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Abstract

This study explores the regional diversification processes into green technologies (2000-

2017) and their implications for regional inequalities. Utilizing patent and Eurostat data,

we analyze these processes along the economic strength of regions and the nature of their

knowledge base. Our findings reveal that both structurally strong and weak regions can

successfully diversify into green technologies if they possess related technological capabilities.

However, brown regions cannot do so. Already existing patterns of divergence between these

two types of regions are unlikely to be exacerbated by a green transition, but new regional

disparities between brown regions and other regions could emerge.
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1 Introduction

The usage of fossil and non-renewable resources is nowadays still, the base for many economic

activities. Climate change is one of the biggest challenges that such economic systems must face.

Population growth and resource scarcity put these challenges at the top of the policy agendas

of all national and supranational entities (Imbert et al., 2017; Morone, 2016). Fundamental

structural adjustments need to be made (e.g. in the existing production and consumption sys-

tems) to address these challenges. The possibility to create new industrial sectors and economic

opportunities through a sustainable transformation is real even if it is not without challenges.

This is even more true at the regional level (Blažek et al., 2020; Hermans, 2018; Trippl et al.,

2019). For example, some regions specialized in polluting activities are facing the di�cult task

of transforming their industrial structure (Grillitsch & Hansen, 2019). However, successful re-

gional diversification is anything but simple. Not all regions have the same resources and skills

to adapt their regional structures to meet these challenges (Binz et al., 2016; Boschma, 2017).

Consequently, the restructuring processes required in the course of a green transition will likely

o↵er new opportunities for advancement but also for relegation (Blažek et al., 2020).

However, while there is growing awareness about the potential drivers of green diversification

of regions (e.g. Santoalha & Boschma, 2021; van den Berge et al., 2020), the socio-economic

impacts of such process remain so far rather unclear, despite some prominent exceptions (e.g.

Basilico & Grashof, 2023; Bringezu et al., 2021). This applies also especially to another (societal)

challenge, the regional economic divergence (Lucchese & Pianta, 2020). In advanced economies,

the real GDP per capita in structurally strong regions is now on average 70 percent higher than

in structurally weak regions (Floerkemeier et al., 2021). The divergence is challenging political

stability, social cohesion and economic progress in Europe (Iammarino et al., 2019; Lucchese &

Pianta, 2020). Despite the relevance, it is, however, still unclear whether and to what extent

the green transformation will a↵ect these regional inequalities (Köhler et al., 2019; Lucchese &

Pianta, 2020). Given the rather policy-oriented approach of Just Transition, which is a central

component of the Green Deal (European Commission, 2021), this research gap seems particularly

worthwhile to investigate it further.

Following the suggestions of Köhler et al. (2019), the paper therefore investigates who “wins”

and who “loses” from this green transformation by analysing the diversification processes into

green technologies along two dimensions. First, the economic strength of regions. There is ev-

idence that innovation exacerbates inequality (e.g. Aghion et al., 2019). Higher-income regions

may disproportionally profit from innovation as they own resources and capabilities on a large

scale that are beneficial for innovation, because they have greater access to di↵erent resources

like for example knowledge infrastructures, diversity of economic activities and human capital

(Feldman, 1994). The question now arises whether this holds true for the green transition or

whether, due to its particularities (e.g. Barbieri et al., 2020a), the green transition o↵ers partic-

ularly development opportunities for structurally weak regions. Especially policy makers have a

rather optimistic perspective in this context, highlighting the promising opportunities for struc-

turally weak regions (e.g. BMBF, 2020). In view of possible di↵erences in regional capacities,

these expectations could also be more wishful thinking, as already existing regional inequalities

could rather be manifested (Høst et al., 2020; Lucchese & Pianta, 2020). Second, following the

framework of Grillitsch & Hansen (2019), also the nature of the regional knowledge base should
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be considered. Particularly interesting in this regard is the case of regions specialized in or highly

related to a dirty industry (e.g. coal regions) which we call “brown” regions. In the sustainability

transition literature exist several case studies showing that the existing socio-technical regime in

such brown regions hampers the development of new clean technologies (e.g. Smink et al., 2015).

However, by taking a more systematic perspective, recent evidence from quantitative analyses

indicates that these regions are also able to diversify into green technologies (e.g. Santoalha &

Boschma, 2021; van den Berge et al., 2020). The two dimensions of economic strength and the

nature of the regional knowledge base can be considered together. This allows for a more accu-

rate identification of possible di↵erences in green diversification opportunities of regions as well

as better insights into possible new and/or increased regional disparities. For example, it may

be that it may be that particularly high-income regions, whether or not they have a specialized

green or brown knowledge base, are able to diversify into new green technologies. This process

will also bring greater economic benefits to these already economically strong regions, thereby

exacerbating pre-existing regional divergence patterns. Alternatively, low-income regions with a

green knowledge base may be able to diversify into new green technologies. This process would

then bring economic benefits of the green transition to these more structurally weak regions

o↵ering the possibility of convergence.

The paper uses patent data from the OECD REGPAT database for the period from 1996

to 2017 to assess how di↵erent typologies of regions are able to diversify. For the identification

of green technologies in European NUTS-2 regions, similar to previous studies (e.g. Santoalha

& Boschma, 2021) the classification of environment-related technologies proposed by the WIPO

Green Inventory is applied (WIPO, 2021). For the classification of brown technologies, we use

the methodology developed by the EPO, the OECD and the International Energy Agency (EPO

& IEA, 2021). Following the classification of Iammarino et al. (2019), the economic strength of

the NUTS-2 regions is based on the GDP per head. Accordingly, regions with less than 75% of

the EU or national averages are regarded as structural weak regions.

By empirically investigating the regional diversification processes into green technologies

along the two dimensions of economic strength and the nature of the knowledge base, this paper

can derive important insights about the potential dark side of green innovation in terms of

regional inequality. Thereby, this paper enriches the regional diversification and sustainability

transition literature. Besides contributing to broadening our knowledge about the relationship

between regional diversification into green technologies and regional inequality, this paper also

o↵ers a rather pragmatic value, by highlighting possible undesirable developments that require

policy intervention in order to ensure that the regional transition is not only green, but also

socially sustainable (Høst et al., 2020).

The remainder of this article is structured as follows: Section 2 provides an overview over

the literature and presents the underlying theoretical background. Section 3 then introduces the

underlying data and the methodological approach. Thereafter, section 4 presents and discusses

the empirical findings. The article ends with a conclusion in section 5, including limitations as

well as promising avenues for further research.
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2 Theoretical background: regional diversification, greening and

inequality

In general, the study of structural change is not a new topic in science. History shows that all

economies - at the states, regional, and city levels - must constantly adapt to new circumstances

in order to remain competitive (Cantner, 2017; Xiao et al., 2018). In other words, regions must

constantly innovate and develop new activities in order to prevent economic decline (Chapman &

Walker, 1991; Walker & Storper, 1989). In this context, it is widely accepted that new industries

and technologies emerge in regions where the existing regional structure and the underlying local

capabilities1 are technologically related to the new activity (e.g. Boschma, 2017; Rigby, 2015;

van den Berge et al., 2020).

