⇤ 16.397⇤⇤⇤
(0.058) (df = 15; 677)

W/o Germany 0.193⇤⇤⇤ 16.448⇤⇤⇤
(0.059) (df = 15; 621)

W/o Denmark 0.157⇤⇤⇤ 15.402⇤⇤⇤
(0.060) (df = 15; 663)

W/o Spain 0.142⇤⇤ 13.726⇤⇤⇤
(0.062) (df = 15; 579)

W/o France 0.149⇤⇤ 12.895⇤⇤⇤
(0.065) (df = 15; 572)

W/o Italy 0.169⇤⇤⇤ 14.106⇤⇤⇤
(0.065) (df = 15; 558)

W/o Netherlands 0.176⇤⇤⇤ 15.650⇤⇤⇤
(0.060) (df = 15; 635)

W/o Portugal 0.159⇤⇤⇤ 16.433⇤⇤⇤
(0.058) (df = 15; 649)

W/o Romania 0.173⇤⇤⇤ 16.047⇤⇤⇤
(0.059) (df = 15; 649)

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
This table reports the coefficients of the Related Den-
sity (TRPjr in column 1) on the specialisation de-
cisions (Specialisationjr) using different "leave-one-
country-out" subsets. For every row regions from a
country are removed from the estimation. Country
and industries’ fixed effects are added to the mod-
els. In column 2 F-tests are reported for every model.
Standard errors in parentheses in columns 1. Degrees
of freedom for the F-statistics in parentheses in col-
umn 3.
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degree of variation in decision processes across countries when they are individually taken

out.

In column 3 we report the results of the models F-statistics. These values are all very

high and statistically greater than 10, i.e. in every specification the condition for not having

weak instruments is satisfied. For this reason, we could use these "leave-one-country-out"

models to estimate the second stages as well. Estimates of the "leave-one-country-out"

second stages remain robust with the IV estimates in the baseline models. The Appendix

contains the results of second-stage estimations.

Alternative dependent variables

In table 8 we report the estimates of the Smart Specialisation choices on GVA and hours

worked growth rates as an additional robustness check. We used these two variables to

compute our measure of labour productivity. The returns of inclusions on GVA growth

are statistically significant and positive for every specialisation in the IV estimation. OLS

models produce a statistically significant effect only for agro-food, wood and paper, and light

industries. All the IV coefficients of the growth of hours worked are positive. These results are

fully consistent with the findings we have discussed for labour productivity. These estimates

help us to understand the main component of productivity growth. Smart Specialisation

choices bolstered productivity by increasing regional production without negative effects on

occupation. When decisions were made according to the relatedness principles, the growth of

hours worked even accelerated with respect to the previous period. This is not true, instead,

on average. Specialising in a sector without taking into account its relatedness has no effect

even on occupation, not just on productivity. This table highlights that the direct (positive)

effect on GVA growth rate has offset the indirect (negative) effect on hours worked in all

industries, generating an overall increment of the labour productivity for complying regions.

30



Table 8: Effects of industrial choices on GVA and hours worked growth rates

Dependent variable:

�log(GV Art) �log(HoursWorkedrt)

OLS IV OLS IV

Automotive 0.007 0.121⇤⇤⇤ 0.003 0.045⇤⇤⇤
(0.006) (0.024) (0.004) (0.016)

Components 0.004 0.171⇤⇤⇤ 0.002 0.055⇤⇤⇤
(0.006) (0.031) (0.004) (0.016)

Light Industries 0.022⇤⇤ 0.140⇤⇤⇤ 0.008 0.034⇤⇤
(0.011) (0.028) (0.006) (0.015)

Agro-food 0.009⇤ 0.157⇤⇤⇤ 0.004 0.041⇤⇤
(0.005) (0.035) (0.004) (0.017)

Materials 0.009 0.155⇤⇤⇤ 0.0003 0.046⇤⇤⇤
(0.006) (0.031) (0.004) (0.016)

Health 0.009 0.139⇤⇤⇤ 0.001 0.048⇤⇤⇤
(0.006) (0.029) (0.004) (0.016)

Wood & Paper 0.033⇤⇤ 0.141⇤⇤⇤ 0.012 0.045⇤⇤⇤
(0.014) (0.028) (0.007) (0.017)

Regional FE

Year FE

Regional Controls

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
This table reports the coefficients of the interaction SPE(j)

r ⇥Post2013t across all
the industrial inclusions on GVA and hours worked growth rates. We report OLS
and IV separately for each set of estimations. Every row represents the coeffi-
cients from a separate regression. In the first two columns we report the results for
GVA growth rates. In the last two columns we report the results for hours worked
growth rates. NUTS2 and year fixed effects are added along with regional con-
trols. Regional controls are log(Productivityt�1), KISt, log(R&Dpercapitat).
Clustered standard errors at the regional level in parentheses.
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Table 9: Effects of digitisation and servitisation

