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Abstract	

What	would	you	do	if	you	were	asked	to	“add”	knowledge?*	Would	you	say	that	“one	

plus	one	knowledge”	 is	 two	“knowledges”?	Less	 than	that?	More?	Or	something	 in	

between?	Adding	knowledge	sounds	strange,	but	it	brings	to	the	forefront	questions	

that	are	as	fundamental	as	they	are	eclectic.	These	are	questions	about	the	nature	of	

knowledge	 and	 about	 the	 use	 of	 mathematics	 to	 model	 reality.	 In	 this	 chapter,	 I	

explore	 the	mathematics	 of	 adding	 knowledge	 starting	 from	what	 I	 believe	 is	 an	

overlooked	but	key	observation:	the	idea	that	knowledge	is	non-fungible.	
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*Here	I	am	using	knowledge	as	a	shorthand	for	productive	knowledge,	which	is	the	knowledge	that	is	
expressed	in	a	productive	activity,	from	the	export	of	a	product,	to	the	creation	of	a	cultural	good.	
This	is	close	to	the	idea	of	procedural	knowledge,	but	it	also	involves	collective	forms	of	procedural	
knowledge	(e.g.	the	ability	of	a	company	to	build	a	product	is	not	identical	to	that	of	craftsman	to	
produce	a	craft).	Yet,	the	non-fungibility	of	knowledge	also	applies	to	other	forms	of	knowledge,	such	
as	knowledge	of	facts—descriptive	knowledge—or	knowledge	of	things—acquaintance	knowledge.	
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A	brief	history	of	knowledge	

	

During	the	XXth	century	our	quantitative	understanding	of	knowledge	grew	thanks	

to	important	contributions	from	psychologists,	sociologists,	engineers,	and	

economists.		

	

Leon	Thurstone—a	mechanical	engineer	turned	psychologist—kickstarted	the	

quantitative	understanding	of	knowledge	at	the	dawn	of	the	century	by	using	

learning	curves	to	model	the	growth	of	knowledge	in	a	typing	class	involving	dozens	

of	students	(1).	Thurstone’s	work	was	followed	a	few	decades	later	by	Theodore	

Wright,	an	engineer	who	in	the	1930s	mapped	the	learning	curves	describing	cost	

reductions	in	aircraft	manufacturing	(2).	Eventually,	Thurstone	and	Wright’s	ideas	

made	it	into	economics,	where	scholars	such	as	Leonard	Rapping	used	them	to	

study	differences	in	productivity	across	shipyards.	Armed	with	econometric	models,	

Rapping	was	able	to	show	that	some	increases	in	productivity	were	not	due	to	scale	

or	technology,	but	due	to	learning	within	teams	(3).		

	

By	the	end	of	the	20th	century	knowledge	was	no	longer	a	vague	idea,	but	a	

quantifiable	concept	that	had	taken	center	stage	in	models	of	endogenous	economic	

growth	(4–7)	and	in	empirical	studies	(8,	9).	

	

But	the	quantitative	study	of	knowledge	was	made	possible	by	some	deep	

qualitative	observations.	From	a	modelling	perspective,	endogenous	growth	models	

(e.g.	(4))	are	not	particularly	complex.	They	involve	a	few	differential	equations.	But	

to	motivate	these	models,	economists	had	to	embrace	some	key	concepts,	such	as	

the	idea	that	knowledge	was	a	non-rival	good.	This	meant	that	unlike	a	capital	good,	

such	as	a	hammer,	knowledge	could	be	consumed	simultaneously	by	multiple	

people.	It	could	be	copied	without	being	taken.	The	consequence	of	this	property	of	

knowledge	was	profound.	It	meant	that	knowledge	could	grow	in	per-capita	terms	

in	ways	that	physical	capital	could	not.	Knowledge	was	the	essence	of	economic	

growth.		
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Today,	scholars	agree	on	a	few	characteristics	of	knowledge.	Scholars	agree	that	

knowledge	is	non-rival,	that	it	can	be	tacit	or	explicit	(10,	11),	and	that	organizations	

and	regions	often	differ	in	their	capacity	to	absorb	it	(Cohen	and	Levinthal’s	idea	of	

absorptive	capacity	(12)).	But	there	are	also	some	agreed	upon	puzzles,	such	as	the	

fact	that	knowledge	has	difficulties	diffusing,	especially	for	more	complex	economic	

activities	(8,	9,	13–15).	This	has	motivated	scholars	to	study	other	characteristics	of	

knowledge,	such	as	its	complexity	(13,	16,	17)	and	the	idea	that	it	is	non-fungible†.	In	

this	chapter,	I	would	like	to	focus	on	these	two	ideas,	with	a	particular	focus	on	the	

non-fungibility	of	knowledge.	

