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Abstract

Cities host diverse people and their mixing is the engine of prosperity. In turn, segregation
and inequalities are common features of most cities and locations that enable the meeting of
people with different socio-economic status are key for urban inclusion. In this study, we adopt
the concept of economic complexity to quantify the ability of locations – on the level of neigh-
borhoods and amenities – to attract diverse visitors from various socio-economic backgrounds
across the city. Utilizing the spatial distribution of point of interests inside the city of Budapest,
Hungary, we construct the measures of amenity complexity based on the local portfolio of di-
verse and non-ubiquitous amenities. We investigate mixing patterns at visited third places by
tracing the daily mobility of individuals and characterizing their socio-economic status by the
real-estate price of their home locations. Results suggest that measures of ubiquity and diversity
of amenities do not, but amenity complexity correlates with the diversity of visitors to neigh-
borhoods and to actual amenities alike. We demonstrate that, in this monocentric city, amenity
complexity is correlated with the relative geographic centrality of locations, which in itself is
a strong predictor of socio-economic mixing. Our work combines urban mobility data with
economic complexity thinking to show that the diversity of non-ubiquitous amenities, central
locations, and the potentials for socio-economic mixing are interrelated.

Keywords: urban mobility, economic complexity, amenities, social mixing
JEL codes: R10, R30, Z13

1 Introduction

Diversity is the key ingredient of successful and resilient cities (Jacobs 1961). The spatially concen-
trated interaction of people from various social and economic background create environments
that foster creativity (Florida 2004), support inclusion (Benton-Short and Short 2013) and in gen-
eral, make cities vivid and prosperous (Glaeser 2012). At the same time, cities show high levels of
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segregation such that individuals from different socio-economic background are separated from
each other in the urban space (Musterd 2020). This phenomenon limits social mobility for many
(Mayer and Jencks 1989) and induced inequalities can expose segregated groups to health or cli-
mate crises (Torrats-Espinosa 2021; Loughran and Elliott 2022) and can imply radicalization and
populism (Abadie 2006; Engler and Weisstanner 2021).

Recent studies leverage GPS mobility data to study socio-economic segregation and mixing
patterns in visited urban locations (Cagney et al. 2020). This growing literature frequently reports
that people in cities visit and interact with locations that are similar to their residential neigh-
borhood in terms of income, education, ethnicity or other socio-economic features (Wang, Nolan
Edward Phillips, and Sampson 2018; Dong et al. 2020; Bokányi et al. 2021; Hilman, Iñiguez, and
Karsai 2022). However, the places, services or amenities that individuals visit in the city exhibit
different levels of experienced segregation, as some locations mix different socio-economic groups
while others do not (Athey et al. 2021; Moro et al. 2021).

In this study we search for urban locations that foster socio-economic mixing. In other words,
we aim to identify locations that present less experienced segregation and are visited by people
from diverse strata. To do so, we emphasize two aspects of urban locations that can influence
observed socio-economic mixing. First, category of amenities available at a location determine its
purpose and function and therefore can influence social mixing. Noyman et al. (2019) illustrates
through individual GPS trajectories that urban locations are visited by a more diverse set of people
in case they offer entertainment amenities, services or natural water features. Athey et al. (2021)
describes that individuals can experience relative low segregation at outdoor places like parks,
sports fields and playgrounds, or at commercial establishments such as restaurants, bars and re-
tail stores. They find that places of entertainment, like theaters and accommodations, like hotels
are the least segregated urban locations. Moro et al. (2021) shows that the category of places is
a strong predictor for experienced income segregation and unique places in cities, such as arts
venues, museums or airports tend to be highly integrated, while places that primarily serve local
communities, such as grocery stores or places of worship are generally more segregated by in-
come. Despite previous empirical efforts, systematic examination on how the mixture of amenities
at specific urban locations contribute to social mixing is still missing from the literature.

Second, specialized locations that serve the specific needs of the wider public and therefore
can attract people from diverse neighborhoods tend to situate in the center of cities. The central
place theory originally developed for the inter-urban scale by Christaller (1933) and Lösch (1954)
explains the hierarchy of cities and towns through their size and the range of functions that they
provide. Higher-order centers share most of the functions (goods and services) of lower order cen-
ters and some specialised functions that attract population from a larger area. Lower-order center
will locate relatively close to one another for efficiency reasons as people do not want to travel
far for their everyday needs such as grocery shopping. However, people would travel further for
infrequent purchases or specialized goods and services, which would be located in higher-order
centers that are farther apart. Building on the central place theory, Zhong et al. (2017) combines
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density, the number of people attracted to locations and diversity, the range of activities that they
engage with at these locations in a single centrality measure to identify urban centers in Singa-
pore and illustrate their evolution over time. Noyman et al. (2019) shows that urban locations
with higher centrality in urban road networks attract more diverse visitors. On the contrary, Moro
et al. (2021) presents that urban locations with higher average travel distance to them tend to be
less segregated than locations that are highly accessible. While most of the studies highlight that
accessible, central locations attract more diverse visitors, yet, the nature of the available amenity
mix might be related to the urban location, which has not been focused on so far.

Here, we aim to extend the above literature by investigating how the amenity mix and cen-
tral position of urban locations are related to experienced segregation or, put it differently, to the
mixing of people from diverse socio-economic strata. A new contribution is the application of
the economic complexity framework to urban amenities (Hidalgo 2021) to quantify the ability of
locations – on the level of neighborhoods and amenities as well – in attracting visitors of diverse
socio-economic status from across the city.

The concept of economic complexity is originally developed by Hidalgo and Hausmann (2009)
who defined complexity of economies by the diversity of their non-ubiquitous products and ser-
vices. Economic complexity is indicative of countries economic growth, income level, emissions
and inequalities (Hidalgo 2021). By now, the concept is applied to different data sources such as
patents, occupations or scientific publications and to diverse spatial scales from countries to cities
(Balland et al. 2022; Magalhães et al. 2023). Here we adopt the same logic to uncover the amenity
complexity of urban locations. We argue that the complex amenity mix of an urban location should
offer diverse amenities and the available amenities should be barely present at other locations.

Consequently, amenity complexity of an urban location is connected to social mixing of people
from diverse socio-economic background for two reasons. First, diverse amenity mixes can attract
people with diverse demands and second, locations with non-ubiquitous amenities can attract
people from diverse neighborhoods, as the particular service is only available at the location in
question. Therefore, our hypothesis is that the diverse mix of non-ubiquitous amenities can create
an inclusive, multi-purpose neighborhood that is most likely to be attractive for a wide-variety
of people. While the contribution of amenity mix to the socio-economic diversity of visitors at
urban locations has been rarely unveiled, diverse amenities are argued to concentrate in and attract
people to central places of cities (Zhong et al. 2017). To better understand the connection between
amenity complexity, urban centrality and socio-economic mixing, we test the influence of distance
from center and the components of amenity complexity on the diversity of visitors in parallel.

