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Environmental regulation promotes green technological

diversification: Evidence from Chinese cities

Abstract: Green technological diversification is crucial to regional green transition,
but green technologies tend to be more radical and complex. This means that they
require significant efforts to scale, and we need to understand all possible levers for
green technological change. Based on patenting activities in Chinese cities from 2003
to 2016, this paper finds that cities with tighter environmental regulations tend to
branch into new green technology spaces. Moreover, environmental regulations help
cities enter more complex green domains, and this association varies across different
green types and regions. This study provides significant implications for the green
transition and diversification literature.

Keywords: Environmental regulation; Technology diversification; Green innovation;
Relatedness; Complexity

JEL codes: B52; Q55; Q56; R11

1. Introduction

The urgency to mitigate environmental degradation and climate change is often
considered the most pressing challenge of our times. Green technologies, which
promise to have few or zero adverse effects on the environment (Oltra & Saint Jean,
2009), are regarded as a potential way to achieve a win-win situation between the
economy and the environment (Popp, 2019). Though green innovations have higher
social value, more economic benefits, and broader potential applications across
various technological areas than non-green innovations (Popp & Newell, 2012; Nemet,
2012), the process of diversifying into green tech domains is challenging and risky
due to the knowledge and environmental externalities of green innovation. Helping
regions, especially underdeveloped areas, jump the technological trajectories and
create new, more complex green technology development paths is essential for
fostering sustainable development and reducing regional inequality.

In the regional diversification literature, the ability of a region to develop a new
technology hinges on its existing knowledge and capabilities related to this specific
technology. Regions gradually diversify by leveraging related, preexisting economic
activities, which are path-dependent (Balland & Rigby, 2017; Dong et al., 2022). As a
dimension of knowledge, the complexity of economic activities has received
increasing attention in regional diversification studies since both technological
composition and values are vital to the regional knowledge basket (Hidalgo &
Hausmann, 2009; Balland & Rigby, 2017; Balland et al., 2022). According to them,
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economic activities with a high level of complexity are more exclusive and harder to
replicate, transmit, and copy (Simon, 1991), which is essential for creating a
long-term competitive advantage for regions (Kogut & Zander, 1992; Hidalgo &
Hausmann, 2009; Balland & Rigby, 2017).

Considering the vital role of green innovation, the regional diversification
literature has recently contributed to our understanding of the green innovation space
(Li et al., 2020; Barbieri et al., 2020; Santoalha et al., 2021). These studies focused on
the role of relatedness (Tanner, 2014; van den Berge et al., 2019; Barbieri et al., 2020)
and the difference between green and non-green diversification (Barbieri et al., 2020).
However, this strand of literature often overlooks the impact of policies. The
processes of green transition include more path-breaking and complex technology,
and market participants hesitant to develop this kind of innovation without external
sources due to its environmental and knowledge externalities (Aghion et al., 2016;
Popp, 2019). Therefore, recent diversification literature has explored the role of
external policy shock in the processes of path-breakthrough green diversification
(Markard et al., 2012; Rogge & Reichardt, 2016), but they ignore the role of
technological complexity.

In the environmental policy area, scholars have discussed how environmental
policy affects green innovation and moves a city’s technological frontier forward.
Proponents of the “Porter Hypothesis” consider that environmental regulations
encourage more technological innovations (Porter & Van der Linde, 1995; Aghion et
al., 2016), while critics contend that environmental regulations improve the abatement
cost and squeeze out new technologies (Popp & Newell, 2012; Noailly & Smeets,
2015). Though this strand of research deepens our understanding of how external
factors affect the innovation process, it mainly explores the number of green
technologies and tends to ignore the embedded knowledge and technological structure,
undermining the dynamic evolutionary process of diversification. In practice, many
countries have introduced policies to promote domestic green technologies. For
example, France launched the France Recovery Plan in 2020, allocating 30 billion
euros to ecological transformation, and supporting various green technologies. On a
global scale, China’s green transformation is also closely tied to advancements in
green technologies and supportive environmental policies.

With this in mind, this study investigates whether environmental policies can
help cities embrace a more complex green technology and whether they contribute to
or hinder regional disparities. We conduct our study by using China’s authorized
patent data from 2003 to 2016. First, we find that environmental regulations foster
cities’ expansion into new green technology spaces in general. Second, environmental
regulations stimulate cities to enter more complex domains of green technologies.
Third, there is significant heterogeneity in the consequences of environmental
regulations regarding the types of green innovations and different regions. Therefore,
environmental regulations might exacerbate regional inequalities in economic
development and the environment.
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In doing so, we bridge the knowledge gap in environmental policy and
diversification literature. Since diversifying into more complex green innovation is
more challenging, a few recent studies have focused on how external factors affect
green diversification (Markard et al., 2012; Rogge & Reichardt, 2016). However, this
body of literature is mainly about how the embedded knowledge structure is related to
the green diversification process or whether supporting policies that provide subsidies
and reduce costs could alter the path-dependent process. In addition, they mainly
investigate how the external linkages can alter the path-dependent innovation process
by considering the relatedness density. Despite this emerging focus, a substantial
knowledge gap persists between regional diversification research and environmental
policy research. In particular, there is little evidence of the capacity of environmental
regulations to facilitate the adoption of complex green technologies in cities. We
argue that analyzing whether diversifying into more complex technology can be
improved by environmental regulation is particularly important due to the role of
complexity in regions’ long competitiveness. The point of environmental regulation
forcing innovation is addressed in the previous answer related to the “Porter
Hypothesis”. However, this study moves beyond the existing “Porter hypothesis”
literature focusing on the aggregated output of innovation by introducing a
technology’s complexity and knowledge value.

2. Literature Review

2.1 Diversification, Relatedness and Complexity

Jane Jacobs (1969) was the first to propose that diversification can provide
opportunities for regional production knowledge restructuring and thus drive
economic growth. Subsequently, a series of studies argued that diversification can
help promote regional economic growth through knowledge spillovers (Glaeser et al.,
1992; van Oort, 2004). Evolutionary economic geography inherits the basic viewpoint
and believes that the diversification process in a city depends on the preexisting
knowledge of related technologies. Hidalgo et al. (2018) characterized this pattern as
the “principle of relatedness”, which indicates that specializations in a new
technology field relate to the existing capabilities and knowledge repository of cities
(Uhlbach et al., 2022). Therefore, new technologies are often not created from scratch,
but rather a path-dependent incremental process due to high risk and switching costs
(Neffke et al., 2011). This path-dependent process is supported by many empirical
studies at various geographical scales (Colombelli et al., 2014; Boschma & Capone,
2015; Dong et al., 2022).

Recent studies also placed much emphasis on the complexity of economic
activities. Hidalgo & Hausmann (2009) argued that more advanced products and
services require the convergence of diverse expertise, which in turn requires complex
coordination capabilities that are developed over time in a cumulative, path-dependent,
and continuous manner. Therefore, those economies that are already active in complex
activities also have the best opportunities and prerequisite regions to gain further



5

competitiveness in other more complex fields. At the sub-national level, studies have
confirmed that complex activities will be more unequally distributed and less ubiquity.
They argued that few regions can specialize in the most complex production processes,
while many regions focus on less complex or even simple activities (Balland & Rigby,
2017; Balland et al., 2020; Mewes &Broekel, 2020).