Dependent variable: �log(Prodt)

Professional Services Digital Services

Automotive 0.043⇤⇤ 0.044⇤⇤
(0.017) (0.018)

Automotive⇥Services 0.006 -0.014
(0.008) (0.010)

Components 0.072⇤⇤⇤ 0.074⇤⇤⇤
(0.025) (0.025)

Components⇥Services 0.017⇤⇤⇤ -0.002
(0.006) (0.007)

Light Industries 0.074⇤⇤ 0.078⇤⇤⇤
(0.029) (0.030)

Light Industries ⇥Services 0.045 -0.056
(0.027) (0.040)

Agro-food 0.070⇤⇤⇤ 0.070⇤⇤⇤
(0.026) (0.026)

Agro-food⇥Services -0.009 -0.008
(0.006) (0.006)

Materials 0.066⇤⇤⇤ 0.070⇤⇤⇤
(0.022) (0.022)

Materials⇥Services 0.018 -0.023
(0.031) (0.018)

Health 0.050⇤⇤⇤ 0.057⇤⇤⇤
(0.019) (0.021)

Health⇥Services 0.048 -0.003
(0.066) (0.011)

Wood & Paper 0.059⇤⇤ 0.062⇤⇤⇤
(0.023) (0.025)

Wood & Paper⇥Services 0.042 -0.033
(0.031) (0.045)

Regional FE

Year FE

Regional Controls

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
This table reports the coefficients of the interaction
SPE(j)

r ⇥Post2013t across all the industrial choices on
labour productivity growth and the triple interaction
with the dummy Services, i.e. if the priority features
digitisation or servitisation characteristics. We report
the triple interaction with digital services dummy in
column (1) and with professional services in column
(2). We control for NUTS2 fixed effects and year fixed
effects. Additional controls are log(Productivityt�1),
KISt, R&Dpercapitat. Clustered standard errors at
the NUTS2 regional level in parentheses.
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Service-oriented and digital Smart Specialisation strategies

Due to data limitation problems, we do not include services industries in our analy-

ses. However, professional services (NACE code "M72") are important components of S3

strategies, since they frequently appear on RIS documents. Despite that, there is no de-

scription of how these services are implemented in the strategies, nor whether and how they

are coupled with specific manufacturing sectors. Furthermore, the greatest part of the re-

gions in our sample identified M72 as a priority, making the sample very unbalanced and

virtually uninformative. Finally, and most importantly, services are hard to include in a re-

lated technological diversification setting. Related technological diversification is computed

using patent data. Patents, however, capture only a part of innovation activities that are

often linked to manufacturing industries. Services, on the other hand, rely mostly on non-

patentable innovations, such as organisational innovations or financial innovations. Digital

industries (J62 and J63) present the same issues. Specialisations in digital sectors are very

common in RIS documents. However, they are difficult to interpret and less reliable for our

relatedness approach. Regions often included digital specialisations to highlight the adop-

tion or the increment of digital processes in their production. This makes it hard to define

if their inclusion in a strategy is actually aiming at developing an industrial specialisation in

digital industries. Also, even if there are technological classes that find a direct application

in J62 and J63 (Eurostat, 2008), patentable innovations in digital services represent a minor

part of the entire innovation activities undergoing in these sectors. However, is important

to take into account both professional and digital industries. To do that we see that in the

regions’ priorities for S3, services are often listed in combination with with other manufac-

turing sectors. This implies that both professional and digital services might be included as

complements to manufacturing strategies rather than as sectors of specialisation per se. To

control for the effect of services on labour productivity in the S3 policy framework, we run a

robustness test exploiting the data on the complementary aspects between services and/or

digital industries specialisation with manufacturing sectors. To do that we execute a text
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analysis on documents with priorities’ descriptions. Through this analysis, we can observe

every priority with a manufacturing sector if words such as "ICT", "digital", "professional"

and "service" appear in its description. In this way, we can control not only if region r in-

cluded sector i in its strategy, but also if such a strategy features digital or service-oriented

characteristics. We can thus distinguish manufacturing strategies that presented digital and

service-oriented aspects from those that did not. In order to evaluate if the effects we ob-

served in the main estimations are led by the implementation of digital or service-oriented

strategies, we run our main estimations on the group of regions that indicated priorities

coupled with, respectively, professional service and digital services.

Table 9 presents the estimation results of the effects of digital and professional services

when these are coupled with manufacturing strategies. As we can see, the simple interac-

tion terms (reported in the table with the name of the sector) present coefficients that are

very similar and consistent with the estimates presented in table 4. We interpret this as a

confirmation that the channels we identified are effective regardless of the implementation

of digital or professional services among stated priorities. The triple interactions, more-

over, estimate the effects of digitisation or servitisation processes when implemented in the

strategies. While digital-oriented strategy has no statistically significant effect for any sec-

tor, service-oriented strategies seem to be slightly more effective in components industries.