	

Knowledge	is	non-fungible	

	

Consider	swapping	a	surgeon	with	a	pianist	in	the	middle	of	an	active	surgery.	Now	

consider	switching	the	pianist	with	a	surgeon	in	the	middle	of	a	piano	concert.	Both	

substitutions	will	lead	to	failure,	not	because	surgeons	are	more	or	less	skilled	than	

pianists,	but	because	the	knowledge	they	have	is	highly	specific.	Their	knowledge	is	

not	interchangeable,	or	in	technical	terms,	it	is	non-fungible.‡		

	

The	non-fungibility	of	knowledge	is	the	idea	that	you	cannot	simply	exchange	

knowledge	for	knowledge.	You	cannot	change	people	with	different	skills	(pianist	

with	a	surgeon)	or	documents	with	different	content	(music	sheet	and	a	patient’s	

hospital	records).	Of	course,	this	is	something	that	is	especially	true	among	activities	

that	are	widely	different	(pianists	and	surgeons),	and	less	so	among	related	or	

equivalent	activities	(pianists	and	pianists).	Still,	even	among	“identical”	activities	

fungibility	may	be	limited	if,	in	the	case	of	the	piano,	the	substitute	pianist	has	not	

	
†	While	the	idea	that	knowledge	is	non-fungible	is	not	commonly	discussed	in	these	exact	terms	in	
the	economics	literature,	it	is	present	implicitly	in	many	combinatorial	models	that	use	non-fungible	
elements	(letters	in	an	alphabet,	ingredients	in	a	recipe,	etc.).	For	example	(5,	18–22).	
‡	This	is	also	true	for	descriptive	forms	of	knowledge.	The	content	of	entries	in	an	encyclopedia	is	not	
interchangeable.	Going	back	to	our	doctor	and	pianist	analogy,	swapping	a	patient’s	hospital	chart	
with	a	music	sheet	also	brings	to	light	the	non-fungibility	of	descriptive	knowledge.	
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practiced	the	piece	of	music	being	played	by	the	first	one.	Knowledge	is	non-

fungible,	not	in	a	binary	sense,	but	in	a	continuum.	This	non-fungibility,	however,	

implies	that	you	cannot	simply	add	knowledge,	since	knowledge	is	not	a	thing,	but	a	

constellation	of	unique	“flavors,”	“letters,”	or	“categories.”	Like	characters	in	an	

alphabet	or	atoms	in	chemistry.	We	can	speak	of	knowledge	as	if	it	were	a	thing,	and	

we	can	even	aggregate	it	in	formal	models,	but	that	mathematical	convenience	will	

eventually	clash	with	the	empirical	reality	that	knowledge	is	not	a	thing,	but	an	

“alphabet.§”		

	

The	non-fungibility	of	knowledge	has	profound	conceptual	and	mathematical	

implications.	One	of	them	is	that	knowledge	cannot	be	simply	aggregated.	A	surgeon	

plus	a	pianist	are	not	equal	to	two	surgeons	or	two	pianists.	But	a	pianist	plus	a	

guitarist	are	the	beginning	of	a	band.		

	

Another	implication	of	the	non-fungibility	of	knowledge	is	that	it	can	help	explain	

constraints	to	knowledge	diffusion.	Of	course,	the	tacit	nature	of	knowledge	can	also	

help	explain	difficulties	in	knowledge	diffusion,	but	it	is	not	enough.	In	a	world	

where	knowledge	is	non-fungible,	and	some	pieces	of	knowledge	are	

complementary	to	others,	accumulating	knowledge	involves	accumulating	letters	

from	an	alphabet	or	pieces	from	a	puzzle.	Missing	a	few	pieces	can	be	enough	to	ruin	

the	transfer	of	knowledge	between	two	locations,	meaning	that	the	non-fungibility	

of	knowledge,	and	the	combinatorial	complexity	it	implies,	are	characteristics	that	

help	explain	the	limited	diffusion	of	complex	knowledge.	