In view of the grand societal challenge of climate change, there is a growing interest in exam-

ining the (regional) diversification processes into green activities (e.g. Belmartino, 2022; Montre-

sor & Quatraro, 2020; Santoalha & Boschma, 2021). Although climate change is a global issue,

the relevance of green technologies to reduce, eliminate or reverse the environmental damage

caused by local economic activities (Gibbs, 2006; Murphy, 2015), and the associated economic

opportunities of this growing market (Belmartino, 2022; Cooke, 2010), make it worthwhile to

explore the regional level. Based on the notion that diversification into green activities is not a

random event, but rather an evolutionary branching process in which these new activities draw

on and combine cognitively related activities in a region (Boschma, 2017; Boschma & Frenken,

2011; Frenken & Boschma, 2007), recent studies tend to find empirical evidence for the driv-

ing role of technological relatedness (e.g. Montresor & Quatraro, 2020; Santoalha & Boschma,

2021; van den Berge et al., 2020).2 These studies show how past and place dependency make

regions more likely to diversify into new technologies or industries that are closely related to

those that already exist (Hidalgo et al., 2018; Ne↵ke et al., 2011; Rigby, 2015). We follow this

argumentation and therefore propose the following hypothesis:

Hypothesis 1a Regions specialized in related technologies are more likely to diversify into green

technologies.

Unlike in the case of hypothesis 1a, the literature is relatively discordant when it comes to

regions that are specialized in “dirty” technologies. Brown regions are less capable of diversifying

into green technologies, unless they have technologies that are strongly related to green technolo-

gies (Santoalha & Boschma, 2021). This goes in line with the underlying idea of one prominent

theoretical concept in the sustainability transition literature - the multi-level perspective (MLP).

In the MLP sustainability transitions are conceptualized through the dynamic processes within

and between three levels of analysis: (i.) Niches provide sheltered spaces where radically new

knowledge and innovations can be created, tested and deployed; (ii.) Socio-technical regimes con-

stitute institutional structures of existing systems following an already established technological

trajectory thereby characterised by rather incremental change processes; (iii.) Socio-technical

1
In line with (Maskell & Malmberg, 1999), local capabilities encompass the region’s infrastructure and built

environment, natural resources, institutional endowment as well as the knowledge and skills available in the region.
2
As indicated in Boschma (2017), there are di↵erent forms of relatedness. However, in the case of the regional

diversification into green activities, most empirical studies focus on technological relatedness so far, despite some

recent exceptions (Belmartino, 2022).

4



landscape, which encompass exogenous (societal) events and developments, such as demographic

change or rapid shocks through wars for instance (Basilico & Grashof, 2023; Geels, 2002; Geels

& Schot, 2007; Rip & Kemp, 1998). The process of alignment of a novelty from the niche to

the mainstream structures is thereby not simple, but instead several constraints need to be

overcome, for instance due to lack of compatibility and/or resistance of the regime (Basilico

& Grashof, 2023; Elzen et al., 2012; Santner, 2017). Indeed, there are several case studies in

the sustainability transitions literature that show how challenging it is to change the existing

socio-technical regime (e.g. Negro et al., 2012; Smink et al., 2015).

Nevertheless, other studies find no empirical evidence that current specializations in “dirty”

technologies hinder diversification into green technologies (van den Berge et al., 2020). In ad-

dition, it has recently been emphasized that non-green regions can actually also diversify into

green technologies by recombining their non-green technologies with green ones (e.g. Montre-

sor & Quatraro, 2020; Santoalha et al., 2021). Following the recombinant innovation approach

(Weitzman, 1998), this stream of literature stresses that regions that are better capable of re-

combining di↵erent knowledge domains, potentially formerly unconnected and unrelated ones,

are also more likely to diversify into new green specializations (Barbieri et al., 2020b; Orsatti

et al., 2023). This might also explain why green technologies are on average more complex and

novel than non-green technologies (Barbieri et al., 2020a).

However, as previous research has shown (e.g. Castaldi et al., 2015; Fleming, 2001; Grashof

et al., 2019) these (novel) recombinations are rather rare and also not equally distributed among

regions. Hence, it appears that the e↵ectiveness of the recombination process, i.e. how easily

two technologies can be recombined (Zeppini & van Den Bergh, 2011), is not necessarily high

enough to prevent a lock-in situation (Santoalha & Boschma, 2021). Brown regions that are

highly specialized in “dirty” technologies might be unable to recombine other technological

domains to achieve a green transformation. Instead, it is reasonable to assume that these highly

specialized brown regions rather continue following already well-defined trajectories (Dosi, 1982)

and engage in exploitative search processes (March, 1991). This is especially true when regional

interest groups, such as local politicians or associations, use their influence to hamper initiatives

for the development of new green paths (Gardt et al., 2021; Geels, 2014). In line with the

argumentation proposed by Santoalha & Boschma (2021), we therefore propose the following

hypothesis:

Hypothesis 1b Brown regions, i.e. regions with existing specializations highly related to “dirty”

technologies, are less likely to diversify into green technologies

If these hypotheses are confirmed, this would result in implications for regional disparities.

Especially when the cost of (unrelated) diversification, as in the case of brown regions, may be so

high that very few, if any, of them can bear this financial burden (Boschma et al., 2017; Simmie,

2012). Hence, it is reasonable to expect that structurally strong regions with su�cient resources

and capabilities have an advantage in coping with the necessary structural adjustment processes

(Pinheiro et al., 2022). In general, recent studies have documented widening income disparities

across and within regions in many developed countries, threatening economic progress, social co-

hesion and political stability (Boschma et al., 2023; Feldman et al., 2021; Iammarino et al., 2019;

Lucchese & Pianta, 2020). Traditionally, externalities, cumulative e↵ects and structural factors,
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such as institutions are regarded as factors for enhancing (national) inequalities (Hartmann &

Pinheiro, 2022; Pinheiro et al., 2022). For example, Kuznets (1955) argued that countries would

experience a rise in income inequality, in particular between urban and rural areas, at the ini-

tial stages of economic development, while at later stages inequality would fall again due to

knowledge di↵usion and associated developments of a welfare state (e.g. redistribution policies).

However, the empirical evidence for this assumption is rather mixed (Fields, 2002; Hartmann

& Pinheiro, 2022; Palma, 2011). In addition, the notion that counterbalancing market forces

would “lift all boats” was also conceptually criticized (Hartmann & Pinheiro, 2022). For ex-

ample, Myrdal (1957) suggested that the free play of market forces may not necessarily result

in a process of economic convergence, but rather in a core-periphery structure of the economy.

This is explained by the fact that potential spread e↵ects, such as remittances and technology

di↵usion, are outweighed by backwash e↵ects, like externalities of infrastructure for commerce,

the movement of (financial) capital and the selective migration of young and highly educated

human capital to more economically advanced regions(Myrdal, 1957; Pinheiro et al., 2022).