In general, however, these features do not alter the effect of specialisation decisions, espe-

cially for those regions that implemented their strategies following the principle of related

diversification.

Conclusions

In this paper, we have proposed a novel analytical framework for the evaluation of place-

based policies and use it to assess the productivity effects of Smart Specialisation, taking into

account the choices made in local economies and their implementation. We conjectured that
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the regions that choose their priorities following the technological diversification principles

are the ones that can obtain higher gains in terms of productivity. We test this hypothesis by

running a 2SLS on a database that combines information on regions’ S3 strategies and their

technological and industrial structure. To include in our analytical framework the degree

of related diversification in S3 strategies (P. David, Foray, and B. Hall, 2009; McCann and

Ortega-Argilés, 2015), we instrument the industrial policy decisions with the Technological

Relatedness in Production (TRP). This original index connects the regions’ technological

base to their industrial composition. Our estimations uncover that Smart Specialisation has

a significant impact on labour productivity growth when the theoretical principle of related

diversification is followed. Results are positive across industrial specialisations of choice.

Naturally, the paper also presents some limitations. For example, it relies on patents,

thus underestimating knowledge processes in domains that are not appropriable via formal

intellectual property rights. Moreover, we do not consider the Cohesion Policy framework

and do not address the problem of remaining disparities among EU regions, which has been

recognised as a significant challenge in the context of EU regional innovation policy (see

for example McCann and Ortega-Argilés (2013)). We have not considered the effects of

technological or industrial cooperation between regions. This has been shown to produce

benefits for cooperating regions from the viewpoint of diversification (Santoalha, 2019), and

this aspect could provide an interesting avenue for further development from an evaluation

perspective. Finally, we have not integrated institutional dynamics (Iacobucci, 2014), but

further in-depth case studies of policy implementation could shed complementary light on

specific governance mechanisms that might favour or hinder the effectiveness of the policy.

All in all, however, our results bear important implications for the design of future re-

gional economies’ place-based development policies. The framework we propose can also

be adopted to better identify the channels through which regional characteristics affect the

policy itself. The findings generally support the idea that related diversification has been a

prominent and effective approach to regional growth. The main policy implication we draw
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is that regions can achieve sustained growth regardless of the industrial path they pursue,

as long as they adhere to a consistent application of the policy. When the Entrepreneurial

Discovery Process direct the strategies towards related sectors, regions have proved that

they can overcome the risk of lock-in and stimulate growth, even though each of them may

choose to prioritise different areas of specialisation. Indeed, we explicitly investigate the

phenomenon of relatedness within the context of S3 strategies. In particular, we have shown

that strategies that targeted related diversification and high-growth principles are consistent

with the "high-road policy" theorised in the relatedness-complexity framework by Balland

et al. (2019).12 This result is not straightforward, given the ongoing debate on whether

industrial policy should focus on more disruptive activities (De Noni, Ganzaroli, and Pi-

lotti, 2021), also to pursue higher societal goals (Mazzucato, 2013). Our results suggest that

policies targeting complex emergent sectors as possible ’game-changers’ must be integrated

into the technological and industrial contexts of countries and regions, or they may fail to

produce any competitive advantage. Moreover, only further research will be able to moni-

tor the possible future benefits of related diversification strategies, and assess whether the

productivity gains we have observed are persistent through time, or whether there are limits

that might generate decreasing benefits, as technologies, firms, industries and institutions

adapt and change over time.

References

Aranguren, Mari José et al. (2019). “Governance of the territorial entrepreneurial discovery

process: Looking under the bonnet of RIS3”. In: Regional Studies 53.4, pp. 451–461.

Asheim, Bjørn, Markus Grillitsch, and Michaela Trippl (2017). “Smart specialization as an

innovation-driven strategy for economic diversification: Examples from Scandinavian re-

12The term "high-road policy" refers to a Smart Specialisation strategy that targets high-complexity,
high-relatedness sectors of technological specialisation.

36



gions”. In: Advances in the theory and practice of smart specialization. Elsevier, pp. 73–

97.

Balland, Pierre-Alexandre et al. (2019). “Smart specialization policy in the European Union:

relatedness, knowledge complexity and regional diversification”. In: Regional Studies 53.9,

pp. 1252–1268.

Barbieri, Nicoló, François Perruchas, and Davide Consoli (2020). “Specialization, diversifi-

cation, and environmental technology life cycle”. In: Economic Geography 96.2, pp. 161–

186.

Barca, Fabrizio (2009). Agenda for a reformed cohesion policy. European Communities Brus-

sels.

Bathelt, Harald and Michael Storper (2023). “Related variety and regional development: a

critique”. In: Economic Geography, pp. 1–30.

Bishop, Paul and Peter Gripaios (2010). “Spatial externalities, relatedness and sector em-

ployment growth in Great Britain”. In: Regional Studies 44.4, pp. 443–454.