	

	
§	Knowledge	is	not	only	unique	and	non-fungible,	but	it	can	exist	at	multiple	scales.	It	is	available	in	
people,	teams,	organizations,	cities,	and	countries.	These	agglomerations,	however	will	tend	to	
involve	complementary	forms	of	expertise,	so	teams—or	at	least	the	teams	that	survive	and	we	get	to	
observe—will	accumulate	letters	that	are	complementary.	Guitar	players	will	look	for	singers	and	
drummers,	and	actors	for	filmmakers	and	screenplay	writers.	Knowledge	may	be	composed	of	
“letters”	or	“atoms,”	but	what	we	observe	in	the	world	is	a	complicated	chemistry	or	“paragraphs”	
and	“sentences.”	
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The	bottom	line	is	that	to	study	knowledge	we	need	to	look	beyond	our	traditional	

mathematical	tools.	To	explore	its	non-fungible	and	complex	nature,	we	need	to	use	

ideas	from	matrix	algebra	that	go	beyond	traditional	forms	of	aggregation.	These	are	

techniques	used	in	theoretical	physics,	machine	learning,	and	biology,	in	problems	

that	require	preserving	the	identity	of	the	elements	involved	(e.g.	problems	

involving	genes,	proteins,	books,	etc.).	These	are	tools	developed	to	understand	

systems	of	organized	complexity	(23),	which	are	defined	as	systems	were	the	

identity	of	the	elements	involved	and	their	patterns	of	interaction	cannot	be	

ignored.		

	

If	Knowledge	was	Fungible	

	

Let’s	take	a	step	back	and	consider	a	world	of	fungible	knowledge.	How	would	it	

look	like?		

	

In	that	world,	knowledge	would	behave	as	a	single	factor.	In	the	alphabet	analogy,	

this	would	be	a	world	in	which	the	only	thing	that	matters	is	the	number	of	letters	

involved	in	a	word.	In	that	“world,”	the	words	dog,	bet,	and	log	are	the	same,	since	

they	all	require	three	letters.	

	

In	an	economy	where	knowledge	is	fungible	patterns	of	specialization	are	simple.	

They	can	be	described	as	segments	in	a	line.	In	a	world	of	fungible	knowledge	

predicting	the	development	of	new	activities	is	also	easy,	since	it	involves	entering	

the	activities	that	are	next	in	line.	Countries,	cities,	and	regions	move	to	products	

that	require	one	more	letter	and	exit	few-letter	products.	In	that	world,	the	space	of	

similar	products,	or	“product	space”	(24),	is	a	chain	of	beads	connecting	one	letter	

words,	to	two	letter	words,	to	three	letter	words,	and	so	on	(Figure	1).	
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Figure	1.	Networks	of	similar	activities	in	world	of	fungible	and	non-fungible	knowledge.	
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But	since	knowledge	is	non-fungible,	economies	evolve	through	circuitous	path	

dependent	dynamics.	They	do	not	simply	move	from	three	to	four	letter	words,	but	

from	three	to	four	letter	words	that	reuse	some	of	the	letters	they	have	(Figure	1).	

In	a	world	where	knowledge	is	non-fungible,	economies	do	not	jump	from	log	to	

camp,	but	from	log	to	goal.	The	result	is	an	intricate	structure,	in	which	patterns	of	

development	are	constrained	by	the	cognitive	relatedness	of	activities,	and	where	

two	“equally”	knowledgeable	economies	may	face	diverging	paths.	The	intricate	

structures	observed	in	networks	of	similar	products,	industries,	technologies,	and	

occupations,	are	a	smoking	gun	evidence	of	this	idea.	They	are	also	the	tip	of	the	

iceberg	inviting	us	to	consider	the	use	of	matrix	algebra	methods	to	answer	our	

original	question:	how	should	we	add	knowledge?	

	

Eigenvectors	all	the	way	to	the	bottom	

	

Networks	of	similar	activities	help	us	incorporate	the	non-fungibility	of	knowledge	

by	providing	a	means	to	construct	indicators	of	the	availability	of	knowledge	that	

are	specific	to	pairs	of	locations	and	activities.	This	is	the	idea	behind	the	relatedness	

density	indicator	introduced	in	2007	(24)	and	used	extensively	since	in	the	

economic	geography	literature	(15,	25–30).		