We build on the work of Hidalgo, Castañer, and Sevtsuk (2020) that created the amenity space
by utilizing the co-location of amenities inside cities and construct the indicator(s) of amenity com-
plexity. Utilizing the geographic distribution of point of interests (POIs) in urban neighborhoods,
we measure the amenity complexity for both neighborhoods and amenity categories, analogously
to economic complexity of regions and product complexity of economic outputs. We use these
measures to illustrate that urban locations with complex structure of amenities attract diverse vis-
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itors from across the city. We test this argument by combining POI data and mobility data from
individual GPS trajectories inside Budapest, the capital of Hungary. More precisely, we collect in-
formation on all POIs in Budapest from the Google Places API to have a detailed understanding
on the portfolio of amenities present in urban neighborhoods through the world’s most popular
location service platform. We use data from a GPS aggregator company to trace individual mobil-
ity patterns. We identify home, work and third place visits (Oldenburg 1999) in daily trajectories
inside Budapest for 24 months by clustering the pings in geographical space and over time. We
combine the information of predicted home locations with real estate prices at the census tract
level. This allows us to infer the socio-economic diversity of visitors in each urban neighborhoods
and in each actual amenity by investigating third place visits.

Our results illustrate that urban locations with a more complex amenity mix are visited by a
larger diversity of socio-economic groups. We demonstrate that, in the monocentric city of Bu-
dapest, amenity complexity is correlated with the relative geographical centrality of locations and
distance from the center is a strong predictor of socio-economic mixing. The contribution of this
paper is that it combines urban mobility data with the concept of economic complexity to show that
the diversity of non-ubiquitous services, central locations, and the potentials for socio-economic
mixing are interrelated.

2 Tracing mobility inside cities

We capture socio-economic mixing at urban locations by identifying the diversity of visitors. In
order to do so, we study urban mobility patterns of individuals. We rely on a raw GPS data from a
data aggregator company. This data set allows us to trace the daily mobility of 5.2 million devices
in Hungary over 24 months (between 2019 June and 2021 May). We initially filter this data to focus
on devices that appear inside Budapest and have at least 20 GPS pings in total after discarding
pings which indicate unreasonably high speeds of device mobility. Detailed description on the
mobility data preparation process can be found in section S1 of the Supplementary information.

We process raw trajectories of individuals by applying the Infostop algorithm (Aslak and
Alessandretti 2020). It enables us to effectively detect the stationary points of individual move-
ments and cluster GPS pings around stop locations. Figure 1A-B illustrates the raw data and the
outcome of stop detection through an example device. The algorithm gives each stop a label in-
dicating a place that can reoccur along the trajectory of the device. We focus on devices with at
least 2 distinct places and 10 stops in a month inside Budapest. Using the monthly recurrence of
stops and places by each device, we label places as home, work or third place visits. We do this in
two steps. First, we categorize each visited place as potential home or work based on the part of
the day it is visited, the duration of visits and their reappearance in the daily trajectory. A place
is identified as potential home location in case the device spends the most amount of time there
between 20:00 pm and 8:00 am on a given week and the combined time spent at the place exceeds
8 hours. Places where devices spend most of their time between 8:00 am and 17:00 pm in a week
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Figure 1: Identifying home locations and third places visits from daily mobility trajectories. (A) Example
trajectory to illustrate the stop detection process. (B) Identified places from the stop detection results and
their function as home, work or third places. (C) Average number of home location over 24 months by ur-
ban neighborhoods of Budapest. (D) Average number of third place visits over 24 months by urban neigh-
borhoods of Budapest. (E) The relationship between average number of home locations over 24 months
and population of urban neighborhoods in Budapest. (F) Real estate prices at census tracts of identified
home locations and across all census tracts of Budapest.
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(exceeding at least 3 hours) is identified as the potential workplace of the device.
Second, we time-aggregate device trajectories to monthly visitation patterns. Thus, we identify

home and work of a device in a month by the mean coordinate pairs of weekly potential home
and work places, but only in case a device stops at the place at least 10 times over a month and the
standard deviation of both latitude and longitude coordinates are smaller than 0.001 (about 100
meter in Budapest) over the respective month. We categorize every other visited place as a third
place, in case it is labeled by the stop detection algorithm as a unique place, but it is not the home
or the work place of the device in the respective month. Figure 1C presents the average number of
devices with identified home location (and at least one visited third place) and Figure 1D illustrates
the average number of third place visits over the 24 month period aggregated to the level of urban
neighborhoods.

To join home locations and third places to other data sources with spatial reference, we rely
on Uber’s Hexagonal Hierarchical Spatial Index (H3) (Uber Technologies, Inc. 2022). The applied
indexes of size 10 H3 hexagons refer to an average 15.000 m2 area, which is close to the buffer area
of a point with a 70 meter radius. We connect all the identified home locations and third places to
hexagons and split each neighborhood or census tract level polygons to the same hexagon size for
efficient combination.

To infer on the socio-economic status of the followed devices, we join home locations to census
tract level real estate prices. In Hungary, information on income is not part of the census data col-
lection. We rely on residential real estate sales contracts from 2013-2019 collected by the Hungarian
Central Statistical Office and predict real estate prices to each census tract of Budapest. Section S2
in the Supplementary information introduces the prediction process in detail. Figure 1F presents
that real estate prices at the identified home locations and across all census tracts are closely align.

3 Measuring amenity complexity

To describe the attraction of urban locations for visitors, we construct the measures of amenity
complexity. These indicators are based on the spatial distribution of amenities, which is studied
through point of interest (POI) data from the Google Places API. Besides its limitations in terms of
time scale and POI categorization, it is one of the world’s most popular mapping service support-
ing applications worldwide and helping millions of individuals on a daily basis to find the location
of businesses. This makes Google data attractive to study the spatial organization of amenities in-
side cities (Hidalgo, Castañer, and Sevtsuk 2020; Kaufmann et al. 2022; Heroy et al. 2022).