2.2 Green Diversification

Due to the increasing emphasis on green transformation, the regional
diversification literature has gained some insights into understanding green innovation
space (Barbieri et al., 2020; Santoalha et al., 2021). Studies indicate that relatedness
drives green diversification. For example, Montresor & Quatraro (2020) showed a
positive impact of the relatedness of green and non-green knowledge on new green
technology specialization. Perruchas et al. (2020) found that countries are more likely
to achieve green diversification related to their capacity combinations based on 63
country cases in the European region. However, another branch of research
emphasized the specificity of the green innovation process (Quatraro & Scandura,
2019; Zeppini & den Bergh, 2011), suggesting that the combination of “distant”
technological pieces is more likely to lead to a paradigmatic shift from a non-green
regime to a greener one (Nightingale, 1998; Fleming, 2001). In addition, many studies
indicated that green technologies tend to be more complex and involve novel
recombinations (Barbieri et al., 2020), which requires more external economic
support and diversified knowledge sources (Cooke, 2010; Tanner, 2016). Recent
research has claimed that strong policy interventions are required to achieve
sustainability goals and develop new green technologies (Rogge & Reichardt, 2016;
Lindberg et al., 2019). Public policies play a crucial role, as seen in Santoalha &
Boschma's (2021) research on supportive environmental policies in seven European
countries.

In summary, literature on green diversification largely focuses on the inherent
characteristics of green innovation. A few recent studies examine how public policies
influence the path-dependent processes of green diversification, but this body of work
primarily emphasizes supportive policies that provide subsidies and reduce costs.
Furthermore, these studies often overlook the knowledge value embedded in green
technologies, which is essential for a region's long-term sustainable development and
competitive advantage. Given that advancing green transition into more complex and
valuable domains is challenging without external support, it is worth exploring
whether and how external sources influence this process. However, there is limited
evidence on the capacity of environmental policies to facilitate the adoption of
complex green technologies across cities.

2.3 The Effect of Environmental Regulation on Innovation

While society is enthusiastic about the green and innovative path for
sustainability, it suffers from two kinds of market failures (Popp, 2019; Aghion et al.,
2016). The first one is environmental externalities, where the social benefits of
pollution reduction aren't reflected in prices, leading to insufficient incentives for
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firms and consumers to reduce pollution. The second one is the externality of
knowledge, which means the knowledge of the new innovation becomes public once
the innovators want to reap the benefits of innovations. Such public knowledge will
induce more followers and lead to copies of current innovations, which benefits the
public but not the innovator. Due to these two market failures, market participants
lack the incentives to invest in green innovations without proper policy interventions.

Considering the insufficient incentives for green innovations by market forces,
academics have become more interested in how environmental regulation affects
green innovations. Proponents of the “Porter Hypothesis” consider that environmental
regulations encourage innovators to develop more technological innovations, aiming
to enhance their long-term competitiveness under the pressure of regulatory policies
(Porter & Van der Linde, 1995; Aghion et al., 2016). Numerous studies have
confirmed the positive relationship between environmental regulation and
technologies (Tchorzewska et al., 2022), with recent literature focusing on clarifying
which type of policy tools is most effective and has a sustained incentive effect on
innovation (Bergek et al., 2013; Popp, 2019). Conversely, opponents argue that
environmental regulation inhibits green innovation. Such studies are mainly based on
the cost perspective and emphasize that environmental regulation will bring high
governance and compliance costs, “crowding out” enterprises’ willingness and
resources for innovation (Popp & Newell, 2012; Noailly & Smeets, 2015). Popp
(2006, 2019) pointed out that environmental regulations punishing companies that do
not meet regulatory requirements will reduce innovation.

In summary, this strand of literature mainly examines how environmental policies
influence the aggregate innovation output across different research scales. Yet, it often
overlooks the role of embedded knowledge structures in the green diversification
process. While studies have argued that the impact of environmental regulations on
innovation depends on existing technologies, most studies tend to ignore the
relatedness and complexity of specific technologies with others, as well as
city-specific green technological characteristics (e.g., comparative technological
advantage, technological maturity). However, such cross-technology relatedness and
knowledge value are crucial for cities to foster further innovation.

3. Hypothesis Development

Regional development is constrained by preexisting knowledge bases, which
generates a strong path-dependent process (Boschma & Frenken, 2011). Such
path-dependence has been a significant obstacle for less developed regions branching
into new technology spaces (Hidalgo et al., 2007; Kogler et al., 2017). This pattern is
especially true for the most complex technologies, which, as a result, tend to
concentrate intensely in large cities (Balland et al., 2020). However, the lack of
related knowledge to a region can be compensated by extra-regional linkages, thereby
facilitating the diversification process by providing missing knowledge pieces
(Aghion et al., 2016; Dong et al., 2022).
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A big question, however, concerns environmental regulations. They are
fundamental to fighting climate change and environmental degradation, but
understanding whether they create or hinder economic opportunities is essential to
receiving societal support. Porter & Van de first proposed the “Porter hypothesis” in
1995, arguing that environmental regulations could positively affect innovation. The
rationale behind this is that technologies induced by environmental regulation are
expected to offset abatement costs by making their processes more efficient, reducing
waste, and enhancing productivity. In this context, environmental regulations
stimulate innovators to develop new technologies (Xu et al., 2023; Lin & Xie, 2023),
helping regions enter new technological domains. The Porter Hypothesis has been
tested at various scales in the literature (Dechezleprêtre & Glachant, 2014; Rexhäuser
& Löschel, 2015; Costantini et al., 2017; Zhu et al., 2019; Xu et al., 2023).
Additionally, certain environmental regulations provide resources and subsidies to
innovators, further reducing the risks associated with entering new technological
domains and encouraging innovation.

Therefore, we propose the first hypothesis regarding the effect of environmental
regulations on both green and non-green technologies:

H1: Cities with tighter environmental regulations are more likely to diversify into
new technologies.

Though environmental regulation plays a vital role in diversifying both
non-green and green technology spaces, it will undoubtedly affect green
diversification to a larger extent. This is for two reasons. Firstly, green technologies
exhibit both environmental and knowledge externalities. Environmental regulation
can address these market failures by offering subsidies and internalizing these
externalities to encourage investment in green technologies (Rogge & Schleich, 2018;
Popp, 2019). Secondly, green technologies are generally in the early stage of their life
cycle, presenting greater risks and uncertainties. Experts in this field face challenges
due to the complex knowledge required and the uncertainties involved (Consoli et al.,
2016; Braungart et al., 2007), involving higher risk (Barbieri et al., 2020) and the
need for diverse knowledge inputs (Dong et al., 2020; Rennings & Rammer, 2009).

Therefore, diversifying into green technology space needs more external sources
(Braungart et al., 2007; Barbieri et al., 2020). The environmental regulation
intervention could provide such sources and reduce uncertainties by altering consumer
preference and regulating the production process (Barwick et al., 2019), forming a
positive feedback loop between green production and consumption. More specifically,
to fulfill the environmental regulations to avoid punishment, enterprises will attempt
to produce green by replacing the equipment with fewer pollutants, utilizing cleaner
energy, and so on. In addition, by improving public awareness of environmental issues,
environmental regulations will enhance consumers’ preference for clean products
(Barwick et al., 2019; Popp et al., 2011), further stimulating green production. This
positive feedback loop between green production and consumption could create a
bigger green market, making green innovations more profitable, hence reducing the
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relative risks of investing in these radical and complex technologies.

Therefore, we develop our second hypothesis as below:

H2: Environmental regulations are more likely to encourage cities to enter green
technologies than non-green ones.

In the realm of green technologies, complexity is a significant factor influencing
the likelihood of adoption. On the one hand, the complexity of green technology can
affect its cost-effectiveness, which in turn influences how businesses and industries
react to environmental policies. Complex green technologies might offer more
significant long-term comparative advantage and entry barriers, but the higher upfront
investment costs could be an issue. Environmental policy interventions can provide
resources and capital vital for advancing sophisticated green technologies. This
illustrates why environmental policy can be particularly effective for complex green
technologies.