Besides these potential backwash and spread e↵ects, innovation processes and their nature

provide another (rather recent) explanation for inter-regional inequalities, often summarized

under the expression “dark side of innovation” (Coad et al., 2021; Pinheiro et al., 2022). There

is strong evidence that innovation processes agglomerate in space (Asheim & Gertler, 2006;

Audretsch & Feldman, 1996). Knowledge does not easily spill over large geographical distances,

but is geographically restricted and spatially concentrated (Ja↵e et al., 1993). Especially the

transfer of tacit knowledge requires face-to-face contacts for an e↵ective transmission (Daft &

Lengel, 1986). As a consequence, in line with evolutionary economic geography, regions tend

to accumulate knowledge and specialize over time (Boschma & Lambooy, 1999). These highly

agglomerated hotpots, most famously the Silicon Valley, pull in high-skilled workforce from other

regions, since they o↵er a large number of high-paid and skilled-based jobs, thereby reinforcing

the tendency of regional knowledge concentration embedded in the human capital (Boschma

et al., 2023; Diamond, 2016; Iammarino et al., 2019). Moreover, these regions typically form also

hubs in research networks, providing them with access to new knowledge sources, which again

can reinforce regional disparities with respect to innovation (Maggioni et al., 2007; Moreno et al.,

2005). In this regard, due to the existing agglomeration economies, among other reasons, these

regions are able to a larger extent to produce radical innovations (Grashof et al., 2019; Kemeny

et al., 2022). High-income regions have therefore particular resources and capabilities, such as

human capital, a diverse and large knowledge pool as well as infrastructure, through which they

can more easily innovate and develop new activities in order to avoid economic decline (Feldman,

1994; Pinheiro et al., 2022). Since green technologies are on average more complex and novel

than non-green technologies (Barbieri et al., 2020a), it is reasonable to assume that due to their

previously described characteristics, structurally strong regions have more beneficial conditions

to engage in green innovation processes. We therefore propose the following hypothesis:

Hypothesis 2 Structurally strong regions are more likely than structurally weak regions to di-

versify into green technologies.

Furthermore, it is also important to take a closer look at the type of new green activities

that are being created in a region (Pinheiro et al., 2022), since not all green technologies are
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Nature of knowledge 
base/ Economic 

strength
„Green“ „Brown“

Strong Best chances Mixed chances

Weak Mixed chances Worst chances

H1a: Positive H1b: Negative

H2 & H3: Positive

H2 & H3: Negative

Figure 1: Theoretical framework for regional diversification into green technologies

also alike, despite some common characteristics (Barbieri et al., 2020a). According to inter-

disciplinary research on economic complexity, regions should engage in more complex activities

because of the associated economic benefits (Balland et al., 2019, 2022; Hidalgo, 2021). These

economic benefits rely on the idea that complex knowledge is hard to imitate by competitors,

thereby providing a competitive advantage that ultimately leads to a higher economic perfor-

mance (Hidalgo & Hausmann, 2009; Kogut & Zander, 1992; Mewes & Broekel, 2022; Rigby

et al., 2022). Consequently, since technologies that encompass such complex knowledge cannot

be di↵used so easily (Fleming & Sorenson, 2001), they are more geographically concentrated in

large knowledge-intensive cities than simple technologies (Balland et al., 2020; Mewes & Broekel,

2022). This has of course also implications for regional disparities, especially because related

capabilities seem to matter for the diversification into more complex activities (Balland et al.,

2019). In their pioneering study, Pinheiro et al. (2022) showed that high-income regions di-

versify into more complex technologies and industries, while low-income regions rather move

into simple technologies, implying that regional disparities are likely reinforced. Based on their

empirical results and our previous hypotheses, it is therefore reasonable to assume that struc-

turally strong regions have better capabilities not only to diversify into green technologies, but

also to diversify in more complex green technologies. This multiplying e↵ect would result to a

even higher potential for economic benefits for these regions and would ultimately exacerbate

the inter-regional inequality patterns (Pinheiro et al., 2022). We therefore propose the following

hypothesis:

Hypothesis 3 Structurally strong regions are more likely than structurally weak regions to di-

versify into highly complex green technologies.

Figure 1 summarizes our assumptions regarding the nature of the regional knowledge base,

the regional economic strength and the diversification into green technologies (additionally con-

sidering the complexity of these technologies).
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3 Data and methodological approach

3.1 Data

To test our hypotheses, we use the OECD Regpat (February 2022) database to successfully

detect innovative activities. We include all patents filed between 1996 and 2017 with 5 year

moving windows (for example the period identified as 2000 contains patents filed between 1996

and 2000). To identify brown patents we use the taxonomy developed by (EPO & IEA, 2021).

The WIPO green inventory has been used to identify the green patents (WIPO, 2021). A specific

patent is classified to a green or brown technology if one of its full-digits CPC classes is belonging

to either one of the two aforementioned inventories. For developing the main indicators utilized

in this paper we use the CPC 4-digit classification.

Many innovation studies rely on patent data because they provide valuable information on

the technological domains (e.g Boschma et al., 2014; Balland et al., 2019). However, it has

been demonstrated that patents embed some limitations (Griliches, 1990). For example, based

on their nature, some inventions cannot be patented (e.g. softwares and services). Thus, all

the analyses (including ours) focusing on patents have a limited view on the total number of

inventions. Furthermore, the analysis is based on the patent classification scheme which assumes

that patents in the same CPC class are at the same time similar and di↵erent from those in

other classes. This assumption might not hold true since the technological classification has been

established for other purposes rather than distinguishing patents based on their technological

domain (Basilico et al., 2023).

A patent is assigned to a specific region if at least one inventor resides there (Cantner &

Graf, 2006). Large companies are usually patenting in their headquarters, a place where the

invention was not actually originated (Graf, 2017). This e↵ect must be considered, if not, the

geographical allocation would be biased by a concentration of patents around large cities.

We consider the NUTS 2 classification as regional boundaries. Usually this geographical

delimitation correspond to the regions in which regional governments are directly responsible

for policies with regard to environmental protection (Giudici et al., 2019; Santoalha et al., 2021).