Boschma, Ron (2014). “Constructing regional advantage and smart specialisation: Compar-

ison of two European policy concepts”. In: Constructing regional advantage and Smart

Specialisation: comparison of two european Policy Concepts, pp. 51–68.

— (2015). “Towards an evolutionary perspective on regional resilience”. In: Regional studies

49.5, pp. 733–751.

— (2017). “Relatedness as Driver of Regional Diversification: A Research Agenda”. In: Re-

gional Studies 51.3, pp. 351–364.

Boschma, Ron and Simona Iammarino (2009). “Related variety, trade linkages, and regional

growth in Italy”. In: Economic geography 85.3, pp. 289–311.

Boschma, Ron, Asier Minondo, and Mikel Navarro (2013). “The emergence of new industries

at the regional level in s pain: A proximity approach based on product relatedness”. In:

Economic geography 89.1, pp. 29–51.

37



Breschi, Stefano, Francesco Lissoni, et al. (2003). Mobility and social networks: Localised

knowledge spillovers revisited. Università commerciale Luigi Bocconi.

Broekel, Tom and Ron Boschma (2012). “Knowledge networks in the Dutch aviation industry:

the proximity paradox”. In: Journal of economic geography 12.2, pp. 409–433.

Castaldi, Carolina and Kyriakos Drivas (2023). “Relatedness, Cross-relatedness and Regional

Innovation Specializations: An Analysis of Technology, Design, and Market Activities in

Europe and the US”. In: Economic Geography 99.3, pp. 253–284.

Content, Jeroen and Koen Frenken (2016). “Related variety and economic development: A

literature review”. In: European Planning Studies 24.12, pp. 2097–2112.

Crescenzi, Riccardo and Mara Giua (2020). “One or many Cohesion Policies of the European

Union? On the differential economic impacts of Cohesion Policy across member states”.

In: Regional Studies 54.1, pp. 10–20.

David, Paul, Dominique Foray, and Bronwyn Hall (2009). “Measuring Smart Specialisation:

The concept and the need for indicators”. In: Knowledge for Growth Expert Group, pp. 1–

37.

De Noni, Ivan, Andrea Ganzaroli, and Luciano Pilotti (2021). “Spawning exaptive opportu-

nities in European regions: The missing link in the smart specialization framework”. In:

Research Policy 50.6, p. 104265.

Deegan, Jason, Tom Broekel, and Rune Dahl Fitjar (2021). “Searching through the Haystack:

The relatedness and complexity of priorities in smart specialization strategies”. In: Eco-

nomic Geography 97.5, pp. 497–520.

Di Cataldo, Marco, Vassilis Monastiriotis, and Andrés Rodríguez-Pose (2022). “How âs-

martâare smart specialization strategies?” In: JCMS: Journal of Common Market Studies

60.5, pp. 1272–1298.

Dosi, Giovanni et al. (1988). Technical change and economic theory. Vol. 988. Pinter London.

European Commission (2013). Smart Specialisation Platform. https://s3platform.jrc.

ec.europa.eu/. Last Access 15-July-2023.

38

https://s3platform.jrc.ec.europa.eu/
https://s3platform.jrc.ec.europa.eu/


European Union (2013a). Regulation (EU) no 1301/2013 of the European parliament and of

the Council.

— (2013b). Regulation (EU) no 1303/2013 of the European parliament and of the Council.

Eurostat, NACE (2008). “Rev. 2–statistical classification of economic activities in the eu-

ropean community”. In: Office for Official Publications of the European Communities,

Luxemburg.

Feldman, Maryann P and Dieter F Kogler (2010). “Stylized facts in the geography of inno-

vation”. In: Handbook of the Economics of Innovation. Vol. 1. Elsevier, pp. 381–410.

Foray, Dominique (2009). “Understanding smart specialisation”. In: The Question of R&D

Specialisation, JRC, European Commission, Directoral General for Research, Brussels,

pp. 19–28.

Foray, Dominique, Paul A David, and Bronwyn Hall (2009). “Smart specialisation–the con-

cept”. In: Knowledge economists policy brief 9.85, p. 100.

Foray, Dominique, Paul A David, and Bronwyn H Hall (2011). Smart specialisation from

academic idea to political instrument, the surprising career of a concept and the difficulties

involved in its implementation. Tech. rep. EPFL.

Foray, Dominique, John Goddard, and Xabier Goenaga Beldarrain (2012). Guide to research

and innovation strategies for smart specialisation (RIS 3). EU.

Freeman, Robert N (1987). “The association between accounting earnings and security re-

turns for large and small firms”. In: Journal of accounting and economics 9.2, pp. 195–

228.

Frenken, Koen, Frank Van Oort, and Thijs Verburg (2007). “Related variety, unrelated va-

riety and regional economic growth”. In: Regional studies 41.5, pp. 685–697.

