
http://peeg.wordpress.com 

 
 
 
 

 
 
 

 
  

Relatedness, Cross-relatedness and Regional Innovation 
Specializations: An Analysis of Technology, Design and Market 

Activities in Europe and the US 
 
 
 
 

Carolina Castaldi & Kyriakos Drivas 
 

 
 
 
 

 
Papers in Evolutionary Economic Geography 

 
# 23.07 

 
 
 
 
 
 
 
 
 
 

 



Relatedness, Cross-relatedness and Regional Innovation 
Specializations: An Analysis of Technology, Design and Market 

Activities in Europe and the US 
 

Carolina Castaldi 
Department of Human Geography and Spatial Planning 

Utrecht University 
c.castaldi@uu.nl 

 
Kyriakos Drivas 

Department of Economics 
University of Piraeus 

drivas@unipi.gr 
 

 
 

Abstract 
 

This paper examines how regions develop new innovation specializations, covering different activities 
in the whole process from technological invention to commercialization. We develop a conceptual 
framework anchored in two building blocks: first, the conceptualization of innovation as a process 
spanning technology, design and market activities; second, the application and extension of the 
principle of relatedness to understand developments within and between the different innovation 
activities. We offer an empirical investigation where we operationalize the different innovation 
activities using three intellectual property rights (IPRs): patents, industrial designs and trademarks. We 
provide two separate analyses of how relatedness and cross-relatedness matter for the emergence of 
new specializations: for 259 NUTS-2 European regions and for 363 MSAs of the US. While relatedness 
is significantly associated with new regional specializations for all three innovation activities, cross-
relatedness between activities also plays a significant role. Our study has important policy implications 
for developing and monitoring Smart Specialization regional strategies. 
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Introduction 
How innovation unfolds in space and over time is a critical question in understanding 

the ways in which regions can reconfigure their activities and thrive (Feldman, 1994). 
However, what is innovation?  Schumpeter (1934) already stressed that invention is not yet 
innovation: much needs to happen before a novel idea turns into an actual new product or 
process that can generate value for users and producers alike.  Nevertheless, most conceptual 
and empirical research on the geography of innovation has examined upstream and downstream 
stages of the innovation process in isolation, with a predominant focus on the former; i.e. 
technological invention. Turning invention into innovation also requires capabilities such as 
design and marketing (Mendonça, 2014; Rodríguez-Pose and Lee, 2020), which are critical for 
developing a persuasive innovation that is more likely to be adopted. Hence focusing on 
technology alone can result in a misrepresentation of the innovation process, leading to a bias 
in the preferred policy options too (Breznitz, 2021). Regional innovation systems can combine 
capabilities in all the complementary activities needed for innovation, but they also often 
specialize in specific ones and not all regions can or wish to be technology leaders (Asheim 
and Coenen, 2005; Capello and Lenzi, 2013). 

Recognizing the different specializations open to regions is also at the core of policies 
towards Smart Specialization (Foray et al. 2011, 2014). The program aims at taking a broad 
view on innovation. Yet, regional policymakers and scholars alike struggle to capture the 
diversity of innovation specializations and end up focusing on one type of specialization at a 
time (Foray et al., 2018). Most often the focus is on specialization in science and technology 
activities: this can be explained with the belief that investing in the upstream stages of 
innovation will naturally lead to all kinds of innovations being introduced in the market 
(Marques and Morgan, 2018), but also with the fact that those innovation activities have been 
easier to monitor with data (Castaldi and Mendonça, 2022). All this has left many regions, 
especially those that are not high-tech clusters, struggling with recognizing and valuing their 
specific innovation capabilities and their ability to build smart specializations from them 
(Radosevic, 2018). 

The objective of this paper is to develop a conceptual framework to understand the 
emergence of regional innovation specializations spanning a broader set of innovation activities 
than those focused on technological invention only. Our aim is to offer a framework that 
resonates with insights from theorizing and empirical findings of prior research, while being 
applicable in quantitative analyses of regional specializations, for policy and research purposes 
alike.  

For the theoretical embedding, we leverage and extend the principle of relatedness 
(Hidalgo et al. 2018) and insights from evolutionary economic geography on related 
diversification (Boschma, 2017). To do so, a first conceptual step relies on clarifying the 
distinction between invention and innovation: we propose to separate three different activities, 
namely technology, design and market ones. For each activity we discuss the key properties 
and conceptualize the underlying knowledge space, to then discuss how relatedness can be 
defined in each space. A second conceptual step involves connecting the three innovation 
activities by introducing the idea of ‘cross-relatedness’ and the possibility to capture an overall 
innovation space. By ‘space’ we refer to a network where one can represent which innovation 
activities tend to co-specialize at the regional level. The co-specialization is depicted as a 
connection, with the innovation activities being the nodes in the network. Patterns of 
relatedness (‘within’ each innovation activity) and cross-relatedness (‘between’ innovation 
activity) can then be used to model the emergence of new regional innovation specializations, 
of the three different kinds. 

For the operationalization, we propose a comparable set of innovation metrics that have 
not been systematically combined in regional innovation studies before. We capture the three 



innovation activities by three types of intellectual property rights (IPRs): i) (utility) patents, ii) 
industrial designs and iii) trademarks. These data allow to operationalize relatedness and cross-
relatedness using the underlying patent, design and trademark classifications. We apply our 
empirical model to two independent settings for the period 2003-2016. The first is 259 NUTS-
2 regions across 21 European countries: this setting is the most salient in relation to Smart 
Specialization policy applications. The second is 363 Metropolitan Statistical Areas (MSAs) 
areas in the United States (US), an alternative testbed where the different definition of industrial 
designs enables us to compare the role of two specific types of design activities, namely 
technical and aesthetic ones. 

We reveal three main patterns. First, relatedness plays a significant role in the 
emergence of new regional specializations for all three innovation activities, not only the 
upstream ones. Second, cross-relatedness of technology activities with downstream ones 
matters for the emergence of design and market specialization, in line with traditional 
technology-push models of innovation.  Yet, cross-relatedness of design and market activities 
with technology also matters for the emergence of new specialization, albeit to a lesser extent 
than relatedness in the same innovation activity. Nonetheless these ‘backward linkages’ are 
indicative of feedback loops and synergies between regional innovation activities. Finally, the 
comparison of the European and US contexts highlights the differential role of technical vs 
aesthetic design activities, while also informing the use of IPR metrics to capture such 
activities. 

 
Regional innovation and the principle of relatedness: towards a conceptual framework 
 
Unpacking innovation: technology, design and market activities 
 

Innovation is more than invention: it requires turning a promising new idea into 
something that users are willing to buy or adopt. We conceptualize this process as made of 
three main activities: technology, design and market ones.   

New technology typically stems from dedicated research activities, which can be formal 
R&D or informal on the job activities. The knowledge involved is often synthetic, typical of 
engineering sciences (Asheim and Coenen, 2005). Engineers and other technology developers 
will consider options across a ‘technology space’ (Dosi, 1997). A rich empirical literature has 
used patent data to reconstruct how companies and/or regions navigate the underlying 
technology space by following clear trajectories of learning (e.g. Leten et al. 2007; Rigby, 
2015), showing a high degree of path-dependence.  

Eventually, the new technological options can lead to a new product or a new process, 
but these will have to be further developed and designed before they can actually be applied 
and used. Design activities include prototyping and try-outs. When presented with new 
technological options, designers will work by navigating alternative design options in what can 
be defined as a ‘design space’ (Windrum et al. 2017). Design can be seen as an intermediary 
function, concerned with finding solutions to trade-offs between technical feasibility and users’ 
preferences (d’Ippolito, 2014). Such a role is highly specific to technology-driven innovation 
processes, where designers are typically called upon only once new technologies emerge. 
Instead, design can take a more leading role in innovation processes typical of industries where 
soft innovation is the main source of change (Stoneman, 2010). There, designers focus on 
aesthetic design options and the creation of new meanings often with the aim of initiating new 
product lines and allow differentiation (Verganti, 2008). 

Working product or process configurations will find their way to the market in the 
commercialization stage. In this last stage of the innovation process, capabilities related to 
marketing appear crucial. The success of an innovation depends not only on the quality of the 



innovation but also upon the extent to which it aligns with needs and aspirations of consumers. 
In this phase, symbolic knowledge related to the definition of new categories and meanings 
comes into play (Mendonça et al. 2004). When positioning the innovation, firms will consider 
profiling their offering as a specific option in a what can be called the ‘market space’. To 
illustrate the point, Davids and Frenken (2018) reconstruct how Unilever positioned the 
margarine as a (healthy) food product after being first introduced as a medical product. Patterns 
of regional and corporate market diversification and specialization can be captured with 
trademarks (Castaldi and Mendonça, 2022). 

Table 1 summarizes the key features of the three innovation activities, as the building 
blocks for our framework of regional innovation specialization. Based on the discussion above, 
design activities can be of two kinds. A first kind concerns what one could call ‘technical 
design’: these activities are common in technology-driven innovation processes and often 
involve designers trained at engineering schools, able to combine design thinking with 
synthetic knowledge bases typical of technology activities. A second kind concerns ‘aesthetic 
design’: those activities are common in soft innovation processes where designers focus on the 
creation of new products and new meanings, hence combine design knowledge with symbolic 
knowledge. These designers are more likely to be trained in arts schools or dedicated design 
schools. The last row also includes the metrics that we will use for each activity, which we will 
explain in detail in the data section. Next, we move to explain how regional specializations can 
stem from all three activities. 
 
Regional innovation specializations and the principle of relatedness 
 

As already hinted in the previous section, innovation activities tend to develop in a path-
dependent manner and the opportunities for further diversification or specialization get shaped 
by the knowledge and capabilities already developed at each point in time (Boschma, 2017). 
This intuition from evolutionary economics has been conceptualized into the ‘principle of 
relatedness’ (Hidalgo et al., 2007) and extensively applied within evolutionary economic 
geography. When it comes to innovation activities, researchers have provided strong evidence 
for the significance of relatedness in shaping the emergence of new regional technological 
specializations (Kogler et al. 2013; Boschma et al. 2015; Petralia et al. 2017; Apa et al. 2018). 
The rationale is that regions will branch to new technologies that are related to their existing 
technological capabilities by tapping into and recombining existing knowledge base. The 
underlying mechanism behind related diversification relies on the idea that related pieces of 
knowledge and capabilities are easier to be recombined thanks to cognitive proximity (Rigby, 
2015). At the same time knowledge spillovers is not the only mechanism supporting 
relatedness. As discussed by Boschma (2017) regions can show specialization in the same two 
activities because of knowledge spillovers, skill relatedness or input-output relations: hence, 
relatedness can stem both from similarity and complementarity. 