	

But	these	networks	also	have	clusters	of	similar	activities	that	represent	overlaps	in	

knowledge,	such	as	the	“green”	garments	cluster	on	the	right-hand	side	of	the	

product	space	(Figure	1).	This	cluster	structure	tells	us	that,	once	we	know	that	a	

country	is	able	to	produce	a	few	types	of	garment	(e.g.	shirts,	coats,	blouses,	etc.),	we	

can	infer	that	they	have	some	of	the	knowledge	needed	to	produce	other	types	of	

garments.	So,	the	information	about	the	availability	of	knowledge	provided	by	

different	products	in	this	cluster	is	relatively	redundant.	

	

This	means	that	these	networks,	which	can	be	also	represented	as	matrices,	can	be	

described	by	an	“alphabet”	that	is	smaller	than	the	number	of	activities	involved,	
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implying	that	the	use	of	dimensionality	reduction	techniques	on	matrices	

connecting	similar	activities	or	locations	is	a	way	to	measure	non-fungible	

knowledge.		

	

The	good	news	is	that	matrix	algebra	provides	a	solution	to	this	exact	problem,	

since	it	comes	with	its	own	way	to	create	lower	dimensional	representations	of	

matrices.	This	is	the	idea	of	eigenvectors,	a	core	principle	in	matrix	algebra	that	

helps	uncover	the	natural	alphabet	of	each	matrix.	

	

So,	what	are	eigenvectors?	How	do	they	work?	And	how	can	we	apply	them	to	

matrices	summarizing	the	geography	of	economic	activities?		

	

Technically,	for	a	square	matrix	M,	the	eigenvectors	!"⃗ 	are	the	vectors	that,	when	
multiplied	by	that	matrix	remain	the	same	except	for	a	constant	$.	That	is,	they	are	
the	solution	to:		

	

%&⃗ = 	$&⃗	
	

This	may	seem	trivial,	but	it	makes	eigenvectors	extremely	useful,	since	they	are	the	

key	to	enormously	simplifying	matrix	multiplication.	In	principle,	to	multiply	a	

matrix	%	with	a	column	vector	)⃗	(%)⃗),	we	must	take	the	internal	product	of	each	
row	in	the	matrix	and	the	vector.	For	large	matrices,	this	can	quickly	grow	to	

thousands	of	operations.	But	if	we	write	that	vector	as	a	linear	combination	of	the	

eigenvectors	of	the	matrix	%	(as	)⃗ = *!&!"""⃗ +*"&""""⃗ + ⋯),	we	only	need	to	multiply	each	
one	of	these	eigenvectors	by	its	eigenvalue	($).	This	makes	matrix	multiplication	
trivial,	since	it	transforms	what	is	a	tedious	process	involving	a	larger	number	of	

operations	into	multiplying	vectors	by	a	constant	(%)⃗ = *!$!&!"""⃗ +*"$"&""""⃗ + ⋯).		
	

Eigenvectors	are	a	profound	concept	since	they	represent	the	natural	alphabet	of	a	

matrix.	An	alphabet	given	by	its	eigenvectors	&⃗	with	the	importance	of	each	given	by	
its	respective	eigenvalue	$.	
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Not	surprisingly,	eigenvectors	(and	eigenfunctions	more	generally)	are	key	concepts	

in	classical	and	modern	physics.	The	vibrations	of	a	string	in	a	guitar	are	written	in	

an	alphabet	given	by	the	discrete	solutions	to	the	wave	equation	(the	“eigenvectors”	

of	the	wave	equation).	The	frequencies	of	these	vibrations	are	the	eigenvalues.	

Similarly,	the	energy	levels	of	an	electron	in	an	atom	are	eigenvalues,	and	the	

orbitals,	eigenvectors.	In	modern	physics	it	is	eigenvectors	all	the	way	to	the	bottom.	

	

These	matrix	algebra	techniques	opened	a	key	epistemological	door	in	the	natural	

sciences.	A	door	to	a	world	in	which	nature	dictates	its	own	alphabet.	Before	these	

methods,	matter	was	believed	to	be	made	of	earth,	water,	wind,	and	fire.	But	

eigenvectors	and	eigenvalues	allowed	scientists	to	defy	these	assumptions	by	

providing	a	way	to	interrogate	nature	using	theories	that	did	not	assume	the	nature	

of	factors	a-priori,	but	could	learn	them	a-posteriori.	These	same	ideas,	however,	

can	also	be	applied	to	economic	geography,	since	they	are	general	enough	to	

discover	all	types	of	alphabets,	from	those	of	musical	notes	and	orbitals	to	those	of	

knowledge.	In	fact,	as	we	will	see,	this	intuition	is	what	lies	behind	recent	ideas	on	

how	to	add	non-fungible	knowledge	(31).	

