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Abstract 
It is widely understood that innovations tend to be concentrated in 

cities, which is evidenced by innovative output increasing 

disproportionately with city size. Yet, given the heterogeneity of 

countries and technologies, few studies explore the relationship 

between population and innovation numbers. For instance, in the USA, 

innovative output scaling is substantial and is particularly pronounced 

for complex technologies. Whether this is a universal pattern of 

complex technologies and a potential facilitator of scaling, is unknown. 

Our analysis compared urban scaling in urban areas across 33 countries 

and 569 technologies. Considerable variation was identified between 

countries, which is rooted in two fundamental mechanisms (sorting and 

boosting). The sorting of innovation-intensive technologies is found to 

drive larger innovation counts among cities. Among most countries, this 

mechanism contributes to scaling more than city size boosting 

innovation within specific technologies. While complex technologies 

are concentrated in large cities and benefit from the advantages of 

urbanization, their contribution to the urban scaling of innovations is 

limited. 
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1. Introduction 
Famously, Florida (2005) argued that the global distribution of innovation is “spiky.” Almost 

twenty years later, this is still very much the case (see Figure 1). Innovation does not randomly 

concentrate in space, rather, it is seen as an urban phenomenon (Bettencourt et al., 2007; 

Feldman and Audretsch, 1999; Glaeser, 2011). In particular, the urban scaling literature 

(Arcaute et al., 2013; Bettencourt et al., 2015, 2010; Bettencourt et al., 2007; Bettencourt and 

Lobo, 2016; Gomez-Lievano et al., 2017) has sparked discussion on whether an urban premium 

exists, and researchers have sought to conceptualize and measure it. Empirical analyses have 

demonstrated that larger cities have a disproportionally higher innovation output by comparison 

to their rural counterparts, and this relationship is disproportionately large. Nevertheless, the 

precise sources and extent of this urban premium are still debated (Eder, 2018; Shearmur et al., 

2016).  

 
Figure 1: The "spiky world of innovation.” Figure inspired by Florida (2005). Spikes 

represent cumulative sums of patent counts (2001-2014) based on the database of de 

Rassenfosse, Kozak, and Seliger (2019). The visualization was created using the rayshader 

package in R (Morgan-Wall, 2023). A square root transformation was performed for better 

visibility. A high-resolution version is available for download at: https://www.tombroekel.de/ 

visuals/patents_world_sqrt.png. 

The existing urban scaling literature pays little attention to heterogeneity in scaling across 

countries and technological fields. It typically claims that empirically identified scaling 

relationships are universal (Batty, 2008; Bettencourt and West, 2010; Bettencourt et al., 2007; 

West, 2018). However, the few studies exploring urban scaling of innovation in different 

countries (Fritsch and Wyrwich, 2021; Lobo et al., 2013), or those looking at specific activities 

or technologies (Balland et al., 2020; Hong et al., 2020), indicate significant heterogeneity in 

the relationship between population and inventive output. Specifically, innovations in complex 

activities are attracted to and facilitated by urban environments (Balland and Rigby, 2017; 

Balland et al., 2020). However, whether the concentration of complex technologies is also a 

facilitator of the generalized scaling of innovation is so far unknown.  

This paper separates urban scaling in innovation into two core mechanisms: boosting and 

sorting. Boosting includes the location-based advantages of cities for innovation, which result 

in larger cities having disproportionately more innovations (per capita) in a specific activity 

(technology) than their smaller counterparts. That is, as population increases, technological 

innovation increases more than proportionately. Sorting refers to the urban scaling that 

originates from the attraction and concentration of innovation-prone activities in cities because 

the locational benefits of cities are crucial for these technologies. Beyond assessing the 

magnitude of the two processes in urban scaling, we investigate the extent to which they are 

related to the concentration of complex technologies in larger cities. 

This study merges the recently established patent database (de Rassenfosse et al., 2019) with 

information on 1,120 functional urban areas (FUAs) in 33 countries. This study thereby adds to 



3 
 

the limited literature that has investigated urban scaling internationally, including that of 

Bettencourt and Lobo (2016); Fritsch and Wyrwich (2021); Lobo et al. (2013). 

This study’s findings show that urban scaling is a global phenomenon. However, substantial 

variations exist between countries and technologies. For instance, few technologies receive an 

innovative boost due to their location in more populous places. The average relationship 

between city size and technology-specific innovation output is sublinear or not significantly 

different from a linear one in many countries. Yet, cities do manage to attract more innovation-

intensive technologies (sorting), which is identified to be the main source of urban scaling. In 

line with the literature, this research finds that large cities specialize in more complex 

technologies and that innovation activities in complex technologies especially benefit from 

being located in areas with large populations. However, no substantial evidence is found 

proving that the concentration of complex technologies in larger cities is a driver of the 

disproportionately large innovation numbers in cities.  

The paper is structured as follows: The next section conceptualizes the urban scaling of 

innovation, including a discussion on sorting, boosting, and complexity. Subsequently, the 

empirical data and methodological approach are introduced in Section 3. Section 4 describes 

the empirical results before Section 5 concludes the paper.  

2. Theory 
2.1. International variations in urban scaling of innovation  

Urban areas are perceived as hotspots for knowledge production as innovation activities are 

disproportionately concentrated there (Bettencourt et al., 2007; Feldman and Audretsch, 1999; 

Glaeser, 2011). For instance, more than twice the innovations are documented in New York 

City than in a city half its size. Within the scientific literature, this observation has been termed 

the “law of urban scaling” (Batty, 2008). 

The disproportionate scaling of innovation with population size has been supported by 

numerous empirical studies (Arcaute et al., 2013; Bettencourt et al., 2010; Bettencourt et al., 

2007; Bettencourt and Lobo, 2016; Gomez-Lievano et al., 2017). Recent empirical research 

also shows that urban scaling is not restricted to innovation in quantitative terms (i.e., the 

absolute number of innovations), it also encompasses qualitative aspects of innovation: larger 

cities tend to produce disproportionately more radical (Mewes, 2019) and complex innovations 

(Balland et al., 2020). 

Several researchers claim that the “law of urban scaling” is universal (Batty, 2008; Bettencourt 

and West, 2010; Bettencourt et al., 2007; West, 2018), which challenges the notion that the 

historical, physical, political, institutional, sectoral, financial, and cultural specificity of 

countries and cities significantly shapes their innovation systems and, therefore, their economic 

performance (Acs et al., 2017; Lundvall, 1992; Nelson, 1993). Crucially, countries differ in the 

degree of factor mobility (labor and capital) (Bentivogli and Pagano, 1999; Tatsiramos, 2009), 

which are essential determinants in the concentration of economic activities in space. These 

cross-cities and cross-country differences in urbanization, factor endowments, and innovation 

capabilities shape the spatial distribution of innovation activities and could translate into 

deviations from a global trend. 

While the majority of empirical studies argue that a universal scaling law exists, many of them 

use only data representing the USA (Bettencourt and West, 2010; Bettencourt et al., 2007; 

Gomez-Lievano et al., 2017; Hong et al., 2020). In contrast, the smaller number of studies 

exploring urban scaling across different geographic contexts reports substantial international 

variation (Arcaute et al., 2013; Bettencourt and Lobo, 2016; Fritsch and Wyrwich, 2021; Lobo 

et al., 2013). Equipped with higher quality empirical data, in particular, through the use of the 

harmonized global definition of FUAs (Dijkstra, Poelman, & Veneri 2019) and geo-located 

patents (de Rassenfosse et al., 2019), this study’s first aim is to complement existing insights 
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in the cross-country comparison of urban scaling to innovation around the world with a 

comprehensive analysis. This aim is captured in our first research question: 

 

Research question 1: To what degree does urban scaling of innovation vary around the world? 

 

2.2. The two components of urban scaling and their international variation 
The theories used to explain urban scaling of innovation are drawn from a wide range of fields 

and are much more detailed than typical simple empirical approaches. For instance, based on 

complex systems theory Bettencourt (2013) argues that urban scaling stems from the mixing of 

populations in cities and their growing infrastructural and social networks. Gomez-Lievano et 

al. (2017) combine ideas of cultural evolution and economic complexity and develop a theory 

of urban scaling based on the ability of cities to bring together complementary resources. 

Unfortunately, capturing these ideas empirically in an international comparison study is nearly 

impossible. Though, it is possible to improve our understanding of the mechanisms behind 

urban scaling and the reasons for its variance using empirical methods. 

In this study, the three main location-based factors shaping the innovation output of places are 

translated into two mechanisms (boosting and sorting) that account for the degree of urban 

scaling of innovation. Especially within the fields of regional science and economic geography 

the spatial distribution of innovation activities and the role of cities therein have long been the 

subjects of empirical studies (Feldman and Audretsch, 1999; Rosenthal and Strange, 2001). 