Scholars have used the principle of relatedness to examine branching in several 
economic activities in addition to technological ones, including export products (e.g. Hidalgo 
et al. 2007), industries (e.g. Neffke et al. 2011) and scientific fields (e.g. Boschma et al. 2014). 
Key to our arguments in this paper is that the underlying logic of new knowledge emerging 
from the recombination of related bits of existing knowledge appears indeed to apply to 
different kinds of knowledge, not only technological one. To illustrate how the logic is helpful 
to conceptualize developments in all the three knowledge spaces of technology, design and 
market, we refer to an example. Smart phone technologies recombine technologies related to 
batteries, chips, antennas, audio, video, display and the Internet (Castaldi et al. 2015). At the 
same time, one can view the corresponding product, i.e. the smart phone, as defining a new 
product category that recombines communication devices, photographic instruments, fashion 



items and recreational services (Suarez et al. 2015). Similarly, smart phone product developers 
have experimented with different design options, often working around trade-offs in the size, 
power and portability of the new devices (Cecere et al. 2015).  

What this example illustrates is how knowledge spillovers exist for all knowledge types. 
Within technology spaces, technological similarity or complementarity will tend to support 
cognitive proximity. Within design spaces, design options where regions tend to co-specialize 
can be seen as closer to each other because of similar or complementary types of design 
solutions. With product spaces, similar or complementary symbolic knowledge will make 
regional specializations in two given product categories more likely than in two categories 
without a common or connected meaning. 

If the principle of relatedness can indeed apply to all three innovation activities, then 
we can derive hypotheses about the emergence of new regional specializations in design and 
market activities that are similar to those about technology specializations. Specifically, we 
expect regions to be more likely to develop new innovation specializations when they show a 
high degree of relatedness of knowledge in each specific space.  
 
From relatedness to cross-relatedness between innovation activities 
 

The discussion above has treated the three innovation activities as independent ones. 
Yet, there are many ways in which innovation activities are related, through formal input-
output relations but also knowledge feedback loops and even skill relatedness. The three 
knowledge spaces are also likely to be strongly connected with each other, as opting for specific 
technologies often comes with restricted design and market choices, and the other way around. 
These linkages allow expanding the notion of relatedness to include ‘cross-relatedness’ as well.  

We are not the first to extend the principle of relatedness to more knowledge 
dimensions. Catalan et al. (2020) focused on how scientific capabilities of a nation can 
contribute to new related technology specializations and defined a ‘sci-tech space’. Pugliese et 
al. (2019) leveraged a complexity perspective to investigate multi-layered networks of relations 
between science, technology and product capabilities of countries. Our work differs in several 
respects. First, our interest is in the regional level. Research has demonstrated that both national 
and regional systems of innovation are important, but the regional level allows capturing 
variance in innovation activities that is left unexplained when taking a national lens (Cooke et 
al. 1997). Second, our focus goes beyond the scientific base of regions and concerns instead 
on the more applied stages of innovation, those mostly happening within corporate borders. 
Pugliese et al. (2019) did include downstream activities by considering new product 
specializations, using export data. Such data are not focused on innovation and also tend to 
underestimate service activities, which are harder to trade. Finally, both studies assume a linear 
relation from science to technology and then market. Instead, our framework can accommodate 
cross-relatedness to run both ways, from upstream to downstream but also the other way 
around. 

Based on our characterization of the three innovation activities, we propose to 
conceptualize relatedness between activities, i.e. cross-relatedness, as the co-occurrence of 
specialization in two different innovation activities as revealed by the patterns at the supra-
regional level (whole Europe or whole US, in our case).  
 
Cross-relatedness and regional innovation specializations 
 

We discuss here the mechanisms behind cross-relatedness that we expect to play a role.  
Similarly to the understanding of relatedness, the mechanisms may be quite diverse: while it is 
hard to discriminate them empirically (Boschma, 2017), we can discuss the ones that are most 



likely to be at play. In the first place, co-occurrence of two focal innovation activities, say 
design and market ones, in one region can be there because local companies possess knowledge 
that is useful for both activities, hinting at synergies in the underlying learning processes 
(Farinha et al. 2019). In the second place, there might be more formal input-output relations 
which connect innovation activities from technology to market (Essletzbichler, 2015).  

Starting with the ideas of the linear model of technology-push innovation, one could 
expect clear patterns of cross-relatedness of technology to the downstream innovation 
activities. From a different perspective, Chan et al. (2017) show how technological advances 
can push the boundaries of designs and even alter the styles of entire product segments. In 
general, one would expect regions co-specializing in technology and technological design 
activities to rely on similar or complementary knowledge bases (Corradini and Karoglou, 
2022). Such tech-design relatedness would likely stem from underlying synergies in 
technology-driven innovation (Murmann and Frenken, 2006; Dan et al. 2018) and mostly 
concern technical design. In such processes, tech-market relatedness would also be there, as 
working combinations of synthetic and symbolic knowledge bases feed co-specialization in 
specific technologies and specific markets (Hise et al., 1989; Breznitz, 2021). 

On the other hand, demand-pull arguments might also be mechanisms for cross-
relatedness between innovation activities.  Firms may experience synergies from embedding 
technological advances into their branded products/services as a way to deal with increased 
competition (Greenhalgh and Rogers, 2012). For instance, Bei (2019) showed how firms may 
source technology from other firms to capitalize on their already successful brands. There is 
also evidence that clusters of firms with strong market positions have incentives to invest in 
new technological specializations to keep their products up to speed with technological 
upgrades (Fritsch and Wyrwich, 2021). This suggests synergies that would support market-
tech relatedness too. 

As for cross-relatedness between design and market activities, mechanisms supporting 
regional co-specialization can also run both ways. They are likely to be strongest when 
aesthetic design is concerned, relying on synergies between design and symbolic knowledge. 
In fact, design knowledge specialization can be leading in creating synergies with specific 
market knowledge bases (Walsh 1996; d’Ippolito, 2014), but there is also rich evidence of 
significant feedback loops that design activities rest upon, with market demand or user 
feedback shaping new product aesthetics and functionalities (Di Stefano et al. 2012). These 
mechanisms are likely to be more evident in the case of aesthetic design and for industries 
where soft innovation works as a key competitive advantage. 

Let us also stress two main reasons not to expect cross-relatedness. A first reason might 
be that the three innovation activities are independent or to a large extent separable. Within 
global or even simply modularized value chains, inventions can occur in one place and 
commercialization in another. If this is the case, then our framework would pick-up the 
resulting lack of cross-relatedness and demonstrate it for those specific type of activities for 
which indeed separation is possible. A second reason is that downstream innovation activities 
may not need technological inventions to capitalize from. In several low-tech sectors, 
innovation rests upon ‘soft’ elements or gets prompted by user feedback: this is the case in 
many service sectors but also in the creative and cultural industries (Stoneman, 2010; Schmoch 
and Gauch, 2009; Millot, 2009).  
 
Relatedness, cross-relatedness and regional innovation specializations 
 

Our framework suggests that regional innovation specializations in each innovation 
stage can be explained by both relatedness in that activity and cross-relatedness with the other 
two activities. Table 2 illustrates this in a matrix form, where the diagonal elements are the 



relatedness elements expected to be positively associated with each regional innovation 
specialization (the three column headers). The goal is to elaborate on which relatedness and 
cross-relatedness dimensions we expect to play a more pronounced role for the different 
innovation specializations. We do so by considering the two types of design, which will also 
correspond to the two empirical contexts where we test our hypotheses. 

For all three innovation specializations we expect the relevant relatedness measure (i.e. 
the diagonal elements in Table 2) to reveal the strongest association with the emergence of new 
specialization, following prior theoretical and empirical literature. 

For technological specialization we also expect cross-relatedness with downstream 
activities to play a role, but less than relatedness. We expect tech-design relatedness to be 
positively associated with new technological specialization mostly when design is of a 
technical nature. Here the underlying synergies between technological and design knowledge 
appear more evident. 

For design specializations, we expect differences for technical design vs aesthetic 
design, with a stronger role for tech-design cross-relatedness, leveraging clear synergies 
between synthetic and design knowledge bases vs a stronger role for design-market relatedness, 
leveraging clear synergies between design and symbolic knowledge bases. 

For market specializations, we similarly expect market relatedness to reveal the 
strongest association, but cross-relatedness with more upstream activities should also 
significantly matter. We envision a role for design-market relatedness, in case of aesthetic 
design, and for tech-market relatedness, overall. 
 
IPRs as innovation proxies 
 
To capture technological inventions, design and market activities, we consider utility patents, 
industrial designs and trademarks. The main advantage of opting for these three metrics is that 
they are all intellectual property rights, hence comparable types of data, with some common 
strengths and limitations. Key common strengths are that IPRs can be counted at regional and 
national level and they are registered after undergoing a formal filing procedure where specific 
requirements are checked. Key common limitations are at least two. First, their validity as 
innovation metrics is weakened by strategic practices in their filings (Greenhalgh and Rogers, 
2010). One way to take into account this problem is to consider only filings that made it to 
registration, which allows disregarding at least some of the strategic practices. This is the 
approach we opt for in our analysis. Second, IPRs only measure a share of all activities that 
contribute to innovation. However, they do capture activities that add value to the economy. 
At the regional level, there are several studies that relate at least one of these IPRs and 
sometimes more than one, to innovation and/or entrepreneurship (Torres-Preciado et al., 2014; 
Mendonça., 2014; Drivas 2020; Corradini and Karoglou, 2022; Pinate et al. 2022) while 
Filippetti et al. (2019) showed that regions engaging in all three types of IPR activity appeared 
more economically resilient.  

Utility patents have been employed most extensively as innovation metric, to capture 
technological inventions and the upstream phase of innovation processes (Griliches 1990). 
While researchers have critiqued the patent system, as several inventions may not pass the 
patentability threshold (Bessen and Meurer, 2008; Boldrin and Levine, 2013), scholars have 
also shown that patents can provide financial incentives to inventors, hence are specifically 
used by actors more strongly investing in invention (Moser 2005; Lerner 2009).  

Design rights protect the aesthetics of industrial products and have been discussed as 
potential metrics for innovation (Stoneman, 2010, Filitz et al. 2015, Filippetti and d’Ippolito, 
2017; Heikkilä and Peltoniemi, 2019). Through the use of design rights, researchers have 
shown the evolution of products and styles in an entire industry (Chan et al. 2017). All prior 



studies have focused either on the US or Europe, but a key difference between the two systems 
is that in the US they are actually design patents, while in Europe design rights are more similar 
to trademarks (Schickl, 2013). As such, in the US design rights undergo a similar procedure to 
patents and are tested for novelty and industrial applicability, while design rights in Europe 
capture new designs that fulfill the condition of distinctiveness. This institutional difference 
allows connecting US design patents primarily to new technical designs and technology-based 
innovation processes and European design rights primarily to new aesthetic designs typical of 
industries focused on soft innovation. Hence, it also allows testing for hypotheses involving 
technical design in the US context and those involving aesthetic design in the European context. 