We collected information as the latitude, longitude and amenity category for all the POIs
around the city of Budapest in early 2022. The resulted data set contains 63.601 POIs in 78 dif-
ferent amenity categories. We removed the frequently appearing and ambiguous categories of
ATM (1.054 POIs) and Parking (729 POIs) and filter out the category Casino with less than 2 POIs
in Budapest. We use this data to illustrate the amenity profile of the 207 urban neighborhoods
of Budapest (Hungarian Central Statistical Office 2022). Neighborhoods of Budapest are in be-
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Figure 2: Constructing the amenity complexity measures. (A) Distribution of point of interests (POIs)
across neighborhoods and amenity categories. (B) Map of urban neighborhoods colored by the number of
observed POIs. (C) Revealed comparative advantage (RCA) values transformed to a binary specialization
matrix (M). (D) Similarity matrix of neighborhoods based on their specialization in amenity categories.
This matrix is used to measure the amenity complexity of urban neighborhoods. (E) Similarity matrix of
amenities based on their specialization in neighborhoods. This matrix is used to measure the complexity
of amenity categories. (F) Relationship between amenity diversity and average amenity ubiquity in neigh-
borhoods. Dots (neighborhoods) are colored by their amenity complexity value. (G) Relationship between
ubiquity and average diversity of amenities. Dots (amenity categories) are colored by their amenity com-
plexity value. (H) Neighborhoods with higher amenity complexity are specialized in amenity categories
that have a higher complexity value. Each cell in the matrix represents a neighborhood specialized in an
amenity category and cells are colored by the complexity of amenity categories.
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tween districts and census tracts in the spatial hierarchy, which makes them a suitable spatial scale
for our analysis (Natera Orozco et al. 2020). They have an average population of 10.000 people
(standard deviation around 10.000), have an average area of 2.5 km2 (standard deviation around
3.9) and on average they consist of 41 lower level census tracts (standard deviation around 50).
Further description about the urban neighborhoods of Budapest can be found in section S3 of the
Supplementary information.

We consider every neighborhood in Budapest with at least 2 amenity categories with minimum
2 POIs. Figure 2A presents the resulted 75 amenity categories and the number of POIs across the
focal 200 neighborhoods of Budapest. The most frequent categories are convenient store (5.989
observations), beauty salon (4.461 observations) and restaurant (3.727 observations), while we ob-
serve less than 10 amusement park, bowling alley and city hall. Figure 2B illustrates the unequal
spatial distribution of POIs on the map of neighborhoods in Budapest.

To describe the relative importance of amenity categories and illustrate the differences between
the amenity structure of urban neighborhoods, we adopt the economic complexity index (ECI) (Hi-
dalgo and Hausmann 2009). The ECI is successfully used to describe the economic development
of countries and regions (Hidalgo 2021) and its approach is adoptable to amenities and urban
neighborhoods. We measure amenity complexity the following way. We normalize the matrix of
Figure 2A to make comparisons appropriate between neighborhoods and amenity categories and
compute the revealed comparative advantage (RCA) of neighborhoods in amenity categories by
the following standard equation (also known as the Balassa index):

RCAn,a = (Pn,a/Pa)/(Pn/P ) (1)

where Pn,a is the number of POIs in neighborhood n in amenity category a and missing indices
indicate summed variables such as Pa =

P
a Pn,a. RCA >= 1 suggests that neighborhood n is

specialized in amenity category a. In other words, an amenity category is overrepresented in a
neighborhood in case its RCA value is above or equal to 1. We use the RCA values to create a
binary specialization matrix Mn,a the following way:

Mn,a =

(
1 if RCAn,a >= 1

0 if RCAn,a < 1
(2)

Figure 2C illustrates the resulted binary RCA matrix of neighborhoods and amenity categories
in Budapest. Sum of rows in this matrix present the number of amenity categories a neighbor-
hood has comparative advantage in (amenity diversity) and the column sums give the number of
neighborhoods where an amenity category is overrepresented (amenity ubiquity).

Amenity diversity = Mn =
X

a

Mn,a (3)

Amenity ubiquity = Ma =
X

n

Mn,a (4)
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In geographic matrices like M the average ubiquity of the activities present in a location tends to
correlate negatively with the diversity of activities in a location. This is the result of the matrix
property known as nestedness and this feature is utilized to explain that more complex activi-
ties are only available at a handful of locations with a diverse portfolio of activities (Hidalgo and
Hausmann 2009; Balland et al. 2020).

Amenity complexityneighborhoods = Kn =
1

Mn

X

a

Mn,aKa (5)

Amenity complexityamenities = Ka =
1

Ma

X

n

Mn,aKn (6)

The economic complexity index (ECI) that describes the production structure of economies
were originally defined through the iterative, self-referential algorithm of the ’method of reflec-
tion’ (Hidalgo and Hausmann 2009). The algorithm calculates the above explained diversity and
ubiquity vectors and then recursively uses the information in one to correct the other in equation
(5) and (6). Later it was presented that the method of reflection is equivalent to finding the eigen-
vectors of the similarity matrix Mnn0 (Mealy, Farmer, and Teytelboym 2019; Hidalgo 2021), which
in our case is defined from the original binary neighborhood-amenity matrix M as Mnn0 = MT ⇤M .
The neighborhood-neighborhood similarity matrix used to construct the amenity complexity of
locations is visualized by Figure 2D. To measure the complexity of amenity categories based on
their geographic distribution across neighborhoods, we also create an amenity-amenity similar-
ity matrix as Maa0 = M ⇤ MT , visualized by Figure 2E. Applying the most common approach to
measure complexity from geographical matrices, we take the second eigenvector of Mnn0 , which is
the leading correction to the equilibrium distribution and is the vector that is the best at dividing
neighborhoods into groups based on the amenities that are present in them. Similarly, we take
the second eigenvector of Maa0 to get the complexity values of amenity categories. This process to
measure complexity is similar to dimension reduction techniques (singular value decomposition)
that provide ways to explain the structure of a matrices (for an overview, see Hidalgo (2021)).

Figure 2F illustrates the relationship between amenity diversity and average amenity ubiquity
of neighborhoods. Each point represents a neighborhood and is colored by the neighborhoods
amenity complexity. Besides the expected negative correlation between amenity diversity and
average amenity ubiquity (Hidalgo 2021), the amenity complexity of locations and the diversity
of amenities at these locations shows remarkable variance. Figure 2G presents the relationship
between the ubiquity of amenity categories and their average diversity. Each point stands for
an amenity category and is colored by the complexity of the category. Overall, we observe that
more complex amenity categories are non-ubiquitous and on average appear in more diverse ar-
eas. However, the figure indicates a clear outlier (bottom left corner), zoo, which is very non-
ubiquitous and at the same time appears in less diverse neighborhoods. Figure 2H visualizes the
connection between the amenity complexity of neighborhoods and the complexity of amenities
present in these neighborhoods. The figure makes it clear that complex neighborhoods mostly
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have complex amenities. These findings are in line with the patterns revealed by Mealy, Farmer,
and Teytelboym (2019) for countries and exported products. Section S4 in the Supplementary in-
formation present the ranking of amenity complexity measures for amenity categories and for the
urban neighborhoods of Budapest.
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Figure 3: Components of amenity complexity in neighborhoods and their connections to the distance
from the center of Budapest. (A) Map of Budapest colored by the amenity diversity in neighborhoods.
(B) Map of Budapest colored by the average amenity ubiquity in neighborhoods. (C) Map of Budapest
colored by the amenity complexity of neighborhoods. (D) Relationship between the distance from center
and amenity diversity in neighborhoods. (E) Relationship between the distance from center and average
amenity ubiquity in neighborhoods. (F) Relationship between the distance from center and amenity com-
plexity of neighborhoods.