Hidalgo, César A et al. (2007). “The product space conditions the development of nations”.

In: Science 317.5837, pp. 482–487.

39



Iacobucci, Donato (2014). “Designing and implementing a smart specialisation strategy at

regional level: Some open questions”. In: Designing and implementing a Smart Speciali-

sation Strategy at regional level: some open questions, pp. 107–126.

Iacobucci, Donato and Enrico Guzzini (2016). “Relatedness and connectivity in technological

domains: Missing links in S3 design and implementation”. In: European Planning Studies

24.8, pp. 1511–1526.

Kogler, Dieter F, David L Rigby, and Isaac Tucker (2013). “Mapping knowledge space and

technological relatedness in US cities”. In: European Planning Studies 21.9, pp. 1374–

1391.

Kroll, Henning (2015). “Efforts to implement smart specialization in practiceâleading unlike

horses to the water”. In: European Planning Studies 23.10, pp. 2079–2098.

Marrocu, Emanuela et al. (2023). “Evaluating the implementation of Smart Specialisation

policy”. In: Regional Studies 57.1, pp. 112–128.

Mazzucato, Mariana (2013). “Financing innovation: creative destruction vs. destructive cre-

ation”. In: Industrial and Corporate Change 22.4, pp. 851–867.

McCann, Philip and Raquel Ortega-Argilés (2011). “Smart specialisation, regional growth

and applications to EU cohesion policy”. In: IEB Working Paper 2011/14.

— (2013). “Modern regional innovation policy”. In: Cambridge Journal of Regions, Economy

and Society 6.2, pp. 187–216.

— (2015). “Smart specialization, regional growth and applications to European Union co-

hesion policy”. In: Regional studies 49.8, pp. 1291–1302.

Neffke, Frank and Martin Henning (2013). “Skill relatedness and firm diversification”. In:

Strategic Management Journal 34.3, pp. 297–316.

Neffke, Frank, Martin Henning, and Ron Boschma (2011). “How do regions diversify over

time? Industry relatedness and the development of new growth paths in regions”. In:

Economic geography 87.3, pp. 237–265.

40



Nelson, Richard R (1995). “Co–evolution of industry structure, technology and supporting

institutions, and the making of comparative advantage”. In: International Journal of the

Economics of Business 2.2, pp. 171–184.

Panori, Anastasia, Christina Kakderi, and Ilias Dimitriadis (2022). “Combining technological

relatedness and sectoral specialization for improving prioritization in Smart Specialisa-

tion”. In: Regional Studies 56.9, pp. 1454–1467.

Polanyi, Michael (2012). Personal knowledge. Routledge.

Rigby, David L (2015). “Technological relatedness and knowledge space: Entry and exit of

US cities from patent classes”. In: Regional Studies 49.11, pp. 1922–1937.

Rigby, David L and Jürgen Essletzbichler (1997). “Evolution, process variety, and regional

trajectories of technological change in US manufacturing”. In: Economic Geography 73.3,

pp. 269–284.

Rigby, David L, Christoph Roesler, et al. (2022). “Do EU regions benefit from Smart Spe-

cialisation principles?” In: Regional Studies, pp. 1–16.

Rocchetta, Silvia and Andrea Mina (2019). “Technological coherence and the adaptive re-

silience of regional economies”. In: Regional studies 53.10, pp. 1421–1434.

Rocchetta, Silvia, Andrea Mina, et al. (2022). “Technological Knowledge Spaces and the

Resilience of European Regions”. In: Journal of Economic Geography 22.1, pp. 27–51.

Rocchetta, Silvia, Raquel Ortega-Argilés, and Dieter F Kogler (2022). “The non-linear ef-

fect of technological diversification on regional productivity: implications for growth and

Smart Specialisation Strategies”. In: Regional Studies 56.9, pp. 1480–1495.

Rodríguez-Pose, Andrés and Callum Wilkie (2019). “Innovating in less developed regions:

What drives patenting in the lagging regions of Europe and North America”. In: Growth

and Change 50.1, pp. 4–37.

Santoalha, Artur (2019). “Technological diversification and Smart Specialisation: The role

of cooperation”. In: Regional Studies 53.9, pp. 1269–1283.

41



Saviotti, Pier Paolo and Koen Frenken (2008). “Export variety and the economic performance

of countries”. In: Journal of Evolutionary Economics 18, pp. 201–218.

Teece, David J et al. (1994). “Understanding corporate coherence: Theory and evidence”. In:

Journal of economic behavior & organization 23.1, pp. 1–30.

Veldhuizen, Caroline and Lars Coenen (2022). “Smart specialization in Australia: Between

policy mobility and regional experimentalism?” In: Economic Geography 98.3, pp. 228–

249.

