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1. Introduction  

 

The urgency to mitigate environmental degradation and climate change is often 
considered the most pressing challenge of our times. To deal with these issues, 
governments, research institutes, and firms are all making considerable efforts by 
issuing environmental and climate policies, investing in green technologies, and 
upgrading industrial structures. Green technologies, which hold the promises of having 
few or zero adverse effects on the environment (Oltra & Sain Jean, 2009; Driessen & 
Hillebrand, 2002), are regarded as a potential way to achieve a win-win situation 
between the economy and the environment (Popp, 2019). Though green innovations 
have higher social value, more significant economic benefits, and broader potential 
applications across various technological areas than non-green innovations (Dechezlepr
! tre et al., 2014; Popp & Newell, 2012; Nemet, 2012), the process of diversifying into 
green tech domains is challenging and risky due to the nature of green innovations. 
Helping regions jump the technological trajectories and create new and more complex 
green technology development paths is vital to sustainable development.1  

In the regional diversification literature, whether a region can develop and diversify 
a new technology depends on its own preexisting knowledge and capabilities related to 
this specific technology. Hidalgo et al. (2018) coined the principle of relatedness to 
express the idea that cities gradually diversify by leveraging related, preexisting 
economic activities, which are known to be path-dependent and are supported by 
numerous empirical research (Balland & Rigby, 2017; Boschma & Capone, 2015; Dong 
et al., 2022). As a dimension of knowledge, the complexity of economic activities has 
received increasing attention in regional diversification studies, since both 
technological composition and values are vital to the regional knowledge basket 
(Hidalgo & Hausmann, 2009; Balland & Rigby, 2017; Balland et al., 2022). According 
to them, economic activities with a high level of complexity are more exclusive and 
harder to replicate, transmit, and copy (Simon, 1991), which is essential for creating a 
long-term competitive advantage for regions (Asheim & Gertler, 2005; Kogut & Zander, 
1992) and accelerates economic development in the long-term (Hidalgo & Hausmann, 
2009; Balland & Rigby, 2017). 

Considering the important role of green innovation, the regional diversification 
literature has made numerous recent contributions to our understanding of the green 
innovation space (Montresor & Quatraro, 2020; Santoalha et al., 2021; Li et al., 2020; 
Moreno & Ocampo-Corrales, 2022; Barbieri et al., 2020; Cecere et al., 2014; Perruchas 
et al., 2020). However, the majority of previous studies only address the characteristics 
of the innovation itself. During processes of sustainable/green transition, path-breaking 
and complex technology is more common and contains more risks. Therefore, 
branching into green technology spaces requires a broader range of external sources 

 
1 Regional diversification is a branching process that creates new activities within regions 
(Frenken and Boschma,2007). 
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and knowledge inputs to prevent the initial resources (De Marchi, 2012; Barbieri et al., 
2020; Rennings & Rammer, 2009; Cainelli et al., 2015; Santoalha & Boschma, 2021; 
Smith & Raven, 2012). In addition, green innovations suffer from environmental and 
knowledge externalities (Popp, 2019; Aghion et al., 2016), which causes market 
participants not to have enough incentives to invest (Popp, 2019; Aghion et al., 2016; 
Dechezleprêtre et al., 2014). Without external sources, market participants are reluctant 
to develop this kind of innovation, and the technology development process tends to be 
a self-lock-in. 

Therefore, academics have become more interested in how policies impact green 
innovation and move the city’s technological frontier forward. Nevertheless, the 
conclusion is mixed. On the one hand, the proponents of the "Porter Hypothesis" 
consider that environmental regulations encourage firms to develop more technological 
innovations, aiming to enhance their long-term competitiveness (Aghion et al., 2016; 
Popp, 2019; Porter & Van der Linde, 1995). On the other hand, other scholars contend 
that environmental regulations squeeze out the resources and investment in research 
and development, further leading to a decline in new technology (Shen et al., 2019; 
Popp & Newell, 2012; Noailly & Smeets, 2015). While this strand of research deepens 
our understanding of how external factors affect the innovation process, they mainly 
explore the number of green technologies and tend to ignore the embedded knowledge 
and technological structure.  

