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1. Introduction 

 

While all regional economies go through periods of crisis and decline, some prove to be more 

successful than others in coping with such challenging times. This impacts the long-term 

capacity for growth as the level of success in coping with one crisis conditions the ability of 

regions to deal with subsequent ones (Simmie & Martin 2010). Consequently, the differential 

growth impact of a crisis slows down convergence and ultimately contributes to persistent 

spatial disparities. For instance, the 2008 recession put a stop to roughly a decade of regional 

economic convergence in the EU, driven predominantly by catching up of member states 

with less developed economies (EC 2017). 

 

Knowing more about the capacity of regions to resist and recover from economic turmoil is 

therefore high on the academic and policy agendas, especially in the expanding literature on 

regional economic resilience (Bristow & Healy 2020a). Despite growing empirical evidence 

that resilience is highly contingent on the structure of economic activities carried out in 

regions (e.g. Hane-Weijman & Eriksson 2017, Martin & Sunley 2020, Fusillo et al. 2022), 

previous studies seldom transcend the specialization-variety continuum. More network-

oriented approaches however argue for the fact that shared regional capabilities, rather than 

structure per se, influence resilience (e.g. Xiao et al. 2018, Kitsos et al. 2023). This is because 

regional economies can be considered as (knowledge) networks in which nodes represent 

specific economic activities, while ties represent the degree of shared productive capabilities 

or intensity of exchange between them (Boschma 2015). 

 

However, our understanding on exactly how local economic capabilities and 

interdependencies influence regional resilience remains rather limited. To remedy this, there 

is a need to systematically assess the structural heterogeneity of local economic networks and 

evaluate how local economic network structures relate to resilience in terms of regional 

outcomes (e.g. employment, output or income). By now a few papers have engaged with this 

problem in the context of local technology capabilities (Balland et al. 2015, Rocchetta & 

Mina 2019, Rocchetta et al. 2021, Tóth et al. 2022), finding that the overall density of 

relatedness is positively linked with economic outcomes during crisis. Other networks than 

those of technologies are however underrepresented in the literature, despite that crisis-

induced employment effects tend to be more persistent than output effects (Martin 2012). The 

few notable exceptions going beyond technologies also find support for the role of 
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relatedness density (e.g. Moro et al. 2021, 6iQFKH]ఆ0RUDO�HW�DO��2022, Kitsos et al. 2023) but 

mainly concern large urban areas or nation-wide definitions of relatedness, both of which 

may cause an urban bias in how capabilities are defined and thus how resilience is 

interpreted. Consequently, there is a need of comprehensive analyses of inter-industry 

networks in local labour markets across space in general and of labour redeployment 

potentials in particular. 

 

Drawing on novel methods developed in network science, the aim of this paper is to provide 

systematic evidence on the link between local industrial network structure and regional 

economic resilience. This is done by first exploring the heterogeneity in the robustness of 

local inter-industry labour flow networks against the hypothetical elimination of some of their 

industries, and, second, by assessing the link between this robustness and the economic 

performance of regions during the Great recession (2008). Specifically, building on the 

literatures of evolutionary economic geography, regional resilience and network science 

(Section 2), we use a detailed individual-level panel dataset provided by Statistics Sweden to 

construct networks based on above-expected labour flows between industries within 72 

Swedish functional labour market regions, and measure the robustness of these networks to 

the sequential elimination of their nodes (Section 3). We then test how well this proposed 

structural measure, compared with alternatives, predicts employment change in the context of 

the 2008 crisis (Section 4), before concluding the paper by discussing implications, 

limitations and open questions for future research (Section 5).  

 

In so doing the paper contributes to the literature on regional economic resilience by detailing 

how the local self-organisation of labour redeployment flows acts as a determinant of 

resilience. In particular, we demonstrate the variation in the structural robustness of these 

flows and that this robustness is a prominent predictor of employment resistance during crisis 

among established measures of industrial structure. Furthermore, the paper answers the call in 

evolutionary economic geography for exploring how resilient regions are against the 

elimination of nodes and links from the network representation of their economic structure 

(e.g. Boschma 2015). Thereby, the paper also connects these literatures more tightly with 

advancements in network science. 

 

  



4 

2. Literature 

 

It is a central tenet of economic geography that various economic activities tend to be 

unevenly distributed in space. This is often attributed to the spatial concentration of these 

activities (agglomeration) in some places but less so in others, also fostering specialization 

regardless of whether for instance industries, occupations or technology and scientific 

domains are considered. Additionally, the location of economic activities is not independent 

of each other. Instead, some pairs of activities are more likely to be found at the same place 

compared with others. Such spatial division of labour (Massey 1995) gives rise to distinct 

economic profiles of places, even among regions with the same degree of agglomeration. 

Besides cost advantages, co-agglomeration patterns are rooted in "untraded 

interdependencies" that create and maintain the relative competitiveness of cities and regions 

(Storper 1997). These agglomeration economies, or the positive non-pecuniary externalities 

stemming from co-location, can be attributed to benefits from specialised local suppliers, 

specialised local labour markets and knowledge spillovers among similar and related 

activities (Glaeser et al. 1992). 

 

2.1. The structure of local inter-industry labour flows  

  

Labour is of particular importance here for at least three reasons. First, empirical evidence on 

the drivers of co-agglomeration among industries indicates that the relative importance of 

labour pooling increased over the last century as transport costs decreased (Diodato et al. 

2018). There is a heterogeneity between services and manufacturing where the former relies 

more on labour pooling, while value chains in manufacturing remain important (Ellison et al. 

2010, Diodato et al. 2018). Second, workers are key in the accumulation and transfer of 

knowledge. The unstandardised, tacit dimension, of knowledge is accumulated through 

region-, industry- and firm-specific work experience, while even the codified component 

requires the ability to access, interpret and apply such knowledge by workers. Knowledge is 

then shared through interactions and mobility. Indeed, firms that are inter-linked by localized 

networks of job mobility outperform similar firms outside these networks (Eriksson & 

Lindgren 2009, Csáfordi et al. 2020). Additionally, job mobility creates social connections 

through former co-workers even between firms that experienced no direct labour flows, and 

the local density of these networks boosts productivity growth in local labour markets 

(Lengyel & Eriksson 2017). Hence, knowledge is not "in the air" even in industry clusters 
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(Fitjar & Rodríguez-Pose 2017) but requires access through being part of such localized 

labour market networks (Eriksson & Lengyel 2019).  

 

Third, labour pooling and variety are not merely a matter of composition, but also of the 

degree of relatedness between different pairs of industries. Indeed, the job mobility rate as 

such is not conducive of regional growth. Instead, inflows of workers, whose skills are 

related to the existing skill composition of workplaces were found to boost firm performance 

(Boschma et al. 2009). Labour linkages also predict industry-region employment growth 

(Diodato et al. 2018) and diversification (Neffke & Henning 2013), as well as the productivity 

and employment growth of regions as compared to very diverse flows (Boschma et al. 2014). 

Hence, labour flows represent an underlying structuring aspect to agglomeration. Since 

labour tends to be the least mobile production factor even today, knowledge transfer and 

diversification through this channel remains both path- and place-dependent. 

 

Besides learning, networks of labour flows can be considered to represent worker 

redeployment potentials. Inter-industry labour flows tend to cut across broader industrial 

categories, as well as small geographical units (Guerrero & Axtell 2013), and these flows 

form a modular structure in which worker redeployment is more likely within network 

communities compared with mobility between them (O'Clery & Kinsella 2022). This 

property has been extensively built upon when analysing the coherence and diversification of 

both regions (e.g. Boschma et al. 2014, Hane-Weijman et al. 2022) and firms (Neffke & 

Henning 2013). 