On the other hand, the support and guidance provided by governments are
strategically targeted and not randomly allocated. Local governments often focus on
investing in more complex technologies to boost long-term competitiveness and
environmental performance. Subsidies, support, and guidance from the government
can enable innovators to reallocate their financial resources towards acquiring the
necessary knowledge and capabilities to delve into more advanced and complex
technological fields.

Therefore, we propose our third hypothesis:

H3: Environmental regulations foster cities to develop more complex green
technologies.

4. Data and Methodology

4.1 Data and Variable Definition

4.1.1 Technology-related Variables

We obtained information on Chinese patents from IncoPat, which sources its
original data from the China National Intellectual Property Administration (CNIPA).
IncoPat contains data on patents from 102 countries and territories. All Chinese
inventions were applied from September 1985, including the patent title, abstract,
application date, and grant date. We compiled the application number, name of
applicants, address of applicants, and 4-digit International Patent Classification (IPC)
class of invention patents. These patent applications were approved before June 2017.
Therefore, we applied the patent data of 637 4-digit IPC sub-classes from 2003 to
2016 in the analysis. Since the grants of patent rights attest to the validity of the
applicants' technological innovation efforts, we only counted patent applications that
were ultimately authorized. We excluded patent applications that were denied official
grants because they cannot reflect a city's success in entering technical fields. Our
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original dataset encompasses over 1.6 million authorized patents. Utilizing this raw
data, we calculated the number of patent applications at the 4-digit IPC class of each
city by year. Ultimately, our analysis results in 637 distinct categories based on the
IPC 4-digit code classification, spanning 284 cities from 2003 to 2016.

(1) Green innovation

According to the description of the World Intellectual Property Organization
(WIPO), green innovations are defined as: “protecting the environment, being less
polluting, using all resources in a more sustainable manner, recycling more of their
wastes and products, and handling residual waste in a more acceptable manner than
the technologies for which they were substitutes.” This definition is also widely used
in the literature (Zhu et al., 2019; Xu et al., 2023). Green innovation includes seven
subcategories based on whether its IPC 4-digit subclass is included in the Green
Inventory by WIPO. Considering the relationship with the ER index we constructed,
we excluded the nuclear energy category since it is mainly innovated by certain
institutions in China, and whether it belongs to green innovation remains to be
discussed (Popp et al., 2019). Finally, we identified six subcategories of alternative
energy production (Alter_ener), agriculture/forestry (Agri_fore), administrative,
regulatory or design aspects (Ard), waste management (Waste), energy conversation
(Energy_con), and transportation (Trans) as the green innovations. Green patent
authorizations, numbering 390,418, account for approximately 24.20% of the total
authorizations (1,613,332)

(2) Revealed comparative advantage (RCA)

To determine whether a city has an advantage in a certain technology, we
employed the revealed comparative advantage (RCA). RCA is calculated by the
location quotient, which is the share of cities’ specialization in the average national
level of specialization in a specific technology. Formally, the RCA of each technology
subcategory in each city is specified as follows:

����,�,� =
= 1, �� ������logy�,�,�/ � ������logy�,�,��

� ������logy�,�,�� / � � ������logy�,�,���
≥ 1

= 0, �� ������logy�,�,�/ � ������logy�,�,��

� ������logy�,�,�� / � � ������logy�,�,���
< 1

(1)

Here, i, c and t stand for technology, city and year, respectively. ���ℎ��logy�,�,�
is the number of patents granted of subclass � in city c in time �. ����,�,� equals one
if the ratio of a specific technology � to all technology invented by a city is higher
than that of the national average level and equals zero otherwise.

(3) Relatedness (��,�,�) and relatedness density (��������,�,�)

We followed Hidalgo et al. (2007) and defined relatedness between technology �
and � as the minimum of the conditional probability that two technologies whose
RCAs both equal one in the same cities. The calculation is as follows:

��,�,� = min � ����,�,� = 1 ����,�,� = 1 , � ����,�,� = 1 ����,�,� = 1 (2)
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A higher value of ��,�,� implies that the two technologies tend to be developed in

the same region. Relied on the relatedness constructed in Equation (2), technology
relatedness density (��������,�,� ) is measured as the weighted average RCA of all
other technologies in a specific city weighted by their relatedness with this particular
technology and is calculated as follows:

��������,�,� = � ����,�,���,�,��

� ��,�,��
(3)

Higher density indicates that in city � , this certain technology is encircled by
many other highly developed technologies.

(4) Technology Complexity Index (TCI) and Knowledge Complexity Index
(KCI)

To measure the Knowledge Complexity Index (KCI) of regions and the
Technology Complexity Index (TCI) of economic activities, Hidalgo & Haussmann
(2009) created a “Method of Reflections” based on the hypothesis that cities with
more complex knowledge structures create exclusive products that are infrequently
produced by other economic systems. This approach has been used in a variety of
contexts, including exports (Reynolds et al., 2018), patents (Balland et al., 2019),
employment (Farinha et al., 2019), and so forth.

The Knowledge Complexity Index (KCI) gauges the level of knowledge present
in a city’s economic activity (in our case, technology), which reflects the city’s
knowledge and productivity (Balland & Rigby, 2017; Balland et al., 2019; Dong et al.,
2020). The Technology Complexity Index (TCI), which measures a technology's
knowledge intensity, is the technology counterpart of KCI (Balland & Rigby, 2017;
Sweet & Eterovic, 2019). According to the complexity principle, cities with a more
complex knowledge structure produce unique goods that are infrequently produced by
other cities. Therefore, the complexity is simultaneously determined by two factors: (i)
a city’s diversity, i.e., the number of RCA technologies a city possesses; (ii) a
product's ubiquity, i.e., the number of cities with RCA in a specific technology. For
instance, a type of technology is considered to be more complex if it can only be
produced in a small number of cities, i.e., with high exclusiveness of technology. A
city has greater knowledge complexity if it has RCA in many different technological
fields.

The formal calculation is:

����������,� = ��,0,� = � ��,�,�� (4)

���������,� = ��,0,� = � ��,�,�� (5)

Where ��,�,� is a city-technology adjacency matrix. ��,�,� equals 1 if ����,�,�
takes 1, and equals 0 otherwise. Higher diversity means a city can invent more
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exclusive technologies that are less likely to be invented and imitated by other cities,
leading to a tendency for a city's technological portfolio to be more complex. A
technology with low ubiquity can only be specialized in a few places since the
knowledge and skills needed to develop it are infrequently available, making the
technology more complicated. Cities must become more specialized in less ubiquitous
technologies if they want to receive high complexity scores.

KCI and TCI can be calculated across iterations by merging diversity and
ubiquity:

����,� = ��,�,� = 1
��,0 � ��,�,�����,�−1,t� (6)

����,� = ��,�,� = 1
��,0 � ��,�,�����,�−1,t� (7)

A higher value of ����,� suggests a city is more complex in its technology
portfolio, and a higher value of ����,� indicates the knowledge intensity of
technology is higher.

Then, we made the difference between ���� and ���� to quantify the relative
complexity of technology � to city � ’s specialization basket. A positive ����,�
represents that technology � has a higher level of complexity than city �’s average.

����,� = ���� − ���� (8)

4.1.2 Environmental Regulation

The key independent variable is environmental regulation (ER) stringency.
Considering the availability of city-level data and the challenges of the single
indicator and objective score (Dechezlepretre & Sato, 2017), this study uses the
comprehensive index method and follows. Wang & Feng (2014) and Du et al. (2021)
to construct a comprehensive index of environmental regulation at city level by the
entropy weighting method. We select some sub-indicators (described in Appendix A
online) that are related to the stringency of environmental regulation, including the
product per unit of smoke and dust produced by the secondary industry, the product
per unit of wasted water produced by the secondary industry, smoke, and dust
removal rate, industrial solid waste utilization rate, sewage treatment rate, and
garbage harmless treatment rate. The raw data is from China’s environmental
statistical yearbook.