	

How	should	we	add	knowledge?	

	

The	basic	intuition	we	need	to	add	knowledge	is	to	assume	that	the	activities	

present,	produced,	or	exported	from	a	location	carry	key	information	about	the	

knowledge	present	in	that	location.	Similarly,	the	locations	where	an	activity	is	

present	can	tell	us	about	the	knowledge	needed	to	perform	each	activity.	This	brings	

us	to	a	“circular	logic”	that,	as	we	will	see,	is	also	a	central	idea	when	it	comes	to	

eigenvectors.	In	simple	terms,	what	we	are	saying	is	that	cities	like	San	Francisco	

and	Boston	are	knowledge	intense	if	they	are	home	to	knowledge	intense	activities	

like	biotech	and	machine	learning.	In	turn,	activities	like	biotech	and	machine	

learning	are	likely	to	be	knowledge	intense	because	they	are	produced	in	cities	like	

Boston	or	San	Francisco.		
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Formally,	we	let	the	knowledge	K	of	a	location	c	(e.g.	country	or	city)	be	Kc	and	the	

knowledge	K	of	an	activity	p	(e.g.	product	or	industry)	be	Kp.	Also,	we	let	Mcp	be	a	

matrix	summarizing	the	activities	(p)	present	in	each	location	(c).	Following	this	

notation,	the	problem	of	“adding	knowledge”	is	that	of	solving	the	following	system	

of	equations:	

	

(i) The	knowledge	of	a	location	(Kc)	is	a	function	(f)	of	the	knowledge	

(Kp)	of	the	activities	present	in	it	(Mcp),	and		

(ii) The	knowledge	of	an	activity	(Kp)	is	a	function	(g)	of	the	knowledge	

(Kc)	of	the	places	were	that	activity	is	present	(Mcp).	

		

This	argument	is	equivalent	to	solving:	

	

	 -# = ./0#$, -$2,	
-$ = 3/0#$, -#2,	

(1)	
(2)	

	

Where	f	and	g	are	functions	to	be	determined.		

	

While	this	map	is	quite	general,	it	already	rules	out	some	key	measures,	such	as	

market	concentration	indexes	(e.g.	Shannon’s	information	entropy	or	the	

Herfindahl-Hirschman	index).	Measures	of	concentration	fail	to	couple	activities	and	

locations	(they	only	consider	shares	of	activities	across	locations,	but	treat	all	

activities	as	equal).	

	

Equations	(1)	and	(2)	can	be	transformed	into	two	self-consistent	equations	of	the	

form:	
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	 -# = . 40#$, 3/0#$, -#25 ,	

-$ = 3 40#$, ./0#$, -$25,	
(3)	

(4)	

	

Which,	for	simple	forms	of	f	and	g	can	be	reduced—or	approximated—by	matrix	

equations	of	the	form:	

	

	 06##%-#% =	$-# 	
06$$%-$% = $-$	

(5)	
(6)	

	

These	equations	should	look	familiar,	since	they	are	equations	for	the	eigenvalues	

and	eigenvectors	of	06##%	and	06$$%:	matrices	connecting	similar	locations	or	similar	
activities.	These	equations	imply	that	measures	of	knowledge	(K),	obtained	only	

form	assuming	that	knowledge	is	expressed	in	the	geography	of	activities,	can	be	

recovered	from	the	eigenvectors	of	these	square	matrices.	These	eigenvectors	are	

the	“alphabet”	of	the	matrix,	and	the	solution	to	our	original	problem.	These	

equations	also	imply	that	metrics	of	the	knowledge	intensity	of	economies,	or	of	the	

activities	present	in	them,	are	respectively,	the	eigenvectors	of	matrices	of	similarity	

among	economies	(e.g.	countries,	cities,	regions)	(0##7 )	or	activities	(e.g.	products)	

(0$$7 )	(24,	32).	This	last	point	is	also	key	to	satisfy	a	desirable	axiomatic	property	of	

a	measure	of	knowledge:	the	notion	that	economies	with	similar	productive	

structures	should	have	similar	values	in	that	measure.		