Brenner and Broekel (2011) review common approaches and summarize them into three 

fundamental location-based factors: 

 

1. Differences in the ability of places to facilitate local innovation activities.  

2. Variations in the number and types of innovation activities present. 

3. Spatial heterogeneity in attracting and mobilizing further innovation activities. 

Within this paper, the first factor is referred to as boosting. Boosting captures all locational 

characteristics that increase innovation output, and which correlate to (or can be approximated 

by) population size. Boosting comprises two effects. First, higher degrees of urbanization may 

stimulate innovation-related efforts. For instance, the higher competitive pressure for scarce 

resources such as land and human capital in more urban areas (Duranton and Kerr, 2018; Porter, 

1998), renders the adoption of technological leadership and innovation-based growth strategies 

more likely. Consequently, more actors located in urban environments are expected to dedicate 

resources to innovation activities. Second, innovation-related resources are more productive in 

densely populated environments translating into higher innovation efficiency. Economies of 

agglomeration, particularly urbanization and localization externalities, contribute to this. 

Urbanization externalities lead to easier and cheaper access to local and international markets 

(Taylor et al., 2002), to a highly skilled workforce (Glaeser and Maré, 2001), to R&D 

infrastructure (Harrison et al., 1996), to knowledge-intensive business services (KIBS) 

(Doloreux and Shearmur, 2012) and, spur knowledge spillovers (Greunz, 2004; Henderson et 

al., 1995). They often coincide with diversification externalities, which originate from the 

spatial concentration of heterogeneous knowledge and competencies in space allowing for 

cross-domain knowledge spillovers (Jacobs, 1969; van der Panne and van Beers, 2006). As 

economic (Youn et al., 2016) and technological diversity (Mewes, 2019) systematically 

increases with city size, the likelihood of knowledge exchange across different but 

complementary domains increases accordingly (Gilbert et al., 2008). By contrast, localization 

externalities, also called Marshall-Arrow-Romer (MAR) externalities, emerge from the 

concentration of the same or similar activities in one location, which allows for efficient labor 

market pooling, input-output linkages, positive competitive pressure, and intra-industry 

knowledge spillovers (Rosenthal and Strange, 2001). Even though MAR externalities are not 
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restricted to urban areas, they are more likely to occur in locations of greater size and density. 

Altogether, the tendency towards more innovation-based strategies and the impact of 

externalities on innovation productivity, contribute to the same economic activity producing 

more innovative output per capita when located in larger urban areas, i.e., boosting. 

 

Temporally, the second and third aspects of Brenner and Broekel’s (2011) review (variance in 

existing innovation activities and the attraction of new and additional activities) are closely 

linked. This is because the potential for places to attract or mobilize specific innovation 

activities determines the quantities and types of innovation activities present. Within this 

research, this is referred to as sorting. Specifically, this refers to the degree to which larger 

urban areas systematically accumulate more innovation-intensive technological activities. Note 

that innovation intensity should not be confused with higher innovation productivity or 

efficiency. Firms and other organizations performing these activities may simply dedicate more 

resources (R&D employees, R&D efforts) to innovation processes (Brenner and Broekel, 

2011). Ultimately, sorting in the context of urban scaling encompasses all factors that attract 

above-average innovation-intensive activities to a place that correlates (or can be approximated) 

with its population size. Most factors that facilitate boosting (e.g., externalities) also shape 

sorting, making more urban locations more attractive for innovation-intensive activities. 

However, there are exceptions. For instance, higher resource competition within urban areas 

can fuel boosting but does not attract further activities. 

The second research question conveys the aim to disentangle urban scaling of innovation into 

sorting and boosting to learn more about its underlying mechanisms. 

 

Research question 2: What is the magnitude of boosting and sorting in urban scaling of 

innovation? 

 

By disentangling scaling into boosting and sorting, a better understanding can be gained of the  

potential causes of international variation in total scaling, which has been observed in previous 

studies (Fritsch and Wyrwich, 2021; Lobo et al., 2013). 

Both mechanisms are dynamically interrelated, as boosting allows actors in larger urban regions 

to outcompete and outgrow those in less populous places, which increases the urban 

concentration of the corresponding activity. In addition, actors in less populace places might 

decide to move to cities to benefit from their advantages and thereby add to the concentration 

within cities (sorting) and the advantages cities generate (boosting). 

Therefore, given the heterogeneity of factor mobility in countries (Bentivogli and Pagano, 1999; 

Tatsiramos, 2009), the expectation is that the degree of sorting will vary substantially between 

countries. And, as countries differ in their average degree of urbanization, infrastructure, 

institutional structures, and general spatial organization (Hidalgo et al., 2009; United Nations, 

2018), cities are unlikely to provide the same boost to innovation activities around the world. 

Therefore, boosting is also likely to vary across countries. Our third research question 

summarizes this.  

 

Research question 3: To what degree do countries differ in terms of sorting and boosting in 

the context of urban scaling? 

 

2.3. Complexity and urban scaling of innovation 
To illustrate the usefulness of disentangling scaling into sorting and boosting, this research 

considers a factor that has recently been related to urban scaling of innovation: technological 

complexity. Research suggests that complex technologies are more likely to emerge in and be 

attracted to cities (Balland and Rigby, 2017; Balland et al., 2020). Complex technologies 
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combine heterogeneous components in a highly interrelated and structurally diverse manner 

(Simon, 1962; Zander and Kogut, 1995). Identifying, adapting, and eventually combining these 

components via collaboration and division of labor is more feasible in larger cities (Balland et 

al., 2020; Juhász et al., 2021). Consequently, complex technologies can be expected to benefit 

the most from larger cities (boosting) and thereby contribute strongly to urban scaling. In 

addition, large cities are more likely to specialize in complex technologies, which, given their 

higher innovation intensity, should also fuel the sorting effect in urban scaling. The final 

research question concerns this cluster of ideas.  

 

Research question 4: Do sorting and boosting systematically vary along the dimension of 

technological complexity? 

3. Empirical set-up 
3.1. Data 

To explore the urban scaling of innovation, this research emulates the recent work of Fritsch 

and Wyrwich (2021). Innovations are approximated using patent applications and functional 

urban areas (FUAs) (which represent a harmonized delineation of urban areas worldwide) were 

used as the spatial units of observation. This enabled the construction of a dataset of comparable 

(urban) areas using a widely accepted measure of innovation.1 

Although patent applications are by no means a perfect approximation of innovation (see 

Griliches, 1990, for a detailed discussion), patent data is widely available, is comparable across 

locations over time, and is thus indispensable for the design of this cross-country study. The 

patent data prepared by de Rassenfosse, Kozak, and Seliger (2019) was used, which contains 

more than 18 million patent applications worldwide (including those not granted) until the year 

2014. This patent data is not limited to the European Patent Office but includes applications to 

other patent offices, such as the USPTO and the Japan Patent Office. It also includes 

information about the patent family, which prevents one from counting the same invention 

granted to multiple offices twice. 

The functional urban areas defined by Dijkstra, Poelman, and Veneri (2019) cover most of the 

OECD member states. They seek to capture the economic and functional areas of cities. 

Following the logic of labor market regions, the delineation is based on the daily movements 

of people, with work-related commuting. The OECD provides geographic shapefiles for 1,199 

FUAs in 34 countries2 (OECD, 2021). 

To match patent information with FUAs the exact geo-coordinates (latitude and longitude) were 

used, as provided in the patent data. These coordinates were based on the address information 

contained in the patent documents.3 The geographic information in the OECD shapefiles allows 

for a straightforward assignment of patents to FUAs. That is, whenever the coordinate assigned 

to a patent lies within the geographical boundaries of the FUA, it will be assigned to this region. 

All applications before the year 2001 were excluded because 2001 was the first year with the 

necessary population data (see below). This left 9,778,948 patent applications from 2001 to 

2014. Patents with multiple inventors were counted fractionally (Ejermo and Karlsson, 2006), 

a method also applied by Fritsch and Wyrwich (2021): for each patent, the share of inventors 

located in the same FUA was calculated. Hence, in all estimations and figures, “patent counts” 

 
1 Of course, patents capture inventions rather than innovations. However, this distinction is not essential for the 
present work, and the more common term “innovation” was used. 
2 The countries and the corresponding numbers of FUAs are listed in Table 6 in the Appendix. 
3 This is different to Fritsch and Wyrwich (2021) who rely on complex global crosswalks to delineate regions. 
We are confident that our procedure is more accurate. 
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refer to the sum of patent fractions assigned to FUAs.4 In total, 7,076,663 patents were assigned 

to at least one FUA and were consequently allocated according to the fractional counting 

procedure. 

Unfortunately, the 53 functional urban areas of Colombia did not feature any patents listed in 

de Rassenfosse et al. (2019) and were therefore removed. In addition, 26 FUAs were not linked 

to patents, leaving a total number of 1,120 FUAs. 

The second requisite data set was population information, which was obtained for most regions 

(995) from OECD Statistics for the years 2001 to 2014. Noticeably, the time series were 

incomplete for some regions, which was unproblematic for this study’s empirical approach as 

the data and average population size were pooled. For the remaining 125 FUA, the population 

data for the year 2015 was used, as documented in OECD (2021). 