Figure 3A, B and C presents amenity diversity, average amenity ubiquity and amenity complex-
ity of neighborhoods on the map of Budapest, while Figure 3D, E and F illustrates the connection
of these factors to the distance from the city center defined as Deák Ferenc square (section S5 of
the Supplementary information illustrates the choice of the city center). The figures suggest that
average amenity ubiquity and amenity complexity in neighborhoods correlate with distance from
the center, but the correlation is stronger for the complexity measure. Figure 4A, B and C illustrates
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actual amenities on a zoomed in map of inner Budapest through size 10 H3 hexagons colored by
the average diversity, ubiquity and complexity of the amenity category present at the location. At
dense inner locations of the city, some hexagons contain amenities in multiple amenity categories.
The identification of the dominant amenity category is detailed in section S6 of the Supplemen-
tary information. Figure 4D, E and F shows that more complex amenity categories have lower
average distance from the center, while average diversity and ubiquity of amenities have no clear
connection to distance from the center. The two figures suggests that there is a strong connec-
tion between geographic centrality and amenity complexity of urban locations in our case and we
further discuss this feature in the following.
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4 Results

4.1 Diversity of visitors to complex urban neighborhoods

To illustrate the properties of urban locations that attract people of diverse socio-economic status,
we combine amenity complexity measures at the neighborhood level with more granular visitation
patterns from mobility data. Figure 5 presents our process to join different data sources through
the example neighborhood of Középső-Ferencváros in Budapest.
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Figure 5: Amenity complexity of a selected neighborhood and its visitors in January 2020. (A) Selected ur-
ban neighborhood of Középső-Ferencváros. (B) Home location of devices visiting Középső-Ferencváros.
(C) Real estate prices at the home location of visitors. (D) Distribution of amenity complexity at the level
of neighborhoods. The red vertical line indicates the complexity of the selected neighborhood of Középső-
Ferencváros. (E) Distribution of observed visitors in neighborhoods. The red vertical line indicates the
number of visitors in the selected neighborhood. (F) Distribution of real estate prices across all census
tracts and at the home census tracts of visitors to the selected neighborhood.

Figure 5A presents the location of the selected neighborhood, while Figure 5B visualizes the
home location of devices that visited any third places inside Középső-Ferencváros during the
month of January 2020. We connect the home location of visitors to census tracts as Figure 5C
indicates. This allows us to infer on the socio-economic status of visitors reflected by the real
estate prices at the census tract of their home location. Figure 5D shows that the amenity mix
at the selected neighborhood is relatively complex, while Figure 5E and F shows that Középső-
Ferencváros is visited by more devices than most neighborhoods in January 2020 and its visitors
come from diverse census tracts from all around Budapest.
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Coefficient of variation
(1) (2) (3) (4)

Amenity complexity 0.126⇤⇤⇤
(0.036)

Amenity diversity �0.059
(0.084)

Avg amenity ubiquity 0.019
(0.052)

Distance from center (log) �0.139⇤⇤⇤
(0.023)

Population (log) �0.089⇤⇤⇤ �0.104⇤⇤⇤ �0.109⇤⇤⇤ �0.044⇤
(0.024) (0.024) (0.026) (0.024)

Nr visitors (log) 0.085⇤⇤⇤ 0.111⇤⇤⇤ 0.110⇤⇤⇤ 0.053⇤
(0.029) (0.029) (0.030) (0.028)

Nr POIs (log) 0.004 0.020 0.006 �0.016
(0.024) (0.036) (0.028) (0.023)

Constant 0.468⇤⇤⇤ 0.534⇤⇤⇤ 0.548⇤⇤⇤ 0.590⇤⇤⇤
(0.066) (0.072) (0.070) (0.057)

Observations 185 185 185 185
R2 0.197 0.145 0.143 0.288
Adjusted R2 0.179 0.126 0.124 0.272
Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 1: Controlled correlations between the socio-economic diversity of visitors and the amenity
complexity of neighborhoods
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To capture socio-economic mixing at urban locations, we measure the diversity of visitors in
each neighborhood for every month by calculating the coefficient of variation (ratio of standard
deviation to the mean) of the real estate prices at the home census tracts of visitors. We focus only
on neighborhoods with at least 10 observed visitors in the focal month to get meaningful measures.
Table 1 presents controlled correlations where we test the relationship between diversity of visitors
and the amenity structure of neighborhoods by simple OLS regressions. Model (1) suggests that
even after controlling for population, number of visitors and number of POIs in neighborhoods,
amenity complexity is still positively correlated to the diversity of visitors. Interestingly, amenity
diversity and average amenity ubiquity does not correlate with visitation patterns in our case (see
Model (2) and (3) in Table 1). This suggests that amenity complexity captures the ability of mixing
divers socio-economic groups than its elements: diversity and ubiquity of amenities.

Assessing the influence of central location to the diversity of visitors, we test the relationship
between distance from center, measured as the overhead distance between the geometric center
of neighborhoods from the center of Deák Ferenc square (unlike the center of gravity, this square
can be considered as Budapest’s central point in urban mobility). Model (4) suggests that distance
from the center has a strong negative connection to the diversity of visitors. The R2 values of the
different models suggest that distance from the center of Budapest has a higher explanatory power
for the diversity of visitors than amenity complexity. Using the Gini coefficient or the Theil index
to capture the diversity of visitors, we get the same results. Related model outputs can be found
in section S7 of the Supplementary information.