The concept of the entropy weight method is that the greater the degree of
dispersion and differentiation of a sub-indication can contain more information, the
higher the weight it will get (Huang et al., 2018; Yuan et al., 2019). The calculation
process is as follows:

We started to standardize each raw sub-indicator j (j=1,2,...,m) to eliminate the
effects of various dimensions.
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��,�,�
∗ = ��,�,�−���(��,�)

���(��,�)−���(��,�)
(9)

Where ��,�,� is the sub-indicator j related to environmental regulation of city c

(c=1,2,..n) at time t, ���(��,�) and ���(��,�) are the smallest and largest values of a

specific indicator j at time t among all cities, respectively.

Then, we calculated the entropy ��,� based on the contribution of each

standardized indicator ��,�,� =
��,�,�

∗ +1

�=1
� (��,�,�

∗ +1)�
:

��,� =− 1
���(�) �=1

� ��,�,����(��,�,�)� (10)

The divergence coefficient ��,� will be:

��,� = 1 − ��,� (11)

The larger ��,� , the more important the indicator. The weight of indicator j at

time t is:

��,� = ��,�

�=1
� ��,��

(12)

The environmental regulation stringency index will be the weighted sum of the
selected sub-indicators:

���,� = �=1
� ����,�,�

∗� (13)

Figure 1 shows the geographical distribution of the mean environmental
regulation index at the city level from 2003-2016 across cities. Generally, we find ER
decreases from east to west. Cities with stricter ER mainly concentrate in northern and
eastern coastal areas, while those with a lower level of ECI are mainly distributed in
southwestern and northeastern areas.
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Figure 1. The geographical distribution of the environmental regulation index
across cities (2003-2016)

Figure 2 exhibits a geographical distribution of the mean knowledge complexity
index (KCI) at the city level from 2003-2016. Cities with higher KCI are mainly
located in eastern coastal areas, and the four municipalities (Beijing, Shanghai,
Chongqing, and Tianjin), as well as Jiuquan1 in northwest China.
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Figure 2. The geographical distribution of knowledge complexity across cities
(2003-2016)

4.1.3 Control Variables

We followed Dong et al. (2020) and used the following market fundamentals
from the China City Statistic Yearbooks as control variables, including gross domestic
product per capita (GDP_pc), foreign direct Investment (FDI), population density
(Pop_Den), total population (Pop) and industrial structure (Ind, measured by the
secondary employment to the total employment). These factors could capture the
differences between cities in economic development, openness, size, and
agglomeration economies.

Besides the above market fundamentals, we further considered the demand pull
and technology push as the drivers of green technologies. As for the demand-pull, we
have added the following controls as the proxy for demand push: (i) GDP_pc:
Literature has found that the level of economic development could affect the
innovation process by affecting people’s demand for green products and the
investment in research and development (Arranz et al., 2019). (ii) Pm25: We used
ambient fine particulate matter (PM2.5) as a proxy for the air quality in a city. Since a
more polluted environment could also stimulate people’s demand for green products
(Sun et al., 2017), we used PM2.5 from the “Global Annual PM2.5 Grids from
MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR” as another
proxy for the demand.
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In addition to the technology-city level push captured by relatedness density
(Density) measuring the role of the prior technological development and path
dependency (Hidalgo et al., 2007; Rexhäuser & Löschel, 2015; Boschma & Capone,
2015), we further included the city innovation ability (Inno) during 2003-2016 from
“China’s cities and industries’ innovation ability report 2017” as the technology-push
at the city level of additional controls. The variables' descriptive statistics are shown
in Table1.
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Table 1 Descriptive statistics
Variables Obs Mean Std. Dev. Min Max
Entry Entry probability to new technology space 1,047,055 0.059 0.236 0 1
Density Relatedness density 1,047,055 7.044 7.314 0 100
GCI Difference between TCI and KCI 1,047,055 0.047 0.176 -1 1
ER Environmental regulation 1,047,055 0.610 0.139 0.050 0.968
Gdp_pc Gross domestic product per capita (10,000 Yuan) 1,047,055 2.404 2.910 0.120 49.305
Pop Total population (10,000) 1,047,055 417.545 236.575 14.55 1438.7
Pop den Population density (per person/m2) 1,047,055 423.805 284.492 4.7 11564
FDI Foreign direct investment (10,000 US dollars) 1,047,055 45687.800 116784.000 0 2113444
Ind Secondary employment to the total employment (%) 1,047,055 41.986 14.233 4.46 84.4
Inno City innovation ability 1,047,055 7.346 36.929 0.01 1061.37
pm25 ambient fine particulate matter 1,047,055 47.670 17.772 8.155 112.340
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4.2 Model Specification

By employing a linear probability model with fixed effects, the basic model
specification examines whether environmental regulation is related to the likelihood
that a city will specialize in a new specific technology (Balland et al., 2019; Dong et
al., 2022) as below:

����(������,�,�= 1) = �0 + �1 ∗ ���,�−1 + �2 ∗ ��������,�,�−1 + � ∗ ��,�−1 +
�� + �� + �� + ��,�,� (14)

The dummy variable ������,�,� takes 1 if city c does not have RCA in year t-1
and then develops RCA in year t in the technology domain i. �1 estimates how ER
relates to the probability of entering a new specific technology. �������,�,�−1 refers
to the technological relatedness density. ��,�−1 are city-specific control variables. We
controlled for city and technology-fixed effects to absorb some technology-specific
heterogeneities (��, ��) that might not be able to be observed in our controls. We also
included year-fixed effects �� to control for some time-specific changes, such as
policy shock.

To examine the hypothesis H2, we included the cross-term ER*Green in Equation
(14) as below:

����(������,�,�= 1) = �0 + �1 ∗ ���,�−1 + �2 ∗ ���,�−1 ∗ ������ + �3 ∗
��������,�,�−1 + � ∗ ��,�−1 + �� + �� + �� + ��,�,� (15)

Where ������ is a dummy indicating whether a technology belongs to green
technology or not (������=1 if is a green technology and ������=0 otherwise). All
control variables are defined in the same way as in Equation (14).

To test hypothesis H3, we focused on the green categories and included the cross
term of GCI*ER to estimate whether ER could help cities enter more complex green
technology domains.

����(������,�,�= 1) = �0 + �1 ∗ ���,�−1 + �2 ∗ ���,�−1 ∗ ����,�,�−1

+ �3 ∗ �������,�,�−1+�4 ∗ ����,�,�−1 + �5 ∗ ���_���,�,�−1

+� ∗ ��,�−1 + �� + �� + �� + ��,�,� (16)

�1 is expected to be positive, and �2 is expected to be positive in Equation (16).
����,�,�−1 captures the difference between technology and knowledge complexity of
city � at year � − 1 . Considering that the city tends to step into new technology
spaces with similar complexity to its existing knowledge portfolio (Dong et al., 2022),
we included its quadratic term ���_���,�,�−1 . This is because the capabilities inherent
in complex technologies are rare and challenging to replicate, placing them beyond
the reach of most cities. These cities often lack the necessary capabilities and
knowledge required to develop such technologies (Balland et al., 2018). As a result, it
becomes more difficult for a city to enter a technology space that is more complex
than its existing technological infrastructure. Conversely, technologies that are less
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complex are typically less competitive and more susceptible to being superseded by
more complex technologies that offer greater added value. Consequently, regions are
more inclined to adopt new technologies that align with the level of complexity of
their current technological framework. Therefore, �5 is expected to be negative to
indicate the inverse U-shape relationship between GCI and entry probability. All
variables and fixed effects are defined in the same way as in Equation (14).