With this in mind, this study connects the environmental policy and diversification 
literature and investigates whether environmental policies can help cities embrace a 
more complex and less related green technology. Using China's annual patent data at 
the city level from 2003 to 2016, we find: First, environmental regulations foster cities' 
expansion into new green technology spaces in general. Second, environmental 
regulations stimulate cities to create less related and more complex green technologies. 
Third, there is significant regional heterogeneity in the consequences of environmental 
regulations.  

 
In doing so, we bridge the knowledge gap in environmental policy and 

diversification literature. First, the porter hypothesis supporters have suggested that the 
effect of environmental regulations on innovation depends on the existing technology 
and path-dependence, while most just use the lagged innovation as an indicator of the 
existing technology structure. They tend to ignore the relatedness of a specific 
technology with other technology and city-specific green technological characteristics 
(e.g., comparative technological advantage, technological maturity). However, such 
cross-technology relatedness is vital for cities to spur more innovations. Therefore, we 
introduce the cross-technology relatedness from the diversification literature into our 
framework and delve into city-specific knowledge structures embedded in different 
technology.  

 
Second, the recent technology diversification literature has started to notice green 

innovation space, while they mainly focus on the characteristics of the innovation itself 
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rather than exploring the policy's effect. Since green innovation diversification is more 
challenging and market forces do not have enough incentives to innovate in a green 
way, whether and how external policy shock can alter the path-dependent innovation 
process is important but is under-explored. Recent studies started to focus on how 
external factors affect the green diversification process (Smith & Raven, 2012; 
Santoalha & Boschma, 2021), but this stream of literature is mainly about supporting 
policies that provide subsidies and reduce costs. In addition, they rarely pay attention 
to the technological complexity to be explored. We differ from them by focusing on 
environmental regulations, which frequently result in cost increases, and considering 
the technological complexity as well. 

 

2. Hypothesis development 

Regional development is constrained by pre-existing knowledge bases, which 
generates a strong path-dependent process (Boschma and Frenken, 2011). Such path-
dependence has been a significant obstacle for less developed regions branching into 
new technology spaces (Hidalgo et al., 2007; Kogler et al., 2017). This pattern is 
especially true for the most complex technologies, that as a result tends to strongly 
concentrate in large cities (Balland et al., 2020). Regions are not isolated from each 
other and to a certain extent, the lack of related knowledge can be compensated by 
extra-regional linkages. These links can facilitate the diversification process by 
providing missing knowledge pieces (Aghion et al., 2016; Chatterjee & Wernerfelt, 
1991; Mazzucato, 2016; Neffke et al., 2011; Dong et al., 2022).  

A big question, however, concerns environmental regulations. They are 
fundamental to fighting climate change, but understanding whether they create or 
hinder economic opportunities is essential to receive societal support at large. In his 
1991 essay, Michael Porter argued that environmental regulations might have a positive 
effect on the performance of domestic firms by stimulating innovation. This is known 
as the Porter hypothesis and we test it at the city level:  

H1: Cities that have tighter environmental regulations are more likely to diversify 
into new technologies.  

Though environmental regulation plays a vital role in the diversification of both 
non-green and green technology spaces, it will undoubtedly have a more substantial 
effect on green diversification. Next, we, therefore, argue that environmental 
regulations provide specific incentives for public and private investments into green 
technology (Aghion et al., 2016; Popp, 2019; Porter & Van der Linde, 1995). The idea 
is that it leads firms to develop new and less costly technologies that reduce emissions 
and provide clear alternatives to fossil fuels. Environmental regulations somehow push 
local firms to become early inventors, foster green diversification, and will later create 
the possibility to export products in which this technology is embedded.    

This is for two reasons. First, the nature of green innovation suffers from both 
knowledge externalities and environmental externalities, which leads to insufficient 
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incentives for green technology by market forces (Popp, 2019; Aghion et al., 2016; 
Dechezleprêtre et al., 2014). The environmental policy could deal with this market 
failure and incentivize the market to invest in green innovations (Klemetsen et al., 2018; 
Rogge & Schleich, 2018; Popp, 2019).  