 

What is missing from the above literature on regional labour flow networks is a systematic 

analysis of the structural heterogeneity across different local labour markets. That is, whether 

some regions have more robust local labour flow networks than others, thereby having more 

(or less) conducive structural properties of worker redeployment during structural 

disturbances. Building on the network robustness literature, robustness here means the rate at 

which the underlying network of a complex system is fragmented into too many disconnected 

components (Barabási 2016, Zitnik et al. 2019). Considering that regions have various levels 

of agglomeration, distinctive industrial specialisation following a spatial division of labour, 

and different degrees of relatedness between co-agglomerating industries, we expect 

heterogeneity in the network robustness of local inter-industry labour flows. 
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2.2. Robust inter-industry labour flow networks of resilient regions 

 

Assessing robustness is in and of itself an advancement to our existing knowledge of local 

labour market structures, but particularly important in understanding regional economic 

resilience. Considerable effort has been devoted recently in both policy and academia to 

better understand regional resilience (Bristow & Healy 2020a), yet still, it is very much an 

open question why some regions are more successful in navigating economic turmoil than 

others (Martin & Sunley 2020). 

 

While the concept of resilience has a rich interdisciplinary heritage (Pendall et al. 2010), the 

literature on regional economic resilience has been converging on an evolutionary 

interpretation whereby a resilient region shows capacity for both withstanding economic 

shocks and for developing new growth paths from time to time (Boschma 2015, Bristow & 

Healy 2020b). Accordingly, the conceptual dimensions of resilience include resistance to and 

recovery from economic disruption, as well as structural change (re-orientation) in response 

to such disruptions, that may or may not lead to the renewal of the regional growth path 

(Martin 2012). How these dimensions translate into desirable levels of output, jobs and 

income in regions is an indication of resilience, while structures, networks and institutions are 

main determinants of it (Boschma 2015). Key groups of determinants explored in the 

literature include industrial and business structure, labour market conditions, financial and 

governance arrangements, and aspects of agency and decision-making (Martin & Sunley 

2020). 

 

Starting by considering the regional industrial composition along a specialisation-variety 

axis, specialisation is assumed to offer opportunities for adaptation by exploiting existing 

local capabilities in relation to a current growth path more effectively, while variety scores 

higher on adaptability by offering more options for opening up new growth paths (Boschma 

2015). Indeed, a more diverse industrial portfolio mitigates the impact of idiosyncratic 

industrial fluctuations in factor supply and output demand (Doran & Fingleton 2018), and 

offers more market options to recombine existing local capabilities during recovery (Martin 

& Sunley 2020). Fusillo et al. (2022), for example, recently showed that a diversified 

industrial structure, compared to technological diversity, characterized the most resilient US 

metro regions. Second, previous studies have also indicated that regional resilience is related 

to some key industries or industry segments. Specialising in industries at the forefront of 
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technological change tends to improve regional resilience (Brakman et al. 2015), although 

strategies focusing on these industries may be more effective in urban regions. Moreover, 

evidence from Sweden suggests that regional employment in sectors associated to the 

foundational economy were more resilient against a grand recession, although local 

dependence on these sectors hindered overall regional employment resistance, highlighting 

the importance of a mix of foundational economy and traded sectors (Martynovich et al. 

2022).  

 

Third, Boschma (2015) conjectured that related variety may strike a balance between 

adaptation and adaptability by holding the potential for leveraging existing local capabilities 

in periods of growth, while still allowing for diversification and hence recovery, reorientation 

and renewal during and after crisis. However, a set of related industries may also boost shock 

propagation among these industries, exacerbating the impact of even an industry-specific 

shock (Martin & Sunley 2020). Indeed, when analysing the evolution of the Swedish and 

German shipbuilding industries, Eriksson et al. (2016) found that as the focal industry 

declined, so did many other activities related to shipbuilding. Recent studies also identify a 

weak negative association between related variety and employment change once the average 

relatedness of technological capabilities (Rocchetta & Mina 2019, Rocchetta et al. 2021), or 

their network robustness (Tóth et al. 2022), are also considered. On the other hand, 

redeployment potentials to related industries are particularly important in case of involuntary 

displacement of workers following major plant closures (Andersson et al. 2020, Hane-

Weijman et al. 2018, Nyström 2018). Hence, tension remains in the literature about how 

relatedness within the local economy shapes regional resilience. 

 

Furthermore, while regional economies can be regarded as webs of specialized production 

units, largely dependent on the technologies, skills and tacit knowledge integrated into the 

process of value creation (Boschma & Martin 2010), there is a substantial lack of systematic 

evidence on how local economic network structures in general, and inter-industry labour flow 

networks in particular condition the economic resilience of regions. As Boschma (2015, pp. 

714) noted, "[...] in the regional resilience literature, it is remarkable how little attention has 

EHHQ� SDLG� WR� WKH� VHQVLWLYLW\� RI� UHJLRQDO� QHWZRUNV� WR� WKH� UHPRYDO� RI� VSHFL¿F� QRGHV� RU� WKH�

dissolution of particular linkages." 
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This approach put forward by Boschma (2015) has in fact been extensively researched in 

network science in the context of various biological, infrastructural and social networks 

(Barabási 2016), but the connection to regional economic resilience has been forged only in a 

few instances (e.g. Gianelle 2014, Tóth et al. 2022). In the network science literature, 

robustness is considered to condition the ability of a complex system to carry out its basic 

function even when some nodes or links are missing (Albert et al. 2000, Solé et al. 2008, 

Barabási 2016). Progressive node or link failures fragment the underlying network of the 

system, which, above a threshold, translates into a severely compromised outcome level 

(Cohen & Havlin 2009). Given that regions can be conceptualised as complex systems of 

interacting elements that regularly face disturbances ranging from plant closures and entries 

and structural change, to major economic recessions and natural disasters (Martin & Sunley 

2007), there are clear bridges between the two strands of literature. Extending on Shutters et 

al. (2018)'s argument, these networks represent solutions to particular coordination problems 

in the production of economic output in regions. In the context of local inter-industry labour 

flows, a node failure can be thought of as an industry-specific shock from plant closure(s) 

affecting regional employment highly dependent on one (or a few) dominating firms. Or, 

more generally, a temporary inability of one or more firms in a given industry to change their 

human capital composition, hence ceasing to be part of labour redeployment flows. Similar 

cascading failures across a wide range of local industries would hinder previous levels of 

labour redeployment efficiency and scope, translating into diminishing employment 

opportunities at the systemic level of a local labour market. In this sense, the robustness of 

the local inter-industry labour flow networks, capturing the differential capacity of these to 

tolerate serial disturbances in their industries, would translate into more or less resilient 

regional economies. 

 

Findings on local networks of technological capabilities indeed indicate that the average 

degree of shared capabilities is conducive of resilience in knowledge production in US metro 

areas (Balland et al. 2015), and employment growth in regions of the UK and EU (Rocchetta 

& Mina 2019, Rocchetta et al. 2021). Additionally, the network robustness of technology 

networks in EU metro areas was found to have a positive association with employment 

during the 2008 financial crisis (Tóth et al. 2022). Much fewer studies considered the 

network structure of local labour markets although the labour market is a main channel 

through which regional change can come about. Some insights from previous empirical 

literature suggest that the density of skill-related occupations in US metro areas had a positive 
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association with peak employment during the 2008-recession (Moro et al. 2021). Sanchez-

Moral et al. (2022) also found that Spanish regions with higher density of skill-related 

industries both resisted and adapted to the 2008 recession compared to less cohesive regions. 

Finally, and most related to our approach, Gianelle (2014) analysed the firm-level labour 

flow network of the Veneto region in Italy and identified that the robustness of the regional 

system was highly dependent on which node (firm) was eliminated. Thus suggesting that the 

regional network structure of labour market interdependencies strongly influence the capacity 

to manage firm closures.    