In total, there was complete information (population and patents) for 1,120 regions in 33 

countries. This study thereby extended the international representation of the study of Fritsch 

and Wyrwich (2021) considerably, as their study considered 14 countries only. Almost as many 

countries were considered as Lobo et al. (2013). More details about the data can be found in the 

Appendix. 

 

3.2. Technologies and Complexity 
To disentangle boosting and sorting as well as assess the potential systematic variance of 

complexity, this study relied on the technological disaggregation of patents provided by the 

hierarchical Cooperative Patent Classification (CPC). The 4-digit level was used, which offers 

a useful balance between technological disaggregation and a manageable data structure 

(Antonelli et al., 2020; Breschi and Lissoni, 2009). This allowed for the distinction of more 

than 660 technologies. In the technology-specific analyses (see next section), technologies with 

very low patent numbers were excluded. These were defined as technologies with less than 500 

patents.5 This reduced the number of technologies considered to 569. 

The quantification of technological complexity was crucial for the study. Broekel (2019) 

provides annual estimates of technological complexity for 4-digit CPC classes.6 The measure 

of structural diversity is based on the representation of technologies as combinatorial networks 

of interrelated (knowledge) elements. The structure of these combinatorial networks comprised 

different topologies (e.g., “stars,” “lines” and “circles”). Accordingly, technologies were more 

complex when their combinatorial networks had a greater diversity of such topologies, i.e., 

more distinct ways in which the technologies’ (knowledge) elements were interrelated. 

Presumably, this increases the effort needed to invent, learn, and copy a technology. The 

measure of structural diversity captured this diversity at the 4-digit CPC level. Broekel (2019) 

shows that structural diversity outperforms other measures of technological complexity in 

mirroring patterns commonly associated with complexity (growing over time, requiring more 

R&D and collaboration, concentrating in space). Recently, Mewes and Broekel (2022) add to 

this by showing that this measure of complexity explains the growth differentials of European 

regions. The technological complexity of the 4-digit CPC technologies was averaged over the 

period 2001 to 2014, as well. 

 

 
4 The analysis was repeated with a full-counting approach. The results didn’t change in a substantive manner. 
They can be obtained from the authors upon request. 
5 Figure 13 in the Appendix visualizes the distribution of the cumulated numbers of patents across technologies 
for all countries and the full-time span. 
6 The data is publicly available at https://www.tombroekel.de/updated-values-of-technological-complexity/ and 
the GeoInno package for R features a function for the calculation of the structural diversity measure, see 
https://github.com/tombroekel/GeoInno. 
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3.3. Methodology 
Mewes (2019) shows that scaling coefficients change rather slowly over time, which allows for 

cross-sectional analysis. As already outlined, population and complexity values were averaged 

across all years, whereas patent numbers were summed to correspond to the total innovative 

output in that period. 

Cross-sectional OLS-regressions were employed relating the logarithm of patent numbers to 

the logarithm of population. The resulting coefficient of population was interpreted as an 

indication of the degree of scaling (Bettencourt et al., 2007a). The relationship between 

population and patents was estimated as reliably as possible (using fixed effects, interaction 

terms, and clustered standard errors). Still, the results cannot be interpreted causally and suffer 

from an omitted variable bias, as population is not the primary, let alone, only explanatory 

factor of patented innovation (Brenner & Broekel 2011). Moreover, patents are not the only or 

best approximation of innovative output. While this needs to be considered in the interpretation, 

it is still the most widely used approach in this context. 

To answer research question 1, the degree to which urban scaling in innovation varies across 

the world, all country-specific data was pooled, and the OLS was run including country-fixed 

effects and clustered standard errors at the country level, which provided the baseline model. 

By estimating varying slopes and varying intercepts models using interactions of country-

dummies and population, differences between countries were quantified (Fritsch and Wyrwich 

2021). 

Research questions 2, 3, and 4 required the disaggregation of scaling into boosting and sorting. 

According to the discussion, the analysis focused on the technological dimension of sorting. 

Technologies (4-digit CPC fields) were assumed to represent technologically homogeneous 

innovation processes, implying that no significant sorting takes place within each technology.7 

That is, if patent numbers per capita within a specific technology were higher in larger regions, 

it was the result of actors being more innovative there (having a higher innovation efficiency 

and higher investments into innovation) and not because they operate in technologies that are 

more innovation-intensive in general. The data was restructured with 569 technology-specific 

observations for each of the 1,120 regions leading to a total of 637,280 observations. All 

observations with zero patents were removed, leaving 272,399 valid observations that formed 

the basis for the subsequent analyses. 

To capture the boosting effect, the OLS scaling regression on this data was estimated. This 

allowed the intercept and scaling-coefficient (slope parameter of population) to vary between 

technologies.8 The resulting technology-specific scaling coefficients were not shaped by sorting 

and hence, represented pure boosting.9 

Technically, the varying slopes were implemented using a varying-slopes and intercept model 

(i.e., 569 technology-specific parameters) for population. The technology B32B (Layered 

products (products build of strata of flat or non-flat form) was selected as the reference group 

because of all technologies, its slope-parameter was closest to 1 (b=1.000, 95% conf.int: 0.929-

1.070, 818 obs.) when considering country-fixed effects. Using it as a reference allowed for the 

interpretation of a technology’s significant boosting coefficient as over-linear or sub-linear 

 
7 The relative homogeneity of the presumed innovation processes within 4-digit CPC technologies implied that no 
substantial sorting of more innovation- and patent-prone subfields correlated with city size. The validity of this 
assumption increased with further technological disaggregation. Unfortunately, this came at the cost of thinner 
empirical data. We believe that the 4-digit level represents the best trade-off in this scenario. 
8 Fritsch and Wyrwich (2021) weren’t emulated in doing the analysis for patents per inventor. They argue that this 
ratio represents inventors’ productivity, which, in the setting of this research, might capture the boosting effect as 
well. However, this ratio is heavily shaped by the intensity of collaboration activities and consequently, represents 
a rather biased estimate of inventor productivity. 
9 All OLS scaling regressions were done using the fixest R-package (Bergé, 2018).  
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scaling with population and consequently, whether there was a significant boosting effect. 

Hence, these coefficients were referred to as boosting coefficients in the following. 

In an extension of this approach, variations between countries were assessed with a varying-

slopes (i.e., country-specific) model for population using a combination of country and 

technology dummies. In this case, the technology-country combination “E03C-USA” served as 

a reference because its slope parameter was closest to 1 (b=1.00003, 95% conf.int: 0.858- 1.14, 

154 obs.). In consequence, significant coefficients of the varying-slope parameter can be 

interpreted as indication of slopes that are statistically larger or smaller than 1. To test if 

international variations significantly shaped the magnitude of boosting, a second-stage analysis 

was conducted in which the boosting coefficients were regressed on country dummies with the 

USA set as the benchmark. The USA was chosen because it was the case that was the subject 

of the most investigation in the scaling literature. As the values of the dependent variable 

(boosting coefficients) were outcomes of a statistical analysis itself, a meta-regression approach 

was employed that considers variance in the (statistical) precision with which the values were 

estimated. This was achieved by employing a residual maximum likelihood approach (REML) 

in the second stage (Viechtbauer et al., 2015). This two-stage approach also allowed for a simple 

exploration of the relationship between boosting and complexity, as the complexity of 

technologies could be added into the meta-regression as an additional explanatory variable. 

To isolate the sorting effect from boosting, the degree to which (larger) regions specialize in 

more innovative (patent-intensive) technologies was assessed. First, each technology’s patent 

intensity was calculated as the average of the ratio between patents and population across 

regions with at least one patent in the focal technology (INNO_TECH).10 Second, the 

technology-specific regional patent numbers (in logs) were regressed onto the corresponding 

technology’s log-transformed patent intensity (the latter being identical across all regions). 

Figure 2 illustrates this schematically, with the dots representing individual technologies that 

are sorted according to their patent intensity along the x-axis and their region-specific patent 

numbers on the y-axis. The slope parameters of the regression obtained represent a simple 

measure of regions’ specialization in innovation-intensive technologies. In practice, we achieve 

this by pooling all region-specific observations and estimating a varying-slopes and varying-

intercepts (i.e., region-specific parameters) model interacting technologies’ patent intensities 

(INNO_TECH) with region dummies (REG). Subsequently, the relationships of these 

coefficients with population counts were explored with a REML meta-regression, which is 

illustrated in Figure 3. The region closest to not having any specialization concerning 

innovation-intensive technologies was chosen as a reference group, i.e., a region with a slope 

parameter closest to zero. This is region ES048 (Guadalajara, Spain, b= -0.000352, 95% 

conf.int: [-0.120, 1.20], 30 obs.). 

 

 

 

 
10 The robustness check using the median value of technologies’ patent to population ratios yields very similar 
results. 
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Figure 2: Specialization in innovation intensive technologies 

 

 
Figure 3: Sorting meta-regression 

An interaction of innovation intensity, complexity, and region dummies 

(INNO_TECH*COMPLEX*REG), provides varying slopes (region-specific) and varying 

(region-specific) intercepts for the relation of innovation-intensity and complexity. In the 

second stage, the resulting coefficients were regressed on population to evaluate the relationship 

between sorting and complexity. 