There are in total 242 NUTS 2 regions in Europe. We consider only the regions that have at

least 5% of the distribution of patents (corresponding to 40 patents) in the whole considered

period. This threshold is important since applying specialization indexes to regions with very few

patents would result in a overestimation for these specific regions. In other words, regions would

be regarded as specialized in a specific technologies only because the number of technologies in

which they are active is very low. As a result, our final sample consists of 203 NUTS 2 regions

from 17 di↵erent countries.3

3.2 Dependent and independent variables

3.2.1 Regional specialization index: RCA

To identify the specialization patterns of regions in green and brown technologies we follow other

studies about technological diversification in regions (Kogler et al., 2013; Rigby, 2015). Firstly,

we divide the number of patents identified in each CPC 4 digits class in three categories. The

3
These countries encompass the EU-15, without UK and Ireland due to data limitations, Switzerland, Poland,

Czech Republic, Norway and Sweden.
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first, contains the patents identified as green. The second, contains the patents identified as

brown. The last category contains the patents identified as neither brown nor green. Secondly,

we compute for each year, each region and each CPC 4 digit class present in the sample a

revealed comparative advantage (RCA) weighting it by the number of patents identified as

green and brown:

brown/green =
patentstr,z/

P
i patents

t
r,iP

r patents
t
r,z/

P
r

P
i patents

t
r,i

> 1 (1)

Where patentstr,z is the amount of patents in a region r in a specific CPC 4 digits class z

identified as green or brown in time t,
P

i patents
t
r,i is the total number of patents in a region

r in time t,
P

r patents
t
r,z is the sum of all patents in every region r in a specific CPC 4 digit

class z and identified as green or brown in time t. Finally,
P

r

P
i patents

t
r,i is the sum of the

total amount of patents for each region in time t.

Regions r are regarded as specialized in a specific brown or green technology if there is a

revealed comparative advantage in a specific technology at a period t. In other words, for being

classified as specialized in a specific brown or green technology the region has a higher share of

green or brown patents compared to the share of green or brown patents in the same CPC 4

digits class over all regions (brown/green � 1).

In line with previous studies (e.g. Rigby, 2015; Montresor & Quatraro, 2020; Santoalha &

Boschma, 2021), we use this information (green > 1) in order to create our dependent variable

NewRCAgreen. This dichotomous variable is defined in the following way:

NewRCAgreenr,t = 1, ifRCAgreenr,t�5  1 ^RCAgreenr,t > 1 ^ PatGreenr,t = 10 (2)

where NewRCAgreenr,t equals one, if region r had not an RCA in green technologies at

time t� 5, but develops an RCA in green technologies in t. Following Pinheiro et al. (2022), we

apply a threshold of at least 10 green patents per region in order to prevent that the new RCA,

being a relative measure, is based on very small absolute numbers of green patents. If a region

has an amount of patents lower than 10 in a time period t this region would be removed from

the sample.

3.2.2 Relatedness density

As showed by Hidalgo et al. (2007) regions tend to develop comparative advantages in technolo-

gies related to the ones which they are already specialized. We assess the relatedness between

technologies using the distribution of patents in di↵erent CPC 4 digit classes this time without

any geographical delimitation (the whole Europe is considered as a unique entity). For each pair

of 4-digit CPC class (i and j) we check the amount of patents that co-classify them. Moreover,

we apply a standardization measure using the total count of the number of patents in CPC

classes i and j. Therefore, we obtain a standardized measure accounting for how many patents

appear in a couple of CPC 4 digits classes i and j. We perform as standardization procedure

the so-called Cosine similarity index using the EconGeo R package by Balland (2017). The

Knowledge Space is actually how scientists in evolutionary economic geography such matrices

(Kogler et al., 2013) which is a an n by n matrix where the nodes i (i = 1, ..., n) are the 4 digits
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CPC classes and the edges represent the degree of relatedness between them. The estimation of

the relatedness for each pair of technologies (i and j) is performed for all the periods included

in the sample (from 2000 to 2017).

Moving forward it is possible to correctly identify the green and brown technological struc-

ture of each region within the EU. Drawing from other research which investigates how regional

knowledge tends to cluster around specific technological fields we calculate the so-called Relat-

edness Density for both technologies identified as green and brown (Hidalgo et al., 2007; Balland

et al., 2019). This indicator permits us to understand how in each region the knowledge tends

to cluster around green and brown technologies. The Relatedness Density of green or brown

technologies in region r and in time t is derived by calculating the sum of technological relat-

edness �i,j,t of technology i to all the other technologies j with a regional relative comparative

advantage (RCA), divided by the sum of relatedness of technology i to all the other technologies

j in Europe at time t:

Relatedness Densityi,r,t =

P
j2r,j 6=i

�i,j

P
j 6=i

�i,j
⇤ 100 (3)

Figure 2 shows the relatedness density for both brown (2a) and green (2b) technologies in

the European regions for the year 2017. In general, the highest income areas are the ones which

show both a high green and brown relatedness density.

3.2.3 Technological complexity

Not all knowledge has the same value. There are some bits of knowledge which are more di�cult

to access than others (Hidalgo & Hausmann, 2009). These particular forms of knowledge are for

most part tacit and di�cult to be transmitted over long distances (Fleming & Frenken, 2007).

Literature working with patent data uses forward citations or composite indicators (based still

on citations with a mix between backward and forward citations) to assess the quality and the

impact of the produced knowledge (Ja↵e et al., 1993; Castaldi et al., 2015). Nevertheless, these

measures deal with the influence of knowledge on subsequent inventions not with the character-

istics and the value of knowledge stocks. Polanyi (1966) a�rms that tacit knowledge consists

of procedures permitting to identify bottlenecks and possible solutions in the production pro-

cess. In line with this thought, Maskell & Malmberg (1999) propose that tacit knowledge is

valuable because it is di�cult to replicate. In fact, how people solve and react to problems is

a specific knowledge embedded within individuals which is di�cult to be explained or taught.

Kogut & Zander (1992) show that complexity is a fundamental part composing tacit knowl-

edge. Therefore, they propose complexity as an indicator for measuring this specific typology of

knowledge.

Complexity can be measured on the level of individual patents as showed by Fleming &

Sorenson (2001) through a measure which captures the di�culty to combine knowledge subsets

using the technological classification of patents. Hidalgo & Hausmann (2009) propose a di↵erent

measure of complexity in their product-country export analysis. The complexity of a product is

mirrored by the di�culty of mastering capabilities that a country might need to export it, the

diverse capabilities that each country has and how related the products are to each other. In
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Figure 2: Relatedness density for brown and green technologies in European regions in 2017

line with other studies in the field of economic geography we use this specific approach applying

it to regions instead of countries and to patent data instead of trade data (e.g. Balland et al.,

2019; Santoalha & Boschma, 2021).

In our case we assess the complexity for both green technologies and brown technologies in

each region and period. We do that to assess which are the regions that produce (on average) the

most complex technologies both in brown and green. We use a bipartite matrix that represent

the regions and the technologies in which they are active. We represent this matrix using an

adjacency matrix Mr,i where Mr,i = 1 if a region r has an RCAr,i > 1, otherwise Mr,i = 0.