  Trademarks are distinctive signs that protect differentiating attributes of a product or 
service (Graham et al., 2013). Empirical studies have found significant evidence that 
trademarks correlate positively to innovation activity and new product/service introduction 
(Mendonça et al. 2004; Flikkema et al. 2014, 2019). What distinguishes trademarks from the 
other IPRs is that the applicant needs to provide evidence of use in commerce before being 
granted (Graham et al. 2013, Schautschick and Greenhalgh, 2016). Hence, trademarks can 
capture the most downstream stage of innovation activity. 

Utility patents can be classified according to the International Patent Classification 
(IPC). Design rights are classified by the international Locarno classification of design 
categories: these categories concern industrial design and connect to specific artefacts. 
Therefore, these Locarno categories have an intuitive connection with both patent classes, since 
patents have to indicate an industrial application, and trademark classes, since they indicate 
specific product categories that identify the specific markets where trademark owners claim 
protection. Trademark classes are defined by the international Nice classification, including 45 
classes (1-34 cover goods and 35-45 cover services).  A strength of combining these 
classifications is that the three are internationally comparable. A limitation is that they differ 
in the degree of detail, with patent classes being the most detailed, followed by design and 
trademark classes. 

 
Methods 
 
Data collection 
 

Starting with Europe, we collected utility patents filed at the EPO from the OECD’s 
REGPAT database (Maraut et al. 2008), including applicant’s NUTS-2 information, and 
trademark and industrial designs filed at the EUIPO. Each EUIPO record was separately 
located in an xml file and after a careful reconfiguration we obtained each applicant’s country 
and postal code information. We assigned each postal code to a NUTS-2 region based on 
European Commission’s NUTS-2 postal codes concordance.1 We included a country’s NUTS-
2 regions if more than 90% of the country’s trademarks and industrial designs were assigned 
to a NUTS-2 region. The countries that did not satisfy this criterion were: Bulgaria, Ireland, 
Romania and Lithuania.2 Further, we dropped countries that only included a single NUTS-2 
region as in Xiao et al. (2018): Estonia, Cyprus, Luxembourg, Latvia and Malta. Finally, we 
included Switzerland and Norway though they are not part of the EU, due to the proximity to 
other EU countries. Overall, we obtained information for approximately 450 thousand patents, 

 
1 https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts.  
2 For Bulgaria, Ireland and Romania we could not locate the postal code for approximately 50% of the trademark 
filings from the database. For Lithuania, while we could locate a postal code for the trademark application data, 
we could only obtain a three-digit postal code. However, from the European Commission’s NUTS-2 postal codes 
concordance we could only locate a five-digit postal code thereby excluding this country due to the lack of clear 
concordance. 



640 thousand industrial designs and 570 thousand trademarks, filed during 2003-2016, that 
made it to registration and spread over 259 NUTS-2 regions.  

For the US case, we collected utility patent, design patent and trademark records from 
the public databases of USPTO.3 In line with other studies, we chose the MSA level as the 
geographical level most comparable to NUTS-2 regions (Lee and Rodriguez-Pose, 2013).4 For 
each USPTO record, we obtained the application and registration dates, the associated classes 
and the location information of the applicant. Note that patents can also be counted by inventor 
location but since trademarks can only be counted by owner location we opt for the applicant 
location for all IPRs. For both utility and design patents, the USPTO has already geocoded the 
applicants, hence we only needed to assign the coordinates to MSAs based on US Census’ 
TIGER shapefiles, 2010 version. For the case of trademarks, we used the postal codes and 
assigned them to MSAs based on the same shapefiles. Missing postal codes were searched in 
Google Earth Pro and based on their coordinates were once again assigned to an MSA. Overall, 
we obtained information for approximately 1 million utility patents, 137 thousand design 
patents, and 3.6 million trademarks, filed during the period 2003-2016 that made it to 
registration, and assigned to 363 MSAs. 

For utility patents, the standard practice in the evolutionary economic geography 
literature is to focus on either the 3-digit (Balland et al. 2019) or 4-digit IPC classification 
(Montresor and Quatraro 2017). Given the higher level of detail we opt for the first listed 4-
digit IPC classification. For design rights, we employ the 4-digit classification Locarno 
classification. For trademark classes, we rely on the 45 Nice classes, but we discuss possible 
extensions in the robustness tests and conclusions. 

Finally, we decided to count IPRs by filing year, i.e. the year closest to the underlying 
activity taking place, but we only counted registered IPRs. This allows counting IPR filings 
that underwent the administrative checks of the formal requirements and hence are likely to be 
of higher quality than filings that did not make it to registration. This choice also explains why 
our sample ends in 2016. Because of the known lags between filing and registration, we can 
exploit more recent information to check registration. Note that EUIPO started accepting 
industrial design applications only in 2003; therefore, to provide an even comparison across 
both testbeds, our samples start in 2003.  
 
Key variables 
 
 Our approach relies on calculating relatedness measures for all three innovation 
metrics. In doing so, we first build technology, design and market spaces and then a 
comprehensive innovation space, where the three activities are related to each other. For patents 
and design rights we consider the main primary listed class. For the case of trademarks, we opt 
for whole counting in case that there is more than one Nice class disclosed. Unlike patents, and 
design rights, for an applicant to claim an additional class s/he needs to provide evidence that 
the trademark is used in commerce in all selected classes of goods/services. Therefore, a 
trademark with several classes has a wider scope of commercial activity compared to a 
trademark with a single class. Nonetheless, we run several robustness checks where we opt for 
alternative choices of the listed classes.  

We discuss here the construction of the innovation spaces for the European case and 
provide examples specific to this context. The analysis for the US follows exactly the same 

 
3 Office of the Chief Economist: https://www.uspto.gov/ip-policy/economic-research/research-datasets. For a 
thorough overview of this trademark database, see Graham et al. (2013). 
4 Lee and Rodríguez-Pose (2013) focused on MSAs and NUTS-1 regions when comparing US and European 
regions. However, wherever data availability allowed them to use NUT-2 regions, they performed the analysis at 
that level.  



steps. First, we bundle years in three time periods: 2003-2008, 2009-2012 and 2013-2016. 
Therefore, the period dimension, denoted as t takes three values: t=0 for 2003-2008, t=1 for 
2009-2012 and for and t=2 for 2013-2016. Working with periods instead of single years 
ensures that a region’s entry into a new specialization is robust and not due to a random short-
term shock (Neffke et al. 2011). We first constructed the indicator of specialization that has 
become standard in the relatedness literature, inspired by Balassa (1965). The indicator 
identifies whether region r has a Revealed Comparative Advantage (RCA) in class i for a 
particular IPR during period t. For instance, for market specializations, the RCA is defined as: 
 

 !"#!,#,$ =
$!%&'(%!)*!,#,$ ∑ $!%&'(%!)*!,#,$#,

∑ $!%&'(%!)*!,#,$! ∑ ∑ $!%&'(%!)*!,#,$#!,  

In other words, !"#!,#,$ at period t measures the share of trademarks in class i that 
region r filed over the share of trademarks filed in class i of all trademarks filed. Therefore, a 
higher !"#!,#,$ implies that region r is relatively more active in trademark class i compared to 
the entire set of regions. Similar specialization indicators are calculated for patents and design 
rights. To have a class index which runs through all three classifications, we re-code class i to 
be a numeric index that takes values between 1-836 (1-822) for Europe (US). This comes from 
the fact that for Europe (US), we have 589 (591) 4-digit IPC classes and 202 (186) Locarno 
classes and 45 Nice classes.   
 Following the literature (Hidalgo et al. 2007), a region is specialized in class i if its 
RCA is above one: 
 

%!,#,$ = &
1	)*	!"#!,#,$ > 1
0						-.ℎ012)30	

 

The next step generates the key inputs for constructing the innovation spaces capturing 
the underlying relatedness and cross-relatedness. Following the literature, we start from 
estimating proximities among classes from revealed patterns of co-specialization. We calculate 
the probability that a region specializes in class i given that it also specializes in class j. For the 
259 NUTS-2 regions (or 363 MSAs) we count the instances where class i has an RCA>1 given 
that class j, where i≠j, has RCA>1. Then by dividing this number with the instances where 
class j has an RCA>1 we obtain the probability 45%#,$6%-,$7. This probability does not need to 
be equal to the opposite conditional probability45%-,$6%#,$7. To reconcile this asymmetric 
distance between classes, we follow Hausmann and Klinger (2007) and calculate the minimum 
of each pair of probabilities. That is: 
 
8#,- = min<45%#,$6%-,$7, 45%-,$6%#,$7> 

 For the European (US) case, 8#,- populate an 836x836(822x822) matrix of proximities 
which capture the overall innovation space. Note that this matrix is symmetric by definition, 
as 8#,- = 8-,# for each given combination of i and j. 

Figures A1 and A2 of the Online Appendix display the innovation space for Europe 
and US respectively. After summing all φ’s we calculate the Minimum Spanning Tree (MST) 
algorithm to display the edges between nodes. For both geographical contexts, we observe 
several clusters where technology, design and market activities are interconnected. For the case 
of Europe trademark market classes are linked with many technology classes within a core 
cluster comprised of loosely connected smaller clusters. In the case of the US the picture is 
slightly different with trademark market classes dispersed across the innovation space instead 
of within a central cluster. Let us provide some examples that illustrate how the specific 



patterns of relatedness and cross-relatedness have mattered for shaping new regional 
specializations.  In Europe, specializations in industrial designs on locking and closing devices 
tend to co-occur with designs in chain links and permanent magnets, but also with patents on 
bolts, hinges and devices for opening and closing any type of wing. The DE11 region (Stuttgart) 
displayed a new specialization in locking and closing devices after it had developed 
specializations in both the related design and patent fields. In US, the MSA of Tampa-St. 
Petersburg-Clearwater, FL exhibited a new market specialization in clothes and footwear 
trademarks after it already specialized in patents that include inventions in outerwear, 
protective garments and accessories. 