Figure 6A-D presents the direct relationship between the four key explanatory variables and
coefficient of variation. The univariate models are in line with the results of Table 1. Figure 6E
presents the coefficient of amenity complexity estimated for the available 24 months by the same
model presented in Table 1. The figure suggests that amenity complexity of neighborhoods have
a positive and significant relationship with the diversity of visitors in neighborhoods in all 24
months. Figure 6F illustrates that stable negative and significant relationship of distance from
center on the diversity of neighborhoods visitors. The results of Figure 6E and F are especially
robust in case we consider the influence of COVID-19 related mobility restrictions in 2020. We
run the same models presented in Table 1 on the visitation patterns of non-local users only. In
this setting we only consider users living outside of the focal neighborhood, we observe similar
patterns. Related models and figures can be found in section S8 of the Supplementary information.
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Figure 6: Univariate relationship and long time connection between our key variables and socio-economic
diversity of visitors at the level of neighborhoods. (A) Relationship between amenity complexity in neigh-
borhoods and socio-economic diversity of visitors measured by the coefficient of variation of the real estate
prices at the home locations. (B) Relationship between amenity diversity and socio-economic diversity
of visitors on a scatter plot with regression line. (C) Relationship between average amenity ubiquity and
socio-economic diversity of visitors on a scatter plot with regression line. (D) Relationship between dis-
tance from city center and socio-economic diversity of visitors on a scatter plot with regression line. All
scatter plots reflect only the observations from January 2020. (E) Regression coefficient of amenity com-
plexity estimated for 24 months by the model presented in Table 1. (F) Regression coefficient of distance
from center estimated for 24 months by the model presented in Table 1.

15



4.2 Diversity of visitors to complex amenities

To go beyond the level of urban neighborhoods, we combine amenity complexity measured at the
amenity category level with visitations to actual amenities derived from our fine-grained mobility
data. Figure 7 presents our process to join different data sources at the level of amenities through
an example. The selected example is a bar in the neighborhood of Középső-Ferencváros, Budapest.
Figure 7A shows the selected amenity and all the surrounding amenities on a zoomed-in map in
size 10 H3 hexagons. Figure 7B illustrates the home location of visitor devices in 2020 January from
the surrounding area in size 10 H3 hexagons. We connect the home location of visitors to census
tracts to proxy the socio-economic status of visitors by real estate prices. Figure 7D shows that the
selected example bar is from a relative complex amenity category and Figure 7E suggests that it
is relate frequently visited in comparison to other observed amenities in 2020 January. Moreover,
visitors from census tracts with middle and higher real estate prices are over-represented in 2020
January, as suggested by Figure 7F.
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Figure 7: Connecting complexity of amenities to visitor diversity. (A) Selected bar on a map. Light red
color hexagons indicate other nearby amenities. (B) Home location of the visitors of the selected amenity
on a map. (C) Real estate prices at the census tracts of visitor home locations. (D) Distribution of amenity
complexity values at the level of categories. The red vertical line indicates the complexity of the selected
amenity in the category of bars. (E) Distribution of visitors to observed amenities in 2020 January, Bu-
dapest. The red vertical line indicates the number of visitors at the selected bar. (F) Distribution of real
estate prices across all census tracts and at the home census tracts of visitors.

We measure the socio-economic diversity of visitors to each amenities for every month by cal-
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culating the coefficient of variation (ratio of standard deviation to the mean) of the real estate
prices at the home census tracts of visitors. To do so, we focus only on amenities with at least 10
observed visitors in the focal month that helps us avoid meaningless vales of the indicator. Table 2
presents simple OLS models to illustrate the relationship between the socio-economic diversity of
visitors and components of amenity complexity at the level of amenities in 2020 January. Model
(1) suggests that even after controlling for the total number of POIs in the respective amenity cate-
gory around Budapest and the number of observed visitors in the focal month to the amenity, the
complexity of the amenity category still has a positive and significant relationship with the socio-
economic diversity of visitors. The negative and significant coefficient of the ubiquity of amenity
category in Model (2) suggests that rare amenities are visited by more diverse groups of people.
This result is consistent with the findings of Moro et al. (2021). The positive and slightly significant
coefficient on the average diversity of amenities in Model (3) indicates that amenity categories that
mostly appear in diverse neighborhoods attract visitors with different socio-economic status.

Coefficient of variation
(1) (2) (3) (4)

Complexity of amenity 0.110⇤⇤⇤
(0.015)

Ubiquity of amenity �0.112⇤⇤⇤
(0.018)

Avg diversity of amenity 0.061⇤⇤
(0.026)

Distance from center (log) �0.110⇤⇤⇤
(0.007)

Nr POIs in category (log) 0.001 0.029⇤⇤⇤ 0.001 0.00000
(0.008) (0.010) (0.010) (0.007)

Nr visitors (log) 0.073⇤⇤⇤ 0.074⇤⇤⇤ 0.082⇤⇤⇤ 0.039⇤⇤⇤
(0.010) (0.010) (0.010) (0.010)

Constant 0.223⇤⇤⇤ 0.241⇤⇤⇤ 0.249⇤⇤⇤ 0.382⇤⇤⇤
(0.030) (0.030) (0.039) (0.027)

Observations 2,226 2,226 2,226 2,226
R2 0.056 0.051 0.037 0.124
Adjusted R2 0.055 0.049 0.035 0.123
Note:⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 2: Controlled correlations between the socio-economic diversity of visitors and the com-
plexity of amenities

To measure the influence of central location on the socio-economic diversity of visitors to
amenities, we test distance from center, measured as the overhead distance between the amenity
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Figure 8: Univariate relationship and long time connection between our key variables and the socio-
economic diversity of visitors at the level of amenities. (A) Relationship between complexity of ameni-
ties and the socio-economic diversity of visitors measured by the coefficient of variation of the real estate
prices at the home locations. (B) Relationship between average amenity diversity and the socio-economic
diversity of visitors on a scatter plot with regression line. (C) Relationship between amenity ubiquity and
the socio-economic diversity of visitors on a scatter plot with regression line. (D) Relationship between
distance from city center and the socio-economic diversity of visitors on a scatter plot with regression line.
All scatter plots reflect only the observations from January 2020. (E) Regression coefficient of amenity com-
plexity estimated for 24 months by the model presented in Table 1. Light colors indicate insignificant coef-
ficients. (F) Regression coefficient of distance from center estimated for 24 months by the model presented
in Table 1. Light colors indicate insignificant coefficients.
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and the center Budapest (see section S5 of the Supplementary information for more details) in the
same model setting. The negative and significant coefficient in Model (4) suggests that the further
away amenities are from the center, the less diverse their visitors are in terms of socio-economic
status. The R2 values of the different models indicate that distance from the center of Budapest has
the highest explanatory power on the socio-economic diversity of visitors. As a robustness check,
we use the Gini coefficient and the Theil index to capture the socio-economic diversity of visitors
and we get the same results. Related regressions can be found in section S7 of the Supplementary
information.