5. Results and Discussions

5.1 Baseline Result

Table 2 shows the overall effect of environmental regulation on the technology
diversification process. In the most-baselined model (Column (1)) with city-level
controls, the coefficient on environmental regulation (ER) is positive. Except for the
industrial structures, all other controls are positively related to entering the new
technology space. In Column (2), the significantly positive coefficient of Density
indicates that the probability of specializing in new technologies is higher if this
technology is more closely related to its existing technological infrastructure. This
result is consistent with the previous relevant studies on diversification (Boschma &
Capone, 2015; Balland et al., 2019). Since Density measures how the existing
technology structure affects the entry probability, the coefficient on Inno turns
negative after adding the Density. The result with the green dummy but without the
IPC fixed effect are in Appendix B online.

Column (3) represents our preferred model and displays the estimated results
derived from Equation (14), incorporating a variety of fixed effects specifications.
The coefficient on environmental regulation (ER) is positive, suggesting that stricter
environmental regulation (ER) improves the possibility of diversifying into new
technology spaces. We can also see that most of the controls lose their significance
after adding the fixed effects. To sum up, H1 is supported.

Table 2 Baseline result
(1) (2) (3)

Variables Entry Entry Entry
ER 0.0258*** 0.0234*** 0.0265***

(0.0016) (0.0015) (0.0022)
Density 0.0089*** 0.0093***

(0.0001) (0.0001)
GDP 0.0026*** 0.0019*** -0.0046

(0.0004) (0.0004) (0.0063)
Ind -0.0041*** -0.0026*** 0.0145

(0.0007) (0.0007) (0.0122)
Pop_Den 0.0037*** -0.0007* 0.0133

(0.0004) (0.0004) (0.0177)
Pop 0.0031*** 0.0046*** 0.0000

(0.0004) (0.0004) (0.0090)
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FDI 0.0027*** 0.0008*** 0.0011
(0.0001) (0.0001) (0.0022)

Inno 0.0206*** -0.0098*** -0.0166***
(0.0002) (0.0003) (0.0008)

PM25 0.0114*** 0.0071*** 0.0002
(0.0007) (0.0007) (0.0020)

Constant -0.0526*** -0.0652*** -0.1597
(0.0035) (0.0035) (0.1478)

Observations 1,047,055 1,047,055 1,047,050
R-squared 0.034 0.056 0.058
Year FE NO NO YES
City FE NO NO YES
IPC4 FE NO NO YES
Adj R2 0.0338 0.0557 0.0573
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1

Table 3 distinguishes the effect of environmental regulation on the green and
non-green technology diversification process by adding the cross-term ER*Green
(Equation (15)). We can see that the coefficient on ER*Green is significantly positive
in all models with different settings, suggesting that environmental regulation’s effect
is larger for green technology space than for non-green technology space. This
indicates that the stimulating effect of environmental policy is mainly driven by the
effect on green technology, and environmental policies are more likely to encourage
cities to enter green technology space than non-green technology space. The
environmental policy intervention could provide such sources, reduce uncertainties,
deal with this market failure, and incentivize the market to invest in green
technologies. Such a result supports our hypothesis H2.

Table 3 The effect of ER on Green and Non-green entry probability
Variables (1) (2) (3) (4) (5) (6)

Entry Entry Entry Entry Entry Entry
ER 0.0257*** 0.0234*** 0.0255*** 0.0236*** 0.0215*** 0.0101***

(0.0016) (0.0015) (0.0022) (0.0016) (0.0016) (0.0029)
Green 0.0288*** 0.0239*** 0.0238*** 0.0207*** 0.0168*** -

(0.0007) (0.0007) (0.0007) (0.0027) (0.0027)
ER*Green 0.0132*** 0.0117** 0.0121***

(0.0046) (0.0046) (0.0043)
Density 0.0088*** 0.0091*** 0.0088*** 0.0062***

(0.0001) (0.0001) (0.0001) (0.0001)
GDP 0.0025*** 0.0019*** -0.0048 0.0025*** 0.0019*** -0.0053

(0.0004) (0.0004) (0.0063) (0.0004) (0.0004) (0.0063)
Ind -0.0041*** -0.0026*** 0.0145 -0.0041*** -0.0026*** 0.0169

(0.0007) (0.0007) (0.0121) (0.0007) (0.0007) (0.0133)
Pop_Den 0.0036*** -0.0007* 0.0118 0.0036*** -0.0007* 0.0096

(0.0004) (0.0004) (0.0176) (0.0004) (0.0004) (0.0237)
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Pop 0.0031*** 0.0046*** -0.0007 0.0031*** 0.0046*** -0.0013
(0.0004) (0.0004) (0.0089) (0.0004) (0.0004) (0.0143)

FDI 0.0027*** 0.0008*** 0.0012 0.0027*** 0.0008*** 0.0014
(0.0001) (0.0001) (0.0022) (0.0001) (0.0001) (0.0030)

Inno 0.0207*** -0.0093*** -0.0160*** 0.0207*** -0.0093*** -0.0064***
(0.0002) (0.0003) (0.0008) (0.0002) (0.0003) (0.0008)

PM25 0.0115*** 0.0073*** 0.0001 0.0115*** 0.0073*** -0.0010
(0.0007) (0.0007) (0.0020) (0.0007) (0.0007) (0.0021)

Constant -0.0570*** -0.0687*** -0.1492 -0.0557*** -0.0675*** -0.1083
(0.0035) (0.0035) (0.1466) (0.0035) (0.0035) (0.1953)

Observations 1,047,055 1,047,055 1,047,050 1,047,055 1,047,055 1,047,050
R-squared 0.036 0.057 0.059 0.036 0.057 0.091
Year FE NO NO YES NO NO YES
City FE NO NO YES NO NO YES
IPC4 FE NO NO YES NO NO YES
Adj R2 0.0358 0.0570 0.0587 0.0358 0.0570 0.0904
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1

5.2 Main Results: Heterogeneity in Knowledge Structure

This section focuses on green technology and explores how the technology
structure, namely complexity, affects the role of ER based on Equation (16). Table 4
exhibits the result.

The coefficients of the square term of GCI (GCI_sq) are negative, indicating an
inverse U-shaped link between the GCI and the chance of entering a new technology
domain. It also implies that cities lean to diversify into technology spaces with similar
complexity levels to the existing knowledge base, which is in line with the previous
literature (Dong et al., 2022). Columns (2) and (4) show the estimated result about
how complexity matters regarding the role of environmental regulations on
technology. The significant and positive coefficient on GCI*ER indicates that
environmental regulation helps cities diversify into more complex green technology
spaces, which supports hypothesis H3.