 

Despite these important contributions, several caveats remain. First, networks of local 

technological capabilities are overrepresented in this particular segment of the literature while 

patent-based information can be considered more accurate in places with intensive patenting 

activity (predominantly urban areas), and tend to represent particular industries due to the 

heterogeneity in propensity to patent. Second, and related to the first, many of these findings 

specifically concern large urban areas, typically using nation-wide projections of relatedness 

on the regional economies, while smaller regions tend to be neglected despite being most 

vulnerable to economic shocks. Hence, there is a lack of systematic analysis of inter-industry 

labour flow networks in local labour markets across space. This is precisely what we take up 

on in this paper. Based on the above arguments our expectation is that the robustness of local 

labour-flow networks predicts their economic resilience in terms of resistance during crisis. 

We test this expectation in the context of Swedish functional labour markets during the 

recession of 2008.  

 

3. Research design 

 

3.1. Data 

 

We rely on a detailed dataset provided by Statistics Sweden, pooled from multiple Swedish 

registers. This matched employer-employee dataset covers all workers and workplaces of the 

Swedish economy between 2002 and 2012 on an annual basis. Workers are linked to one of 

264 industries, corresponding to 3-digit industry codes in the NACE Rev. 2 classification 

system, and one of 72 functional labour market regions through the characteristics of their 

workplaces. These regions were identified based on commuting patterns, and represent local 

labour markets. 
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3.2. Network construction 

 

We rely on labour flow networks to capture the economic structure of these local labour 

markets. Such networks are considered to reveal the similarity of industries in terms of the 

worker skills they rely on, as workers are more likely to move between industries where they 

can still benefit from most of their accumulated skills and expertise (e.g. Neffke et al. 2017). 

The common procedure of constructing skill-relatedness networks is to consider normalized 

labour flows between industry pairs over a period of time, throughout the national economy. 

Local labour market structures can be derived by considering industries in which a particular 

region exhibits relative specialization, as measured by revealed comparative advantage 

(location quotient greater than one), and normalized labour flows between industry pairs 

throughout the national economy over a period of time. This way of constructing the network 

is particularly useful when analysing the related diversification of regions (Hidalgo 2021), as 

information on the relatedness of potential new industries to the existing regional portfolio 

cannot be assessed on the bases of industries already present. Hence relatedness is inferred 

based on patterns of other regions across the national economy, and these represent 

conceivable overlaps of worker capabilities between industries. 

 

However, when assessing the robustness of the local industry structure there are arguably two 

problems, one theoretical and one practical. First, relatedness based on national patterns 

assumes that these apply uniformly across space. This may hold on average, and may be the 

case for some industries like basic local services. It may also be misleading in others, such as 

traded sectors, where the functional specialisation of regions plays a more explicit role. 

,QGHHG�� FDOOV� KDYH� EHHQ� PDGH� WR� DSSO\� PRUH� ³JHRJUDSKLFDO� ZLVGRP´� ZKHQ� GHULYLQJ�

relatedness measures (Boschma 2017, Fitjar & Timmermans 2017). Second, from a practical 

perspective, the local subnetworks of a national skill-relatedness network are instances of the 

same underlying network structure and essentially represent different stages and sequences of 

node elimination applied to the same network. This in turn limits the variation across local 

labour markets structures that are captured by them. 

 

Motivated by these considerations we opt for constructing normalized labour flow networks 

based only on local labour flows. These networks then more closely represent actual location 

specific labour reallocation between industries, and locally feasible transition options for 

workers. We identify these networks based on local labour flows across 2002-2007, prior to 
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crisis years. Formally two industries are considered connected by labour flows locally, if 

observed labour flows between them (ܨ) exceed what we would expect based on the 

propensity of these industries to experience labour flows (ሺܨǤܨǤሻ ǤǤΤܨ ). 

 

ܴܵ ൌ
ܨ

ሺܨǤܨǤሻ ǤǤΤܨ  (1) 

 

Where ܨǤis the total outflow of workers from 3-digit industry ݅, ܨǤ is the total inflow to 

industry ݆, and ܨǤǤ is the total flow of workers in the local labour market. To arrive at the final 

measure of relatedness between industries in the local labour market, as common in research 

using skill-relatedness (e.g. Neffke et al. 2017), we first consider the average of ܴܵ and ܵ ܴ 

to receive a symmetric measure. Second, the distribution of the raw skill-relatedness measure 

is strongly right-skewed, as many industry-pairs are weakly related, while few are strongly 

connected, and so we normalize the measure to have its range between -1 and +11. Hence, in 

this framework a normalized skill-relatedness of above 0 corresponds to above expected 

labour flow, which the network representations of local labour markets are based on. 

 

3.3. Network robustness 

 

We then assess the topological robustness of these networks against the sequential 

hypothetical elimination of their nodes. Specifically, following the approach of Zitnik et al. 

(2019), we measure a scaled version of the Shannon entropy index of the distribution of 

industries across isolated components in local networks. As more industries are removed, the 

local labour flow network fragments into increasingly disconnected components. Depending 

on the initial network structure, some local labour flow networks fragment more quickly than 

others, and our final measure of network robustness captures this variation across regions. 

Figure 1 offers a schematic overview of the measurement approach. 

 

                                                           
1 Following Neffke et al. (2017) the normalized skill-relatedness is ܵ෪ܴ  ൌ

ௌோೕିଵ

ௌோೕାଵ
. 
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Figure 1. Network components and the robustness of local labour flow networks. 

Note: ܵԢ indicates the normalized Shannon entropy of the distribution of nodes across 

disconnected components in the network. 

 

Formally, let us consider the local labour flow network ܩ ൌ ሺ ܸǡ  ܰ ሻ of region ݅ withܧ

number of industries ܸ and ܯ edges ܧ. Let ݂ denote the rate of the proportion of the 

removed industries, which ranges on ݂� א ሾͲǡͳሿ. As it is, ݂� ൌ �Ͳ captures the initial network 

state when all industries are present in the region, and there were no node failures. 

Accordingly, ݂� ൌ �ͳ represents the case when a region's labour flow network becomes 

completely fragmented. When an industry network ܩ undergoes a failure f, it is fragmented 

into multiple components of different sizes. Let ܥǡ
  be the number of nodes that belong to 

component k in a fragmented network  ܩ
 with f failures. Then we calculate the Shannon 

entropy of node distribution across the isolated components of ܩ
ሺܥሻ: 

 

ܵ൫ܩ
൯ ൌ �െ����



ୀଵ

 (2) 

 

, where ܭ is the number of isolated components in the network at every given failure rate f. 

 . To make the entropy measureܥ  is the proportion of nodes belonging to the component



13 

comparable across regions with different sizes of industry portfolios, we scale Shannon 

entropy with the log number of industries present in the region: 

 

ܵ ƍ൫ܩ
൯ ൌ �ܵ൫ܩ

൯ ����ܰൗ Ǥ (3) 

 

To determine the network robustness of each local labour market, we vary the failure rate f on 

the whole range of the possible values fא� ሾͲǡͳሿ  with one-per cent steps and then recalculate 

the scaled Shannon entropy using Equations (2) and (3). As a result, we get a robustness 

curve that captures the degree of fragmentation of the local industry network at each possible 

failure rate. The final measure of robustness ȍ can be calculated as one minus the area under 

this curve: 

 

ሻܩሺߗ ൌ ͳ െ න ܵ ƍ൫ܩ
൯

ଵ


�݂݀ (4) 

 

The measure ranges from 0 to 1, where a higher value refer to a more robust labour flow 

network structure. 

 

In this paper we use two different industry elimination sequences to stress-test local labour 

flow networks. As common in the network science literature (Barabási 2016), nodes are 

removed randomly or following the degree sequence of local industries, targeting the most 

connected first. For random elimination, the average of 500 runs produces our robustness 

measure. These two approaches represent extreme cases for measuring the capacity of local 

labour flow networks to withstand shocks, while actual shocks are likely to unfold as a 

combination of the two. While for the remainder of the paper we present our findings for both 

random and targeted elimination, we also consider a combined elimination strategy as a 

robustness check (see discussion of SI Table 2).  