Going beyond these specific examples, our analysis aims at establishing to what extent 
regional relatedness and cross-relatedness matter on average for the emergence of new regional 
technology, design and market specializations. To this end, we estimate regression models that 
allow us to gauge the strength and directionality of relatedness within and between the three 
innovation activities on the emergence of new regional specializations. The dependent 
variables capture the entry of region r in a new specialization in a particular class i. They take 
the value of 1 if region r exhibits an RCA in period t given it had not in period t-1 and 0 
otherwise. That is: 

 

?@.1A!,#,$ = &
1	)*	%!,#,$ = 1		B@C	%!,#,$./ = 0

0						-.ℎ012)30	
 

 
We then construct the main independent variables of interest, capturing regional 

relatedness within and between types of IPRs. Following the literature, we use average density 
measures, as they are called in the literature, which consider proximities of the focal class to 
the classes where the region is already specialized in. For exposition, assume that our interest 
is on ?@.1A!,#,$ where i=1-45, that is, we focus on new market specializations. We construct 
three variables. The first one captures relatedness specific to market activities: 

 

DB1E0._!?G#H?IJ?KK#,! =
∑ 8#-
01
-2/,-∈!,-4#	
∑ 8#-01
-2/,-4#	

 

The numerator is the sum of 8#- in the trademark classes j that region r is specialized 
in. The denominator is the overall sum of 8#- for market class i. This measure captures how 
embedded trademark market class i is in the rest of the regional market activities. 

The other two variables, capturing cross-relatedness, are: 

H0MℎDB1E0._!?G#H?IJ?KK#,! =
∑ 8#-
670
-206,-∈!,-4#	
∑ 8#-670
-206,-4#	

 

I03)N@DB1E0._!?G#H?IJ?KK#,! =
∑ 8#-
876
-2671,-∈!,-4#	
∑ 8#-876
-2671,-4#	

 

These two variables capture the relatedness of class i to technology and design classes 
where the region is also specialized in. 

Similar variables are constructed for the models explaining the emergence of new 
technological and design specializations. Note that cross-related density measures are not 
symmetric: H0MℎDB1E0. cross-related density is different from DB1E0.H0Mℎ related density, 
given that the variables depend on the regional specializations.   

 
 



Econometric specifications 
 
 To examine the role of the different relatedness measures for new specializations, we 
consider separate regressions for each innovation specialization. Each regression can be 
understood as the operationalization of the relations in the three columns of Table 2, which 
summarizes our conceptual framework.  

For new market specializations we consider: 
 
?@.1A!,#,$ = O9 + O/DB1E0._!?G#H?IJ?KK!,#,$./ +

O:H0MℎDB1E0._!?G#H?IJ?KK!,#,$./ + O7I03)N@DB1E0._!?G#H?IJ?KK!,#,$./ +

!0N)-@401)-C!,$ + "QB33401)-C#,$ + R!,#,$    (1) 

 

For new technology specializations: 

?@.1A!,#,$ = S9 + S/H0Mℎ_!?G#H?IJ?KK!,#,$./ +

S:DB1E0.H0Mℎ_!?G#H?IJ?KK!,#,$./ + S7I03)N@H0Mℎ_!?G#H?IJ?KK!,#,$./ +

!0N)-@401)-C!,$ + "QB33401)-C#,$ + R!,#,$    (2) 

 

For new design specializations: 

?@.1A!,#,$ = T9 + T/I03)N@_!?G#H?IJ?KK!,#,$./ +

T:DB1E0.I03)N@_!?G#H?IJ?KK!,#,$./ + T7H0MℎI03)N@_!?G#H?IJ?KK!,#,$./ +

!0N)-@401)-C!,$ + "QB33401)-C#,$ + R!,#,$    (3) 

Note that the first period’s (2003-2008) information is utilized as lagged information 
for the period 2009-2012. To this end, we can only observe entries in periods 2009-2012 and 
2013-2016. Overall, we expect relatedness to be positively related to new specializations and 
hence O/ > 0, S/ > 0 and T/ > 0. In addition, we expect cross relatedness measures to be 
positively associated to new specializations too (i.e. O: > 0, S: > 0, T: > 0, O7 > 0, S7 > 0 
and T7 > 0). To be able to compare coefficients across regressions as well as interpreting them, 
all relatedness measures are standardized as in Xiao et al. (2018). Note that we only include 
region-class-period observations where the region did not display an RCA above 1 in period t-
1 (i.e. %!,#,$./ = 0). If the region had already specialized in that class, then that region-class 
pair would add no information on the relation between the relatedness measures and new 
specializations. To take into account region and class intertemporal heterogeneity, we include 
both region-period and class-period fixed effects in all regressions. Due to the large amount of 
fixed effects all regressions are estimated via OLS since non-linear estimators, such as probit 
and logit, are likely to produce biased estimates (Greene 2012; Boschma et al. 2013; Gomila 
2020). Standard errors are clustered at the region-class level to avoid serial correlation 
(Bertrand et al. 2004). 
 
 
 
 
 
 



Empirical analysis 
 
Descriptive and graphical analysis 

 
Table A1 of the Online Appendix shows summary statistics of the dependent variables. 

For the European (US) case, there is a 13% (15%) probability that a new specialization will 
take place in a region-trademark class, while for patents and designs the probabilities are 6% 
(5%) and 7% (5%) respectively. The lower likelihood of technology and design specializations 
is to be expected given the larger number of technology and design classes as compared to the 
market classes. Also, we observe that the likelihood of new specializations is similar in the two 
geographical contexts. Tables A2-A4 show the correlations of the dependent and independent 
variables for Europe (Panel A) and US (Panel B). Relatedness measures correlate strongly, 
which might result in a multicollinearity bias in the econometric analysis. To examine whether 
multicollinearity confounds the overall empirical results, we always include relatedness and 
cross-relatedness variables stepwise in the regressions.   
 Figures 1A-1C display the average relatedness measures for the period 2003-2008 for 
European regions. Both average DB1E0._!?G#H?IJ?KK and I03)N@_!?G#H?IJ?KK are 
not always high (low) in regions with high (low) average relatedness in technological activities. 
The difference between market and design relatedness on one hand and technology relatedness 
on the other hand suggests that the first follow own dynamics which might be (at least partly) 
independent of technological ones. This also corroborates our intuition that EUIPO’s designs 
relate to aesthetic design activities closer to market activities than technological ones. Figure 
2A-2C display the average DB1E0._!?G#H?IJ?KK, H0Mℎ_!?G#H?IJ?KK and 
I03)N@_!?G#H?IJ?KK for US MSAs. Similarly to the European case, the map of market 
relatedness reveals a somewhat different pattern than technological relatedness. However, 
unlike the European case, regions tend to score similarly in terms of technology and design 
relatedness and high scores often coincide with regions with strong technological profiles. This 
seems in line with the fact that USPTO design rights capture technical design activities.  
 
Regression results 
 

In what follows we present the baseline results for the market, design and technology 
specializations, i.e.  equations (1)-(3) referring to the three columns of Table 2. In the three 
tables, we include the results for Europe and US. Starting with the more downstream innovation 
activity, we analyse the emergence of new market specializations in products and services 
(Table 3). Note that the Variance Inflation Factor (VIF) for the case of Europe when all 
coefficients are included (Column 3) DB1E0._!?G#H?IJ?KK, 
H0MℎDB1E0._!?G#H?IJ?KK and I03)N@DB1E0._!?G#H?IJ?KK are 1.18, 2.15 and 2.09  
while for the US (Column 6) the VIF tests are 1.12, 3.6 and 3.47. While these measures could 
be considered high, they are far from the critical threshold of 10 (Hair et al. 2009). Also, the 
stepwise inclusion of the relatedness measures (Columns 1-3 and 4-6) does not reveal any 
dramatic change in the coefficients, hence multicollinearity does not appear to be an issue.
 For both geographical contexts, relatedness is significantly associated to new market 
specializations. As the independent variables are standardized, the coefficient in the full model 
for Europe (Column 3) can be interpreted as follows: a one standard deviation increase of 
DB1E0._!?G#H?IJ?KK!,#,$./ from its mean is associated to an increase in the likelihood that 
region r will exhibit a new specialization in market class i of 22.0 percentage 
units.	H0MℎDB1E0._!?G#H?IJ?KK!,#,$./ is also strongly associated to new market 
specializations. A result that stands out is that 	



I03)N@DB1E0._!?G#H?IJ?KK is neither positive nor significant for the US case. We go 
back to this finding after presenting all baseline results. 
 Table 4 reports estimates for the role of relatedness in the emergence of new 
technological specializations. The VIF for H0Mℎ_!?G#H?IJ?KK, 
DB1E0.H0Mℎ_!?G#H?IJ?KK and I03)N@H0Mℎ_!?G#H?IJ?KK are 2.39, 1.24 and 2.32 for 
EU (Column 3), while for US (Column 6) they are 4.18, 1.14 and 4.11 respectively. Also in 
this case, multicollinearity is not an issue. H0Mℎ_!?G#H?IJ?KK is strongly associated to new 
technological specializations, in both contexts. Cross-relatedness measures are significant, but 
the coefficients are significantly lower than the H0Mℎ_!?G#H?IJ?KK coefficient (t-tests 
comparisons are statistically significant at p<0.01), indicating that relatedness matters more 
than cross-relatedness when it comes to new technology specializations.  

Table 5 displays estimates for the role of relatedness in new design specializations. The 
VIF for Design_!?G#H?IJ?KK, DB1E0.I03)N@_!?G#H?IJ?KK and  
H0MℎI03)N@_!?G#H?IJ?KK  is 2.29, 1.22 and 2.35 for EU (Column 3) while for US 
(Column 6) 4.03, 1.13 and 4.10  respectively. Once again, the stepwise inclusion of the 
variables does not reveal any multicollinearity issues. All relatedness measures are 
significantly and positively related to the emergence of new design specializations. For the US, 
cross-relatedness matters even more than relatedness, particularly when it comes to technology 
(t-test comparisons statistically significant at p<0.01).  
  We can now relate our findings back to the framework and hypotheses we proposed in 
Table 2. We refer to the baseline results in Tables 3, 4 and 5, as the empirical counterparts of 
the three columns in Table 2, with the US context offering a testbed for the case of technical 
design and Europe for aesthetic design. We found that relatedness mattered the most in all 
regressions, in line with our expectations. There were two exceptions. For US regions tech-
design cross-relatedness was as strongly associated with new design specializations as design 
relatedness, pointing to technical design specializations being strongly driven by technology. 
Also, for European regions, new market specializations were equally strongly associated to all 
relatedness and cross-relatedness measures, suggesting strong synergies between all three 
innovation activities supporting market leadership. 

A consistent pattern across both geographical contexts was that cross-relatedness with 
technology mattered when considering new market and design specializations, to an extent 
comparable to relatedness and in line with the relevance of synergies from upstream to 
downstream activities.  When focusing on new technology specializations, cross-relatedness 
with market and design mattered but much less so than technology relatedness, as expected for 
backward linkages from downstream to upstream.  