Figure 8A-D illustrates the direct relationship between the four key explanatory variables and
the coefficient of variation at the level of amenities on scatter plots with univariate regression
lines. The figures suggest similar results to Table 2. Figure 8E presents the coefficient of amenity
complexity estimated for the available 24 months by the same model presented in Table 2. Lighter
colors on Figure 8E indicate insignificant estimates. The figure suggests that the complexity of
amenities has a positive and significant relationship with the socio-economic diversity of visitors
with the exception of 3 months in 2019. Figure 8F illustrates a stable negative and significant
relationship between distance from center and the socio-economic diversity of visitors to amenities
with the exception of 2 months in 2019. Despite the COVID-19 related restriction in 2020, our
estimates on Figure 8E and F proved to be stable.

5 Discussion

In this work we bring the ideas behind economic complexity to the urban problems of experienced
segregation and social mixing. We measure amenity complexity by utilizing the spatial distribu-
tion of point of interests (POIs) inside a city. Then, we combine the information on the complexity
of amenities with fine-grained mobility data to illustrate the relationship between amenity com-
plex and visitor attraction. Focusing on the urban neighborhoods of Budapest, Hungary, we find
that neighborhoods populated with a more complex amenity mix attract a bigger diversity of socio-
economic groups. Applying the same logic to actual amenities inside Budapest, we also show that
POIs of more complex amenity categories are visited by larger diversities of strata. However,
components of amenity complexity, such as amenity diversity and amenity ubiquity, are only con-
nected to the socio-economic diversity of visitors at the level of amenities and do not correlate with
socio-economic mixing at the level of neighborhoods.

Considering centrality inside the monocentric city of Budapest, we find that distance of loca-
tions from the center of the city is strongly connected to their ability to attract socio-economically
diverse visitors. While amenity complexity seems to correlate with visitation patterns, central lo-
cation turned out to be a more influential factor for socio-economic mixing. Our empirical work
illustrates that diversity and ubiquity of amenities do not have a strong connection to urban cen-
trality, however, amenity complexity and distance from center are strongly correlated in case of the
unequally distributed city of Budapest.
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The general contribution of our paper is that we combine economic complexity concepts with
urban mobility research. Constructing the measures of amenity complexity allows us to systemat-
ically test the contribution of certain amenity categories to socio-economic mixing in cities. More-
over, we contribute to the line of research on segregation patterns inside cities by illustrating in a
direct fashion based on fine-grained mobility data that centrality of urban locations largely influ-
ence socio-economic mixing.

Our empirical work has several limitations, but offers promising future research directions.
The study only focuses on the city of Budapest. Budapest is the only large city in Hungary and it
clearly has a monocentric structure. Therefore, our findings are limited to this specific context and
similar empirical works in cities with different size, geography and urban structure are necessary
to assess the generality of our conclusions.

We construct our amenity complexity measures by mapping the distribution of POIs across
amenity categories and urban neighborhoods in Budapest. We believe that the level of neighbor-
hoods is the appropriate spatial scale to construct amenity complexity metrics for two reasons.
First, the size of the applied spatial units can influence the nestedness of the location-amenity ma-
trix used to construct complexity indexes. Co-occurrence of POIs in different amenity categories
are less likely in case we consider smaller geographical areas. Neighborhoods are proved to be
large enough to produce intuitive results. Second, neighborhoods are very important spatial units
of urban life. They are argued to be the environment that can influence social capital accumulation
and social mobility (Chetty et al. 2022; Chetty, Hendren, and Katz 2016). Moreover, they have
clear administrative boarders and people can identify with them, which makes the interpretation
of amenity complexity results more appealing. However, alternative spatial scales are necessary
to be tested in the future.

In our empirical exercise, we adopted the most commonly used economic complexity indicator
to amenities and neighborhoods. However, several modifications have been suggested to improve
economic complexity measurement (Tacchella et al. 2012; Mealy, Farmer, and Teytelboym 2019)
and the adoption of these methods to intra-urban scale is an apparent future research direction.
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Supplementary information

S1 Mobility data preparation

Our GPS based mobility data is provided by a data aggregator company that collects and combines
anonymous location data from users’ smartphone applications. The sample we use for our analysis
is an unbalanced panel of GPS pings from 5.2 million devices in Hungary between 2019 June and
2021 May. Our raw data consists of a device identifier, a time stamp, a latitude, and a longitude
coordinate, where GPS pings occur. Pings are logged in case an application on a device requests
location information. Sometimes this is the result of an active behavior such as using a navigation
application or requesting local weather information. In other cases, pings could be the result of
an application requesting information while running in the background. As a consequence, pings
occur at irregular intervals. To identify visitation patterns such as home, work or third place visits
to urban locations, we transform and filter our raw GPS trajectory data in several steps. We detail
these steps in the following.

As the data contains some pings attributed to the same device that indicate unreasonable be-
havior, we start by iteratively removing all ping pairs that signals a movement over 300 kilometers
per hour speed. Additionally, we discard all devices that have fewer than 20 pings remaining after
this initial speed-based filter. These two steps reduce the total ping count from 3.18 billion to 3.13
billion and the total unique device count from 5.2 million to 1.88 million.

To focus on locations where devices stopped for some time, we run the Infostop stop detection
algorithm (Aslak and Alessandretti 2020). In short, it classifies GPS pings to trips or stays and
clusters stationary points into stops in an effective way. We apply the algorithm with the following
parameter set. r1, the maximum roaming distance allowed for two pings within the same stay is
set to 370 meters. r2, the typical distance between two stays in the same destination is set to 140
meters. tmin, the minimum duration of a stay is set to 270 seconds, while tmax, the maximum
time difference between two consecutive pings to be considered within the same stay is set to 7200
seconds. The minimum number of GPS pings required for stationary points is set to 2.

The parameters are calibrated using the Google location history data of 7 consenting individu-
als from Budapest, Hungary. We ran our stop detection algorithm on the sample trajectories with
a wide range of parameters. We compared the results of the stop detection process to the personal,
anecdotal experiences and to the semantic stop detection extracted from Google accounts. This
experiment confirmed that the stop detection algorithm and the parameters produce a reasonable
set of trips, stays, and destinations. Moreover, the subsequent home and work detection process
built on it produced accurate results for our small sample.

Using the output of the stop detection process, we further filter the data to devices that have
at least 2 unique destinations with over 4 different stays in each. This reduces the total stop count
from 100 million to about 80 million, and the unique device count from 1.75 million to about
240.000. However, even in this final form, over 2.1 billion pings are used from the original 3.18
billion. Our empirical exercise in the end only uses information for each month from devices with
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identified home, work and at least a single visited third place inside Budapest.