	

Now,	before	we	can	bring	the	theory	to	the	data,	we	need	to	do	one	more	thing:	

explore	the	basic	shapes	of	the	matrix	06##%.	Here	we	consider	two	illustrative	cases:	
extensive	and	intensive	knowledge.**	

	

	
**	In	principle	we	can	consider	many	more	forms,	such	as	forms	that	combine	
extensive	and	intensive	variables,	or	even	forms	with	reciprocals.	In	practice,	many	
of	these	forms	provide	very	similar	solutions.		
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Extensive	and	intensive	variables	are	a	key	concept	in	statistical	mechanics.	

Extensive	variables	are	those	that	scale	with	the	size	of	a	system.	Intensive	variables	

do	not.	Volume,	population,	and	GDP	are	extensive	variables.	Temperature,	

pressure,	and	GDP	per	capita	are	intensive	variables.		

	

Using	an	extensive	assumption	is	simple.	We	just	add	knowledge	across	activities,	

no	matter	if	they	overlap	or	not.	In	this	case	f	and	g	are	just	sums	and	the	system	to	

solve	becomes:		

	

-# =90#$-$
$

	

-$ =90#$-#
#

	

	

meaning	that	we	need	to	find	the	eigenvectors	of	the	matrix:		

	

06##% =90#$0#%$
$

,	

which	is	simply	M	times	its	transpose	(06##%	is	simply	the	number	of	activities	
common	to	two	economies).		

	

The	intensive	assumption	is	obtained	by	averaging	instead	of	adding.	A	property	of	

this	assumption	is	that	our	estimate	of	the	knowledge	available	in	a	location	grows	

only	when	an	activity	is	above	a	location’s	current	average.	If	we	define	diversity	

(0#)	as	the	number	of	activities	in	a	location	(0# = ∑ 0#$$ )	and	ubiquity	(0$)	as	

the	number	of	locations	where	an	activity	is	present	(0$ = ∑ 0#$# ),	then,	

	

-# =
1
0#

90#$-$
$

	

-$ =
1
0$

90#$-#
#

,	
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and	06##%	takes	the	form:	

06##% =
1
0#

90#$0#%$
0$$

	

	

Notice	that	for	the	intensive	case	06##%	is	a	stochastic	matrix,	meaning	that	each	row	
adds	up	to	one	(sum	over	c’	and	everything	cancels).	This	implies	that	the	first	

eigenvector	of	this	matrix	is	always	an	eigenvector	of	1s	and	the	second	eigenvector	

is	the	first	one	to	contain	a	non-negligible	variance.	As	we	will	see	in	the	next	

section,	this	is	a	key	feature	to	help	avoid	measures	of	knowledge	that	are	too	biased	

towards	the	size	or	diversity	of	an	economy.	In	both	cases,	we	can	estimate	the	

eigenvectors	by	solving:	

	

det	(06##! − $B) = 0,	
	

to	find	the	eigenvalue	$,	and	then	find	the	eigenvectors	by	solving††	
	

(06##! − $)- = 0.	
	

Now	that	we	have	a	worked-out	theory,	we	can	bring	the	data	to	the	model	to	

answer	our	original	question:	how	should	we	add	knowledge?	

	

Bringing	the	theory	to	the	data		

	

So	far,	we	have	talked	about	adding	knowledge	in	theory.	But	in	practice,	data	on	the	

geography	of	economic	activities	is	very	heterogenous.	This	brings	in	some	

challenges	that	require	us	to	work	on	the	data	before	we	can	apply	the	theory.	

	

	
††	Although	in	practice,	it	is	common	to	use	a	numerical	software	(e.g.	Matlab).	
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Consider	international	trade	data.	It	compares	countries	as	big	as	China,	with	more	

than	USD	2	trillion	in	exports,	with	Vanuatu,	a	pacific	island	with	less	than	USD	

200M	in	exports	(a	10,000x	difference).	A	similar	unevenness	in	the	size	of	the	units	

of	observation	is	observed	for	products	(e.g.	Crude	Oil	vs	Felt	Hats).	The	same	

observation	can	be	made	for	data	on	cities	and	for	activities	as	varied	as	

technologies,	industries,	and	occupations.	This	means	that	matrices	summarizing	

the	location	of	economic	activities	do	not	have	rows	and	columns	that	can	be	readily	

compared.	So	before	bringing	the	theory	to	the	data,	we	need	to	make	these	units	of	

observation	more	readily	comparable.	