Going back to the results for market specializations (Table 3), we noted that 
I03)N@DB1E0._!?G#H?IJ?KK played no role in the case of US while it exhibited a strong 
positive coefficient in the case of Europe. To further compare this finding to our intuition that 
indeed DesignMarket relatedness would mostly be there in technology-driven innovation 
processes, we also checked whether results changed when focusing on high-tech market 
specializations only. We focused on a subset of trademark classes which can be related to high 
technology products, as suggested by Mendonça and Fontana (2011)5 and then estimate the 
same regressions. Column 2 of Table 6 shows that for high tech product market specializations, 
the coefficient of I03)N@DB1E0._!?G#H?IJ?KK for the US is indeed positive and 
significant. For consistency with the baseline, we also run a similar estimation for the European 
case (Column 1). Overall, the results confirm the positive coefficients for all relatedness and 
cross-relatedness measures, suggesting strong synergies between all innovation activities for 
market specializations in high-tech products.  

 
5 These high technology product Nice classes are 1, 3, 5, 7 and 9-15. 



 
Robustness checks 

 
To provide robustness checks for the above results we consider several variations. Table 

A5 in the online appendix provides an overview of all the robustness results, to highlight 
similarities and spot instances where the results deviate from the baseline regressions. First, 
while we opted for OLS to include an array of fixed effects and control for unobserved 
heterogeneity, we wish to check that the choice of this estimator is not driving our results. To 
this end, we estimated all regressions via probit models too. We had to drop class-period 
dummies due to convergence issues, but Table A6 reveals similar results to the baseline 
estimates. Note that the small change in sample size from the baseline results in the probit 
estimations comes from the fact that a few observations are predicted perfectly and hence are 
excluded.  

Further, for the European case we had excluded five countries (EE, CY, LT, LV and 
MT) since they included a single NUTS-2 region. In Table A7 we add these five countries as 
additional regions. Results are again similar to those of the baseline models.   

We also validated several critical choices we made about our IPR metrics. A first issue 
is whether assigning patents to the inventor location, instead of the applicant location, makes a 
difference. Inventor location is available for USPTO and EPO patents and for USPTO design 
patents, while all trademarks and EUIPO design rights only include the applicant location.  This 
is a well-known issue when combining patent and trademark data. There might be a 
headquarters effect, with regions hosting headquarters scoring higher on those activities 
measured with trademarks simply because trademark filings only include information on the 
applicant company. Yet it should be noted that activities related to marketing and 
commercialization tend to be more centralized at headquarter level than upstream research 
activities anyways (Castaldi and Mendonça, 2022). In Table A8, we report results of the models 
after repeating all analyses with inventor locations for those IPRs where they are available.  
Results are comparable to the baseline ones.  

Further, we estimated all regressions with variables calculated using all IPR filings, not 
only those that made it to registration. By doing so, we are including more filings, whose 
quality might be lower. Focusing on filings might be interesting for two reasons: first, it 
provides a more timely indicator, given that registration takes some time; second, it includes 
activities by companies that did not have the required financial resources or the expertise to 
obtain a successful registration.  After re-estimating the relatedness variables, Table A9 
provides the counterparts of Tables 3, 5 and 6. Overall, results are quite similar. 

We also validated our choices in terms of counting classes. On one hand, we considered 
fractional counting of trademarks instead of whole counting. After reconstructing all the 
variables, we perform the same analysis. Results are displayed in Columns 1 and 4 of Tables 
A10-A12 for each new innovation specialization for the US and Europe.  

On the other hand, a known limitation of trademark classes is that they are only 45, 
thereby potentially underestimating new trademark specializations, and also affecting any 
relatedness measure associated with the trademarks. While we cannot provide a direct 
robustness check with alternative versions of trademark classes, we can provide an indirect 
test.  We considered technology classes (123 in total) at the 3-digit IPC classification instead 
of the 4-digit level, making the level of detail of patent classes more similar to trademark 
classes. In this case the 8#,- matrix for Europe (US) populates a 370x370 (354x354) matrix. If 
the aggregation for the 45 Nice classes was problematic, then this analysis would deliver starkly 
different results since the level of aggregation for IPC classes also changed dramatically. In 
Columns 2 and 5 of Tables A10-A12 we re-estimated the baseline models by whole counting 
trademarks while in Columns 3 and 6 we opted for fractional counting. In both cases we 



considered the 3-digit IPC classification. The results are by and large similar to the baseline 
ones. Finally, we revisited the choice of considering only the first-listed IPC class.6 We 
considered all the 4-digit IPC classes for each utility patent and Table A13 reports the 
alternative results. They are qualitatively similar with the exception of 
I03)N@H0Mℎ_!?G#H?IJ?KK, whose coefficient for new technological specialization of US 
regions not significant. Yet, the main result that relatedness has a stronger association than 
cross-relatedness remains. 

 
Conclusion 
 
 In this paper we aimed to take seriously the calls from researchers and policymakers 
for a broader view on regional innovation specializations, beyond technology only. We 
developed a conceptual framework grounded on combining insights from innovation studies 
and evolutionary economic geography. In our framework we conceptualized three main types 
of innovation activities and argued that the principle of relatedness can be leveraged to 
understand branching to new specializations within and between the three innovation activities. 

We also showed how IPR metrics can be used to capture developments in three 
underlying knowledge spaces of technology/patents, design/design rights and 
markets/trademarks. Our empirical analysis of US and EU regions in three recent periods 
provided support for an overall strong association of both relatedness and cross-relatedness 
measures with the emergence of new regional innovation specializations.  This confirmed that 
path-dependence and place-dependence act as powerful force in technological, design and 
market trajectories. At the same time, we found that cross-relatedness played a significant role 
in the emergence of new regional specializations for all three innovation activities. Design 
appeared as an intermediary function lying in between the two other innovation activities and 
intertwined with both, albeit in different ways. The two geographical testbeds helped us to 
gauge the role of technical and aesthetic design activities. We found design-market cross-
relatedness to matter for new market specializations in the European context, while that link 
was only there for high-tech product market specialization in the US case. 

To expand further on policy implications, our results can inform the development and 
implementation of regional policies of smart specialization in several ways. First, considering 
more downstream specializations appears relevant, since actual innovation that has reached the 
commercialization phase is important to generate jobs and entrepreneurial opportunities in 
regions. In fact, the latest take on S3 smart specialization strategies (European Commission, 
2021) acknowledges that: “Social, organisational, market   and   service   innovation, or   
practice-based   innovation, play as important a role in S3 as technological innovation based 
on scientific research” (p.2). As Foray et al. (2011) put it, with reference to cases like the one 
of Pierre-Hyacinthe Caseaux: “the outcome of the process is much more than a “simple” 
technological innovation...” resulting in a new activity that offers to the regional economy 
“…superior commercial prospects.” (p. 6). Additionally, our analysis can be seen as 
complementary to approaches focused on the roots and upstream drivers of innovation 
specializations, specifically concerned with the development of regional scientific strongholds 
(Catalan et al. 2020).  

Second, our analysis has demonstrated that regions have different strengths in each 
innovation stage and a focus on technology only overshadows opportunities for regions that do 
not belong to the small circle of high-tech clusters. Some regions may exploit a history of 
related design and market capabilities to uncover further specializations even without investing 

 
6 We did not pursue a similar robustness for design rights. Design patents in the USPTO data simply did not 
include any secondary Locarno class, while the EUIPO data only included it for 3.5% of the filings. Therefore, 
focusing on the first-listed Locarno class is the only option for the overwhelming majority of the data.  



in technology (Breznitz, 2021). In practice, policymakers can analyse innovation spaces to 
uncover patterns of co-specialization along the innovation process. They can draw much more 
fine-grained maps than what we could show, by leveraging the public and timely innovation 
metrics that we suggested here. Even though regional and national innovation scoreboards (like 
the EU Regional Innovation Scoreboard and the Science and Engineering indicators of the US 
National Science Foundation) by now include trademark and design rights counts next to patent 
ones, such aggregate counts can hardly characterize regional specializations in a qualitative 
manner and help to uncover specific strengths and weaknesses. Instead, unleashing the richness 
of the information on technology, design and market classes where local companies are filing 
different IPRs allows mapping opportunities and challenges of smart specialization strategies 
through a relatedness lens.  

Our study offers the potential for several extensions and validation exercises. A key 
limitation of our analysis was the coarseness of the trademark classes, which allowed us to 
capture market relatedness only between very broad product categories. Ongoing efforts to 
define more granular subclasses using text analysis of goods and service descriptions will offer 
the opportunity to work at the same level of detail of patent classes (Neuhäusler et al. 2021; 
Abbasiharofteh et al. 2022). This will allow to better align empirics with the conceptual 
interpretation of relatedness in the market space. Another research direction would be to 
validate our results using alternative metrics. For instance, trademarks could be substituted with 
trade data, in line with how Hidalgo et al. (2007) and Pugliese et al. (2019) capture the product 
space. Trademark activity is likely to be related to export activity, especially when considering 
registrations at supra-national offices like the EUIPO. Yet, trademark data also capture 
specializations in non-tradable activities (mostly low-tech services) which will not be covered 
by trade data. These activities might not matter directly for innovation, still a comparison of 
patterns could be interesting.  

Finally, our focus on NUTS-2 regions is not without limitations. There is a perennial 
issue noted as modifiable areal unit problem, pointing at the fact that performing the same 
analysis on smaller geographic units could reveal non-trivial differences (Fotheringham and 
Wong, 1991).Yet, an additional problem that would arise is the presence of too many zeros in 
the IPR metrics. A similar argument could be made for focusing on MSAs for the case of US 
instead of counties or cities. Comparative analysis of different geographical levels could reveal 
significant insights on the implied spillovers of Smart Specialization policies to larger areas, 
an issue that has only recently been examined in the literature (Balland and Boschma, 2021). 

Finally, we envision the potential for several extensions of our framework. One 
extension could be to move beyond overall average patterns and analyse heterogeneity in how 
relatedness and cross-relatedness matter, for instance for economically developed ones vs 
lagging regions. This would align with work suggesting that the explanatory power of 
relatedness differs by region type (e.g. Petralia et al. 2017). Alternatively, different IPR filings 
in urban vs rural regions might also be at play and could be controlled for (Wojan, 2019). 
Finally, one could use our innovation space approach to zoom in on specific innovation 
specializations that might be particularly desirable from a strategic or societal perspective. For 
instance, future research could extend the rich literature on green technology specializations 
(e.g. Barbieri et al. 2020) and look at relatedness dynamics for regional green innovation 
specializations beyond technology (in line with the firm-level analysis in Ghisetti et al., 2021). 
Similarly, one could focus on the digital revolution and analyse the extent to which regions 
might specialize in technology, design or market activities related to artificial intelligence or 
Industry 4.0. Ultimately, this goes in the direction of pushing for a broader take on regional 
innovation capabilities and the policies that can support them. 
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Table 1: Three key innovation activities and their properties. 
 