S2 Socio-economic status from census tract level real estate prices

We infer on the socio-economic status of individuals living in Budapest by connecting their iden-
tified home location to residential real estate prices at the census tract level. Approximating socio-
economic status through real estate prices has several benefits in comparison to the prevalent so-
lution of using household income statistics of urban locations. First, real estate prices are by def-
inition connected to places, while it is harder to connect income to locations. Second, real estate
statistics in the census are comprehensive, while income information only reflects on the status of
active employees.

The Hungarian Central Statistical Office collects data on all residential real estate sales contracts
and derives information on transaction prices for the entire country. As not every real estate is on
the market and observed contracts sometimes suffer from missing information on the parameters
of given properties, direct measurement on lower geographical level is difficult. By utilizing the
fact that real estate prices tend to follow a strong multi-level hierarchy as location (and especially
neighborhoods in Budapest) explains much of the price differences, we train a multi-level random
slope regression model on the observed transaction prices (Chi et al. 2021; Snijders and Bosker
2011). To do so, we use real estate transaction contracts between 2013 and 2019. We create a
pooled setting by correcting prices through the city level house price index published yearly by
the National Bank of Hungary. Our model can be written as:

hi,j = �0,j + �1,jsi,j + "i,j

�0,j = �0 + n0,j

�1,j = �1 + n1,j

(7)

Here hi,j is the logarithm of the individual price of real estate i in neighborhood j. �0,j represents
how much the estimated mean house price differs by neighborhoods. Estimated mean neighbor-
hood prices are decomposed to �0, the city level mean, and n0,j , the neighborhood deviation from
this value. To be able to capture differences within neighborhoods, we apply the individual level
parameter si,j that refers to the size (floor area) of real estate i in neighborhood j. Since the effect
of floor area can vary between neighborhoods, we train a random slope model. �1,j represents the
effect of floor area in neighborhood j. �1,j is decomposed to a city level slope �1, and the deviation
of neighborhood slopes around this value n1,j .

Utilizing this model, we predict prices for every real estate captured by the last Hungarian
census in 2010. By taking the mean of the predicted real estate prices at the census tract level,
we get a highly granular socio-economic status map for the entire city of Budapest. Figure 9A
illustrates the predicted prices aggregated to the census tract level on the map of Budapest, while
Figure 9B shows the distribution of predicted real estate prices.
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Figure 9: Predicted real estate prices at the census tract level around Budapest (A) and the distribution of
real estate prices aggregated to the census tract level in Budapest (B)
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S3 Urban neighborhoods of Budapest, Hungary

We use urban neighborhoods as geographic units to construct our amenity complexity measures.
Budapest consists of 207 urban neighborhoods and they are in between districts and census tracts
in terms of area and population. The unequal size distribution of urban neighborhoods are illus-
trated in Figure 10 and Figure 11. The correlation between population of urban neighborhoods and
the number of census tracts per urban neighborhoods is strong as Pearson’s R is 0.979. Further de-
tails about neighborhoods can be found at the website of Hungarian Central Statistical Office 2022.

Figure 10: Population of urban neighborhoods based on the census of 2010 on the map of Budapest (A)
and as a distribution plot (B).

Figure 11: Number of census tracts per urban neighborhood based on the census of 2010 on the map of
Budapest (A) and as a distribution plot(B).
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S4 Amenity complexity rankings

Ranking of all amenity categories (Figure 12) and all neighborhoods by their amenity complexity
values (Figure 13).

Figure 12: Amenity categories ranked by their amenity complexity value. Categories are colored by their
ubiquity across neighborhoods. Complexity and ubiquity values are normalized to 0-1 scale for visualiza-
tion purposes.
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Figure 13: Neighborhoods of Budapest ranked by their amenity complexity value. Neighborhoods are
colored by the diversity of their amenities. Complexity and diversity values are normalized to 0-1 scale for
visualization purposes.
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S5 Center of Budapest, Hungary

We define the center of Budapest on a functional basis as Deák Ferenc tér. This square is the hotspot
of public transportation in the heart of the inner city. Figure 14 shows the location of the selected
central square. We tested several alternatives for city center such as Landmark zero sculpture that
serves as the transportation center of the city or the Hungarian parliament building and our results
remain the same. Figure 14 illustrates the overhead distance distribution for neighborhoods and
amenities in our sample to Deák Ferenc tér.

Figure 14: The location of Deák Ferenc tér, the center point.

Figure 15: Distance distribution for neighborhoods (A) and amenities (B) to the center of Deák Ferenc tér.
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S6 Dominant amenity categories of H3 hexagons

The second part of our empirical exercise (section 4.2 Diversity of visitors to complex amenities)
connects visitors to actual amenities. This is done by mapping each point of interest (POI) from the
Google Places API to a size 10 H3 hexagons (Uber Technologies, Inc. 2022). These hexagons are on
average 15.000 m2 area, which is close to the buffer area of a point with a 70 meter radius. As we
use the amenity complexity values calculated for amenity categories (see Equation (6) in the main
text) to explain the diversity of visitors to size 10 H3 hexagons, we need to assign a single amenity
category to each hexagon with POIs. Figure 16 illustrates that most hexagons only have amenities
in a single amenity category, however, hexagons at dense, central locations often contain multiple
POIs from different categories.

Figure 16: Number of different amenity categories per size 10 H3 hexagons on the map of Budapest (A)
and on the map of the inner city (B). Distribution of different amenity categories per hexagons (C). The
colorbar applies for all subplots.

We assign a dominant amenity category for each hexagon based on the local frequency of POIs
in amenity categories. Figure 17 visualizes our dominant category selection process. 35.15% of
the hexagons have ambiguous amenity category dominance and in these cases we simply choose
the first category listed. Table 3 illustrates in comparison to Table 2 of the main text that our key
findings are the same in case we focus only on amenities in H3 hexagons with a single amenity
category or in case we only consider amenities in H3 hexagons with an unambiguously dominant
amenity category (Table 4).
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Figure 17: Illustration of the dominant amenity category selection. Different POIs over the hexagons (A)
and the determined hexagon category (b).