42



Appendix

Hierarchical Clustering

To aggregate sectors we rely on a data-driven approach. In particular, we use an algorithm

of hierarchical clustering to build clusters of observations given a certain distance among the

industrial specialisations. We indexed the correlation measure of the industrial inclusions in

the same priorities to build a proximity measure. More specifically, we compute the distance

between sectors j and k as:

djk =
1� ⇢jk

2
(5)

where ⇢jk is the Pearson-correlation index for the co-occurrences of j and k in the same

priority. In particular, djk will be 1 if j and k appear in every priority only combined, while

it will be 0 if j never appears in a priority if k is included and vice-versa. We have 20 sectors

over 22 because ’Printing and reproduction of recorded media’ (C18) and ’Manufacture of

coke and refined petroleum products’ (C19) never appear.

The algorithm of hierarchical clustering is an unsupervised reiterative method. It starts

by sorting all the distances between the pairs of NACE2 sectors. Then it associates the

two closest NACE2 sectors in one cluster. After that, it sorts all the units considering the

cluster as one single unity and proceeds to match closest sectors in another cluster. Since

each cluster counts as one unit, the new distances are computed between the units and the

centroids of the clusters. This algorithm is called hierarchical because it associates two units

at a time, starting from the closest ones up to the most distant. The easiest way to represent

this process is a graph called dendrogram, due to its similarities to a tree. The dendrogram

presents as many associations as several units minus one. This is because, in the last step,

all units are clustered in one unique group. In Figure 4 we can observe the dendogram of

our hierarchical clustering.
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Figure 4: Dendogram of industries

The algorithm is completely unsupervised and defines only how close the are units. The

decision on how many groups is convenient to aggregate the observations does not depend

on any parameter of the group. To define the number of groups we are going to employ we

need to cut the tree, based on clustering validation. To do that we observe the silhouette

values of the clustering. The silhouette value is a measure of how similar an object is to its

cluster (cohesion) compared to other clusters (separation). The silhouette ranges from -1 to

+1, where a high value indicates that the object is well-matched to its cluster and poorly

matched to neighbouring clusters. If most objects have a high value, then the clustering

configuration is appropriate. If many points have a low or negative value, then the clustering

configuration may have too many or too few clusters. Specifically, we perform the silhouette

for any value between 1 and 21. These values correspond to the number of clusters we aim

to aggregate our units by proceeding hierarchically along the dendrogram. The lowest is the

number of cuts, the higher is the probability that a cluster is too wide and catches a negative

silhouette value for at least one unit. We proceed until we find the minimum number of cuts

with all silhouette widths greater than zero. The number of clusters that we got from the
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silhouette analysis is 9. Intuitively this can be represented as a line that cuts the dendrogram

intersecting only nine of its branches. What is on the same "branch" under that line is going

to be aggregated in the same cluster for our subsequent analysis.

We are aware of the limits of unsupervised methods, however, the aggregation this algo-

rithm proposed is reasonable also from a theoretical perspective. We decided, then, to use

these clusters for our analysis because they presented a straightforward economic interpre-

tation of our results.
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OLS and IV estimates

Table 10: Automotive ATE and LATE

Dependent variable: �log(Prodt)
OLS IV
(1) (2)

log(Prodt�1) 0.026 0.029
(0.018) (0.018)

KISt�1 0.002 0.0002
(0.002) (0.002)

log(R&Dt�1) 0.020 0.021
(0.014) (0.013)

Automotive⇥Postt 0.001 0.038⇤⇤
(0.004) (0.017)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.305 0.311
Adjusted R2 0.232 0.239
Residual Std. Error (df = 1063) 0.025 0.025

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 11: Components ATE and LATE

Dependent variable: �log(Prodt)
OLS IV
(1) (2)

log(Prodt�1) 0.027 0.029
(0.018) (0.018)

KISt�1 0.002 �0.0002
(0.002) (0.002)

log(R&Dt�1) 0.020 0.022
(0.014) (0.014)

Components⇥Postt 0.001 0.065⇤⇤⇤
(0.004) (0.024)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.305 0.318
Adjusted R2 0.232 0.247
Residual Std. Error (df = 1063) 0.025 0.025

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 12: Agro-food ATE and LATE

Dependent variable: �log(Prodt)
OLS IV
(1) (2)

log(Prodt�1) 0.027 0.029
(0.018) (0.018)

KISt�1 0.002 �0.0003
(0.002) (0.002)

log(R&Dt�1) 0.020 0.021
(0.014) (0.013)

Agro-food⇥Postt 0.002 0.067⇤⇤⇤
(0.004) (0.025)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.305 0.317
Adjusted R2 0.232 0.246
Residual Std. Error (df = 1063) 0.025 0.025

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 13: Light Industries ATE and LATE

Dependent variable: �log(Prodt)
OLS IV
(1) (2)

log(Prodt�1) 0.027 0.030
(0.018) (0.018)

KISt�1 0.002 �0.001
(0.002) (0.002)

log(R&Dt�1) 0.020 0.022
(0.014) (0.013)