We use the so-called method of reflections of Hidalgo & Hausmann (2009) due to the bipartite

nature of the network. In this sense, we produce two di↵erent sets of variables based on the two

types of nodes in the network (regions and technologies), we measure both the regional diversity

of technologies and the technological ubiquity. The diversity (D) represents the number of green

or brown technologies in which a region shows a specialization:
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Dr,0 =
X

t

Mr,i (4)

On the other hand the ubiquity (U) represents the number of regions in which a technology

has a comparative advantage and it is derived as follows:

Ui,0 =
X

r

Mr,i (5)

Putting together the diversity (D) and the ubiquity (U) we derive the complexity index (CI)

for both green and brown technologies as follows:

CIr,1 =
X

i

1

Dr
Ur,0Mr,i (6)

The complexity index represents how rare are the green and brown technologies produced

by the EU regions. Based on this information, we also calculate our second dependent variable

NewRCA green complex, which considers the degree of complexity of new specializations in

green technologies. NewRCA green complex equals 1 if the corresponding region has a new

specialization in green technologies (as described in Section 3.2.1) and if the respective green

complexity is equal or above 75% of the national average.

3.2.4 Identification of structurally strong and weak regions

For the identification of structurally strong and weak regions, we follow previous studies using

GDP per capita (e.g. Iammarino et al., 2019; Kopka & Grashof, 2022). Despite some drawbacks

(e.g. Fleurbaey, 2009), this variable has been frequently used as a proxy for the economic wealth.

For the specific classification into structurally strong and weak regions, we use a similar approach

as Pinheiro et al. (2022). We use as threshold the 75% of the EU average of GDP per capita.

This leads to the following two groups:

(1.) Structurally weak regions (regions with a GDP per capita below 75% of the EU average)

(2.) Structurally strong regions (regions with a GDP per capita equal or above 75% of the EU

average4

Based on this classification we create the dichotomous variable GDP strong EU , indicating

whether a regions belongs to the group structurally strong regions or not.

3.3 Control variables

Furthermore, we control for several regional characteristics that might influence the likelihood to

diversify into green technologies. First, in line with previous studies (Basilico & Grashof, 2023),

we include the population density in a region (Popdensity), as highly urbanized regions might

have a higher propensity for a non-optimal distribution of resources and for producing polluting

activities (Lu et al., 2021). In this sense, regions are a↵ected by potential negative e↵ects with a

4
As a further robustness check, we also used the classification by Kopka & Grashof (2022) that is based on

the same threshold but on the national average of GDP per capita. The corresponding results remain robust and

are presented in Table 5 in the Appendix.
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higher attitude to diversify into green technologies o↵ering a solution to these issues. Moreover,

if the urban agglomeration is high, highly-qualified people can be attracted, which is necessary

to develop green technologies, requiring specific high-level skills (Bacolod et al., 2009). Related

to the second aspect, we also control for the educational and labour market structure in regions,

since green technologies are on average more complex and novel (Barbieri et al., 2020a). Based

on Eurostat data, we use the share of population with tertiary education (ISCED levels 5 to

8) to control for the educational structure (ShareTertiary) as well as the share of employment

in technology and knowledge-intensive sectors to control for the employment structure within

regions (ShareEmployKnowledge). In both cases, we assume that high qualified human capital

fosters the likelihood to enter new specializations in green technologies, because these regions

have embedded the high-level skills to do so (Consoli et al., 2016). Finally, following previous

studies (e.g. Montresor & Quatraro, 2020; Santoalha & Boschma, 2021), we account for the

stringency of national environmental policies including the OECD Environmental Policy Strin-

gency Index (EnvStringency). An overview of all variables used, including summary statistics,

is presented in Table 1.5

Table 1: Descriptive statistics

Variable Obs Mean Std. Dev. Min Max Data source
NewRCA green 3845 0.044 0.205 0 1 OECD Regpat
NewRCA green complex 3845 0.042 0.200 0 1 OECD Regpat
rel dens brown 3209 0.064 0.048 0 0.284 OECD Regpat
rel dens green 3826 0.156 0.094 0 0.417 OECD Regpat
GDP strong EU 3715 0.724 0.447 0 1 Eurostat
Popdensity 3719 317.828 791.521 0 22469.6 Eurostat
ShareTertiary 3667 29.222 11.582 4.5 63.3 Eurostat
ShareEmployKnowlege 3501 3.741 1.825 0.5 10.9 Eurostat
EnvStringency 3618 2.786 0.707 1.139 4.222 OECD

3.4 Methodological approach

Since our database has a (unbalanced) panel structure of 203 Nuts-2 regions in 17 countries from

2000 to 2017, we conduct a panel regression analysis on the regional level in order to test our

proposed hypotheses (see Section 2). In line with previous studies (e.g. Montresor & Quatraro,

2020), we choose to implement a conditional fixed-e↵ects logistic estimation with region and

time-fixed e↵ects, as it does fit better with the binary nature of our dependent variables than a

linear probability model (LPM). The stylized model has thereby the following form:

NewRCA greeni,t = �0+�1rel dens green/browni,t+�2GDP strong EUi,t+�3Controlsi,t+

!i + ↵t + µi,t (7)

where NewRCA greeni,t equals 1 if a new green specialization in region i at time t is

developed, which was absent in time t-5 (moving window). rel dens green/browni,t denotes

5
As shown in the pairwise correlation matrix (see Table 4 in the Appendix), the correlation between our

variables is rather low. Thus, multicollinearity is not detected.
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Table 2: Relative frequencies of no and new green specialization across structurally weak and strong
regions

Structurally weak region Structurally strong region

No new green

specialization
96.59% 95.24%

New green spe-

cialization
3.41% 4.76%

either the relatedness density to green or brown technologies as described in Section 3.2.2.

GDP strong EUi,t represents a dummy variable that takes value 1 if region i at time t belongs

to the group of structurally strong regions as defined in Section 3.2.4. Controlsi,t encompasses

a set of control variables (see previous section). Moreover, !i refers to regional fixed-e↵ects and

↵t to time fixed-e↵ects, which are included in order to control for unobserved heterogeneity at

these two dimensions. Finally, µi,t represents the residuals.

However, since previous empirical studies have also used a LPM (e.g. Santoalha & Boschma,

2021) and because we lose some observations due to perfect prediction in the case of the con-

ditional fixed-e↵ects logistic regression6, as a robustness-check we also estimate a LPM with

region and time-fixed e↵ects as well as clustered standard errors.7

4 Empirical results: The dark side of green innovation?

4.1 Descriptive results

Before moving towards the econometric results, we investigate potential di↵erences between

structurally strong and weak regions in a descriptive way. In this context, Figure 3 shows the

relation between green (figure 3b) and brown (figure 3a) relatedness density and GDP for all

the European regions included in the sample. In general, a positive trend is observed. Thus,

both green and brown relatedness are positively related with the GDP. In other words, in both

cases high-income regions are better equipped with related technological capabilities than low-

income regions. In light of previous empirical results about regional diversification processes

(e.g. Boschma, 2017; Rigby, 2015), it is therefore more likely that structurally strong regions

develop new specializations in green technologies than structurally weak regions. Nevertheless,

when we look at the actual entries in new specializations in green technologies, the di↵erence

between structurally strong and weak regions is relatively small (see Table 2). While 4.76%

of all structurally strong regions successfully diversified into new green specializations between

2000 and 2017, with 3.41% this percentage is only slightly lower in the case of structurally

weak regions. However, this rather descriptive evidence is not enough to draw some meaningful

conclusions, an empirical approach controlling the elements influencing the process of knowledge

accumulation in regions surely shows more robust results.