	

This	can	be	achieved	through	a	sequence	of	normalizations	and	data	cleaning	

procedures.	First,	we	start	by	cutting	the	“left	tail”	of	the	observations	so	we	can	

consider	only	locations	and	activities	that	are	larger	than	a	certain	size	(33)	(e.g.	

exclude	small	nations	such	as	Tuvalu,	Vanuatu,	etc.).	Still,	the	remaining	units	of	

observation	can	be	highly	uneven	(e.g.	Uruguay	and	China),	so	there	are	additional	

steps	that	we	need	to	take	to	make	them	more	comparable.	

	

The	next	step	is	to	transform	these	matrices	into	matrices	of	specialization	by	

calculating	the	location	quotient	(LQ)	or	revealed	comparative	advantage	(RCA).	

This	means	to	simply	normalize	matrices	by	the	sum	of	their	rows	and	columns,	

which	in	a	probabilistic	interpretation,	is	to	take	the	ratio	between	the	observed	and	

expected	value.	For	a	matrix	of	output	Xcp	(e.g.	exports	by	country	and	product,	

patents	by	city	and	technology,	etc.)	we	estimate	the	specialization	matrix	Rcp	using:		

	

D#$ =
E#$E
E#E$

	

	

Where	once	again	muted	indexes	have	been	added	(e.g.	E# = ∑ E#$$ ).		

	

Rcp	provides	a	measure	of	specialization	that	is	more	readily	comparable	than	Xcp,	

but	it	still	has	some	problems.	On	the	one	hand,	values	of	Rcp>1	tell	us	that	a	location	
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produces	more	output	in	an	activity	than	what	is	expected	from	its	total	output	(Xc)	

and	the	output	on	that	activity	(Xp).	That	is	good.	But	on	the	other	hand,	Rcp	values	

can	be	very	large	for	small	countries	and	activities	(small	Xc	and	small	Xp	in	the	

denominator)	and	cannot	be	too	large	for	large	countries	and	activities	(large	Xc	and	

large	Xp	in	the	denominator).	So,	the	variance	of	Rcp	is	biased.	It	is	larger	for	smaller	

economies	and	activities.	This	means	that	the	values	in	the	matrix	R	are	still	not	

readily	comparable,	since	a	diversified	economy,	like	that	of	Germany,	will	rarely	

have	values	of	Rcp	larger	than	3,	whereas	smaller	economies,	like	that	of	Senegal,	can	

easily	get	values	in	the	100s	for	the	few	products	they	specialize	in.	To	mitigate	this	

bias,	we	use	one	additional	normalization.	We	transform	Rcp	into	a	binary	matrix,	

Mcp,	which	is	simply	equal	to	1	when	Rcp	is	larger	or	equal	to	one	and	zero	otherwise.	

		

Now	that	we	finally	have	a	matrix	with	units	of	observation	that	are	relatively	

comparable,	we	can	bring	the	theory	to	the	data.		

	

Figure	2	uses	trade	data	for	the	year	2020	to	compare	the	first	and	second	

eigenvectors	of	the	extensive	definition,	the	second	eigenvector	of	the	intensive	

definition	(known	as	the	Economic	Complexity	Index	or	ECI),	and	a	simple	measure	

of	diversity	(Mc).	Figure	3	does	the	same	using	data	on	payroll	by	industry	for	cities	

(MSAs)	in	the	United	States.	

	

We	can	easily	see	that	the	first	eigenvector	of	the	extensive	definition	doesn’t	do	

much	more	than	count	the	number	of	activities	connected	to	a	location.	It	is	highly	

correlated	with	diversity	(R2=96.6%).	This	is	a	problem	because	we	need	a	measure	

that	goes	beyond	a	simple	measure	of	size.	We	are	looking	for	a	measure	that	can	

tell	us	about	the	knowledge	in	an	economy	that	is	nevertheless	able	to	highlight	

small	yet	sophisticated	economies,	such	as	Finland,	Singapore,	and	Taiwan,	or	put	

the	economies	of	Boston	and	Silicon	Valley	above	those	of	larger	metro	areas.	This	is	

a	behavior	that	we	start	to	see	on	the	second	eigenvector	of	the	extensive	metric	

(which	is	perpendicular	to	the	first),	but	that	is	very	clear	on	the	second	eigenvector	

of	the	intensive	metric	(the	Economic	Complexity	Index	or	ECI).	Remember	that	the	
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first	eigenvector	of	the	intensive	metrics	is	a	vector	of	1s	by	construction,	so	it	is	

unimportant.	The	intensive	metric	(ECI)	is	built	on	a	matrix	that	forces	the	units	of	

observation	to	be	comparable	(a	stochastic	matrix	where	each	row	adds	up	to	one).	