4. Results 
4.1. Cross-country differences of urban scaling to innovation 

Table 1 shows the results of the typical scaling regression between population and patents (both 

in logs) across all 1,120 regions. The size of the coefficient for population is relatively large 

(1.445), but it decreases considerably to 1.269 when considering country-level fixed effects. 

That the pooled data stems from different sub-populations is also visible in Figure 4. When 

considering the country-fixed effects the scaling coefficient obtained are very similar to those 

reported by Bettencourt et al. (2007) and Balland et al. (2020) for USA cities (1.27 and 1.26, 

respectively). The result without fixed-effects are almost identical to the those reported by Lobo 

et al. (2013) for the USA and to the one for the combined sample of regions in 33 other 

countries. The data clearly confirms the existence of positive urban scaling across countries. 
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  Dep: log (Patents) 

Constant 
-12.394*** (-

15.878, -
8.909) 

 

log 
(Population) 

1.445***(1.131, 
1.759) 

1.269***(1.182, 
1.355) 

FE 
(Dummies) No Countries 

Cluster Std. 
err Yes Yes 

Observations 1,12 1,12 

R2 0.412 0.878 

Adjusted R2 0.411 0.874 
Residual 
Std. Error 

1.928 (df = 
1118) 0.891 (df = 1086) 

Note: *p**p***p<0.01 
 

 
Table 1: Urban scaling in innovation 

regression 
Figure 4: Visualization of urban scaling in 

innovation 

Next, following Fritsch and Wyrwich (2021), the same regression was estimated, this time with 

varying-slopes (country-specific) for population using the USA as a reference. The slope 

coefficients are visualized in Figure 5 (Table 8 in the Appendix reports the full regression 

results). Only 9 out of 30 countries’ coefficients are significantly different from that of the USA 

(at the level of p<0.1). The coefficients are significantly smaller for Switzerland, Ireland, Italy, 

Lithuania, the Netherlands, and the UK. They are larger for Mexico and Slovenia (there are 

only two regions in Slovenia). While the signs of the coefficient are the same as reported by 

Fritsch and Wyrwich (2021), by contrast, the lower scaling for Canada, Germany, and Spain is 

not observed to be statistically significant in this research. This discrepancy is likely the result 

of better quality (geo-located) patent data used in this study. 
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Figure 5: Variations in scaling across 
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Hence, the analysis provides a mixed answer to the first research question: while urban scaling 

of innovation is observed across all countries and it is not statistically different from that 

observed in the USA, there are significant differences between some countries. In particular, 

the UK, Ireland, Switzerland, and Austria show scaling coefficients below one and, 

accordingly, do not experience superlinear urban scaling of innovation.11 Consequently, this 

study casts some doubt on the idea that scaling could hold universally.12 

 

4.2. Boosting and sorting in urban scaling to innovation 
This study is arguing that scaling is rooted in two effects: boosting and sorting. To identify 

boosting, the patent data was disaggregated into 569 technology-specific observations and a 

scaling regression on this basis was estimated whereby the population parameter was allowed 

to vary between technologies. The resulting coefficients are shown in Figure 6 and the 

condensed regression results are in Table 9 in the Appendix. Red indicates whether the 

coefficient is significantly different from the reference technology’s slope, which is 

approximately 1. 

The findings are remarkable: across the world, merely four of 569 technologies scale super-

linearly, whereas about 50% scale sub-linearly and the remaining technologies scale 

approximately linearly. That is, in only 4 of 569 cases a larger population leads to 

disproportionally more patents, and the median coefficient across all technologies of 0.764 is 

well below 1. This clearly shows that boosting as a part of scaling does not solely account for 

the superlinear scaling coefficient found in the overall regression. 

This is even more interesting given the inter-country variance in boosting. Figure 7 illustrates 

the results of the varying (country-specific) slopes of technologies 

(COUNTRY*TECH*Population) in which the boosting coefficients for each country were 

classified as significantly larger or smaller than 1 or approximately 1 (the summary of the 

regression results is shown in Table 11 in the Appendix). Most technologies scale 

approximately linearly or sub-linearly within individual countries. There is only a handful of 

countries (USA, Germany, Japan, South Korea, France) where larger populations boost the 

innovation activities of some technologies’ (between 21 and 85) super-linearly. Unfortunately, 

two countries (IS, LU) do not have enough observations to be tested against the reference 

(USA). 

For three countries, most technologies’ scale sublinear: Italy, United Kingdom, and Spain. 

However, there is no apparent reason why boosting differs so much between the observed 

countries. Both groups of countries feature large cities (in terms of population) and are highly 

developed. The two groups also simultaneously include highly centralized (France, South 

Korea, UK) and less centralized (USA, Germany, Italy) countries. The coefficients of the meta-

regression, which test if significant differences in boosting exists between countries (using USA 

as the reference group once again), demonstrate significant inter-country variance (Figure 8 and 

the according regression results in Table 10). There are only five countries in which the boosting 

effect is similar to or stronger than that in the USA: Slovenia, South Korea, Japan, Finland, and 

Germany. Interestingly, the largest boosting is found in countries that are classified as being 

most economically advanced (Hausmann et al., 2011), an observation which should be explored 

further in future research. 

 

 

 

 
11 The coefficient of the USA is 1.362 and the coefficients of these countries’ interaction effects are large than its 
difference to one. 
12 For completeness, we also report country-specific regressions for all countries with at least 20 regions. They are 
shown in Figure 6 in the Appendix. 
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Insights into sorting, i.e., innovation-intensive technologies concentrating in larger urban areas, 

were obtained by relating region-technology-specific patent numbers on the innovation-

intensity of technologies (INNO_TECH) with a varying (region-specific) slope and varying 

intercept regression, to obtain a measure of each region’s specialization in innovation-intensive 

technologies (see a summary of the regression in Table 12 in the Appendix). Subsequently, the 

region-specific slopes were regressed on region’s population using a meta-regression. The 

outcome of the latter confirms the significantly positive relationship with a coefficient of 

0.285*** (see Table 2). Accordingly, regions with larger populations are more strongly 

specialized in innovation-intensive technologies. That is, sorting significantly contributes to 

urban scaling. 

 
Dep: Coef. 
INNO_TECH 

intercept -2.626 (0.109) *** 

log (Population) 0.285 (0.008) *** 

FE (Dummies) Countries 

I2 92.514 

Test of moderators 107.043 
Test of moderators 
p-value 0.000 

Log Likelihood -130.598 

BIC 505.466 

nobs 1108 
***p < 0.001; **p < 0.01; *p < 0.05 

 

 
Table 2: Population and sorting Figure 9: Variations in sorting across 

countries 
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Figure 7: Variations in boosting across 

technologies and countries 

Figure 8: Variations in boosting across 

countries 
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Like boosting, sorting varies across countries. It was quantified by interacting regions’ 

populations with country dummies in an extension of the previous meta-regression (the 

summary of the regression results is given in Table 13 in the Appendix). Figure 9 visualizes the 

coefficients obtained. For 22 countries, sorting is found not to be significantly different than 

that observed for the USA. Again, two countries (IS, LU) do not have enough observations to 

be tested against the reference (USA). In eight countries sorting is significantly weaker, which 

means their urban areas do not attract innovation-intensive technologies to the same extent as 

cities in the USA. Seven of these eight countries are also characterized by lower boosting than 

the USA (e.g., Poland (PL), Italy (IT), Lithuania (LT), Chile (CL), Mexico (MEX), United 

Kingdom (UK), and Spain (ES)). Yet, this does not imply that total scaling is necessarily lower 

than what is observed in the USA. For instance, Mexico has weaker boosting and sorting than 

the USA, but overall, urban scaling is stronger (Figure 5). This is due to two reasons. First, in 

the boosting and sorting estimations, all technologies are treated equally, while in the 

estimations of total scaling, they are (implicitly) weighted by their country-specific patent 

numbers. That is, the technology-specific estimations of boosting and sorting, do not consider 

countries being specialized in some technologies. Put differently, in the estimations of total 

scaling, countries’ results differ because their patent portfolio are shaped by other technologies. 

Secondly, a globally patent-intensive technology (value of INNO_TECH) may, for country-

specific reasons, not be patent-intensive in a country, e.g., its actual ratio of regional patents to 

population may be lower than the global average. Both effects are independent of the scaling 

argument and are hence not explored further. Consequently, in the empirical methodology, the 

empirically identified magnitudes of sorting and boosting do not add up to that of total scaling. 

Nevertheless, when explaining countries’ total scaling coefficients with the country-specific 

boosting and sorting effects (see Table 14 in the Appendix), both effects jointly and 

significantly explain about three-quarters of total scaling (Table 3). According to these 

regressions, on its own, sorting has the much larger explanatory power of total scaling. 