Table 4 Heterogeneity analysis in complexity within green technologies
(1) (2) (3) (4)

Variables Entry Entry Entry Entry
ER 0.0364*** 0.0344*** 0.0116* 0.0043

(0.0045) (0.0049) (0.0064) (0.0070)
ER*GCI 0.0611** 0.1048***

(0.0302) (0.0323)
GCI -0.0568*** -0.0949*** 0.0026 -0.0633***

(0.0045) (0.0189) (0.0064) (0.0209)
GCI_sq -0.0873*** -0.0831*** -0.1415*** -0.1368***

(0.0107) (0.0110) (0.0126) (0.0126)
Density 0.0087*** 0.0087*** 0.0065*** 0.0065***
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(0.0002) (0.0002) (0.0003) (0.0003)
GDP 0.0024** 0.0025** -0.0211 -0.0210

(0.0011) (0.0011) (0.0240) (0.0240)
Ind -0.0020 -0.0022 0.0146 0.0141

(0.0021) (0.0021) (0.0502) (0.0502)
Pop_Den -0.0079*** -0.0078*** 0.0506 0.0501

(0.0012) (0.0012) (0.0685) (0.0686)
Pop 0.0108*** 0.0107*** -0.0302 -0.0314

(0.0012) (0.0012) (0.0447) (0.0447)
FDI 0.0007* 0.0007* 0.0073 0.0073

(0.0004) (0.0004) (0.0075) (0.0075)
Inno -0.0083*** -0.0082*** -0.0103*** -0.0101***

(0.0008) (0.0008) (0.0022) (0.0022)
PM25 0.0191*** 0.0188*** 0.0022 0.0012

(0.0020) (0.0020) (0.0058) (0.0058)
Constant -0.0887*** -0.0864*** -0.2047 -0.1851

(0.0100) (0.0102) (0.6170) (0.6173)
Observations 165,072 165,072 165,057 165,057
Controls YES YES YES YES
Year FE NO NO YES YES
City FE NO NO YES YES
IPC4 FE NO NO YES YES
Adj R2 0.0521 0.0521 0.0864 0.0865
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1

5.3 Exclusion of the Potential Endogenous Issue

Considering that some unobserved factors could affect both environmental
stringency and green innovation, environmental stringency could be endogenous. We
adopt the approach of previous studies (Broner et al., 2012; Hering & Poncet, 2014)
by employing the ventilation coefficient (VC) as an instrumental variable for ER. We
follow the existing literature and use the interaction term of the VC and the national
ER index as the instrumental variable (Nunn & Qian, 2014). The VC represents the
impact of meteorological factors on the rate at which pollutants disperse in the air.
The underlying rationale is that regions with slower dispersion of pollutants tend to
enforce more stringent environmental regulations, while the meteorological
conditions are not directly linked to green innovation. Table 5 shows the IV result.

The F-statistic for the first stage is larger than 10 in all columns, indicating our IV
is not weakly identified. We can see that the result in Table 5 is consistent with Table
4. The coefficients on ER are positive in Columns (1)-(2) and GCI*ER are positive in
Columns (3), indicating environmental regulation helps cities diversify into new green
technology spaces, especially for the complex ones. To sum up, the above results
prove our hypothesis H3: Environmental regulations enable complex green
diversification. Environmental regulation, as an external source, can provide “niches”
for green technologies and alter the transition into complex green technology space.
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Table 5 IV analysis
(1) (2) (3)

Variables Second stage Second stage Second stage
ER 0.0376*** 0.0337*** -0.2397***

(0.0115) (0.0115) (0.0441)
ER*GCI 2.3644***

(0.3712)
GCI 0.0340*** 0.0113 -1.4739***

(0.0077) (0.0080) (0.2330)
GCI_sq -0.1560*** -0.0462**

(0.0153) (0.0228)
Density 0.0071*** 0.0071*** 0.0077***

(0.0003) (0.0003) (0.0004)
Observations 146,893 146,893 146,893
Controls YES YES YES
Year FE YES YES YES
City FE YES YES YES
IPC4 FE YES YES YES
F-statistic for the First stage 1.4e+07 1.4e+07 263.626
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1

5.4 Additional Analysis

5.4.1 Heterogeneity in Green Technologies Type

The different types of green innovations are expected to be affected by
environmental regulations differently. Since the primary objectives of environmental
regulations during the analysis period in China are to reduce emissions and enhance
energy efficiency, enterprises serve as the primary targets of these regulations due to
their substantial role in environmental impact. Consequently, technologies closely
aligned with corporate behavior and more effective in reducing emissions and saving
energy are expected to be more significantly influenced. By utilizing the detailed
4-digit IPC codes of each patent, we are able to distinguish different types of green
patents and explore the heterogeneous effects of environmental regulations in Table 6,
including six types of green i in Section 3.1.1.

We find ER*GCI is positive in Columns (1), (3), (4), and (5) at a 10% significant
level, indicating environmental regulations foster alternative energy production
(Alter_ener), administrative, regulatory or design aspects(Ard), waste management
(Waste), and energy conversation (Energy_con) enter more complex technology space.
The above results mean that significant heterogeneous associations exist between ER
and different types of green technology spaces. The complex technological space
related to pollutant reduction, carbon emission control, and energy conversation is
more likely to stand at the forefront of regulatory impact. Additionally, these
technologies are primarily related to corporate behavior, which is the main group
affected by the environmental policies implemented.
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Table 6 Heterogeneity analysis across different green innovations
(1) (2) (3) (4) (5) (6)

Variables Alter_ener Agri_fore Ard Waste Energy_con Tran
ER -0.0089 0.0122 0.0220 0.0039 -0.0190 0.0495***

(0.0118) (0.0363) (0.0374) (0.0097) (0.0156) (0.0155)
ER*GCI 0.1593*** -0.1666 0.2856* 0.1139*** 0.1302* -0.0088

(0.0534) (0.1708) (0.1718) (0.0436) (0.0718) (0.0730)
GCI -0.1022*** 0.1992* -0.2583** -0.0934*** 0.0324 0.0235

(0.0342) (0.1199) (0.1168) (0.0280) (0.0470) (0.0491)
GCI_sq -0.0964*** -0.1777 -0.2733*** -0.1439*** -0.2492*** 0.0537

(0.0158) (0.1194) (0.0902) (0.0153) (0.0392) (0.0467)
Density 0.0043*** 0.0113*** 0.0001 0.0058*** 0.0080*** 0.0088***

(0.0005) (0.0021) (0.0017) (0.0004) (0.0007) (0.0008)
Observations 58,209 5,523 8,118 89,154 35,367 27,278
Controls YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
City FE YES YES YES YES YES YES
IPC4 FE YES YES YES YES YES YES
Adj R2 0.0841 0.1348 0.0792 0.0871 0.0806 0.1032
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1

5.4.2 Heterogeneity across Different Cities

The efficiency of environmental regulation (ER) is also influenced by city
localities, such as fiscal resources, market demand, and financial access. Firstly,
inventing new technologies requires external resources, i.e., capital and investment
(Barbieri et al., 2020). Therefore, cities with greater fiscal capacity can provide
innovators greater access to funding and R&D subsidies. Secondly, the demand for
green innovation will affect the rewards and enthusiasm for green innovation. This
demand is related to local economic conditions and environmental quality (Arranz et
al., 2019). Regions with well-developed economies and a heightened awareness of
environmental issues tend to have a higher demand for a green environment, product,
and lifestyle. This, in turn, establishes a conducive environment for the proliferation
of green technologies. Thirdly, the condition of the financial and loan market can
affect the overall financial environment by lowering financial barriers and increasing
access to capital. A developed loan market is essential for providing the necessary
financial support and relieving credit constraints to green innovations, enabling them
to overcome initial financial hurdles to innovate.

With these considerations, we conduct a heterogeneity analysis by categorizing
cities into several groups based on different criteria in this section. Firstly, cities’
fiscal capacities are indicated by fiscal revenues. Secondly, a city’s economic status is
measured by its GDP. Lastly, the health of the local financial and loan market is
quantified by total savings and loans. Based on the median of these factors, we have
divided the cities into two groups: i) cities with high and low fiscal ability; ii) cities
with high and low economic development level; iii) cities with larger and smaller loan
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market development, and re-perform the analysis. The results are shown in Table 7.
This categorization enables us to re-perform our analysis with a more differentiated
perspective. Table 7 shows that only in cities with high fiscal ability, high economic
development level and high loan market development, environmental regulations help
cities enter the more complex green technology spaces.