In addition to analysing whether or not a region developed a new green specialization,

6
In some cases, up to 1,463 observations were automatically omitted in the conditional fixed-e↵ects logistic

regression because of all positive or all negative outcomes, which might create a sample selection bias.
7
The corresponding results remain relatively stable, apart from rel dens brown which turns to be slightly

insignificant. However, when we reduce the possibility that regions also have a high relatedness density to green

technologies, by generating a dummy variable that takes the value 1 if rel dens brown is above the median and

rel dens green is below the lowest quartile, we do find a highly significant negative influence again.
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(a) Brown relatedness density vs GDP

AT33

AT11

AT32

AT12

AT13

AT34

AT31

AT21

BE23

BE10

BE34

BE25

BE35

BE32
BE22

BE33

BE31

BE21

BE24

BG31

BG42

BG41

BG32

CZ01

CZ06

CZ04

CZ08

CZ03

CZ07

CZ02

CZ05

DE71

DE94

DE12

DED2

DE25

DED5

DE13

DEE0

DE14

DE22

DEB3

DEC0

DE27

DE91

DEA4

DEA3

DEB2

DEA2

DE23

DEG0

DE11

DEF0

DEA5 DE26

DE73

DE50DE72

DE60

DE21

DK03

DK04

DK01

DK05

EL65

EL52

EL43

EL30

EL54 EL61

EL64

EL51

EL63

ES13

ES51

ES24

ES23

ES21

ES43

ES62

ES12

ES52

ES53

ES61

ES70

ES41ES11

ES42

FI1C

FI20

FI1B

FI1D

FI19

FR10

FR61

FR62

FR83

FR43

FR72

FR24

FR41

FR53

FR81

FR22

FR82

FR63

HU21

HU23

HU22HU32

HU10

HU31

ITG1

ITC4

ITI1

ITF1

ITF3
ITI4

ITC2

ITG2

ITF5

ITH2

ITF2

ITH1

ITC1

ITF6

ITF4

ITI2

ITC3
LU00

NL42

NL41

NL31

NL22

NL34

NL11

NL13

NL12

NL33

NL32

NL23
NO02

NO06

NO05

NO07

PL31

PL12

PL22

PL11

PL41

PL51

PL32

PL21

PL52

PL63

PL42

PT18

PT15

PT16

PT11

PT17

RO11

RO42

RO12

RO21

RO31
RO32

SE22

SE33

SE21

SE32

SE11

SE12

SE31

SE23

R = 0.63, p < 2.2e−16

Lo
w

H
ig

h

Low High
GDP

G
re

en
 R

el
at

ed
ne

ss
 D

en
si

ty

(b) Green relatedness density vs GDP

Figure 3: Relation between relatedness density for brown and green technologies and GDP in European
regions in 2017

we also consider the average complexity of these green activities. Figure 4 shows the mean

di↵erence of the average complexity of new green specializations between structurally strong and

weak regions.8 As can be seen, the average complexity of the new green specializations di↵ers

significantly between both types of regions. On average, structurally weak regions diversify into

more complex green technologies than structurally strong regions. The general pattern that

low-income regions tend to diversify into simpler technologies (Pinheiro et al., 2022) therefore

does not seem to apply to the specific case of green technologies.

Nevertheless, despite being informative these descriptive results cannot provide the full pic-

ture of the potential dark side of green innovation, as they do not allow to draw any statistically

meaningful conclusions. To deliver more reliable insights, we therefore proceed by using an

econometric approach (see section 3.4) introducing variables to control for regional and national

characteristics that may influence the likelihood to diversify into green technologies.

8
The two outliers are Andalućıa (in Spain) in the case of structurally weak regions and Innlandet (in Norway)

in the case of structurally strong regions. Removing them does not change the corresponding results.
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Figure 4: Boxplot representing mean di↵erence of the average complexity of new green specializations
between structurally strong and weak regions

4.2 Econometric results

Table 3 presents the regression results with respect to the influence of the regional base and

the economic strength on diversification into green technologies. Looking first at our control

variables used in all models, similar to previous studies (e.g. Santoalha & Boschma, 2021), only

some of our control variables turn out to be statistically significant. We find evidence for a

significant positive influence of the share of population with tertiary education (ShareTertiary).

The regional educational structure therefore seem to play a promising role for the regional diver-

sification into green technologies, which can be explained by the on average higher complexity

of these technologies (e.g. Barbieri et al., 2020a) requiring highly educated human capital in the

corresponding regions.

In Model 1 and Model 2, the influence of the nature of the regional base is tested by analysing

green and brown relatedness density. As indicated by the positive and significant coe�cient of

rel dens green, the relatedness to green technologies promotes the likelihood to diversify into

green technologies. This result is in line with previous studies (e.g. Santoalha & Boschma, 2021;

van den Berge et al., 2020) showing that regions can more easily create new specializations in

green technologies if they have already related technological capabilities. Regarding the influ-

ence of the relatedness to brown technologies (see Model 2), we do find a slightly significant

and negative association with the new specializations in green technologies. Hence, regions that

rather follow a path of brown technologies (i.e. fossil fuel technologies) are less likely to come up
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with a new specializations in green technologies.9 This result goes rather in line with Santoalha

& Boschma (2021) suggesting that pre-existing specializations in dirty technologies hamper the

emergence of new specializations in green technologies. While recombinations might still be

possible (Montresor & Quatraro, 2020; van den Berge et al., 2020) - at least to some extent,

it seems that regions need to have some relevant amount of green capabilities to be combined

with.10 Instead, regions that are highly specialized in technologies related to brown technologies

seem, on average, to have problems developing new specializations in (rather unrelated) green

technologies. Therefore, we can confirm both Hypothesis 1a as well as Hypothesis 1b, indicat-

ing that the nature of the regional knowledge base plays a predominant role in the regional

diversification process into green technologies.

By introducing the variable GDP strong EU (see Section 3.2.4) in Model 3, we test whether

there exist regional disparities between structurally strong and weak regions with respect to the

actual entries into new green technologies (see Hypothesis 2). Contrary to what was assumed,

we find an insignificant and negative coe�cient of GDP strong EU. Hence, we do not find ev-

idence for a statistically significant association between the economic strength of regions and

the regional diversification into green technologies. We therefore have to reject Hypothesis 2.

However, what we do observe is a significant negative interaction term between rel dens green

and GDP strong EU (see Model 4), despite their positive correlation (see Figure 3b). While on

average the relatedness density in green technologies fosters the regional diversification in these

technologies, it is especially important for structurally weak regions to have these related tech-

nological capabilities. Structurally strong regions can apparently a↵ord to build up new green

specializations that are unrelated to the existing technological portfolio, while structurally weak

regions need related capabilities because they are unlikely to be able to bear the costs associated

with an unrelated diversification (Boschma, 2017; Santoalha & Boschma, 2021; Simmie, 2012).