Innovation activity Technology Design  Market 
    
Main output Technological 

inventions 
 

Novel designs New products (goods 
and services) 

Phase of the innovation 
process 

Research 
 

Design and 
Prototyping 
 

Product Development 
and Marketing 
 

Type of knowledge Technological, 
synthetic, 
engineering-based 

a. Technical design, 
in technology-driven 
innovation 
b. Aesthetic design, 
in soft innovation 

Symbolic knowledge, 
categories, meanings 

    

Knowledge space Technological 
space 

Design space Market space 

    
Proxy/Metric Patents a. Design patents 

b. Designs 
Trademarks 
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Table 2: Relatedness and cross-relatedness behind regional innovation specializations: 
expected strength of relationships depending on type of design activity 
 
 Regional innovation specializations 
    
Dimensions of 
(cross)relatedness 
 

Technology 
specialization 

Technical Design 
specialization 

Market 
specialization 

Technology Technological 
relatedness (+++) 

Tech-design 
relatedness (++) 

Tech-market 
relatedness (++) 

Technical Design Design-tech 
relatedness (+) 

Design  
Relatedness (+++) 

Design-market 
relatedness (+) 

Market Market-tech 
relatedness (+) 

Market-design 
relatedness (+) 

Market  
Relatedness (+++) 

  
    
Dimensions of 
(cross)relatedness 
 

Technology 
specialization 

Aesthetic Design 
specialization 

Market 
specialization 

Technology Technological 
relatedness (+++) 

Tech-design 
relatedness (+) 

Tech-market 
relatedness (++) 

Aesthetic Design Design-tech 
relatedness (+)  

Design  
Relatedness (+++) 

Design-market 
relatedness (++) 

Market Market-tech 
relatedness (+) 

Market-design 
relatedness (+) 

Market  
Relatedness (+++) 
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Table 3: Role of relatedness and cross-relatedness for new market specializations. 
 Europe  US 
VARIABLES (1) (2) (3) (4) (5) (6) 
       
!"#$%&_()*+,)-.)//%,&,'() 0.228*** 0.229*** 0.220*** 0.242*** 0.248*** 0.242*** 
 (0.012) (0.012) (0.012) (0.015) (0.015) (0.015) 
,%0ℎ!"#$%&_()*+,)-.)//%,&,'() 0.158***  0.134*** 0.137***  0.141*** 
 (0.041)  (0.041) (0.043)  (0.044) 
-%2345!"#$%&_()*+,)-.)//%,&,'()  0.171*** 0.150***  0.002 -0.021 
  (0.041) (0.041)  (0.042) (0.043) 
Constant -0.126* -0.176*** 0.014 -0.036 0.136** -0.026 
 (0.071) (0.068) (0.071) (0.065) (0.060) (0.068) 
       
Observations 14,336 14,336 14,336 21,011 21,011 21,011 
R-squared 0.129 0.129 0.130 0.090 0.089 0.090 
adj R-Squared 0.090 0.091 0.091 0.053 0.053 0.053 

Note: The dependent variable in all regressions is )5&#6%,&,'. All regressions are estimated via ordinary least squares (OLS) and include region–period and Nice class-period 
dummies. Columns (1)-(3) consider the European case while Columns (4)-(6) consider the US case. Standard errors are clustered at the region–class level and are displayed in 
parentheses. ***p<0.01; **p<0.05; *p<0.1. 
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Table 4: Role of relatedness and cross-relatedness for new technology specializations. 
 Europe  US 
VARIABLES (1) (2) (3) (4) (5) (6) 
       
,%0ℎ_()*+,)-.)//%,&,'() 0.194*** 0.191*** 0.188*** 0.187*** 0.181*** 0.181*** 
 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 
!"#$%&,%0ℎ_()*+,)-.)//%,&,'() 0.011***  0.011*** 0.005***  0.005*** 
 (0.001)  (0.001) (0.001)  (0.001) 
-%2345,%0ℎ_()*+,)-.)//%,&,'()  0.020*** 0.019***  0.011*** 0.012*** 
  (0.003) (0.003)  (0.003) (0.003) 
Constant -0.068*** 0.046*** 0.046*** -0.051*** -0.061*** -0.058*** 
 (0.010) (0.008) (0.008) (0.012) (0.012) (0.012) 
       
Observations 268,815 268,815 268,815 379,247 379,247 379,247 
R-squared 0.089 0.089 0.089 0.115 0.115 0.115 
adj R-Squared 0.083 0.083 0.083 0.110 0.110 0.110 

Note: The dependent variable in all regressions is )5&#6%,&,'. All regressions are estimated via ordinary least squares (OLS). All columns include region–period and IPC class-
period dummies. Columns (1)-(3) consider the European case while Columns (4)-(6) consider the US case. Standard errors are clustered at the region–class level and are 
displayed in parentheses. ***p<0.01; **p<0.05; *p<0.1. 
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Table 5: Relatedness and cross-relatedness for new design specializations. 
 Europe US 
VARIABLES (1) (2) (3) (4) (5) (6) 
       
-%2345_()*+,)-.)//%,&,'() 0.094*** 0.086*** 0.084*** 0.088*** 0.056*** 0.056*** 
 (0.004) (0.005) (0.005) (0.004) (0.004) (0.004) 
!"#$%&-%2345_()*+,)-.)//%,&,'() 0.017***  0.015*** 0.008***  0.006*** 
 (0.002)  (0.002) (0.002)  (0.002) 
,%0ℎ-%2345_()*+,)-.)//%,&,'()  0.053*** 0.049***  0.099*** 0.098*** 
  (0.006) (0.006)  (0.005) (0.005) 
Constant 0.085*** 0.077*** 0.005 0.052** 0.062*** 0.065*** 
 (0.021) (0.021) (0.021) (0.021) (0.018) (0.018) 
       
Observations 91,686 91,686 91,686 123,493 123,493 123,493 
R-squared 0.081 0.081 0.082 0.110 0.114 0.114 
adj R-Squared 0.072 0.072 0.073 0.102 0.106 0.106 

Note: The dependent variable in all regressions is )5&#6%,&,'. All regressions are estimated via ordinary least squares (OLS). All columns include region–period and Locarno 
class-period dummies. Columns (1)-(3) consider the European case while Columns (4)-(6) consider the US case. Standard errors are clustered at the region–class level and are 
displayed in parentheses. ***p<0.01; **p<0.05; *p<0.1.
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Table 6: The case of high-tech product market specializations. 
 Europe US 
VARIABLES (1) (2) 
   
!"#$%&_()*+,)-.)//%,&,'() 0.225*** 0.185*** 
 (0.030) (0.034) 
,%0ℎ!"#$%&_()*+,)-.)//%,&,'() 0.606*** 0.289*** 
 (0.145) (0.108) 
-%2345!"#$%&_()*+,)-.)//%,&,'() 0.188* 0.174* 
 (0.109) (0.097) 
Constant -0.042 -0.118 
 (0.167) (0.099) 
   
Observations 3,608 5,145 
R-squared 0.221 0.181 
adj R-Squared 0.084 0.041 

Note: The dependent variable in all regressions is )5&#6%,&,'. Both columns consider Nice classes that are related 
to medium and high technology industries according to Mendonça and Fontana (2011). These Nice classes are 1, 
3, 5, 7 and 9-15. All regressions are estimated via ordinary least squares (OLS). All columns include region–
period dummies and Nice class-period dummies. Standard errors are clustered at the region–class level and are 
displayed in parentheses. 
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Figure 1A Technology relatedness for the period 2003-2008. 

 
Figure 1B. Design relatedness for the period 2003-2008. 

 
Figure 1C. Market relatedness for the period 2003-2008. 
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Figure 2A. Technology relatedness for the period 2003-2008. 
 

 
Figure 2B. Design relatedness for the period 2003-2008. 

 
 
Figure 2C. Market relatedness for the period 2003-2008. 
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Online Appendix 
 
 
Table A1: Summary statistics: means (standard deviations) 

 European Data 

 
Trademark Classes 

(n=23,310) 
Patent classes 
(n=305,102) 

Design classes 
(n=104,636) 

)5&#6%,&,' 0.13 0.06 0.07 
 (0.34) (0.23) (0.26) 
7%,&,'() 0.38 0.12 0.12 
 (0.49) (0.32) (0.33) 
 US Data 

 
Trademark Classes 

(n=32,670) 
Patent classes 
(n=426,888) 

Design classes 
(n=135,036) 

)5&#6%,&,' 0.15 0.05 0.05 
 (0.35) (0.22) (0.22) 
7%,&,'() 0.36 0.11 0.09 
 (0.48) (0.31) (0.28) 
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Table A2: Correlation matrices for trademark activity.  
Panel A. European Data.      

 !"#$%!,#,$ &!,#,$%& '($)*#_,!-./!01!22!,#,$%& /*3ℎ'($)*#_,!-./!01!22!,#,$%& 0*567"'($)*#_,!-./!01!22!,#,$%& 
!"#$%!,#,$ 1     
&!,#,$%& -0.31 1    
'($)*#_,!-./!01!22!,#,$%& 0.02 0.28 1   
/*3ℎ'($)*#_,!-./!01!22!,#,$%& -0.05 0.15 0.40 1  
0*567"'($)*#_,!-./!01!22!,#,$%& -0.04 0.14 0.36 0.71 1 

Panel B. US Data.      

 !"#$%!,#,$ &!,#,$%& '($)*#_,!-./!01!22!,#,$%& /*3ℎ'($)*#_,!-./!01!22!,#,$%& 0*567"'($)*#_,!-./!01!22!,#,$%& 
!"#$%!,#,$ 1     
&!,#,$%& -0.31 1    
'($)*#_,!-./!01!22!,#,$%& 0.01 0.14 1   
/*3ℎ'($)*#_,!-./!01!22!,#,$%& -0.05 0.11 0.35 1  
0*567"'($)*#_,!-./!01!22!,#,$%& -0.06 0.09 0.30 0.85 1 

Note: All correlations are significant at the 1% level. 
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Table A3: Correlation matrices for patent activity.  
Panel A. European Data.      

 !"#$%!,#,$ &!,#,$%& /*3ℎ_,!-./!01!22!,#,$%& '($)*#/*3ℎ_,!-./!01!22!,#,$%& 0*567"/*3ℎ_,!-./!01!22!,#,$%& 
!"#$%!,#,$ 1     
&!,#,$%& -0.09 1    
/*3ℎ_,!-./!01!22!,#,$%& 0.16 0.40 1   
'($)*#/*3ℎ_,!-./!01!22!,#,$%& 0.07 0.20 0.45 1  
0*567"/*3ℎ_,!-./!01!22!,#,$%& 0.12 0.34 0.77 0.41 1 

Panel A. US Data.      