Table 7 Heterogeneity analysis across different cities
(1) (2) (3) (4) (5) (6)

Variables High fiscal Low fiscal High gdp Low gdp High loan Low loan
ER 0.0156 -0.0056 -0.0088 0.0070 0.0152 -0.0012

(0.0125) (0.0000) (0.0184) (0.0075) (0.0121) (0.0088)
ER*GCI 0.1245** -0.0018 0.2554*** 0.0337 0.1354*** -0.0340

(0.0521) (0.0000) (0.0709) (0.0359) (0.0477) (0.0441)
GCI -0.0703** -0.0314 -0.1665*** -0.0310 -0.0662** -0.0137

(0.0351) (0.0000) (0.0483) (0.0229) (0.0317) (0.0275)
GCI_sq -0.2086*** -0.0269 -0.2065*** -0.1011*** -0.1803*** -0.0483***

(0.0209) (0.0000) (0.0302) (0.0135) (0.0194) (0.0157)
Density 0.0065*** 0.0071 0.0070*** 0.0064*** 0.0065*** 0.0067***

(0.0004) (0.0000) (0.0006) (0.0004) (0.0004) (0.0005)
Observations 79,879 85,107 48,003 117,017 84,747 80,242
Controls YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
City FE YES YES YES YES YES YES
IPC4 FE YES YES YES YES YES YES
Adj R2 0.0812 0.0855 0.0816 0.0822 0.0842 0.0823
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1

5.4.3 Heterogeneity across Regions

China has significant regional disparities, with substantial differences in each
region's capabilities, institutional backgrounds, fiscal resources, market demand, and
access to finance. These disparities further influence the resources available to support
the complex green transition. This section further re-performs the above analysis
relying on the sub-sample of different regions in China, namely, the East, Middle, and
West regions. The result is shown in Table 8.

The positive coefficient on ER*GCI in Columns (1) and (2) demonstrates that
environmental regulations help cities enter the more complex green technology spaces
in the East and Middle regions of China. In the West, the effect of environmental
regulation is not significant. The rationale behind such different impacts is related to
the regional capability and institutional background. The eastern area is relatively
developed and has a higher level of innovation ability, and the residents here usually
demand a better environment. The government here can provide support for investing
in new and risky technology. Therefore, cities can more easily invent new and
complex technology that has less harmful effects on the environment. The West region
is less developed and tends to be the receiver of the high-polluting industries from the
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East areas. The lower innovation ability makes them lack the necessary resources and
knowledge to generate more complicated and less ubiquitous innovations, leading to a
lower probability of entering more complex spaces.

Table 8 Heterogeneity in regions
(1) (2) (3)

Variables East Middle West
ER 0.0043 -0.0020 0.0030

(0.0128) (0.0123) (0.0121)
ER*GCI 0.1218** 0.1677*** -0.0657

(0.0609) (0.0631) (0.0536)
GCI -0.1007** -0.1172*** 0.0595*

(0.0413) (0.0384) (0.0348)
GCI_sq -0.2080*** -0.0888*** -0.0867***

(0.0238) (0.0223) (0.0240)
Density 0.0063*** 0.0069*** 0.0064***

(0.0004) (0.0006) (0.0006)
Observations 70,917 50,357 43,783
Controls YES YES YES
Year FE YES YES YES
City FE YES YES YES
IPC4 FE YES YES YES
Adj R2 0.0814 0.0850 0.0980
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1

5.4.4 Heterogeneity across Density

Numerous studies highlight the importance of external policy in enabling entry
into less related technology spaces and achieving path-breaking innovations. Table 9
further considers whether the environmental regulation can achieve a
path-breakthrough green innovation by adding the cross-term Density*ER. The
significantly negative coefficient suggests that environmental regulation can alter the
technology diversification process and help the city enter less related technology
space. This finding underscores that environmental regulation enables regions to
reduce the dependency on the existing knowledge base and move the city’s
technological frontier forward.

Table 9 Heterogeneity analysis across within green technologies
(1) (2)

Variables Green Green
ER 0.0367*** 0.0167**

(0.0055) (0.0085)
ER*density -0.0015** -0.0016*

(0.0006) (0.0009)
GCI -0.0392*** 0.0014

(0.0039) (0.0072)
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GCI_sq -0.0967*** -0.1436***
(0.0100) (0.0137)

Density 0.0087*** 0.0076***
(0.0004) (0.0006)

Observations 200,882 165,057
Controls NO YES
Year FE YES YES
City FE YES YES
IPC4 FE YES YES
Adj R2 0.0530 0.0864
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1

5.5 Robustness Check

This section further conducts the following robustness checks to see whether our
results are stable, as shown in Table 10.

Firstly, to ensure robustness in our analysis, we employed two additional indexes
of environmental regulation stringency that are well-recognized in the literature.
Beyond the entropy method-based environmental regulation index, the first alternate
index is based on government attention to environmental protection (ER2), as
indicated in their annual government work report (Zhang et al., 2024; Liu et al., 2023).
These reports reflect the government’s priority and commitment to environmental
issues each year. The second index focuses on 113 key environmental protection cities
in China (ER3). These cities have been significantly affected by air pollution and have
implemented stricter regulations to address it. These measures include monitoring air
quality, controlling emissions from industrial and vehicular sources, and promoting
cleaner energy usage. The positive interaction term of ER2*GCI and ER3*GCI in
Columns (1) - (3) confirms that environmental regulations are indeed aiding cities in
entering more complex green technological domains.

Secondly, considering that regional diversification is likely a prolonged process
and the effects of environmental regulation may take time to manifest, we include a
5-year lag for the independent variable ER in our robustness check. This approach is
intended to capture the delayed impacts of environmental regulation on technological
diversification. The results are presented in Column (4) and show that environmental
regulations help to develop more complex green technologies.

Thirdly, we define the Density_co using co-occurrences of two technologies on
the same patent, giving a precise technological relatedness index instead of the
Hidalgo et al. (2007) approach (Columns (5)). Using normalized co-occurrences of
technologies within the same patent provides a precise technological relatedness index,
whereas the Hidalgo et al. (2007) approach also considers additional factors, such as
infrastructure and institutions, that might link two technologies. While the literature
presents different methodologies, Boschma et al. (2015) demonstrate that results tend
to be robust across these two approaches. In column (5), the positive coefficient on
Density_co remains statistically significant. It indicates that cities are more likely to
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enter the technology space with higher density, and the diversification process is
path-dependent. The interaction term of ER*GCI is positive, which confirms that
environmental regulations help cities enter more complex green domains. Overall, the
different settings of density do not affect the robustness of the result.

Lastly, considering the dependent variable Entry is a dummy, we re-perform the
analysis with the Probit and Logit model. The results in Columns (6) and (7) are
consistent with the alternative linear probability model in Table 4. The results prove
that cities with stricter environmental regulations tend to develop more complex green
technologies.
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Table 10 Robustness check
(1) (2) (3) (4) (5) (6) (7)

Variables Government attention Key cities Key cities Lag 5 years Density_co Probit Logit
ER -0.0127* 0.2266*** 0.6099***

(0.0070) (0.0768) (0.1590)
ER*GCI 0.0668** 1.8590*** 4.5670***

(0.0321) (0.2909) (0.5814)
ER2 0.0001

(0.0030)
ER2*GCI 0.0314***

(0.0118)
ER3 0.0051*** -

(0.0015) -
ER3*GCI 0.0725*** 0.0688***

(0.0074) (0.0078)
L5.ER -0.0221

-0.0155
L5.ER*GCI 0.1798***

-0.0628
Density_co 0.0028***

(0.0001)
Observations 174,274 214,012 213,995 105,857 165,057 164,851 164,851
Year FE YES YES YES YES YES YES YES
City FE YES YES YES YES YES YES YES
IPC4 FE YES YES YES YES YES YES YES
Adj R2 0.0873 0.0839 0.0878 0.0802 0.0911 . .
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1
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6. Conclusion

This study probes whether environmental regulations can help cities branch into a
more complex technology space. Using China’s annual patent data at the city level
from 2003 to 2016, our results show that (i) environmental regulations foster cities to
branch into new green technology spaces in general; (ii) environmental regulations
help cities to develop more complex technology; (iii) the impact of environmental
regulations on green innovation varies across different types of green technologies
and cities.