 

Figure 2 presents descriptive information on network robustness based on random and 

targeted elimination. Subfigures (A) and (B) show that the normalized entropy of industries 

over disconnected network components increases with the fraction of nodes removed from 

local labour flow networks. One minus the area under these curves yields the measure of 

network robustness, reflecting that more robust networks are fragmented slower. According 
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to subfigures (C) and (D), regions show heterogeneity in the robustness of their labour flow 

networks for both random and targeted elimination, but on a much larger range in the case of 

the latter. Based on subfigures (E) and (F), while more densely populated labour markets 

have more robust networks on average, especially among smaller regions there is 

considerable variation within the same size range.  

 

(A) 

 

(B) 

 
(C) 

 

(D) 

 
(E) 

 

(F) 

 
Figure 2. Descriptive information on the robustness of local labour flow networks. 

Note: blue represents results on random elimination, while red on targeted elimination. 
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3.4. Econometric model 

 

We test the association of our measure of network robustness with employment change, a 

commonly used proxy for regional resilience (e.g. Martin 2012, Rocchetta & Mina 2019, 

Rocchetta et al. 2022, Martynovich et al. 2022), in the context of the 2008 recession. Initially, 

we use the following ordinary least-squares (OLS) regression: 

 
���ǡ௧ା௦
���ǡ௧

ൌ ߙ  ǡ௧݉ܧ  ሻோȀ்ܩሺߗଵߛ  ଵൣܼǡ௧൧ߚ  ݁ǡ௧ (5) 

 

, where the dependent variable ୫୮ǡశభ
୫୮ǡ

 refers to the employment change in region ݅ from the 

base year of 2007 to upcoming years ݐ  ݏ א ሾʹͲͲͺǡʹͲͳʹሿ. We adjust for the baseline level 

of the dependent variable with including ݉ܧǡ௧. ܼǡ௧ is a collection of control variables and 

݁ǡ௧ is a normally distributed error term. Our main variable of interest is denoted by ߗሺܩሻோȀ் 

, which captures the networks robustness ߗ of an industry network ܩ against random and 

targeted removal of industries (superscript ܴ and ܶ respectively). 

 

Additional variables include population density to control for the scaling of economic 

activities, as larger and more densely populated regions tend to have more economic 

activities and more dense network representations (Shutters et al. 2018). Second, the level of 

human capital in regions is included, measured by the share of workers between 25 and 65 

years of age having tertiary education, because higher-educated workers tend to be in a more 

advantageous labour market status in and out of crisis (Hane-Weijman et al. 2018), and more 

broadly the ability of regions to repeatedly reinvent themselves in the face of economic 

adversity has been linked to the presence of skilled workforce (e.g. Glaeser 2005). Third, 

various additional measures of local industrial structure have been established in the literature 

that may be conducive of resilience. Accordingly, we include the absolute diversity and 

relative regional specialisation of the local industry mix (Grillitsch et al. 2021), the economic 

complexity of regions (Hidalgo 2021), and the related and unrelated variety within them 

(Frenken et al. 2007, Fitjar & Timmermans 2017) in a set of extended models that aim to 

assess the relative predictive power of these variables on regional resilience (for a formal 

definition of these variables see SI Section 3). The pairwise correlations of these variables are 
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often high (see SI Table 1), which, together with the relatively high VIF values (see in 

Section 4) in the initial regression models indicate a high risk of multicollinearity.  

 

To overcome this potential problem, as well as to identify the key structural predictors of 

regional resilience, we extend the basic OLS models with a set of least absolute shrinkage 

and selection operator (LASSO) based models. LASSO is most useful in conditions such as 

ours, with relatively small sample size and many covariates with potential collinearity, and 

when the relative importance of variables is unclear (Tibshirani 1996), as is the case with the 

variables on local industry structure. In summary, a LASSO selection iteratively adds and 

removes variables to and from a model, while maximising ܴଶ and minimising the mean 

squared error (for a detailed technical description see SI Section 2). Since LASSO selection 

needs multiple runs and offers a number of parametrization options, those variables were 

included in the final regressions that were selected in at least 85% of the 500 runs of the 

LASSO variable selection (see SI Figure 1). 

 

4. Results 

 

Figure 3 displays the regional distribution of robustness to random (A) and targeted (B) 

elimination. In general, the larger city-regions (Stockholm in the east, Malmö in the south 

and Göteborg in the west) have higher robustness, followed by the smaller regions in the 

south and regional centres along the northern coast. It is generally the more remote and 

sparsely populated regions in the north and in middle of Sweden that have the lowest 

robustness. The regional difference between random and targeted elimination is not stark, 

instead the difference in scale should be noted. That is, while the most robust regions are as 

robust to random as to targeted elimination the least robust regions are far more sensitive to 

targeted eliminations, hence indicating a more specialised and coherent industry-structure. 

 

Based on these observations, and those made in Section 3, we see that there is a substantial 

heterogeneity in the robustness of local labour flow networks across Swedish local labour 

markets. The question is then whether this network robustness conditions their resilience 

against an economic shock. To test this, we turn to the regression results on the association of 

robustness and change in employment in the context of the economic crisis of 2008. This 

context was chosen because this is the most recent economic crisis event for which we have 
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sufficient data covering the aftermath of the crisis as well. As such, our results pertain to the 

resilience of regions particularly in the context of a grand recession. 

 

(A) 

 

(B) 

 
Figure 3. Mapping the robustness of local inter-industry labour flow networks across 

Sweden.  

Note: based on labour flows aggregated across 2002-2007. 

 

Table 1 presents the results of the OLS specification. Models (1) to (4) provide a stepwise 

and joint introduction of the control variables, Models (6) and (7) introduce the network 

robustness measures (i.e. robustness against random and targeted elimination of industries, 

 on their own, while Models (7) and (8) summarise our main models with both (்ߗ  ோ andߗ

control variables and variables of interest. Control variables show expected signs with the 

exception of regional employment in Models (1) and (4). This is due to the fact that this 

variable picks up on structural characteristics of the region as well. Once additional controls 

and structural variables enter the models, it takes on the expected negative sign, following the 

classical finding that higher growth rates are more difficult to attain from a higher base. 
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Population density shows the expected positive sign, although it remains statistically not 

significant when other variables are present in the models. Finally, human capital shows a 

significant positive association across models, indicating that indeed regions endowed with 

better educated workers tend to have a higher employment change rate during crisis. 

 

Table 1. OLS regression results. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) (5) (6) (7) (8) 

���ଵ ܯܧܩܧܴ ଶܲ 0.027***   0.002   -0.076* -0.027 
 (0.007)   (0.015)   (0.038) (0.026) 

 ଶ  0.001***  0.000   0.001 0.000ܵܰܧܦܱܲܲ
  (0.000)  (0.000)   (0.000) (0.000) 

ܣܥܯܷܪ ଶܲ   0.394*** 0.340**   0.355** 0.290* 
   (0.088) (0.150)   (0.146) (0.154) 

ଶߗ
ோ      0.882***  1.996**  

     (0.219)  (0.903)  

ଶߗ
்       0.316***  0.334 

      (0.075)  (0.252) 

Constant 0.861*** 0.964*** 0.879*** 0.880*** 0.661*** 0.885*** 0.369 0.917*** 
 (0.031) (0.006) (0.022) (0.043) (0.104) (0.025) (0.235) (0.051) 

# Region 72 72 72 72 72 72 72 72 
R2 0.167 0.120 0.225 0.228 0.189 0.199 0.280 0.248 
Adjusted R2 0.156 0.107 0.213 0.194 0.177 0.188 0.237 0.203 
F-Statistic 14.08*** 9.53*** 20.27*** 6.69*** 16.26*** 17.43*** 6.52*** 5.51*** 

Note: standard errors in parentheses; * � ൏ �ͲǤͳ; ** � ൏ �ͲǤͲͷ; *** � ൏ �ͲǤͲͳ. 