 !"#$%!,#,$ &!,#,$%& /*3ℎ_,!-./!01!22!,#,$%& '($)*#/*3ℎ_,!-./!01!22!,#,$%& 0*567"/*3ℎ_,!-./!01!22!,#,$%& 
!"#$%!,#,$ 1     
&!,#,$%& -0.08 1    
/*3ℎ_,!-./!01!22!,#,$%& 0.18 0.42 1   
'($)*#/*3ℎ_,!-./!01!22!,#,$%& 0.07 0.18 0.38 1  
0*567"/*3ℎ_,!-./!01!22!,#,$%& 0.16 0.37 0.88 0.35 1 

Note: All correlations are significant at the 1% level. 
 
 
  



33 
 

Table A4: Correlation matrices for design activity. 
Panel A. European Data.      

 !"#$%!,#,$ &!,#,$%& 0*567"_,!-./!01!22!,#,$%& '($)*#0*567"_,!-./!01!22!,#,$%& /*3ℎ0*567"_,!-./!01!22!,#,$%& 
!"#$%!,#,$ 1     
&!,#,$%& -0.10 1    
0*567"_,!-./!01!22!,#,$%& 0.12 0.34 1   
'($)*#0*567"_,!-./!01!22!,#,$%& 0.06 0.16 0.39 1  
/*3ℎ0*567"_,!-./!01!22!,#,$%& 0.10 0.29 0.76 0.42 1 

Panel A. US Data.      

 !"#$%!,#,$ &!,#,$%& 0*567"_,!-./!01!22!,#,$%& '($)*#0*567"_,!-./!01!22!,#,$%& /*3ℎ0*567"_,!-./!01!22!,#,$%& 
!"#$%!,#,$ 1     
&!,#,$%& -0.07 1    
0*567"_,!-./!01!22!,#,$%& 0.20 0.38 1   
'($)*#0*567"_,!-./!01!22!,#,$%& 0.08 0.17 0.35 1  
/*3ℎ0*567"_,!-./!01!22!,#,$%& 0.20 0.37 0.88 0.37 1 

Note: All correlations are significant at the 1% level. 
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Table A5. Overview of regressions results, both baseline and robustness ones: + signs based on significant statistical differences (t-tests comparison with 
p<0.05) between relatedness and cross-relatedness coefficients in each model.  
Europe (aesthetic design case)            
 Theory B High-

Tech 
Products 

P Add5 I F C1 C2 C3 M 

 New technology specializations  
,%0ℎ_()*+,)-.)//  (+++) (+++)  (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) 
!"#$%&,%0ℎ_()*+,)-.)//  (+) (+)  (+) (+) (+) (+) (+) (+) (+) (+) 
-%2345,%0ℎ_()*+,)-.)//  (+) (+)  (++) (+) (+) (+) (+) (+) (+) (+) 
 New design specializations  
-%2345_()*+,)-.)//  (+++) (+++)  (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) 
,%0ℎ-%2345_()*+,)-.)//  (+) (+)  (++) (+) (+++) (++) (++) (++) (++) (++) 
!"#$%&-%2345_()*+,)-.)//  (+) (+)  (+) (+) (+) (+) (+) (+) (+) (+) 
 New market specializations  
!"#$%&_()*+,)-.)//  (+++) (+++) (++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) 
-%2345!"#$%&_()*+,)-.)//  (++) (+++) (++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) (+++) 
,%0ℎ!"#$%&_()*+,)-.)//  (++) (+++) (+++) (++) (+++) (+++) (++) (++) (++) (++) (+++) 
            

US (technical design case)            
 Theory B High-

Tech 
Products 

P Add5 I F C1 C2 C3 M 

 New technology specializations  
,%0ℎ_()*+,)-.)//  (+++) (+++)  (+++)  (+++) (+++) (+++) (+++) (+++) (+++) 
!"#$%&,%0ℎ_()*+,)-.)//  (+) (+)  (+)  (+) (+) (+) (+) (+) (+) 
-%2345,%0ℎ_()*+,)-.)//  (+) (+)  (+)  (+) (+) (+) (+) (+) (-) 
 New design specializations  
-%2345_()*+,)-.)//  (+++) (++)  (+++)  (++) (++) (++) (++) (++) (++) 
,%0ℎ-%2345_()*+,)-.)//  (++) (+++)  (++)  (+++) (+++) (+++) (+++) (+++) (+++) 
!"#$%&-%2345_()*+,)-.)//  (+) (+)  (+)  (+) (+) (+) (+) (+) (+) 
 New market specializations  
!"#$%&_()*+,)-.)//  (+++) (+++) (+++) (+++)  (+++) (+++) (+++) (+++) (+++) (+++) 
-%2345!"#$%&_()*+,)-.)//  (+) () (+++) ()  () () () () () () 
,%0ℎ!"#$%&_()*+,)-.)//  (++) (++) (+++) (+++)  (+++) (+++) (+++) (++) (+++) (+++) 

B: Baseline Results (Tables 3-5), P: Probit Results (Table A6), Add5: 5 countries added to the European sample (Table A7), I: Considering inventor location instead of applicant location (Table A8), F: Considering all 
filings (Table A9), C1: Fractional TMs 4-digit IPCs (Tables A10-A12), C2: Whole TMs 3-digit IPCs (Tables A10-A12), C3: Fractional TMs 3-digit IPCs (Tables A10-A12), M: Taking into account multiple IPC 
classifications (Table A13).
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Table A6: Robustness check of Tables 3, 4 and 5, probit estimations. Marginal effects are displayed. 
Panel A. New market specializations  (1) (2) 
VARIABLES Europe US 
!"#$%&_()*+,)-.)//%,&,'() 0.242*** 0.267*** 
 (0.011) (0.013) 
,%0ℎ!"#$%&_()*+,)-.)//%,&,'() 0.142*** 0.311*** 
 (0.038) (0.038) 
-%2345!"#$%&_()*+,)-.)//%,&,'() 0.163*** 0.011 
 (0.040) (0.044) 
   
Observations 14,000 20,873 
   
Panel B. New technology specializations (1) (2) 
VARIABLES Europe US 
,%0ℎ_()*+,)-.)//%,&,'() 0.127*** 0.110*** 
 (0.002) (0.002) 
!"#$%&,%0ℎ_()*+,)-.)//%,&,'() 0.014*** 0.017*** 
 (0.001) (0.001) 
-%2345,%0ℎ_()*+,)-.)//%,&,'() 0.034*** 0.016*** 
 (0.002) (0.002) 
   
Observations 261,170 378,665 
   
Panel C. New design specializations (1) (2) 
VARIABLES Europe US 
-%2345_()*+,)-.)//%,&,'() 0.110*** 0.029*** 
 (0.004) (0.003) 
!"#$%&-%2345_()*+,)-.)//%,&,'() 0.010*** 0.013*** 
 (0.003) (0.002) 
,%0ℎ-%2345_()*+,)-.)//%,&,'() 0.081*** 0.083*** 
 (0.005) (0.003) 
   
Observations 88,873 120,203 
   

Notes: Columns 1 and 2 of Panel A, B and C validate Columns 3 and 6 of Table 3, 4 and 5 respectively. All 
columns include region–period dummies. Standard errors are clustered at the region–class level and are displayed 
in parentheses. 
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Table A7: Robustness check of European case by adding EE, CY, LT, LV and MT. 
Panel A. New market specializations   
VARIABLES Europe 
!"#$%&_()*+,)-.)//%,&,'() 0.223*** 
 (0.012) 
,%0ℎ!"#$%&_()*+,)-.)//%,&,'() 0.134*** 
 (0.041) 
-%2345!"#$%&_()*+,)-.)//%,&,'() 0.156*** 
 (0.042) 
  
Constant -0.006 
 (0.073) 
  
Observations 14,601 
R-Squared 0.131 
adj R-Squared 0.092 
Panel B. New technology specializations  
VARIABLES Europe 
,%0ℎ_()*+,)-.)//%,&,'() 0.187*** 
 (0.003) 
!"#$%&,%0ℎ_()*+,)-.)//%,&,'() 0.011*** 
 (0.001) 
-%2345,%0ℎ_()*+,)-.)//%,&,'() 0.019*** 
 (0.003) 
  
Constant 0.040*** 
 (0.008) 
  
Observations 274,211 
R-Squared 0.089 
adj R-Squared 0.083 
Panel C. New design specializations  
VARIABLES Europe 
-%2345_()*+,)-.)//%,&,'() 0.084*** 
 (0.004) 
!"#$%&-%2345_()*+,)-.)//%,&,'() 0.014*** 
 (0.002) 
,%0ℎ-%2345_()*+,)-.)//%,&,'() 0.051*** 
 (0.006) 
  
Constant 0.037* 
 (0.020) 
  
Observations 93,482 
R-Squared 0.082 
adj R-Squared 0.073 

Note: The dependent variable in all regressions is !"#$%!,#,$. All regressions are estimated via ordinary least 
squares (OLS). All columns include region–period and class-period dummies. Standard errors are clustered at the 
region–class level and are displayed in parentheses. Panels A, B and C validate Column 3 of Tables 3, 4 and 5 
respectively.  
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Table A8: Robustness check of Tables 3, 4 and 5, considering inventor location instead of applicant location. 
Panel A. New market specializations  (1) (2) 
VARIABLES Europe US 
!"#$%&_()*+,)-.)//%,&,'() 0.213*** 0.230*** 
 (0.012) (0.015) 
,%0ℎ!"#$%&_()*+,)-.)//%,&,'() 0.281*** 0.226*** 
 (0.050) (0.038) 
-%2345!"#$%&_()*+,)-.)//%,&,'() 0.129*** -0.041 
 (0.041) (0.043) 
Constant -0.367*** -0.104 
 (0.077) (0.064) 
   
Observations 14,336 21,011 
R-Squared 0.131 0.091 
adj R-Squared 0.093 0.054 
Panel B. New technology specializations (1) (2) 
VARIABLES Europe US 
,%0ℎ_()*+,)-.)//%,&,'() 0.245*** 0.225*** 
 (0.004) (0.003) 
!"#$%&,%0ℎ_()*+,)-.)//%,&,'() 0.016*** 0.015*** 
 (0.002) (0.001) 
-%2345,%0ℎ_()*+,)-.)//%,&,'() 0.015*** 0.011*** 
 (0.003) (0.003) 
Constant 0.011 0.214*** 
 (0.010) (0.009) 
   