Light Industries⇥Postt 0.008 0.063⇤⇤
(0.006) (0.027)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.307 0.320
Adjusted R2 0.235 0.249
Residual Std. Error (df = 1063) 0.025 0.025

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 14: Materials ATE and LATE

Dependent variable: �log(Prodt)
OLS IV
(1) (2)

log(Prodt�1) 0.027 0.030
(0.018) (0.018)

KISt�1 0.002 �0.0005
(0.002) (0.002)

log(R&Dt�1) 0.021 0.021
(0.014) (0.013)

Materials⇥Postt 0.005 0.063⇤⇤⇤
(0.005) (0.021)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.306 0.319
Adjusted R2 0.234 0.248
Residual Std. Error (df = 1063) 0.025 0.025

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 15: Wood & paper ATE and LATE

Dependent variable: �log(Prodt)
OLS IV
(1) (2)

log(Prodt�1) 0.028 0.029
(0.018) (0.018)

KISt�1 0.001 0.0002
(0.002) (0.002)

log(R&Dt�1) 0.022 0.021
(0.013) (0.013)

Wood & Paper⇥Postt 0.017 0.056⇤⇤⇤
(0.014) (0.021)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.311 0.316
Adjusted R2 0.239 0.245
Residual Std. Error (df = 1063) 0.025 0.025

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 16: Health ATE and LATE

Dependent variable: �log(Prodt)
OLS IV
(1) (2)

log(Prodt�1) 0.027 0.029
(0.018) (0.018)

KISt�1 0.001 �0.00003
(0.002) (0.002)

log(R&Dt�1) 0.020 0.021
(0.014) (0.014)

Health⇥Postt 0.006 0.051⇤⇤⇤
(0.004) (0.020)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.307 0.314
Adjusted R2 0.234 0.242
Residual Std. Error (df = 1063) 0.025 0.025

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Weighted Least Squares approach

Table 17: Automotive ATE and LATE

Dependent variable: �log(Prodt)
WIV WLS
(1) (2)

log(Prodt�1) 0.042⇤⇤⇤ 0.040⇤⇤⇤
(0.012) (0.012)

KISt�1 0.00004 0.006⇤
(0.003) (0.003)

log(R&Dt�1) �0.002 �0.002
(0.004) (0.004)

Automotive⇥Postt 0.076⇤⇤⇤ 0.0001
(0.017) (0.004)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.335 0.320
Adjusted R2 0.263 0.246
Residual Std. Error (df = 853) 0.004 0.004
F Statistic (df = 93; 853) 4.631⇤⇤⇤ 4.314⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 18: Components ATE and LATE

Dependent variable: �log(Prodt)
WIV WLS
(1) (2)

log(Prodt�1) 0.039⇤⇤⇤ 0.033⇤⇤⇤
(0.010) (0.010)

KISt�1 �0.002 0.0004
(0.002) (0.002)

log(R&Dt�1) �0.001 �0.0004
(0.003) (0.004)

Components⇥Postt 0.056⇤⇤⇤ 0.005
(0.014) (0.003)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.308 0.296
Adjusted R2 0.232 0.219
Residual Std. Error (df = 864) 0.003 0.003
F Statistic (df = 94; 864) 4.087⇤⇤⇤ 3.864⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 19: Agro-food ATE and LATE

Dependent variable: �log(Prodt)
WIV WLS
(1) (2)

log(Prodt�1) 0.018 0.016
(0.011) (0.011)

KISt�1 0.0004 0.002
(0.003) (0.003)

log(R&Dt�1) 0.002 0.002
(0.004) (0.004)

Agro-food⇥Postt 0.049⇤⇤⇤ �0.001
(0.017) (0.005)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.289 0.282
Adjusted R2 0.211 0.204
Residual Std. Error (df = 853) 0.003 0.003
F Statistic (df = 93; 853) 3.722⇤⇤⇤ 3.601⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

55



Table 20: Light industries ATE and LATE

Dependent variable: �log(Prodt)
WIV WLS
(1) (2)

log(Prodt�1) 0.048⇤⇤⇤ 0.049⇤⇤⇤
(0.011) (0.011)

KISt�1 0.0004 0.007⇤⇤
(0.003) (0.003)

Light Industries⇥Postt 0.123⇤⇤⇤ 0.010⇤
(0.018) (0.005)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.370 0.338
Adjusted R2 0.302 0.266
Residual Std. Error (df = 864) 0.003 0.004
F Statistic (df = 94; 864) 5.409⇤⇤⇤ 4.684⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 21: Materials ATE and LATE

Dependent variable: �log(Prodt)
WIV WLS
(1) (2)

log(Prodt�1) 0.022⇤⇤ 0.020⇤
(0.011) (0.011)

KISt�1 �0.001 0.001
(0.003) (0.003)

log(R&Dt�1) 0.003 0.002
(0.004) (0.004)