 

Turning to our main variables of interest, we find that the robustness of the local labour flow 

network against both random and targeted removal of industries has a significant positive 

association with employment change. This indicates that regions with a higher capacity to 

withstand disturbances to the local capability base of their workforce tend to exhibit higher 

economic resilience in terms of resistance. This is because due to labour pooling across 

industries, removing an industry is likely to leave others still relying on similar worker 

capabilities. Additionally, workers belonging to industries more isolated in the local labour 

flow network have fewer redeployment options to make in case of job loss in the wake of the 

crisis. Crucially, both of these interpretations depend on the network structure of the local 

industries. In this way our findings are in line with those of recent contribution on local 

network structures and resilience (Moro et al. 2021, Tóth et al. 2022), while extending on 
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their analysis by considering the regional industrial structure in particular, as well as by 

moving beyond the analysis of metropolitan regions. 

 

As we discussed in Section 3, there is a high correlation among the covariates, and average 

VIF values in the baseline OLS models exceed the tolerable range (Model 1 of Table 2 and 

3). This potential problem of multicollinearity further increases once we include alternative 

measures proposed in the literature to capture aspects of local industrial portfolios. To 

mitigate this problem, we turn to the results of the LASSO inference that identifies the most 

stable predictors of the outcome variable in case of a small number of observations compared 

with a larger number of potentially collinear predictors. In Table 2 and 3 we present the 

results of this approach for robustness to random and targeted removals respectively. In both 

cases Model (1) repeats the main model from Table 1, and in Model (2) additional structural 

variables are included in an OLS specification. Model (3) reports the coefficients obtained 

from LASSO inference, Model (4) shows the variables that were selected by the LASSO 

inference as the main predictor of employment change, while Model (5) reports the 

coefficients obtained from an OLS specification with LASSO-selected variables. As reported 

in the two tables, mean VIF values in these final models are well within the acceptable range. 

 

The LASSO selection indicates that the robustness of local labour flow networks is the most 

consistently present predictor among all variables considered (SI Figure 1). In the OLS 

models with LASSO-selected variables we find that the positive association between 

robustness and employment change holds, meaning regions with a propensity for 

fragmentation in local worker redeployment pools fared worse during the 2008 recession. We 

also find that robustness to random elimination of industries has a greater coefficient 

compared with that of removing the most connected industries. This is admittedly 

unexpected, however one must consider that the relative importance of random and targeted 

robustness depends on the interplay between the local network structure and how an 

economic crisis unfolds over it. While early on, shock propagation likely follows through 

related links, it does not necessarily follow the degree distribution of industries, especially 

when the outcome in terms of employment change is aggregated across years. 
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Table 2. LASSO inference and LASSO-selection-based OLS results for random removal. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) (5) 
 OLS (baseline) OLS LASSO inference 

(adaptive) 
LASSO selection OLS with 

LASSO selection 

���ଵ ܯܧܩܧܴ ଶܲ -0.076* -0.004 -0.022   
 (0.038) (0.063) (0.065)   

   ଶ 0.001 0.000 0.000ܵܰܧܦܱܲܲ
 (0.000) (0.000) (0.000)   

ܣܥܯܷܪ ଶܲ 0.355** 0.100 0.107   
 (0.146) (0.163) (0.150)   

ଶߗ
ோ  1.996** 2.195** 2.299** X 1.725*** 

 (0.903) (0.864) (0.925)  (0.434) 

 **ଶ  -0.041 -0.046 X -0.066ܴܣܸܮܧܴ
  (0.041) (0.038)  (0.026) 

   ଶ  -0.147 -0.142ܴܣܸܮܧܴܷܰ
  (0.140) (0.154)   

 *ଶ  0.002 0.002 X 0.002ܮܫܧܪܶ
  (0.001) (0.002)  (0.001) 

ܫܦ ଶܸ  0.017 0.015   
  (0.017) (0.020)   

ܴܴܵଶ  -0.005 -0.002   
  (0.010) (0.010)   

 **ଶ  0.081 0.083 X 0.092ܫܥܧ
  (0.070) (0.061)  (0.035) 

Constant 0.369 0.560   0.423*** 
 (0.235) (0.386)   (0.125) 

# Region 72 72 72 72 72 
R2 0.280 0.462   0.446 
Adjusted R2 0.237 0.374   0.413 
Mean VIF 13.84 29.88   3.69 
F-Statistic 6.52*** 5.25***   13.47*** 

Note: standard errors in parentheses; * � ൏ �ͲǤͳ; ** � ൏ �ͲǤͲͷ; *** � ൏ �ͲǤͲͳ. 
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Table 3. LASSO inference and LASSO-selection-based OLS results for targeted removal. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) (5) 
 OLS (baseline) OLS LASSO inference 

(adaptive) 
LASSO selection OLS with 

LASSO selection 

���ଵ ܯܧܩܧܴ ଶܲ -0.027 0.046 0.026   
 (0.026) (0.066) (0.072)   

   ଶ 0.000 -0.000 -0.000ܵܰܧܦܱܲܲ
 (0.000) (0.000) (0.000)   

ܣܥܯܷܪ ଶܲ 0.290* 0.064 0.067   
 (0.154) (0.170) (0.161)   

ଶߗ
்  0.334 0.216 0.267 X 0.280*** 

 (0.252) (0.249) (0.283)  (0.097) 

   ଶ  -0.031 -0.036ܴܣܸܮܧܴ
  (0.042) (0.042)   

   ଶ  -0.111 -0.105ܴܣܸܮܧܴܷܰ
  (0.146) (0.153)   

 ***ଶ  0.002* 0.002 X 0.003ܮܫܧܪܶ
  (0.001) (0.002)  (0.001) 

ܫܦ ଶܸ  0.014 0.011   
  (0.018) (0.019)   

ܴܴܵଶ  -0.003 -0.000   
  (0.010) (0.020)   

 **ଶ  0.071 0.074 X 0.091ܫܥܧ
  (0.073) (0.068)  (0.040) 

Constant 0.917*** 1.075***   0.874*** 
 (0.051) (0.358)   (0.026) 

# Region 72 72 72 72 72 
R2 0.248 0.413   0.377 
Adjusted R2 0.203 0.316   0.350 
Mean VIF 7.65 29.12   1.67 
F-Statistic 5.51*** 4.29***   13.72*** 

Note: standard errors in parentheses; * � ൏ �ͲǤͳ; ** � ൏ �ͲǤͲͷ; *** � ൏ �ͲǤͲͳ. 

 

With respect to other variables on the industrial structure of regions we find first that the 

Theil-index (ܶܮܫܧܪଶ) is consistently selected as a predictor that captures regions that are 

more specialised than the average in the Swedish context. Second, local labour markets with 

a more complex industrial structure (ܫܥܧଶ) fared better during the crisis. This is an 

interesting and novel finding, extending on previous results showing that regions branching 

into more complex occupations also had a faster employment growth after the recession 

(Hane-Weijman et al. 2022). Complexity thus seems to be associated with resilience, at least 

in the Swedish case. It is important to note though that this finding is sensitive to including 

large metro regions in the sample (see below). Finally, we find that ܴܴܣܸܮܧଶ is a 
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LASSO-selected predictor of employment change when considering network robustness 

especially to random elimination (and is barely below the cut-off for inclusion in the targeted 

case). It has a similar sign compared to other instances when an entropy-base variety measure 

is included in models along with network-based measures of relatedness (e.g. Rocchetta & 

Mina 2019, Rocchetta et al. 2021, Tóth et al. 2022). That is, the measure based on explicit 

relatedness captures the conceptual core of related industries with shared local capability 

base. Further, since industrial classifications tend to classify together activities using similar 

technologies, this coefficient may express the downside of relatedness during crisis in terms 

of shared supplier linkages. To sum up, the LASSO-selection models return a set of variables 

representing existing approaches to local economic structure in terms of industrial 

specialisation (ܶܮܫܧܪଶ), content (ܫܥܧଶ) and interdependencies (πଶ), among which 

the latter is a prominent predictor of employment outcomes during crisis. It should also be 

noted that despite including only a limited number of conceptually relevant variables, ܴଶ is 

almost doubled in both cases compared to the initial OLS regressions. 