Coefficient of variation
(1) (2) (3) (4)

Complexity of amenity 0.163⇤⇤⇤
(0.061)

Ubiquity of amenity �0.239⇤⇤
(0.094)

Avg diversity of amenity 0.115
(0.159)

Distance from center (log) �0.170⇤⇤⇤
(0.050)

Nr POIs in category (log) �0.037 0.061 0.007 �0.000
(0.031) (0.047) (0.058) (0.030)

Nr visitors (log) 0.076 0.081 0.059 0.100
(0.070) (0.070) (0.073) (0.069)

Constant 0.296⇤⇤ 0.168 0.208 0.403⇤⇤⇤
(0.133) (0.149) (0.225) (0.131)

Observations 107 107 107 107
R2 0.079 0.074 0.021 0.117
Adjusted R2 0.052 0.047 �0.007 0.091
Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 3: Controlled correlations between the diversity of visitors and the complexity of amenities
in case we only consider H3 hexagons with a single amenity category
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Coefficient of variation
(1) (2) (3) (4)

Complexity of amenity 0.115⇤⇤⇤
(0.018)

Ubiquity of amenity �0.126⇤⇤⇤
(0.022)

Avg diversity of amenity 0.083⇤⇤⇤
(0.032)

Distance from center (log) �0.110⇤⇤⇤
(0.008)

Nr POIs in category (log) �0.002 0.027⇤⇤ 0.001 �0.006
(0.009) (0.012) (0.013) (0.008)

Nr visitors (log) 0.073⇤⇤⇤ 0.072⇤⇤⇤ 0.083⇤⇤⇤ 0.038⇤⇤⇤
(0.012) (0.012) (0.012) (0.012)

Constant 0.233⇤⇤⇤ 0.258⇤⇤⇤ 0.243⇤⇤⇤ 0.404⇤⇤⇤
(0.036) (0.035) (0.048) (0.031)

Observations 1,477 1,477 1,477 1,477
R2 0.068 0.063 0.045 0.140
Adjusted R2 0.066 0.061 0.044 0.138
Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 4: Controlled correlations between the diversity of visitors and the complexity of amenities
in case we only consider H3 hexagons with an unambiguously dominant amenity category
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S7 Alternative measures on the diversity of visitors to neighborhoods

and amenities

Table 5 supports the findings presented in Table 1 of the main text. It uses the same model setting to
illustrate the relationship between the diversity of visitors to neighborhoods, amenity complexity
and distance from the center of the city, but applies different measurements of the dependent
variable. Besides the coefficient of variation, the Gini index and the Theil index are used to measure
the diversity of visitors and all model version suggest similar connections. Table 6 supplements
the findings of Table 2 in the main text in a similar fashion at the level of amenities.

Coeff var Gini Theil Coeff var Gini Theil
(1) (2) (3) (4) (5) (6)

Amenity complexity 0.126⇤⇤⇤ 0.106⇤⇤⇤ 0.059⇤⇤⇤
(0.036) (0.018) (0.012)

Distance from center (log) �0.139⇤⇤⇤ �0.084⇤⇤⇤ �0.051⇤⇤⇤
(0.023) (0.012) (0.008)

Population (log) �0.089⇤⇤⇤ �0.034⇤⇤⇤ �0.023⇤⇤⇤ �0.044⇤ �0.010 �0.009
(0.024) (0.012) (0.008) (0.024) (0.012) (0.008)

Nr visitors (log) 0.085⇤⇤⇤ 0.029⇤⇤ 0.021⇤⇤ 0.053⇤ 0.015 0.011
(0.029) (0.014) (0.010) (0.028) (0.014) (0.009)

Nr POIs (log) 0.004 �0.002 �0.003 �0.016 �0.014 �0.011
(0.024) (0.012) (0.008) (0.023) (0.011) (0.008)

Constant 0.468⇤⇤⇤ 0.212⇤⇤⇤ 0.090⇤⇤⇤ 0.590⇤⇤⇤ 0.307⇤⇤⇤ 0.144⇤⇤⇤
(0.066) (0.033) (0.022) (0.057) (0.029) (0.019)

Observations 185 185 185 185 185 185
R2 0.197 0.241 0.200 0.288 0.300 0.269
Adjusted R2 0.179 0.224 0.182 0.272 0.284 0.253
Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 5: Controlled correlations between different measures on the diversity of visitors and the
amenity complexity of neighborhoods
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Coeff var Gini Theil Coeff var Gini Theil
(1) (2) (3) (4) (5) (6)

Complexity of amenity 0.110⇤⇤⇤ 0.055⇤⇤⇤ 0.035⇤⇤⇤
(0.015) (0.007) (0.005)

Distance from center (log) �0.110⇤⇤⇤ �0.056⇤⇤⇤ �0.033⇤⇤⇤
(0.007) (0.003) (0.002)

Nr POIs in category (log) 0.001 �0.003 0.00001 0.00000 �0.003 �0.001
(0.008) (0.003) (0.002) (0.007) (0.003) (0.002)

Nr visitors (log) 0.073⇤⇤⇤ 0.032⇤⇤⇤ 0.016⇤⇤⇤ 0.039⇤⇤⇤ 0.014⇤⇤⇤ 0.006⇤
(0.010) (0.004) (0.003) (0.010) (0.004) (0.003)

Constant 0.223⇤⇤⇤ 0.132⇤⇤⇤ 0.031⇤⇤⇤ 0.382⇤⇤⇤ 0.212⇤⇤⇤ 0.081⇤⇤⇤
(0.030) (0.014) (0.010) (0.027) (0.012) (0.009)

Observations 2,226 2,226 2,226 2,226 2,226 2,226
R2 0.056 0.061 0.042 0.124 0.147 0.100
Adjusted R2 0.055 0.060 0.040 0.123 0.146 0.099

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 6: Controlled correlations between different measures on the diversity of visitors and the
complexity of amenities
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S8 Diversity of non-local visitors to neighborhoods

Table 7 supports the findings presented in Table 1 of the main text, but the models are based only on
non-local visits. This means that we excluded all third places visits inside the home neighborhoods
of devices. Results are very similar to our main models.

Coefficient of variation (non-local visitors only)
(1) (2) (3) (4)

Amenity complexity 0.126⇤⇤⇤
(0.036)

Amenity diversity �0.079
(0.084)

Average amenity ubiquity 0.057
(0.052)

Distance from center (log) �0.130⇤⇤⇤
(0.023)

Population (log) �0.079⇤⇤⇤ �0.093⇤⇤⇤ �0.105⇤⇤⇤ �0.037
(0.024) (0.024) (0.025) (0.025)

Nr visitors (log) 0.068⇤⇤ 0.095⇤⇤⇤ 0.098⇤⇤⇤ 0.040
(0.029) (0.029) (0.030) (0.028)

Nr POIs (log) 0.015 0.037 0.027 �0.003
(0.024) (0.036) (0.028) (0.023)

Constant 0.448⇤⇤⇤ 0.505⇤⇤⇤ 0.504⇤⇤⇤ 0.567⇤⇤⇤
(0.066) (0.072) (0.070) (0.057)

Observations 185 185 185 185
R2 0.184 0.134 0.135 0.258
Adjusted R2 0.166 0.114 0.116 0.242
Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 7: Controlled correlations between the diversity of non-local visitors and the amenity com-
plexity of neighborhoods
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