In doing so, this study fills the research gap from the following perspectives.
Though the literature identifies the role of green technologies in economic
development strategies with environmental sustainability, there may not be enough
incentives and capabilities to innovate in a green way. Therefore, some recent studies
have started to explore how external variables affect the green diversification process.
They find that the green diversification process is path-dependent and can be altered
by external factors. However, they tend to ignore the role of technological complexity,
while its importance is obvious since the value of knowledge complexity is vital to
regional sustainable development. We argue that it is crucial to consider how
environmental regulation is linked to more complex technological diversification
since it is closely related to regions’ long competitiveness. The prior studies related to
the “Porter hypothesis” have identified that ER drives the amount of innovation
(Aghion et al., 2016; Popp, 2019; Porter & Van der Linde, 1995) and have noticed the
importance of path-dependency, while most empirical analyses focus on
path-dependence from the same technology and ignore the cross-technology
relatedness and the embedded knowledge value. There is still a gap in understanding
the impact of environmental policies on the entry of complex green technologies in
cities. By integrating a technology's complexity to measure the knowledge value and
heterogeneity in technology structure, our study goes beyond the scope of the prior
“Porter hypothesis” literature that mostly focuses on the aggregate output of
innovation without considering the city-specific knowledge structures embedded in
different technologies.

The result of this study has some practical implications. Firstly, our findings
provide a scientific basis for local environmental policy-making. Local governments
often face significant resistance from businesses and citizens when formulating
environmental policies, as they often believe that environmental regulations will
hinder their economic opportunities. However, our results indicate that such
regulations can foster complex green diversification, ultimately contributing to
regional development and long-term competitiveness. This evidence suggests that
environmental policies can effectively resolve the perceived trade-off between
economic growth and environmental protection.

Secondly, the regional heterogeneity analysis suggests a paradox: The less
developed regions have a strong demand for complex green innovations, but they are
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short for green capability. Indeed, the lack of advanced knowledge and technology
and the willingness to develop green technologies make it difficult to break the
path-dependence. Due to long-term exposure to high-pollution environments, the
less-developed regions face severe environmental degradation. Hence, lagging regions
must create new green development paths. Our study demonstrates that environmental
regulation might serve as a potential solution to the paradox, helping these regions
overcome path-dependence and create more complex green technology development
paths. In addition, local governments in underdeveloped regions could actively seek
diversified funding support from higher-level governments and actively engage in
green technology cooperation with developed cities.

Thirdly, while our analysis indicates that environmental regulation generally
promotes the increase of urban complexity, it is important to recognize that it may
also exacerbate regional inequality. This is because cities in developed regions tend to
transfer high-polluting industries to less-developed regions under environmental
regulations, further confining the less-developed regions in high-carbon and
high-pollution regimes and worsening the Matthew effect in regional development.
Though the Chinese government has implemented policies to foster regional
collaboration, such as the Beijing-Tianjin-Hebei air protection project, the West-East
gas transmission project, and so on, to address these issues, further research is needed
to seek practical solutions to mitigate the Matthew effect. Moreover, it is also critical
for governments and related agencies to formulate policies that balance equity and
efficiency, such as implementing technology transfer and providing green
technological assistance to less developed areas to achieve environmental justice and
green transition across cities.

Lastly, the findings of this study offer broad implications for both central and
local governments outside of China, especially in developing countries. It is crucial to
avoid the flawed approach of "pollution first, treatment later" in China. Instead,
developing countries could commit to a sustainable development strategy and balance
the interests of green and traditional industries through green innovation. China's
green transformation demonstrates that effective government intervention is a key
factor in promoting green innovation. For example, China's global leading position in
the new energy vehicle industry is largely attributed to policy tools such as tax cuts
and subsidies from the central and local governments. For the central government, it
is essential to guide urban sustainable green transformations based on regional
conditions. Additionally, regional cooperation strategies should be implemented to
address challenges related to environmental inequality. For local governments, it is
important to develop targeted policy measures that reflect specific local circumstances.
They should also actively seek assistance from higher-level governments and
collaborate with other cities in developing green technologies.

This study has several limitations. First, the use of patent data presents certain
drawbacks (Griliches, 1990), potentially biasing the results toward developed regions,
as underdeveloped areas typically generate fewer patents (Pinheiro et al., 2022).
Second, due to limitations in data availability, this study focuses exclusively on the
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effects of environmental regulations on green technological diversification within
Chinese cities. Future research could address these gaps by adopting an international
perspective to explore the effects of environmental regulations on green technological
diversification and regional inequality across diverse national contexts.

Figures

Figure 1. The geographical distribution of the environmental regulation index
across cities (2003-2016)

Figure 2. The geographical distribution of knowledge complexity across cities
(2003-2016)

Notes
1. Jiuquan is known for modern spaceflight and the nuclear industry in China.
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Appendix
Appendix A Indicator Description
Indicators Description
Productivity per unit
of smoke and dust
produced by the
secondary industry

(Industrial smoke and dust emission+Industrial smoke and
dust removed)/Gross domestic product by secondary industry
①Industrial smoke and dust emission: The volume of soot in
smoke emitted in process of fuel burning in premises of
enterprises.
② Industrial smoke and dust removed: Volume of soot in
smoke emitted in process of fuel burning in premises of
enterprises.

Productivity per unit
of wasted water
produced by the
secondary industry

(Industrial waste water discharged +Industrial waste water
meeting discharge standards)/Gross domestic product by
secondary industry
① Industrial waste water discharged: Volume of waste water
discharged by industrial enterprises through all their
outlets‚including waste water from production process,
directly cooled water,‚ground water from mining wells which
does not meet discharge standards and sewage from
households mixed with waste water produced by industrial
activities, but excluding indirectly cooled water discharged（it
should be included if the discharge is not separated with waste
water).
②Volume of industrial waste: Water discharge which, with or
without treatment, reaches national or local standards.

Smoke and dust
removal rate

Industrial smoke and dust removed/ (Industrial smoke and
dust emission+Industrial smoke and dust removed)

Ratio of industrial
solid wastes utilized

The percentage of industrial solid wastes utilized over
industrial solid wastes produced (including stocks of the
previous year).

Rate of urban
domestic waste
water treatment

The proportion of the quantity of domestic wastewater treated
to the total quantity of domestic wastewater discharged at the
end of reported period.

Rate of domestic
garbage harmless
treatment

The ratio of the volume of domestic garbage harmlessly
treated to the volume of domestic garbage produced during the
reference period. In practical statistics, as the volume of
domestic garbage produced is difficult to obtain, it can be
replaced by the volume of collected and transported.
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Appendix B Baseline regression with Green dummy

(1) (2) (3)
Variables All All All
ER 0.0294*** 0.0272***

(0.0021) (0.0022)
Density 0.0093*** 0.0091*** 0.0091***

(0.0001) (0.0001) (0.0001)
ER*Green 0.0128***

(0.0044)
Green 0.0236*** 0.0158***

(0.0007) (0.0026)
Obs 1,484,406 1,137,802 1,137,802
Controls YES YES YES
Year FE YES YES YES
City FE YES YES YES
IPC4 FE NO NO NO
Adj R2 0.0602 0.0612 0.0613
Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1
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