Materials⇥Postt 0.053⇤⇤⇤ 0.004
(0.015) (0.004)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.306 0.297
Adjusted R2 0.230 0.221
Residual Std. Error (df = 864) 0.003 0.003
F Statistic (df = 94; 864) 4.050⇤⇤⇤ 3.890⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

57



Table 22: Health ATE and LATE

Dependent variable: �log(Prodt)
WIV

(1) (2)

log(Prodt�1) 0.010 0.010
(0.011) (0.011)

KISt�1 �0.002 �0.001
(0.003) (0.003)

log(R&Dt�1) 0.006 0.005
(0.003) (0.004)

Health⇥Postt 0.027⇤ 0.004
(0.014) (0.003)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.284 0.282
Adjusted R2 0.206 0.204
Residual Std. Error (df = 864) 0.003 0.003
F Statistic (df = 94; 864) 3.645⇤⇤⇤ 3.612⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 23: Wood & paper ATE and LATE

Dependent variable: �log(Prodt)
WIV WLS
(1) (2)

log(Prodt�1) 0.031⇤⇤⇤ 0.031⇤⇤⇤
(0.010) (0.011)

KISt�1 �0.0001 0.001
(0.003) (0.003)

log(R&Dt�1) 0.003 0.003
(0.004) (0.004)

Wood & Paper⇥Postt 0.082⇤⇤⇤ 0.022⇤⇤⇤
(0.016) (0.005)

Regional FE

Year FE

Observations 1,175 1,175
R2 0.324 0.316
Adjusted R2 0.251 0.241
Residual Std. Error (df = 864) 0.003 0.003
F Statistic (df = 94; 864) 4.415⇤⇤⇤ 4.243⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Leave-one-out models

Table 24: Leave Austria Out

D
ep

en
de

nt
va

ri
ab

le
:
�

lo
g(
P
r
o
d
t)

IV
O

LS
IV

O
LS

IV
O

LS
IV

O
LS

IV
O

LS
IV

O
LS

IV
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)
(7

)
(8

)
(9

)
(1

0)
(1

1)
(1

2)
(1

3)
(1

4)

A
ut

om
ot

iv
e⇥

P
o
s
t
t

0.
02

2
0.

00
04

(0
.0

14
)

(0
.0

04
)

C
om

po
ne

nt
s⇥

P
o
s
t
t

0.
05

5⇤
⇤⇤

0.
00

1
(0

.0
21

)
(0

.0
04

)

A
gr

o-
fo

od
⇥
P
o
s
t
t

�
0.

00
03

�
0.

00
1

(0
.0

16
)

(0
.0

04
)

Li
gh

t
In

du
st

rie
s⇥

P
o
s
t
t

0.
03

8⇤
0.

01
0

(0
.0

23
)

(0
.0

07
)

M
at

er
ia

ls⇥
P
o
s
t
t

0.
03

4⇤
0.

00
3

(0
.0

18
)

(0
.0

04
)

W
oo

d
&

Pa
pe

r⇥
P
o
s
t
t

0.
03

9⇤
0.

01
8

(0
.0

22
)

(0
.0

14
)

H
ea

lth
⇥
P
o
s
t
t

0.
03

8⇤
⇤

0.
00

6
(0

.0
17

)
(0

.0
04

)

O
bs

er
va

tio
ns

1,
07

5
1,

07
5

1,
07

5
1,

07
5

1,
07

5
1,

07
5

1,
07

5
1,

07
5

1,
07

5
1,

07
5

1,
07

5
1,

07
5

1,
07

5
1,

07
5

R
2

0.
28

3
0.

28
0

0.
29

5
0.

28
0

0.
28

0
0.

28
0

0.
29

4
0.

28
4

0.
28

6
0.

28
1

0.
28

8
0.

29
0

0.
28

8
0.

28
3

A
dj

us
te

d
R

2
0.

20
7

0.
20

4
0.

22
1

0.
20

4
0.

20
3

0.
20

4
0.

21
9

0.
20

8
0.

21
1

0.
20

4
0.

21
3

0.
21

4
0.

21
2

0.
20

7
R

es
id

ua
lS

td
.

E
rr

or
(d

f=
97

1)
0.

02
2

0.
02

2
0.

02
2

0.
02

2
0.

02
2

0.
02

2
0.

02
2

0.
02

2
0.

02
2

0.
02

2
0.

02
2

0.
02

2
0.

02
2

0.
02

2

N
ot

e:
⇤ p
<

0.
1;

⇤⇤
p<

0.
05

;⇤
⇤⇤

p<
0.

01

60



Table 25: Leave Czechia Out
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Table 26: Leave Germany Out
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Table 27: Leave Denmark Out
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Table 28: Leave Spain Out
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Table 29: Leave France Out
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Table 30: Leave Italy Out
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Table 31: Leave Netherlands Out
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Table 32: Leave Portugal Out
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Table 33: Leave Romania Out
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