 

To test the robustness of our findings, we ran alternative specifications that lent support to 

our main conclusions drawn here. First, the metro regions in our sample have an outstanding 

structural diversity in terms of industries, which makes them very different from the rest of 

the sample (see Figure 2). To test whether these urban areas drive our results, we reran the 

models presented in Tables (2) and (3) after excluding these regions (SI Table 3). The 

findings of the main models remained in place with the exception that the ܫܥܧଶ lost its 

statistical significance, likely due to the fact that complex economic activities tend to 

concentrate in large cities (Balland et al. 2020). Second, our dependent variable covers the 

period 2007-2012, with which we aim to capture the early stage of the crisis and its 

immediate aftermath but of course choosing the end of the resistance period is up for debate. 

Hence, following Martynovich et al. (2022) we tested an alternative period in which 

employment change between 2007 and 2009 is considered (SI Table 4). As the main 

employment effects were expressed in 2008 and 2009, this would correspond to a 

conservative estimate of the resistance stage during this particular crisis. Results of this test 

leave our main findings in place. Third, the capacity to tolerate random and targeted removal 

of nodes are two extreme cases for these local networks. Therefore in a further test we 

combined targeted and random removal (50% chance for either in a series of removals), 

leading to similar findings (SI Table 2). 
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5. Conclusion 

 

In this paper we proposed an approach to engage with which arrangements of 

interdependencies between local economic activities are conducive of resilience by drawing 

on advancements in evolutionary economic geography and the rich toolbox on network 

robustness developed in network science. Thereby, the paper provided hitherto scarce 

systematic evidence in the context of local labour markets of an entire national economy on 

the link between local industrial network structure and regional economic resilience. 

Specifically, building on rich administrative data covering the universe of workers in 

Sweden, we stress-tested 72 local labour markets against the progressive hypothetical 

elimination of industries from their local inter-industry labour flow networks. 

 

The explorative part of the analysis indicates a substantial heterogeneity between the regional 

labour flow networks in terms of robustness to random disturbances as well as the targeted 

removal of their most connected industries. Since these networks represent worker 

redeployment potentials within the context of local labour markets (Gianelle 2014, O'Clery & 

Kinsella 2022), this finding indicates that the same economic shock would isolate workers 

into disconnected segments of the labour market more easily in some regions compared with 

others. Importantly, we find that this goes beyond being a matter of regional size, stressing 

instead that emergent local solutions to coordinating labour across economic activities yields 

structural strengths and vulnerabilities even among otherwise similar regions. Thereby we 

advance previous studies based on nation-wide relatedness (e.g. Sanchez-Moral et al. 2022) 

or a specific regional case (Gianelle 2014). Since redeployment potential is crucial in 

reemployment after involuntary loss of work (Hane-Weijman et al. 2018), from a policy 

perspective this makes it imperative to have a clear understanding of the existing structure of 

local labour flows so that the fragmentation of redeployment potentials during crisis can be 

mitigated with targeted retraining programs that counteract workers being isolated in 

disconnected segments of the labour market. 

 

Moreover, we find that regions where inter-industry labour flows constitute a network that 

fragments slower into disconnected components when facing a series of economic 

disturbances fared better in terms of employment during a grand recession. In such local 

labour markets, workers are comparatively less likely to be isolated into a particular segment 

of related activities as an asymmetric crisis unfolds. The paper thereby advances the 
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conceptualisation of regional economies as complex systems (Martin & Sunley 2007) by 

showing that the self-organisation of local labour markets into labour flow networks of 

different structure is linked to regional economic performance during crisis. The findings 

from LASSO selection models also show that network robustness is a prominent predictor of 

employment change among several structural measures of local economic activities, 

indicating the importance of region-specific arrangements of labour redeployment potentials. 

Therefore, while structural features of regional economies are a well-established determinant 

of regional resilience (Martin & Sunley 2020), there is more to this structure than the 

distribution of workers across economic activities, or relatedness based on national 

aggregates between them would indicate. 

 

In highlighting the regionally varying structural features of labour redeployment potentials 

our paper contributes to an emerging research stream exploring the role that local economic 

network structures play in regional economic resilience (e.g. Balland et al. 2015, Moro et al. 

2021, Tóth et al. 2022, Kitsos et al. 2023). By focusing on labour market realignments rather 

than output our findings push the existing frontier by elaborating on the variation that exists 

in the self-organisation of regional economies as complex systems through inter-industry 

labour flows and how this makes for more or less resilient regions.  

 

However, our study has limitations that also correspond to open questions in the literature. 

First, our proposed measure of robustness was derived from a static network defined by 

normalized labour flows prior to the crisis. The conceptual breadth of regional economic 

resilience includes the ability of regions to develop new growth paths and not only withstand 

a shock (Boschma 2015), which implies a change of economic structures (Martin 2012). 

While such changes could entail the change of industrial compositions as well as the intensity 

of labour flows between pairs of industries, it was not possible to take up on the task of 

exploring the dynamics of network robustness and its relation to resilience within the 

confines of this paper. Hence, our results apply to the resistance and recovery dimensions of 

resilience in particular, rather than to the dimensions of renewal and reorientation. That being 

said, without knowing more about heterogeneity in the network robustness of local inter-

industry labour flows in a static sense, we cannot really discuss dynamic processes of change. 

Second, labour flows are only one instantiation of the interdependencies or forms of 

relatedness between different industries. With our data we could not assess the degree of 

supply chain relatedness between different local industries, which may lead to omitted 
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variable bias. Considering both labour flows and supply chain connections in the same 

framework could however resolve the conundrum around related variety. That is, whether it 

allows for the emergence of novel combinations of local capabilities during crisis, or 

facilitates shock propagation between related segments of the local economy (Boschma 2015, 

Martin & Sunley 2020).  
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Supplementary Information 
 

SI 1. Descriptive statistics and correlation matrix 

 

SI Table 1. Descriptive statistics and correlation matrix. 

Variable Obs. Mean Std. Dev. Minimum Maximum 

(1) ���ଵ ܯܧܩܧܴ ଶܲ 72 4.196 0.683 3.004 6.047 

ܣܥܯܷܪ (2) ଶܲ 72 0.246 0.055 0.157 0.412 

 ଶ 72 22.385 22.385 0.241 145.413ܵܰܧܦܱܲܲ (3)

(4) ȍோ 72 0.414 0.022 0.361 0.451 

(5) ȍ் 72 0.287 0.064 0.171 0.432 

 ଶ 72 2.701 0.394 1.742 3.327ܴܣܸܮܧܴ (6)

 ଶ 72 3.218 0.175 2.675 3.507ܴܣܸܮܧܴܷܰ (7)

 ଶ 72 3.396 5.945 -0.940 29.513ܮܫܧܪܶ (8)

ܫܦ (9) ଶܸ 72 7.738 1.499 4.036 10.566 

(10) ܴܴܵଶ 72 13.206 3.875 6.019 20.058 

 ଶ 72 0.131 0.145 0.000 1.000ܫܥܧ (11)