Observations 261,680 374,802 
R-Squared 0.092 0.125 
adj R-Squared 0.086 0.121 
Panel C. New design specializations (1) (2) 
VARIABLES Europe US 
-%2345_()*+,)-.)//%,&,'() 0.082*** 0.061*** 
 (0.004) (0.004) 
!"#$%&-%2345_()*+,)-.)//%,&,'() 0.015*** 0.004*** 
 (0.002) (0.002) 
,%0ℎ-%2345_()*+,)-.)//%,&,'() 0.066*** 0.090*** 
 (0.006) (0.005) 
Constant 0.032 0.061*** 
 (0.020) (0.018) 
   
Observations 91,686 123,493 
R-Squared 0.082 0.113 
adj R-Squared 0.073 0.105 

Notes: Columns 1 and 2 of Panel A validate Columns 3 and 6 of Table 3, 4 and 5 respectively. All columns include 
region–period and class-period dummies. Standard errors are clustered at the region–class level and are displayed 
in parentheses. 
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Table A9: Robustness check of Tables 3, 4 and 5, considering all filings. 
Panel A. New market specializations  (1) (2) 
VARIABLES Europe US 
!"#$%&_()*+,)-.)//%,&,'() 0.198*** 0.227*** 
 (0.012) (0.015) 
,%0ℎ!"#$%&_()*+,)-.)//%,&,'() 0.097** 0.128*** 
 (0.038) (0.049) 
-%2345!"#$%&_()*+,)-.)//%,&,'() 0.184*** 0.022 
 (0.042) (0.046) 
Constant 0.001 0.138** 
 (0.074) (0.059) 
   
Observations 14,322 20,545 
R-Squared 0.123 0.101 
adj R-Squared 0.084 0.064 
Panel B. New technology specializations (1) (2) 
VARIABLES Europe US 
,%0ℎ_()*+,)-.)//%,&,'() 0.205*** 0.180*** 
 (0.004) (0.003) 
!"#$%&,%0ℎ_()*+,)-.)//%,&,'() 0.016*** 0.005*** 
 (0.001) (0.001) 
-%2345,%0ℎ_()*+,)-.)//%,&,'() 0.026*** 0.012*** 
 (0.003) (0.003) 
Constant 0.091*** -0.054*** 
 (0.009) (0.012) 
   
Observations 265,534 379,247 
R-Squared 0.091 0.115 
adj R-Squared 0.085 0.110 
Panel C. New design specializations (1) (2) 
VARIABLES Europe US 
-%2345_()*+,)-.)//%,&,'() 0.084*** 0.056*** 
 (0.005) (0.004) 
!"#$%&-%2345_()*+,)-.)//%,&,'() 0.015*** 0.006*** 
 (0.002) (0.002) 
,%0ℎ-%2345_()*+,)-.)//%,&,'() 0.049*** 0.098*** 
 (0.006) (0.005) 
Constant 0.005 0.065*** 
 (0.021) (0.018) 
   
Observations 91,686 123,493 
R-Squared 0.082 0.114 
adj R-Squared 0.073 0.106 

Notes: Columns 1 and 2 of Panel A, B, C validate Columns 3 and 6 of Table 3, 4 and 5. All models include region–
period and class-period dummies. Standard errors are clustered at the region–class level and are displayed in 
parentheses. 
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Table A10: Robustness checks with alternative class counting, models for new market specializations.  
 Europe US 
 Fractional TMs  

4-digit IPCs 
Whole TMs  
3-digit IPCs 

Fractional TMs  
3-digit IPCs 

Fractional TMs 
4-digit IPCs 

Whole TMs  
3-digit IPCs 

Fractional TMs  
3-digit IPCs 

VARIABLES (1) (2) (3) (4) (5) (6) 
       
!"#$%&_()*+,)-.)//%,&,'() 0.216*** 0.221*** 0.215*** 0.204*** 0.237*** 0.198*** 
 (0.013) (0.012) (0.012) (0.015) (0.015) (0.015) 
,%0ℎ!"#$%&_()*+,)-.)//%,&,'() 0.094** 0.092*** 0.081*** 0.188*** 0.123*** 0.172*** 
 (0.037) (0.033) (0.029) (0.042) (0.029) (0.028) 
-%2345!"#$%&_()*+,)-.)//%,&,'() 0.173*** 0.154*** 0.173*** 0.021 -0.016 0.025 
 (0.037) (0.041) (0.037) (0.041) (0.042) (0.040) 
Constant 0.037 0.035 0.063 0.090 0.019 -0.103 
 (0.067) (0.073) (0.069) (0.060) (0.067) (0.067) 
       
Observations 15,070 14,336 15,070 21,381 21,011 21,381 
R-Squared 0.116 0.130 0.116 0.089 0.090 0.090 
adj R-Squared 0.078 0.091 0.079 0.053 0.054 0.054 

Note: The dependent variable in all regressions is !"#$%!,#,$. All regressions are estimated via ordinary least squares (OLS). All columns include region–period and Nice class-
period dummies. Standard errors are clustered at the region–class level and are displayed in parentheses. 
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Table A11: Robustness checks with alternative class counting, models for new technology specializations.  
 Europe US 
 Fractional TMs  4-

digit IPCs 
Whole TMs  
 3-digit IPCs 

Fractional TMs   
3-digit IPCs 

Fractional TMs  
 4-digit IPCs 

Whole TMs   
3-digit IPCs 

Fractional TMs   
3-digit IPCs 

VARIABLES (1) (2) (3) (4) (5) (6) 
       
,%0ℎ_()*+,)-.)//%,&,'() 0.187*** 0.169*** 0.166*** 0.181*** 0.252*** 0.253*** 
 (0.003) (0.009) (0.009) (0.003) (0.008) (0.008) 
!"#$%&,%0ℎ_()*+,)-.)//%,&,'() 0.012*** 0.040*** 0.044*** 0.004*** 0.030*** 0.029*** 
 (0.001) (0.005) (0.005) (0.001) (0.004) (0.004) 
-%2345,%0ℎ_()*+,)-.)//%,&,'() 0.019*** 0.069*** 0.068*** 0.011*** 0.047*** 0.047*** 
 (0.003) (0.009) (0.009) (0.003) (0.008) (0.008) 
Constant 0.049*** -0.075** -0.062** -0.060*** -0.099*** -0.105*** 
 (0.008) (0.031) (0.031) (0.012) (0.032) (0.032) 
       
Observations 268,815 50,698 50,698 379,247 69,199 69,199 
R-squared 0.089 0.084 0.084 0.115 0.124 0.124 
adj R-Squared 0.083 0.070 0.070 0.110 0.112 0.112 

Note: The dependent variable in all regressions is !"#$%!,#,$. All regressions are estimated via ordinary least squares (OLS). All columns include region–period and IPC class-
period dummies. Standard errors are clustered at the region–class level and are displayed in parentheses. 
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Table A12: Robustness checks with alternative class counting, models for new design specializations.  
 Europe US 
 Fractional TMs  

 4-digit IPCs 
Whole TMs  
3-digit IPCs 

Fractional TMs 
3-digit IPCs 

Fractional TMs  
 4-digit IPCs 

Whole TMs  
3-digit IPCs 

Fractional TMs  
3-digit IPCs 

VARIABLES (1) (2) (3) (4) (5) (6) 
       
-%2345_()*+,)-.)//%,&,'() 0.083*** 0.090*** 0.090*** 0.056*** 0.081*** 0.081*** 
 (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) 
!"#$%&-%2345_()*+,)-.)//%,&,'() 0.018*** 0.014*** 0.018*** 0.005*** 0.006*** 0.005*** 
 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 
,%0ℎ-%2345_()*+,)-.)//%,&,'() 0.048*** 0.035*** 0.034*** 0.098*** 0.051*** 0.051*** 
 (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) 
Constant 0.048** 0.014 0.017 0.062*** 0.058*** 0.055*** 
 (0.020) (0.021) (0.021) (0.018) (0.019) (0.019) 
       
Observations 91,686 91,686 91,686 123,493 123,493 123,493 
R-squared 0.082 0.082 0.082 0.114 0.111 0.111 
adj R-Squared 0.0726 0.0722 0.0723 0.106 0.103 0.103 

Note: The dependent variable in all regressions is !"#$%!,#,$. All regressions are estimated via ordinary least squares (OLS). All columns include region–period and Locarno 
class-period dummies. Standard errors are clustered at the region–class level and are displayed in parentheses. 
 



42 
 

Table A13: Robustness check of Tables 3, 4 and 5, taking into account multiple IPC classifications. 
Panel A. New trademark specializations  (1) (2) 
VARIABLES Europe US 
!"#$%&_()*+,)-.)//%,&,'() 0.217*** 0.240*** 
 (0.012) (0.015) 
,%0ℎ!"#$%&_()*+,)-.)//%,&,'() 0.157*** 0.152*** 
 (0.041) (0.042) 
-%2345!"#$%&_()*+,)-.)//%,&,'() 0.144*** -0.022 
 (0.041) (0.043) 
Constant 0.031 -0.071 
 (0.071) (0.073) 
   
Observations 14,336 21,011 
R-Squared 0.130 0.090 
adj R-Squared 0.0914 0.0532 
Panel B. New technology specializations (1) (2) 
VARIABLES Europe US 
,%0ℎ_()*+,)-.)//%,&,'() 0.227*** 0.249*** 
 (0.004) (0.004) 
!"#$%&,%0ℎ_()*+,)-.)//%,&,'() 0.014*** 0.016*** 
 (0.002) (0.001) 
-%2345,%0ℎ_()*+,)-.)//%,&,'() 0.027*** -0.008** 
 (0.003) (0.003) 
Constant 0.065*** -0.207*** 
 (0.009) (0.014) 
   
Observations 261,692 373,078 
R-Squared 0.085 0.110 
adj R-Squared 0.0795 0.105 
Panel C. New design specializations (1) (2) 
VARIABLES Europe US 
-%2345_()*+,)-.)//%,&,'() 0.084*** 0.064*** 
 (0.004) (0.004) 
!"#$%&-%2345_()*+,)-.)//%,&,'() 0.013*** 0.005*** 
 (0.002) (0.002) 
,%0ℎ-%2345_()*+,)-.)//%,&,'() 0.058*** 0.100*** 
 (0.006) (0.006) 
Constant 0.003 0.062*** 
 (0.020) (0.018) 
   
Observations 91,686 123,493 
R-Squared 0.082 0.113 
adj R-Squared 0.0726 0.105 

Notes: Columns 1 and 2 of Panel A, B and C validate Columns 3 and 6 of Table 3, 4 and 5 respectively. All 
columns include region–period dummies. Standard errors are clustered at the region–class level and are displayed 
in parentheses. 
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Figure A1: Innovation space for Europe, years 2003-2008. 
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Figure A2:  Innovation space for US, years 2003-2008. 
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