So far, the empirical evidence suggests that successful green diversification seems to be pos-

sible for both structurally strong and weak regions, but they, especially the latter, need to have

related capabilities to do so. However, since not all green technologies are alike, it is also im-

portant to investigate the type of new green activities that are created in a region (Pinheiro

et al., 2022). As indicated in Section 2, regions should develop more complex activities due

to the associated economic benefits (e.g. limited possibility for imitation) (e.g. Balland et al.,

2019). Consequently, we consider the technological complexity of the green technologies and use

our second dependent variable: NewRCA green complex (see Section 3). In Model 5, we can

see that the influence of GDP strong EU is negative and insignificant. Likewise in the case of

the overall diversification into green technologies irrespective of the complexity (see Model 3),

we find no empirical evidence for significant di↵erences between structurally strong and weak

regions. Hence, we have to reject Hypothesis 3 which suggested that structurally strong regions

are more likely to diversify into highly complex green technologies. However, we do find evidence

that the new entries of structurally weak regions are on average significantly more complex than

9
In the case of the LPM with fixed e↵ects (see Appendix 6), this coe�cient turns to be insignificant. How-

ever, when we reduce the possibility that regions also have a high relatedness density to green technologies, i.e.

completely focused on brown technologies, we do find a highly significant negative influence again.
10
In fact, when excluding the potential for recombination with green technologies even further, we do not find

any new green specialization of these brown regions anymore. In other words, from the 818 regions that had an

RCA in green technologies below 1 and relatedness density to brown technologies above the median, none could

actually develop a new green specialization.
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in the case of structurally strong regions as indicated in Figure 4. Contrary to previous re-

search emphasizing that low-income regions tend to diversify into simpler technologies (Pinheiro

et al., 2022), in the specific case of green technologies we cannot confirm this general pattern.

Instead, also structurally weak regions can develop new specializations in rather complex green

technologies, given that they have the related technological capabilities to do so. One potential

explanation for this deviating pattern may refer to the willingness of structurally weak regions

to change its current situation and to exploit the chances of developing a new growth path

based on green technologies. Structurally strong regions, on the other hand, are maybe more

cautious due to their established and economically successful structures which they do not want

to harm. This goes in line with the argument of an protective environment for experimentation

and radical new ideas that peripheral regions can o↵er (e.g. Eder & Trippl, 2019). Linked to

this, of course, increased political support could also play a role, as policy makers tend to have

a rather optimistic perspective about the development opportunities of a green transition for

structurally weak regions (e.g. BMBF, 2020).

Table 3: Regression results

VARIABLES
(1)

NewRCA green
(2)

NewRCA green
(3)

NewRCA green
(4)

NewRCA green
(5)

NewRCA green complex

rel dens green
7.416***
(3.349)

18.381***
(6.170)

rel dens brown
-8.401*
(5.072)

GDP strong EU
-0.535
(0.599)

1.020
(0.992)

-0.452
(0.603)

rel dens green#GDP strong EU
-12.247**
(5.904)

Popdensity
0.001
(0.001)

0.002
(0.001)

0.001
(0.001)

0.002
(0.001)

0.001
(0.001)

ShareTertiary
0.038*
(0.020)

0.035
(0.022)

0.044**
(0.021)

0.043**
(0.021)

0.038*
(0.021)

ShareEmployKnowledge
0.210
(0.147)

0.238
(0.157)

0.183
(0.150)

0.128
(0.152)

0.179
(0.153)

EnvStringency
0.057
(0.336)

0.230
(0.364)

-0.097
(0.358)

-0.104
(0.360)

-0.017
(0.365)

Year Fixed E↵ects Yes Yes Yes Yes Yes
Region Fixed e↵ects Yes Yes Yes Yes Yes
Observations 1,754 1,496 1,655 1,655 1,565
Number of groups 102 92 99 99 94
Pseudo R-squared 0.091 0.111 0.088 0.102 0.094

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

5 Conclusion

The challenge posed by a growing world population and finite natural resources requires struc-

tural changes, in which green innovations play a key role (Barbieri et al., 2020b; Imbert et al.,

2017; Montresor & Quatraro, 2020). Even if, there are huge ecological and economic oppor-

tunities, this sustainable transformation also poses some challenges, especially at the regional

level (Blažek et al., 2020; Hermans, 2018; Trippl et al., 2019). Not all regions have the same

resources and capabilities to adapt their regional economies in an environmentally sound way

(Binz et al., 2016; Boschma et al., 2017). It is therefore likely that the restructuring processes

required in the course of a green transition will o↵er new opportunities for advancement as well

as for relegation (Blažek et al., 2020). However, who “wins” and who “loses” from such a green

transition and how this may a↵ect regional inequalities, remains so far rather unclear (Köhler

18



et al., 2019; Lucchese & Pianta, 2020), which is surprising given the rather policy-oriented ap-

proach of Just Transition (European Commission, 2021). This paper has made an attempt to

address this research gap by empirically investigating the regional diversification processes into

green technologies between 2000 and 2017 along two dimensions: the nature of the regional

knowledge base and the economic strength of regions.

Overall, the findings of our study imply that both structurally strong and weak regions

can diversify into green technologies. Although structurally strong regions are on average more

specialized in technologies highly related to green technologies (see for instance Figure 3b) and

therefore have actually a better basis for diversification, they do not translate this into signifi-

cantly more entries in green technologies. Instead of the economic strength, related technological

capabilities matter for green diversification in regions, which is in line with previous findings

(e.g. Santoalha & Boschma, 2021). This holds particularly true for structurally weak regions.

While structurally strong regions may have the (financial) resources to build up new specializa-

tions that are unrelated to their existing technological regime, structural weak regions appear

to be incapable to do so and therefore rely more intensively on related technological capabil-

ities (Boschma et al., 2017; Simmie, 2012). On the other side, we find evidence that strong

specialization in technologies that are highly related to “dirty” technologies hinders the devel-

opment of new green technological specializations. Taken together, the nature of the regional

knowledge base therefore seems to be more important for successful green diversification than

the already existing economic strength of regions. Hence, in general structurally strong as well

as structurally weak regions can both diverse into green technologies given that they have the

related technological capabilities. This implies that already existing regional divergence patterns

between these two types of regions are rather unlikely to be increased as a result of a green tran-

sition. Instead, we find evidence that particularly low-income regions with a high relatedness

to green technologies can successfully diversify into green technologies. In addition, our results

indicate that these new entries of structurally weak regions are on average significantly more

complex than in the case of structurally strong regions, which tend to relax the general observed

pattern in recent studies of low-income regions diversifying more likely into simpler technologies

(Pinheiro et al., 2022).