An interesting case is South Korea. It is the only country with lower sorting than the USA but 

stronger boosting. Accordingly, cities boost innovation activities, but the most innovative 

technologies are not more attracted to larger cities. It is beyond the scope of the paper to explain 

the special role of South Korea. However, it is clear is that despite the supposed universality of 

urban scaling, substantial heterogeneity exists between countries including very distinct scaling 

patterns that call for deeper analyses in future studies. 

 Dep: Total scaling Dep: Total scaling Dep: Total scaling 

(Intercept) 0.537 [0.053; 1.020] * 0.586 [0.274; 0.899] * 0.524 [0.217; 0.831] * 

Average_boosting 1.180 [0.434; 1.926] * 0.343 [0.069; 0.617] * 

Sorting  2.427 [1.487; 3.367] * 1.871 [1.013; 2.729] * 

R2 0.639 0.746 0.761 

Adj. R2 0.626 0.737 0.744 

Num. obs. 31 31 31 

RMSE 0.377 0.316 0.312 
* Null hypothesis value outside the confidence interval. 

Table 3: Contribution of boosting and sorting to total scaling 

In summary, research questions 2 and 3 are answerable: While boosting contributes to urban 

scaling, there are few technologies that experience an (urban) boosting effect on a global scale. 

The effect is primarily visible when zooming into specific countries (e.g., USA, Japan, and 

Germany), which means that the same technology shows distinct scaling properties in different 

countries. In addition, countries differ significantly in the magnitude of boosting. Both 

observations starkly contrast with the idea that urban scaling might be universal. A similar logic 
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applies to sorting. More urbanized areas generally attract more innovation-intensive 

technologies, which contributes to their total innovation output and total urban scaling. This 

research shows that this holds across all countries as well. However, countries differ 

substantially in the strength of this effect. Accordingly, as total urban scaling is varying across 

the world, so does the relative relevance of the mechanisms at its roots (boosting and sorting). 

 

4.3. Boosting and sorting and technological complexity 
Research question 4 considers whether more complex technologies benefit more from 

boosting and whether sorting into innovation-intensive technologies is facilitated by more 

complex technologies being attracted to larger urban areas. Testing this is straightforward for 

boosting. For instance, Figure 10 gives a first intuitive visualization of the relationship between 

boosting and complexity. The 568 technology-specific boosting coefficients (one being the 

reference category) of Figure 3 (y-axis) were ordered by their corresponding complexity values 

(x-axis). The figure also features each technology’s share in all patents (size of points). The 

increasing trend line suggests a positive relationship between complexity and boosting. This is 

confirmed with two meta-regressions. The first relates technologies’ boosting coefficients 

(slope coefficients of the interaction of population and technology-dummies (Table 9 in the 

Appendix)) to their corresponding complexity values (first column in Table 4). The second 

explains the technology- and country-specific boosting coefficients (slope coefficients of the 

interaction of population, technology, and country dummies (Table 11 in the Appendix)) with 

complexity (second column in Table 4). In both cases, complexity obtains a significantly 

positive coefficient (see Table 4), implying that the boosting effect of population is more 

pronounced for more complex technologies. This means that innovation activities in complex 

technologies benefit more from being located in more populous areas than innovation activities 

in simpler technologies, which confirms what Balland et al. (2020) observed within the USA. 

 

Testing the relationship between complexity and sorting is more difficult. Unfortunately, it is 

not possible to simply calculate the concentration of technologies in regions and explain this 

with complexity, as this gives insights into the spatial distribution of complex technologies but 

 

Dep: Boosting coefficients 
Dep: Country-

specific boosting 
coefficients 

Intercept -1.015*** 

(0.060) -0.969 (0.024) *** 

Complexity 0.074*** 

(0.006) 0.085 (0.002) *** 

FE (Dummies) No Countries 

I2 50.475 30.732 

Test of 
moderators 170.323 274.886 

Test of 
moderators p-
value 

0.000 0.000 

Log Likelihood 166.261 -5856.485 

BIC -313.559 12023.234 

nobs 558 12144 
***p < 0.001; **p < 0.01; *p < 0.05 

 

Figure 10: Visualization of the relationship 

between boosting and complexity 

Table 4: The relationship between 

boosting and complexity 
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not if populous regions attract more innovation-intensive technologies because they are also 

more complex. Therefore, a different approach was used. Complexity was integrated into the 

previous approach of testing sorting by interacting the varying slope components 

(INNO_TECH*REG) with complexity (COMPLEX*INNO_TECH*REG). This resulted in 

three sets of varying slope values. The first set, which was already included in the initial 

regression, approximates the degree of sorting within regions into innovation-intensive 

technologies (INNO_TECH). The second provides insights into the sorting of regions into 

complex technologies (COMPLEX). The third reflects the tendency of regions to attract 

innovation-intensive technologies that are also complex (COMPLEX*INNO_TECH). Each set 

of coefficients (region-specific slope parameters) was subsequently related to population using 

a meta-regression approach. If complexity plays a significant role in sorting, the relation 

between INNO_TECH’s coefficients and population is expected to weaken in comparison to 

what is observed without complexity (Table 2). Secondly, a significantly positive relationship 

between population and the coefficients for COMPLEX*INNO_TECH suggests that sorting is 

more pronounced for complex innovation-intensive technologies. 

Working with interaction effects is tricky because the interpretation of the main effects is 

conditional on the significance of the interaction effects. As this was the case here, the meta-

regressions for COMPLEX*INNO_TECH was estimated using the full sample of observations 

and those for INNO_TECH and COMPLEX excluding regions with significant coefficients of 

COMPLEX*INNO_TECH (879 of 1108 regions).13 The regression outcomes are presented in 

Table 5. For completeness, the results for INNO_TECH and COMPLEX using the full sample 

of observations are reported in Table 15 in the Appendix. Moreover, to assess changes in 

INNO_TECH’s coefficients due to the consideration of COMPLEX, the exercise was repeated 

and the relationship between population and the coefficients of INNO_TECH and COMPLEX 

was estimated when the latter two had been estimated without their interaction (see Table 16 in 

the Appendix). 

Across all specifications, population has a significantly positive relationship with INNO_TECH 

and COMPLEX (columns 1 and 2 in Table 5). Accordingly, more innovation-intensive and 

complex technologies are attracted to more populous places.  

However, the relation between population and INNO_TECH weakens only slightly when 

considering complexity: From an initial value of 0.285*** (Table 2), the coefficient drops to 

0.260*** when varying (region-specific) slopes for complexity are added (first column in Table 

16) and to 0.221*** in the case that complexity and the interaction of INNO_TECH and 

COMPLEX are considered (first column in Table 5). This means that complexity shares little 

 
13 A threshold of p<0.05 is used. Moreover, we also estimated the regression excluding the interaction of 
COMPLEX and INNO_TECH. The results remain the same. 

 
INNO_TECH COMPLEX INNO_TECH*COMPLEX 

intercept -2.522 (0.487) *** -0.494 (0.090) *** -0.031 (0.083) 

log (Population) 0.221 (0.025) *** 0.039 (0.005) *** 0.009 (0.004) * 

FE (Countries) Yes Yes Yes 

I2 51.880 83.039 79.719 

Test of moderators 8.966 5.409 2.443 

Test of moderators p-value 0.000 0.000 0.006 

Log Likelihood -1056.116 468.646 488.791 

BIC 2341.409 -708.316 -733.904 

nobs 879 879 1090 
 

Table 5: Meta-regression for sorting and complexity 
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variance with INNO_TECH, which correlates with population numbers. This is also indicated 

by the barely significant coefficient of population when it is regressed on the slope parameters 

of the interaction of INNO_TECH*COMPLEX (third column in Table 5). That is, the analysis 

finds limited evidence that sorting into complex technologies is a facilitator of urban scaling of 

innovation when controlling for the innovation intensity of technologies. To a certain degree, 

this resembles the relatively low bivariate correlation of 0.31*** of the complexity of 

technologies and their innovation-intensity. 

In sum, research question 4 can be answered: The boosting effect is clearly larger for more 

complex technologies implying that they benefited more from more urban environments. More 

populous areas also tended to specialize in more innovation-intensive technologies. While 

larger regions also attract more complex technologies, this is not the major source of the sorting 

effect that contributes to the urban scaling of innovation.  

5. Discussion and Conclusion 
The paper contributes to the recent literature on urban scaling of innovation, which is concerned 

with the degree to which innovation concentrates disproportionately in more populous regions 

(Bettencourt et al., 2010; Bettencourt et al., 2007; Fritsch and Wyrwich, 2021; Lobo et al., 2013; 

Mewes, 2019). Using a novel data set including 1,120 functional urban areas in 33 countries 

around the globe, this research adds comprehensive cross-country evidence of the existence of 

urban scaling while simultaneously demonstrating that it differs across countries. The research 

distinguishes between boosting and sorting as basic mechanisms underlying total urban scaling. 