Correlation matrix 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

(1) 1.000           

(2) 0.806 1.000          

(3) 0.775 0.640 1.000         

(4) 0.956 0.760 0.631 1.000        

(5) 0.950 0.809 0.703 0.940 1.000       

(6) 0.881 0.582 0.608 0.874 0.814 1.000      

(7) 0.219 0.482 0.163 0.243 0.324 -0.046 1.000     

(8) -0.451 -0.251 -0.345 -0.404 -0.391 -0.592 0.303 1.000    

(9) 0.198 0.464 0.172 0.210 0.303 -0.081 0.982 0.321 1.000   

(10) 0.972 0.761 0.688 0.963 0.928 0.924 0.186 -0.457 0.158 1.000  

(11) 0.683 0.683 0.814 0.558 0.646 0.424 0.356 -0.137 0.386 0.566 1.000 
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SI 2. LASSO and LASSO selection 

 

Hastie et al. (2019) discuss how to use LASSO for model selection and for inferential 

questions even with small samples. For linear models, LASSO solves a similar optimization 

problem as the Least Square estimator does, except it includes a penalization parameter: 

 

መߚ ൌ ������ ቐ
ͳ
ʹܰ

ሺݕ െ ƍሻߚݔ


ୀଵ

 ߣ ߱หߚห


ୀଵ

ቑ (1) 

 

, where the first term refers to the least-square optimization process to minimize the squared 

residuals and the second term introduces the penalty term. In the penalty term ߣ א ሼͲǡ�ሻ�is 

the LASSO penalization parameter and ߱ is a parameter-level weight. 

 

When ߣ takes the value of zero the estimation reduces back the Least Square optimization. 

With increasing values of ߣ the degree of all the estimated coefficients is diminishing towards 

zero. The diminishing arises because the penalty term adds up from the absolute values of ߚ. 

At given penalty parameters, the optimal solution for some of the estimated coefficients is 

zero. When we use LASSO for variable selection, the covariates with an estimated coefficient 

of zero can be excluded from the model. This process solves the high dimensionality of the 

model: in other words, it keeps only the covariates that have a reliable estimate despite 

collinearity and the relative smallness of the sample.  

 

In the main model we used adaptive LASSO, which is a modification of the standard LASSO 

that aims to improve its performance when the number of predictor variables is large. The 

idea behind adaptive LASSO is to introduce a data-driven weighting scheme for the penalty 

term that gives more weight to important predictors and less weight to less important ones, 

which leads to consistent variable selection. As sensitivity check, we applied other frequently 

used other methods to ensure the consistency our estimation. Since the number of excluded 

covariates could be dependent on the value of ߣ,  we used different versions of cross-

validation (CV) to determine the optimal value of ߣ (Chetverikov et al. 2021). Cross-

validation simulates the process of using split samples to optimize the most efficient out-of-

sample predicators. CV method identifies the optimal value of ߣ that minimizes the out-of-
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sample mean squared error of the predictions and maximizes the predictive power of the 

model.  

 

To reduce bias from overfitting highly correlating variables on low sample size, we run 

LASSO regressions to identify the set of variables with non-zero coefficients (Hastie et al. 

2009). Then fit an unrestricted OLS model on the selected set of features. The idea is to run 

the LASSO selection multiple times in tandem and use cross-validation to refine the group of 

predictors to prevent over-fitting. Then the OLS we run with the selected set of variables 

should be free from overfitting bias (see Table 2 and 3). However, the variable selection 

depends on how we select the value of ߣ from Equation (1). 

 

(A) 

 

(B) 

 
SI Figure 1. LASSO selection across different parametrizations. 

Note: blue corresponds to random and red corresponds to targeted elimination. 

 

The most common selection method is LASSO with ߣ selected by cross-validation (CV). 

With this method, we set a CV function ݂ሺߣሻ with which we want to minimize the estimated 

out-of-sample prediction error. In this case, the optimal ߣ minimizes the CV function. For 

more details on ݂ሺߣሻ see Obuchi & Kabashima (2016). With CV, the number of covariates 

tends to vary on a wide interval. Therefore, in the following specification (CV*), we set the 
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minimum number of selected covariates to six. With CV*, LASSO selects the first six 

variables that minimize the out-of-sample error. Another method to reduce the number of 

variables is Adaptive LASSO. The Adaptive method aims to find parsimonious models that 

might reflect the true model better. Adaptive LASSO is also using CV solutions, but it is a 

more conservative method since it selects a model that has fewer covariates. For another 

robustness check, we repeated the same exercise, but we picked the ߣ that has the minimum 

Bayes Information Criterion (BIC). Finally, as a complementary method, we used Ridge 

regression. In Ridge regression, the penalization parameter from Equation (1) is altered by 

changing ߣσ ߱หߚห

ୀଵ  to the square of the magnitude of the coefficients, such  ߣσ ߱


ୀଵ  .ଶߚ

Ridge regression helps to shrink the coefficients but rarely excludes variables from the 

model. 

 

SI 3. Defining the variables of local industrial structure 

 

In this subsection we provide the formal definition of variables that describe the local 

industrial structure, and that we use in the LASSO selection model. These variables are 

calculated for 2007. 

 

First, the related variety of industries within a region ݎ (ܴܴܣܸܮܧ) is defined through 

entropy decomposition (e.g. Frenken et al. 2007) as the weighted average entropy of 

employment within 1-digit industry groups. If every 3-digit industry ݅ falls under a 1-digit 

industry group ܵ, where ݃ ൌ ͳǡ ǥ ǡ  then related variety is calculated as ,ܩ

 

ܴܣܸܮܧܴ ൌ  ܲܪ

ீ

ୀଵ

 (2) 

 

where ܲ is the aggregation of the 3-digit employment shares: 

 

ܲ ൌ  
ௌ

 (3) 

 

The entropy within each 1-digit industry group ܵ is ܪ: 
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ܪ ൌ 

ܲ
���ଶ ቌ

ͳ


ܲ
ൗ

ቍ
ௌ

 (4) 

 

Unrelated variety (ܷܴܴܰܣܸܮܧ) is measured as the entropy of the distribution of 

employment across 1-digit industries in a region: 

 

ܴܣܸܮܧܴܷܰ ൌ  ܲ ���ଶ ቆ
ͳ
ܲ
ቇ

ீ

ୀଵ

 (5) 

 

Second, we use the regional skill relatedness (ܴܴܵ) measure introduced by Fitjar & 

Timmermans (2017). Essentially, this measure takes a skill-relatedness network defined from 

inter-industry labour flows observed across the national economy, and then calculates the 

average relatedness of industries within a region, while also considering the size of these 

industries in terms of employment. The measure can be considered an improved related 

variety measure in that it considers ex post relatedness, as opposed to deriving it from a 

classification scheme. It is defined formally as  

 

ܴܴܵ ൌ
൬σ ൬

σ ܴܵǡ
ʹ ൰ே

ୀଵ ඥݍǡ൰ ܰൗ

൫σ ඥݍǡே
ୀଵ ൯ ܰΤ

 (6) 

 

Here, ܴܵǡis the inter-industry labour flow measure, between 3-digit industries ݅ and ݆ ് ݅ 

that is present in region ݎ, as described in Subsection 3.2., but derived from aggregate labour 

flows at the national level (hence following a revealed skill-relatedness approach). ݍǡ is the 

employment share of a 3-digit industry ݅ from the total employment in region ݎ, while ܰ is 

the number of 3-digit industries present in a region. A higher value of this indicator signals a 

higher employment-weighted average skill-relatedness within a local labour market, hence 

higher worker redeployment potential between industries. While this measure is akin to our 

network robustness measure, from a structural perspective it considers only the immediate (1-

step) neighborhood of each industry, while our measure captures a more global structural 

feature of each labour flow network, at the local level.  
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Third, we follow Grillitsch et al. (2021)'s approach and formulation in considering two 

additional measures of industry mix and agglomeration. The first is the absolute diversity 

ܫܦ) ܸ) of the regional employment mix using a reverse Herfindahl-Hirschman index: 

 

ܫܦ ܸ ൌ
ͳ

σ ܳǡଶீ
ୀଵ

 (7) 

 

Here, ܳǡ represents the employment share of 1-digit industry ݃ (݃� ൌ �ͳǡ Ǥ Ǥ Ǥ ǡ  in the (ܩ

employment portfolio of region ݎ. A higher value of absolute diversity indicates that regional 

employment is less concentrated across industries. 