This	means	the	rows	for	China	and	Uruguay,	or	those	for	Boston	and	Seymour	

Indiana,	“weigh”	the	same.	The	difference	captured	by	the	vector,	therefore,	must	be	

a	difference	in	how	that	weight	is	distributed	along	the	vector,	a	difference	in	

structure	rather	than	size.		
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Figure	2.	Comparison	between	eigenvectors	of	extensive	and	intensive	metrics	of	knowledge	

estimated	using	2020	international	trade	data	(from	BACI/OEC.world)	
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Figure	3.	Comparison	between	eigenvectors	of	extensive	and	intensive	metrics	of	knowledge	

estimated	using	2016	payroll	by	industry	and	MSA	data	from	the	US	County	Census	Business	

Patterns.	
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This	is	why	this	intensive	metric	provides	a	good	answer	for	our	original	question:	

“how	to	add	knowledge?”	In	a	system	where	units	of	observation	are	heterogenous,	

the	first	eigenvector	is	obvious,	it	is	just	a	measure	of	size.	It	is	the	second	

eigenvector	the	one	containing	the	non-trivial	part	of	the	answer.	The	one	that	

captures	the	structure	that	emerges	from	the	non-fungible	nature	of	knowledge.	It	is	

this	second	eigenvector,	the	one	that	has	been	shown	repeatedly	to	explain	

variations	in	economic	growth	(16,	33–41),	inequality	(42–48),	and	emissions	(49–

56).	There	is	something	about	the	use	matrix	algebra	techniques	to	“add	

knowledge.”	

	

From	scales	to	chords	

	

We	started	this	essay	with	a	simple	but	provocative	question:	What	would	you	do	if	

you	were	asked	to	“add”	knowledge?	Our	answer	began	with	a	simple	but	important	

observation:	the	idea	that	knowledge	was	non-fungible.	This	simple	idea	pushed	us	

to	reject	traditional	forms	of	aggregations	and	embrace	matrix	algebra	techniques	

that	preserve	the	identity	of	the	elements	involved.	We	found	evidence	of	the	non-

fungibility	of	knowledge	in	the	literature	on	relatedness	and	then	ventured	through	

the	world	of	eigenvectors	to	learn	the	“alphabet”	of	the	geography	of	knowledge.	But	

bringing	the	data	to	the	theory	was	challenging	because	of	the	inherent	

heterogeneity	in	the	units	of	observation	of	geographic	data.	Nevertheless,	we	were	

able	to	provide	a	detailed	path	explaining	the	rationale	of	many	of	the	decisions	that	

inform	modern	metrics	of	non-fungible	knowledge,	such	as	the	economic	complexity	

index,	which	can	capture	information	about	the	knowledge	intensity	of	economies	

thanks	to	three	key	normalizations:	the	normalization	used	to	define	the	

specialization	matrix	R,	the	binarization	used	to	mitigate	the	variance	bias	of	R,	and	

the	normalization	coming	from	the	intensive	definition	which	helps	control	for	

differences	in	size	and/or	diversity	that	remain	even	after	the	first	two	

normalizations.	
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But	these	advances	are	still	narrow	in	that	they	involve	single	matrices.	

Unfortunately,	reality	is	more	complex,	meaning	that	the	geography	of	knowledge	is	

expressed	across	a	variety	of	activities,	not	independently,	but	simultaneously.	

Eigenvectors	are	musical	notes	but	the	world	is	made	of	scales	and	chords.	To	get	a	

more	complete	picture	of	the	geography	of	knowledge	we	must	complemented	

trade	data	with	data	on	the	geography	of	patentable	technologies,	value	added	by	

industry,	and	scientific	publications,	to	name	a	few.	While	there	have	been	efforts	to	

look	at	economic	complexity	using	data	from	different	sources,	no	effort	yet	has	

looked	at	multiple	sources	in	combination.	This	heralds	an	opportunity	for	the	field.	

An	opportunity	to	study	how	to	add	knowledge	across	multiple	scales	and	

dimensions.		
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