It is shown that the effect of boosting, which refers to the same technological activity generating 

more innovation output per inhabitant in larger cities, varies substantially between countries. A 

similar logic applies to sorting, which captures the tendency of larger cities to specialize in 

technologies with higher innovation intensities than smaller ones. While this analysis suggests 

that sorting explains a larger share of total urban scaling of innovation, there are noticeable 

differences between countries. For instance, in eight countries, boosting and sorting were both 

less pronounced than in the USA. By contrast, in South Korea, boosting was stronger and 

sorting weaker than what was observed in the USA. Consequently, our study shows that while 

urban scaling is a global phenomenon, there is substantial international heterogeneity in its 

magnitude and, even more crucially, in its underlying mechanisms.  

This research also confirms that complexity is related to urban scaling, as suggested by Balland 

et al. (2020). More complex technologies, indeed, also benefit more (than less complex 

technologies) from being located in larger urban areas. However, only weak evidence is found 

to suggest that for populous locations, specialization in complex technologies contributes to the 

overall sorting effect. Given that sorting has greater importance for urban scaling of innovation 

relative to boosting, the attraction of complex technologies to cities is not a primary contributor 

to this process. 

These findings have at least two crucial policy implications. First, Fritsch and Wyrwich (2021) 

indicate that innovation is not bound to (large) cities. Smaller and more remote places are also 

centers of technological advancements suggesting that (public) investments into the 

technological capabilities of these places (e.g., research centers) can be fruitful. However, this 

greatly varies between countries. Some countries (e.g., the Netherlands and Switzerland) were 

among the most innovative countries in the world and yet, in their case, hardly any 

(technological) innovation processes were subject to urban scaling. Apparently, being a leader 

in innovation does not require urban scaling: a national innovation system less spatially 

concentrated than in the USA can be at least as successful. However, this does not apply to 

complex technologies, which supports the second policy implication. Innovation in these 

technologies benefits from urban environments, and while inventors from smaller cities also 

contribute to and utilize them, (large) cities offer substantial locational advantages boosting 
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research activities therein. Consequently, (public) investments contributing to their 

development are better placed in cities. Unfortunately, this may further stimulate spatial 

inequality, because competencies in complex technologies in particular, are linked to economic 

growth (Mewes and Broekel, 2022). Consequently, smart policies are required to remedy this 

conflict between the core aims of innovation policies (supporting complex technologies) and 

regional policies (reducing regional inequality).  

These implications must be taken with a grain of salt, as the study’s empirical approach has 

several limitations. Most importantly, the research only considers patents as indicators of 

innovation, which implies several kinds of biases. Spatial dependencies were addressed only 

by including country dummies and clustered standard errors, although more advanced 

approaches are available. Furthermore, most of the regressions were rather bivariate and only 

controlled for influences at the country level. The regressions exclusively considered log-log 

relationships and disentangling potential endogenous relationships was not even attempted. The 

investigations rely on a cross-sectional approach, which would be fascinating to extend to a 

longitudinal format in the style of Mewes (2019). However, from an empirical perspective, 

reliable data on a global scale is nearly impossible to gather. From a theoretical perspective, 

arguments were not presented as to how and why the dynamics of scaling, boosting, and sorting 

relate to one another or develop over time. Recently, Bettencourt et al. (2020) and Mewes 

(2019) began to explore this topic. 

Except for the reliance on patent data, which is simply due to the lack of alternatives, many of 

the study’s limitations are by choice. That is, the study was modeled after other studies in the 

urban scaling of innovation literature are conducted to generate comparable results for “typical” 

outcomes (Balland et al., 2020; Fritsch and Wyrwich, 2021), while still being able to contribute 

to the advancement of this literature stream. 

Future research on urban scaling of innovation should address two questions (one empirical and 

one provocative) and consider at least one empirical recommendation. The two questions are: 

• Why does super-linear scaling only hold for total patent numbers but not for many 

individual technologies? 

• Recent developments in the scaling framework (e.g., Youn et al. 2016) emphasize that 

urban scaling is an outcome of the agglomeration of more diverse knowledge in larger 

places. This study confirms this in the context of innovation. However, which activities 

precisely are located in larger regions, for which reasons, and why do improvements in 

communication and transportation not (yet) erode this feature of larger places? 

Answering these questions will allow for a better understanding of the emergence of urban 

scaling of innovation in the technological and geographical dimensions. The empirical 

recommendation of this research is to differentiate urban scaling into sorting and boosting 

effects. In itself, this is not novel given that it has been part of the conceptual framework of the 

measurement of innovation performance of spatial units for a long time (see, e.g., Brenner and 

Broekel, 2011). However, for too long, the urban scaling literature has paid little attention to it. 

For instance, Bettencourt (2013) focuses on how city size may shape the interactions of its 

inhabitants (or subsystems) in his discussion on the origins of urban scaling. But the degree to 

which city size may act as a selection mechanism attracting (and breeding) specific types of 

competencies and resources, which in turn may contribute to urban scaling, has only recently 

been discussed in this context (Balland et al., 2020; Gomez-Lievano et al., 2017; Youn et al., 

2016). In particular, the idea of cities providing the necessary conditions for more 

(economically) complex activities to emerge and grow, is a promising new direction to follow 

in answering the question above (Balland et al., 2022). Even though this study casts some 

doubts on the role of complexity in this context, this shouldn’t discourage endeavors in this 

direction. This study has focused on technological complexity and not on economic complexity. 
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Notwithstanding a certain degree of relatedness, the two types of complexity represent distinct 

dimensions with specific features. They are, hence, likely party to different dynamics; yet 

another area calling for more research.  

Lastly, stronger interactions between the economic geography and urban scaling communities 

would be advantageous for future research. The urban scaling literature will clearly benefit from 

the insights into place-specificity and potential explanations for deviations from average urban 

scaling relations (e.g., differences between countries) that have been discussed and explored for 

a long time in economic geography. Conversely, regional science and economic geography 

scholars will benefit from the scaling literature’s rigorous translation of micro-level dynamics 

into system-level features and dynamics.  
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Appendix 
 

 Name Country 

Code 

Country Patent Code Numbers of 

FUA 

1 Australia AUS AU 18 

2 Austria AUT AT 6 

3 Belgium BEL BE 14 

4 Canada CAN CA 26 

5 Chile CHL CL 26 

6 Czech Republic CZE CZ 15 

7 Switzerland CHE CH 12 

8 Colombia COL 
 

53 

9 Denmark Denmark DK 4 

10 Estland EST EE 3 

11 Greece GRC/EL EL 13 

12 Finland FIN FI 7 

13 France FRA FR 88 

14 Germany DEU DE 96 

15 Hungary HUN HU 19 

16 Island ISL IS 1 

17 Ireland IRL IE 5 

18 Italy ITA IT 84 

19 Japan JPN JP 61 

20 South Korea KOR KR 22 

21 Latvia LVA LV 4 

22 Lithuania LTU LT 6 

23 Luxembourg LUX LU 1 

24 Mexico MEX MX 92 

25 Netherlands NLD NL 35 

26 Norway NOR NO 6 

27 Poland POL PL 58 

28 Portugal PRT PT 13 

29 Slovakia SVK SK 8 

30 Slovenia SVN SI 2 

31 Spain ESP ES 81 

32 Sweden SWE SE 12 

33 USA USA US 211 

34 UK GBR GB 96 

 Table 6: Overview of considered countries 
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Country vars n mean sd median min max skew kurtosis 