 

The second variable is a measure of relative regional specialisation (ܶܮܫܧܪ). Building on 

the Theil Index, this measure aggregates industry-region level specialisations (measured by a 

location quotient) to the regional level. Formally:  

 

ܮܫܧܪܶ ൌ 
ܳǡ
ܳ

�� ቆ
ܳǡ
ܳ

ቇ
ீ

ୀଵ

 (8) 

 

Here, ܳǡ is again the employment share of 1-digit industry ݃ (݃� ൌ �ͳǡ Ǥ Ǥ Ǥ ǡ  in the (ܩ

employment portfolio of region ݎ, while ܳ is the employment share of the same industry in 

the national employment. A higher value of relative regional specialisation would indicate 

that a region is specialised in its industry structure compared to other regions in the Swedish 

economy. 

 

Finally, we include economic complexity (ܫܥܧ) as a quality of the local capability base 

within the regions under analysis. It is widely established in the literature that complexity is a 

strong predictor of long term economic growth (e.g. Hidalgo & Hausmann 2009, Rigby et al. 

2022). Here, we use the so-called Method of Reflections introduced by Hidalgo & Hausmann 

(2009). That is, we take a matrix with regions in its rows and industries in its columns (ܯǡ), 

where each cell of the matrix shows whether region ݎ has a location quotient of employment 

above 1 in industry ݅. The next step is to calculate the diversity of regions and the ubiquity of 

industries: 
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ܶܫܴܵܧܸܫܦ ܻ ൌ ǡܭ ൌ ܯǡ


 (9) 

ܶܫܷܳܫܤܷ ܻ ൌ ǡܭ ൌܯǡ


 (10) 

 

The economic complexity of regions (and industries) can then be obtained by sequentially 

combining these two measures in the following equations over ݊ iterations: 

 

ܫܥܧ ൌ ǡܭ ൌ
ͳ
ǡܭ

ܯǡܭǡିଵ


 (11) 

ܫܥܫ ൌ ǡܭ ൌ
ͳ
ǡܭ

ܯǡ


 ǡିଵ (12)ܭ

 

The final value of ܫܥܧ is normalized between 0 and 1, essentially creating a ranking between 

regions based on their industrial structure (Mealy et al. 2019), where a higher value 

corresponds to a more complex economic structure. For a more detailed description on the 

Method of Reflections, we refer the reader to Hidalgo & Hausmann (2009), or to Balland & 

Rigby (2017) for an application in the context of technological complexity within regions. 
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SI 4. Robustness checks 

 

SI Table 2. Regression results with combined removal. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) (6) 
 OLS (baseline) OLS LASSO inference 

(adaptive) 
LASSO selection OLS with 

LASSO selection 

���ଵ ܯܧܩܧܴ ଶܲ -0.041 0.029 0.006   
 (0.030) (0.066) (0.069)   

   ଶ 0.000 -0.000 -0.000ܵܰܧܦܱܲܲ
 (0.000) (0.000) (0.000)   

ܣܥܯܷܪ ଶܲ 0.294* 0.067 0.073   
 (0.151) (0.169) (0.156)   

ଶߗ
ு  0.614 0.499 0.589 X 0.387*** 

 (0.375) (0.368) (0.407)  (0.127) 

   ଶ  -0.034 -0.040ܴܣܸܮܧܴ
  (0.042) (0.041)   

   ଶ  -0.119 -0.114ܴܣܸܮܧܴܷܰ
  (0.145) (0.156)   

 **ଶ  0.002* 0.002 X 0.003ܮܫܧܪܶ
  (0.001) (0.002)  (0.001) 

ܫܦ ଶܸ  0.014 0.011   
  (0.017) (0.019)   

ܴܴܵଶ  -0.003 0.001   
  (0.010) (0.010)   

 **ଶ  0.075 0.079 X 0.096ܫܥܧ
  (0.073) (0.066)  (0.038) 

Constant 0.858*** 1.061***   0.821*** 
 (0.045) (0.352)   (0.042) 

# Region 72 72 72 72 72 
R2 0.258 0.423   0.384 
Adjusted R2 0.213 0.328   0.357 
Mean VIF 9.43 29.57   1.61 
F-Statistic 5.81*** 4.47***   14.14*** 

Note: standard errors in parentheses; * � ൏ �ͲǤͳ; ** � ൏ �ͲǤͲͷ; *** � ൏ �ͲǤͲͳ. 
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SI Table 3. Regression results excluding metro regions. 

 Dependent variable: employment change 2007-2012 

 (1) (2) (3) (4) 
 OLS  

(baseline) 
OLS 

(baseline) 
OLS with LASSO 

selection 
OLS with LASSO 

selection 

���ଵ ܯܧܩܧܴ ଶܲ -0.079* -0.014   
 (0.037) (0.027)   

   ଶ 0.000 -0.000ܵܰܧܦܱܲܲ
 (0.000) (0.000)   

ܣܥܯܷܪ ଶܲ 0.268 0.208   
 (0.145) (0.157)   

ଶߗ
ோ  2.635**  1.713***  

 (0.910)  (0.481)  

ଶߗ
்   0.394  0.246** 

  (0.251)  (0.111) 

  **ଶ   -0.066ܴܣܸܮܧܴ
   (0.026)  

 ***ଶ   0.001* 0.002ܮܫܧܪܶ
   (0.000) (0.000) 

 ଶ   0.095 0.136ܫܥܧ
   (0.026) (0.081) 

Constant 0.155 0.882*** 0.428*** 0.879*** 
 (0.241) (0.352) (0.141) (0.028) 

# Region 69 69 69 69 
R2 0.259 0.193 0.367 0.290 
Adjusted R2 0.213 0.143 0.327 0.258 
Mean VIF 11.67 6.47 3.77 1.74 
F-Statistic 5.62*** 3.85** 9.29*** 9.97*** 

Note: standard errors in parentheses; * � ൏ �ͲǤͳ; ** � ൏ �ͲǤͲͷ; *** � ൏ �ͲǤͲͳ. 
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SI Table 4. Regression results for alternative period. 

 Dependent variable: employment change 2007-2009 

 (1) (2) (3) (4) 
 OLS  

(baseline) 
OLS 

(baseline) 
OLS with LASSO 

selection 
OLS with LASSO 

selection 

���ଵ ܯܧܩܧܴ ଶܲ -0.037 -0.002   
 (0.026) (0.018)   

   ଶ 0.000 0.000ܵܰܧܦܱܲܲ
 (0.000) (0.000)   

ܣܥܯܷܪ ଶܲ 0.161 0.130   
 (0.101) (0.107)   

ଶߗ
ோ  1.235*  1.329***  

 (0.626)  (0.302)  

ଶߗ
்   0.149  0.217*** 

  (0.175)  (0.068) 

  ***ଶ   -0.048ܴܣܸܮܧܴ
   (0.018)  

 ***ଶ   0.000 0.001ܮܫܧܪܶ
   (0.000) (0.000) 

 ଶ   0.044* 0.045ܫܥܧ
   (0.024) (0.028) 

Constant 0.567*** 0.900*** 0.538*** 0.892*** 
 (0.163) (0.035) (0.087) (0.018) 

# Region 72 72 72 72 
R2 0.264 0.230 0.429 0.336 
Adjusted R2 0.220 0.184 0.395 0.307 
Mean VIF 13.84 7.65 3.69 1.67 
F-Statistic 6.02*** 5.00** 12.57*** 11.48*** 

Note: standard errors in parentheses; * � ൏ �ͲǤͳ; ** � ൏ �ͲǤͲͷ; *** � ൏ �ͲǤͲͳ. 
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