Of course, there are political implications to these findings as well, especially with respect

to the policy-oriented approach Just Transition, being a central component of the European

Green Deal (European Commission, 2021). The underlying idea of this approach is to leave no

one behind, meaning that the (regional) transition should not only be green but also socially

sustainable (Høst et al., 2020). Based on our results, it would make sense that the Just Tran-

sition approach moves beyond “standard” cohesion policy thinking that normally di↵erentiates

between structurally strong and weak regions. Instead, it should take the actual regional ca-

pabilities into account, since structural weak regions with technological specializations related

to green technologies can actually diversify into green activities without policy support. Unlike

regions, that are highly specialized in technologies related to brown technologies. These regions,

whether or not they are structurally strong or weak regions, are likely in need for policy sup-

port in order to overcome their lock-in situation and move to a new (green) trajectory. One

pioneering example for such large-scale support programs is the Structural Strengthening Act

Coal Regions in Germany, which aims at enabling and accelerating the sustainability transition
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in coal regions irrespective of their current economic strength (Basilico & Grashof, 2023).11

When considering our results, some limitations have to be discussed. First, as already

described in Section 3, patent data has some drawbacks (Griliches, 1990). Second and related to

the former point, patent data might bias the results towards structurally strong regions, as patent

activity in structurally weak regions is rather low (Pinheiro et al., 2022), although we already

excluded extreme cases to address this issue. Ideally we would follow previous studies (e.g.

Pinheiro et al., 2022; Xiao et al., 2018) and extend our analysis with industry data. However,

due to data limitations and rather imprecise identification of green industries, we could not

follow such an approach and leave this open for future research. Third, our measurement of

green diversification, although in line with previous studies (e.g. Montresor & Quatraro, 2020;

Santoalha & Boschma, 2021), is rather “simple” in the sense that the actual network structure of

the regional knowledge space is not considered. Following recent advancements (e.g. Basilico &

Grashof, 2023), future studies should therefore also consider the change of the embeddedness of

green technologies in the regional knowledge space. Fourth, we found that although structurally

strong regions have more related capabilities that should promote their diversification into green

technologies, they do not translate these into actual more entries into green technologies. This

may be attributed to their cautiousness to keep their existing (successful) structure giving less

room for experimentation, but the exact mechanisms still need to be investigated. Finally, while

we tried to find an adequate trade o↵ between the largest number possible of regions and a

su�ciently large number of patents (needed for a robust empirical analysis), in general we focus

only on developed regions in Europe. For future studies it may be particularly interesting to

investigate developing regions, in which core-periphery structures might be more pronounced.

Despite these limitations, this paper makes a valuable contribution to the recent debate

about the dark side of innovation (e.g. Coad et al., 2021; Pinheiro et al., 2022) by providing

empirical evidence on the specifics of a green transition in terms of regional inequality. Deviating

from previous cross-technology results (e.g. Pinheiro et al., 2022), for the concrete case of green

technologies we show that both structurally strong and weak regions can successfully diversify

into these technologies given that they are su�ciently equipped with related technological ca-

pabilities. On average, these new entries additionally appear to be more complex in the case of

structurally weak regions, thereby providing them with the basis for future economic growth.

Thus, our findings suggest that already existing patterns of divergence between these two types

of regions are unlikely to be exacerbated by a green transition, but new regional disparities

between brown regions and other regions could emerge, especially in the absence of adequate

policy support. All in all, we can therefore conclude that there is a potential dark side of green

innovation, but it is actually brighter than expected.

11
For more information about the program, see https://www.bundesregierung.de/breg-

en/service/archive/kohleregionen-foerderung-1665150.
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Appendices

Table 4: Pairwise correlation matrix

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) NewRCA green 1.000
(2) rel dens brown -0.037** 1.000
(3) rel dens green 0.032** 0.717*** 1.000
(4) GDP strong EU 0.029* 0.387*** 0.634*** 1.000
(5) Popdensity 0.028* 0.107*** 0.173*** 0.136*** 1.000
(6) ShareTertiary 0.019 0.277*** 0.342*** 0.352*** 0.164*** 1.000
(7) ShareEmployKnowledge 0.041** 0.353*** 0.458*** 0.344*** 0.343*** 0.300*** 1.000
(8) EnvStringency -0.055*** 0.337*** 0.396*** 0.210*** -0.025 0.288*** -0.003 1.000
(9) NewRCA green compex 0.975*** -0.050*** 0.027* 0.023 0.028* 0.010 0.025 -0.052*** 1.000

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Regression results with alternative identification of structurally strong and weak regions

VARIABLES
(1)

NewRTA green
(2)

NewRTA green
(3)

NewRTA green complex

rel dens green
34.655***
(9.408)

GDP strong National
-15.181
(836.274)

-12.901
(985.348)

-14.042
(475.305)

rel dens green#GDP strong EU
-28.372***
(8.911)

Popdensity
0.001
(0.001)

0.002
(0.001)

0.001
(0.001)

ShareTertiary
0.043**
(0.020)

0.051**
(0.021)

0.037*
(0.021)

ShareEmployKnowledge
0.204
(0.151)

0.185
(0.153)

0.200
(0.154)

EnvStringency
-0.012
(0.356)

-0.298
(0.370)

0.069
(0.363)

Year Fixed E↵ects Yes Yes Yes
Region Fixed e↵ects Yes Yes Yes
Observations 1,655 1,655 1,565
Number of groups 99 99 94
Pseudo R-squared 0.097 0.121 0.103

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 6: Regression results with LPM with fixed e↵ects and clustered standard errors

VARIABLES
(1)

NewRCA green
(2)

NewRCA green
(3)

NewRCA green
(4)

NewRCA green
(5)

NewRCA green
(6)

NewRCA green complex

rel dens green
0.320**
(0.153)

0.740***
(0.215)

rel dens brown
-0.242
(0.188)

only brown
-0.042***
(0.010)

GDP strong EU
-0.016
(0.025)

0.042
(0.992)

-0.013
(0.025)

rel dens green#GDP strong EU
-0.507**
(0.248)

Popdensity
3.22e-06
(3.19e-06)

3.97e-06
(3.66e-06)

3.29e-06
(3.27e-06)

3.56e-06
(3.32e-06)

3.85e-06
(3.46e-06)

3.54e-06
(3.41e-06)

ShareTertiary
0.002*
(0.001)

0.001
(0.001)

0.002*
(0.001)

0.002**
(0.001)

0.002*
(0.001)

0.002*
(0.001)

ShareEmployKnowledge
0.010
(0.007)

0.010
(0.007)

0.011*
(0.007)

0.008
(0.007)

0.006
(0.007)

0.008
(0.007)

EnvStringency
0.001
(0.014)

0.008
(0.013)

0.003
(0.014)

-0.003
(0.014)

-0.001
(0.015)

0.001
(0.014)

Year Fixed E↵ects Yes Yes Yes Yes Yes Yes
Region Fixed e↵ects Yes Yes Yes Yes Yes Yes
Observations 3,217 2,871 3,219 3,096 3,094 3,096
Number of groups 203 195 203 203 203 203
R-squared (within) 0.033 0.041 0.031 0.031 0.034 0.031

Note: Clustered standard errors, ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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