AT Patents 6 3095.67 2539.83 2277 995 7462 0.66 -1.35 

AT Patents Fractional 6 2432.96 1986.74 1808.84 729.29 5813.06 0.63 -1.4 

AT Population 6 794933.86 923289.57 471744.82 248574.29 2655059.79 1.28 -0.21 

AUS Patents 18 1108.78 2204.74 213.5 25 8760 2.47 5.41 

AUS Patents Fractional 18 891.01 1847.56 151.14 21 7428.69 2.57 5.97 

AUS Population 18 905367.91 1311310.25 254340.46 107000 4409081.29 1.68 1.48 

BE Patents 14 1610.71 2494.44 523.5 54 9349 2.11 3.72 

BE Patents Fractional 14 993.44 1553.95 324.87 39.42 5759.75 2.08 3.48 

BE Population 14 462397.29 628001.16 183615.11 70000 2409237.86 2.1 3.7 

CAN Patents 26 3307.85 5565.12 848 101 23953 2.25 4.88 

CAN Patents Fractional 26 2596.26 4443.72 631.78 64.27 19024.13 2.25 4.82 

CAN Population 26 884448.15 1398449.47 363501.79 85000 6313701.57 2.68 6.85 

CH Patents 12 2812.08 3583.63 1481.5 148 13033 1.88 2.61 

CH Patents Fractional 12 2132.4 2789.65 1126.06 104.45 10328.1 2.04 3.27 

CH Population 12 293050.51 335498.62 133269.43 23000 1197450.21 1.52 1.54 

CL Patents 22 47.45 168.57 6 1 798 4 14.87 

CL Patents Fractional 22 39.67 140.95 3.92 0.25 666.47 3.98 14.78 

CL Population 22 578997.12 1395899.68 216500 54000 6737076.46 3.88 14.22 

CZ Patents 15 283.07 447.09 162 4 1707 2.25 4.12 

CZ Patents Fractional 15 208.2 344.38 111.83 2.67 1319.16 2.32 4.43 

CZ Population 15 360280.57 502677.35 168478.15 74500.62 2014561.07 2.36 4.89 

DE Patents 96 7534.03 13202.03 3335.5 183 91844 4.27 21.54 

DE Patents Fractional 96 5349.39 10142.92 2190.44 122.08 71969.76 4.59 24.25 

DE Population 96 628611.88 866406.27 338191.71 62098.93 5211672.79 3.47 13.35 

DK Patents 4 1875.25 2104.78 1009.5 473 5009 0.72 -1.71 

DK Patents Fractional 4 1592.74 1795.3 841.96 419.12 4267.92 0.72 -1.71 

DK Population 4 722197.61 691426.66 418029.54 298917.29 1753814.07 0.73 -1.7 

EE Patents 3 226.33 239.2 189 8 482 0.15 -2.33 

EE Patents Fractional 3 182.18 195.59 149.74 4.83 391.97 0.16 -2.33 

EE Population 3 219782.09 281106.72 85699 30821.12 542826.14 0.37 -2.33 

EL Patents 13 164.77 403.21 15 5 1479 2.63 5.7 

EL Patents Fractional 13 137.63 348.56 11.67 3.17 1277.58 2.66 5.81 

EL Population 13 455451.39 1023594.75 110000 27447.2 3742265.29 2.53 5.2 

ES Patents 80 331.84 1112.92 66 1 7751 5.61 31.83 

ES Patents Fractional 80 286.43 971.29 54.88 1 6707.11 5.59 31.52 

ES Population 80 362770.9 885935.75 108909.59 21269.8 6264812.86 5.24 29.06 

FI Patents 7 5143.71 6328.61 2988 718 18577 1.25 -0.02 

FI Patents Fractional 7 4428.34 5508.48 2465.93 629.83 16166.72 1.27 0.02 

FI Population 7 397314.03 421322.99 236914.29 128227.21 1325265.36 1.44 0.41 

FR Patents 83 2698.16 10114.58 885 70 90887 8.02 66.67 

FR Patents Fractional 83 2210.12 8865.29 628.18 48.5 79849.18 8.12 67.9 

FR Population 83 474722.47 1354713.41 185764.64 51409.21 12282292.2 7.99 66.56 

HU Patents 19 237.84 662.23 79 16 2958 3.63 11.99 

HU Patents Fractional 19 184.14 535.03 54.45 11.58 2383.31 3.64 12.03 
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HU Population 19 302225.89 627154.09 128452.46 76929.15 2873415.93 3.61 11.88 

IE Patents 5 1387.2 1651.99 814 165 4287 0.97 -1.03 

IE Patents Fractional 5 1053.33 1272.66 644.31 102.09 3286.68 0.97 -1.03 

IE Population 5 459869.07 677884.76 140769.07 57470.07 1652469.93 0.99 -1.03 

IS Patents 1 435 
 

435 435 435 
  

IS Patents Fractional 1 356.37 
 

356.37 356.37 356.37 
  

IS Population 1 218591.07 
 

218591.07 218591.07 218591.07 
  

IT Patents 84 786.69 1897.82 303 6 15643 6.09 42.66 

IT Patents Fractional 84 646.46 1596.22 237.08 4.33 12990.97 5.96 40.82 

IT Population 84 350479.61 753831.04 131688.25 25594.29 4630304.29 4.31 18.87 

JPN Patents 61 58050.51 259107.75 7155 287 1898954 6.14 39.39 

JPN Patents Fractional 61 54607.95 248535.38 6150.56 240.92 1825144.72 6.18 39.8 

JPN Population 61 1636921.62 4903505.47 591720.57 163000 34562643.9 5.53 32.08 

KOR Patents 22 75968.09 212251.55 24560.5 1126 1009557 3.85 14.02 

KOR Patents Fractional 22 58342.66 182133.5 15433.23 641.9 865945.77 3.95 14.58 

KOR Population 22 1918763.25 4965501.4 560000.88 134000 23701129.3 3.82 13.84 

LT Patents 6 70.83 104.74 12 1 256 0.82 -1.25 

LT Patents Fractional 6 53.17 79.83 10.25 1 199.42 0.91 -1.03 

LT Population 6 220206.37 283795.66 69344.35 11322 704781.21 0.73 -1.43 

LU Patents 1 1898 
 

1898 1898 1898 
  

LU Patents Fractional 1 1499.41 
 

1499.41 1499.41 1499.41 
  

LU Population 1 489341.36 
 

489341.36 489341.36 489341.36 
  

LV Patents 4 153.25 283.85 13 8 579 0.75 -1.69 

LV Patents Fractional 4 135.49 254.88 9.92 4.33 517.79 0.75 -1.69 

LV Population 4 304964.2 458039.24 87328.1 53615.25 991585.36 0.75 -1.69 

MEX Patents 77 59.17 201.7 8 1 1508 5.59 34.04 

MEX Patents Fractional 77 47.04 169.62 5 0.17 1318.02 6.02 39.53 

MEX Population 77 890847.44 2177588.85 454184.67 153000 18663829.6 7.15 54.79 

NL Patents 35 1456.09 2214.25 882 101 11539 3.05 10.09 

NL Patents Fractional 35 1004.69 1693.57 498.99 65.02 9037.14 3.35 12.12 

NL Population 35 377247.49 514015.02 203561.64 49858.29 2627361.36 3 9.22 

NO Patents 6 1427.5 1563.7 1088 56 4360 0.91 -0.79 

NO Patents Fractional 6 1239.61 1355.16 944.84 40.67 3781.31 0.91 -0.79 

NO Population 6 367152.92 407772.42 265428.61 43723.36 1163414.71 1.11 -0.48 

PL Patents 58 171.79 371.68 32 2 2054 3.25 11.19 

PL Patents Fractional 58 141.53 311.48 18.92 1 1695.06 3.19 10.67 

PL Population 58 336918.17 550274.19 134887.05 28683.2 2976845.79 3.3 11.62 

PT Patents 13 158.46 244.52 43 3 842 1.7 1.9 

PT Patents Fractional 13 130.23 204.5 28.78 1.5 697.04 1.67 1.76 

PT Population 13 433649.25 807164.02 120000 60055.08 2883921.07 2.2 3.66 

SE Patents 12 3444 4784.05 1535.5 294 16121 1.56 1.29 

SE Patents Fractional 12 2881.94 4093.69 1210.22 227.58 13713.08 1.56 1.27 

SE Population 12 398653.75 549175.7 167121.79 59576.07 1949451.71 1.87 2.41 

SI Patents 2 673.5 693.67 673.5 183 1164 0 -2.75 

SI Patents Fractional 2 616.5 662.68 616.5 147.92 1085.08 0 -2.75 
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SI Population 2 410317.21 125871.27 410317.21 321312.79 499321.64 0 -2.75 

SK Patents 8 74.38 121.58 33 10 372 1.78 1.51 

SK Patents Fractional 8 58.19 100.38 24.02 7 304.57 1.8 1.56 

SK Population 8 185117.31 182043.38 119817.98 65956.67 607124 1.47 0.67 

UK Patents 96 1217.58 3045.69 527 48 27983 7.27 59.59 

UK Patents Fractional 96 921.12 2356.06 369.33 18.71 21686.65 7.31 60.24 

UK Population 96 504575.4 1214937.07 194695.61 39330.57 11063787.8 7.07 56.91 

USA Patents 211 9840.51 26881.63 2171 9 291771 6.77 59.46 

USA Patents Fractional 211 7087.44 20781.95 1513.07 5.83 236460.16 7.45 71.34 

USA Population 211 1056362.91 2162243 419666.93 58000 19425328.7 5.52 37.4 

Table 7: Country-specific descriptives 

 

Table 7 provides insights into the regions across the countries considered in this study. The 

USA has the largest number (211) with the UK (96) and Germany (96) having less than half 

that number. This distribution exemplifies the substantial differences in the spatial distribution 

of population between countries. For instance, Japan has about twice as many inhabitants than 

the UK. Yet, it is divided into fewer FUAs (61) than the UK (96). 

 

 

  
Figure 11: Distribution of patents across 

FUA 

Figure 12: Distribution of population across 

FUA 

 

Figure 11 shows the distribution of patents across urban areas. It also features the comparison 

between the fractional and full counting of patents, which confirms that there are hardly any 

distributional differences between the two.  
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Figure 13: Distribution of patents across 

technologies 

0

20000

40000

0 5 10 15
log(Patents)

D
en

si
ty

 a
cr

os
s 

te
ch

no
lo

gi
es



28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Dep.: log(Patents) 

(Intercept) -10.519 [-12.070; -8.968]* 

log(Population) 1.362 [ 1.247; 1.477]* 

AT -0.470 [ -0.757; -0.182]* 

AUS 0.084 [ -0.083; 0.251] 

BE -0.177 [ -0.459; 0.104] 

CAN -0.060 [ -0.258; 0.137] 

CH -0.473 [ -0.821; -0.125]* 

CL 0.199 [ -0.057; 0.456] 

CZ -0.057 [ -0.538; 0.424] 

DE -0.110 [ -0.328; 0.108] 

DK -0.205 [ -0.549; 0.139] 

EE 0.049 [ -0.564; 0.662] 

EL -0.115 [ -0.255; 0.025] 

ES -0.145 [ -0.353; 0.063] 

FI 0.001 [ -0.278; 0.281] 

FR -0.151 [ -0.333; 0.030] 

HU -0.075 [ -0.329; 0.179] 

IE -0.526 [ -0.842; -0.210]* 

IT -0.248 [ -0.543; 0.046] 

JPN 0.016 [ -0.210; 0.241] 

KOR -0.146 [ -0.373; 0.082] 

LT -0.145 [ -0.313; 0.022] 

LV 0.177 [ -0.215; 0.568] 

MEX 0.315 [ 0.058; 0.573]* 

NL -0.260 [ -0.515; -0.005]* 

NO -0.050 [ -0.431; 0.332] 

PL 0.002 [ -0.202; 0.206] 

PT -0.114 [ -0.582; 0.355] 

SE -0.147 [ -0.374; 0.080] 

SI 3.158 [ 3.044; 3.273]* 

SK 0.054 [ -0.342; 0.450] 

UK -0.398 [ -0.567; -0.229]* 

Reference USA 

FE (Dummies) Country 

Robust std.err Yes 

Num. obs. 1120 

R2 (full model) 0.883 

Adj. R2 (full model) 0.876 

* 0 outside the 95% confidence interval. 

Table 8: Country-specific scaling as varying slopes 
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  Dep.: log(Patents) 

log(Population) 1.001 [ 0.815; 1.188]* 

… 567 coefficients shown in Figure 5 … 

Reference B32B 

FE Technology and Country 

Robust std.err Yes 

Num. obs. 271623 

Num. groups: Tech^Country 15176 

R2 (full model) 0.598 

R2 (proj model) 0.424 

Adj. R2 (full model) 0.573 

Adj. R2 (proj model) 0.423 

* 0 outside the confidence interval. 

Table 9: Boosting regression with technology-specific 

boosting coefficients
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  Coef. log(Population) 

intercept -0.087 (0.009)*** 

AT -0.229 (0.028)*** 

AUS -0.190 (0.020)*** 

BE -0.195 (0.021)*** 

CAN -0.073 (0.016)*** 

CH -0.315 (0.019)*** 

CL -0.347 (0.047)*** 

CZ -0.412 (0.029)*** 

DE 0.044 (0.014)** 

DK -0.082 (0.043) 

EE -0.688 (0.092)*** 

EL -0.440 (0.031)*** 

ES -0.442 (0.015)*** 

FI 0.153 (0.029)*** 

FR -0.135 (0.014)*** 

HU -0.323 (0.026)*** 

IE -0.392 (0.030)*** 

IT -0.473 (0.014)*** 

JPN 0.124 (0.014)*** 

KOR 0.249 (0.015)*** 

LT -0.566 (0.092)*** 

LV -0.254 (0.099)* 

MEX -0.502 (0.023)*** 

NL -0.261 (0.017)*** 

NO -0.212 (0.035)*** 

PL -0.536 (0.021)*** 

PT -0.592 (0.031)*** 

SE -0.078 (0.020)*** 

SI 1.689 (0.264)*** 

SK -0.340 (0.077)*** 

UK -0.385 (0.014)*** 

I2 38.169 

Test of 
moderators 

18995.921 

Test of 
moderators‘ p-
value 

0.000 

BIC 13620.105 

nobs 12390 
***p < 0.001; **p < 0.01; *p < 0.05 

Table 10: Meta-regression of boosting effect 

across countries
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Dep.: log(Patents) 

(Intercept) -12.175 [ -14.285; -10.065]* 

log(Population) 1.000 [ 0.843; 1.157]* 

… 27541 coefficients … 

Reference Tech B32B 

Reference Country USA 

FE (Dummies) TECH and COUNTRY 

Robust std.err No 

Num. obs. 271623 

R2 (full model) 0.630 

Adj. R2 (full model) 0.589 

Table 11: Initial boosting regression across technologies and 

regions  

  
Dep. log(Patents) 

(Intercept) 0.329 [ 0.290; 0.369]* 

INNO_TECH 0.001 [-0.054; 0.055] 

… 1109 coefficients ... 

FE (Dummies) Regions 

Clustered std.err TECH and COUNTRY 

Num. obs. 271623 

R2 (full model) 0.653 

Adj. R2 (full model) 0.650 

* 0 outside the confidence interval. 

Table 12: Initial specialization regression (sorting) 
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Coef. INNO_TECH 

intercept -3.361 (0.228)*** 

log(Population) 0.341 (0.017)*** 

AT -0.128 (0.135) 

AUS 0.047 (0.055) 

BE 0.039 (0.072) 

CAN 0.011 (0.050) 

CH -0.075 (0.067) 

CL -0.224 (0.064)*** 

CZ -0.099 (0.080) 

DE 0.005 (0.036) 

DK -0.002 (0.188) 

EE 0.085 (0.146) 

EL -0.074 (0.061) 

ES -0.093 (0.031)** 

FI 0.121 (0.133) 

FR 0.025 (0.036) 

HU -0.025 (0.077) 

IE -0.161 (0.097) 

IT -0.086 (0.034)* 

JPN -0.038 (0.039) 

KOR -0.189 (0.051)*** 

LT -0.225 (0.078)** 

LV -0.104 (0.119) 

MEX -0.206 (0.040)*** 

NL -0.008 (0.053) 

NO -0.009 (0.106) 

PL -0.175 (0.037)*** 

PT -0.111 (0.068) 

SE 0.086 (0.077) 

SI 1.051 (0.796) 

SK -0.054 (0.136) 

UK -0.066 (0.031)* 

Reference country USA 

FE (Dummies) Countries 

I2 91.943 

Test of moderators 61.311 

Test of moderators‘ p-value 0.000 

BIC 639.481 

nobs 1108 
***p < 0.001; **p < 0.01; *p < 0.05 

 

Table 13: Meta-regression of sorting and country 

differences 
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Name Country 
Patent Code 

Total scaling Boosting Sorting 

Austria AT 0,892 0,6725 0,213 

Australia AU 1,446 0,7115 0,388 

Belgium BE 1,185 0,7065 0,38 

Canada CA 1,302 0,8285 0,352 

Switzerland CH 0,889 0,5865 0,266 

Chile CL 1,561 0,5545 0,117 

Czech Republic CZ 1,305 0,4895 0,242 

Germany DE 1,252 0,9455 0,346 

Denmark DK 1,157 0,8195 0,339 

Estland EE 1,411 0,2135 0,426 

Greece EL 1,247 0,4615 0,267 

Spain ES 1,217 0,4595 0,248 

Finland FI 1,363 1,0545 0,462 

France FR 1,211 0,7665 0,366 

UK GB 0,964 0,5165 0,275 

Hungary HU 1,287 0,5785 0,316 

Ireland IE 0,836 0,5095 0,18 

Island IS 
   

Italy IT 1,114 0,4285 0,255 

Japan JP 1,378 1,0255 0,303 

South Korea KR 1,216 1,1505 0,152 

Lithuania LT 1,217 0,3355 0,116 

Luxembourg LU 
   

Latvia LV 1,539 0,6475 0,237 

Mexico MX 1,677 0,3995 0,135 

Netherlands NL 1,102 0,6405 0,333 

Norway NO 1,312 0,6895 0,332 

Poland PL 1,364 0,3655 0,166 

Portugal PT 1,218 0,3095 0,23 

Sweden SE 1,215 0,8235 0,427 

Slovenia SI 4,52 2,5905 1,392 

Slovakia SK 1,416 0,5615 0,287 

USA US 1,362 0,803 0,341 

Table 14: Overview: scaling, boosting, and sorting effects 
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INNO_TECH COMPLEX 

intercept -3.126 (0.143)*** -0.542 (0.050)*** 

log(Population) 0.310 (0.011)*** 0.035 (0.004)*** 

I2 94.252 90.810 

Test of moderators 755.141 79.011 

Test of moderators‘ p-
value 

0.000 0.000 

Log Likelihood -617.153 540.242 

BIC 1255.328 -1059.473 

nobs 1107 1103 
***p < 0.001; **p < 0.01; *p < 0.05 

Table 15: Meta-regression of sorting and complexity - 

full sample

 

 

  
INNO_TECH COMPLEX 

intercept -2.285 (0.178)*** -0.448 (0.081)*** 

log(Population) 0.260 (0.009)*** 0.033 (0.004)*** 

I2 89.164 90.254 

Test of moderators 75.671 4.582 

Test of moderators‘ p-
value 

0.000 0.000 

Log Likelihood -253.800 543.207 

BIC 751.838 -842.308 

nobs 1107 1103 

***p < 0.001; **p < 0.01; *p < 0.05 

Table 16: Meta-regression sorting and complexity – 

no interaction of INNO_TECH & COMPLEX

	

 

 