Second, green technologies are usually more radical at the initial stage of the life 
cycle (Consoli et al., 2016). Being an expert in green technology and understanding 
their knowledge base is more complicated and entails more significant uncertainties 
(Braungart et al., 2007). Therefore, diversifying into green technology space need more 
external sources (Braungart et al., 2007; Barbieri et al., 2020). The environmental 
policy intervention could provide such sources and reduce uncertainties by altering 
consumer preference, improving public awareness, and regulating the firm's production 
process (Barwick et al., 2019). Therefore, we develop our last hypothesis as below: 

H2: Environmental regulations are more likely to encourage cities to enter green 
technologies than non-green ones. 

The technology diversification process is path-dependent. In addition, cities are 
more likely to enter economic activities whose complexity level is similar to the current 
existing knowledge and capacity base (Dong et al., 2020). If regions want to jump the 
technological trajectories and gain a path-breaking and more complex innovation, the 
role of niches is essential. In the transition literature, niches are the temporary 
"protective space" in the processes of path-breaking innovation (Kemp et al., 1998; Rip 
& Kemp, 1998; Schot et al., 1994). The initial protection of niches is vital and prevents 
selection pressure since path-breaking and complex innovation is more risky and easy 
to fail (Rip & Kemp, 1998; Raven et al., 2016; Smith & Raven, 2012). 

During processes of sustainable/green transition, path-breaking and complex 
technology are more common (Barbieri et al., 2020; Rennings & Rammer, 2009; De 
Marchi, 2012; Santoalha & Boschma, 2021). Such innovations have the following 
characteristics (i) they are typically at the beginning of the life cycle, which carries 
greater risk and uncertainty (Consoli et al., 2016; Barbieri et al., 2020); (ii) they are 
more complicated and unrelated that require diverse and distant knowledge inputs 
(Cainelli et al., 2015; Dong et al., 2020; Horbach et al., 2012; Li et al., 2020; Barbieri 
et al., 2020; Rennings & Rammer, 2009). Therefore, outside sources and knowledge 
inputs are needed for these path-breaking and green technologies (De Marchi, 2012; 
Barbieri et al., 2020). Without external sources, firms and institutions have inertia and 
resistance towards this kind of innovation, and the technology development process 
tends to be a self-lock-in. 

As a kind of external source, policy interventions can provide "niches" for the 
diversification process into path-breaking and complex technology space. First, the 
environmental policy requires replacing the pollution-intensive equipment and 
jeopardizes the region's existing "dirty" specialties (Acemoglu et al., 2016). In order to 
meet the requirement, firms need to search for other technologies unrelated to the 
existing 'dirty' specializations. Second, the policy enhances public awareness of 
environmental issues and alters the customer preference for products from the demand 

https://scholar.lanfanshu.cn/citations?user=KGgYSA8AAAAJ&hl=zh-CN&oi=sra
https://scholar.lanfanshu.cn/citations?user=Q3zvFNAAAAAJ&hl=zh-CN&oi=sra
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side (Barwick et al., 2019), which further affects the supply-side decisions in the 
production and innovation process. Third, the environmental policy provides guidance 
and support for clean and green technology, reducing the risks and costs of regions 
searching in complex and distant technology spaces. Therefore, the environmental 
policy could provide a safe area with less risk and need fewer resources to cultivate 
path-breaking and more complex innovations. 

To sum up, environmental policy enables regions to reduce the dependency on the 
existing knowledge base and move the city’s technological frontier forward. Thereafter, 
we propose our third and fourth hypotheses: 

H3: Environmental regulations enable unrelated green diversification of cities. 

H4: Environmental regulations foster cities to develop more complex green 
technologies. 

3. Data and Methodology 

3.1 Data and variable definition 

There are three main sources of data in this study. The first one is patent data from 
the IncoPat Global patent database to calculate the technology diversification and the 
related index from 2003 to 2016. The second one is China's environmental statistical 
yearbook which provides information to construct the environmental regulation index 
at the city level. The third one is the China city statistical yearbook, which provides 
information about the control variables in the empirical analysis. 

3.1.1 Technology-related variables 

We constructed the technology-related indexes using the patent data, following 
Hidalgo et al. (2007) and Hidalgo & Hausmann (2009). We got access to information 
on Chinese patents from a commercial patent database called IncoPat. IncoPat contains 
data on patents from 102 countries and territories. All Chinese inventions applied from 
September 1985, including the patent title, abstract, application date, and grant date are 
contained in IncoPat. We compile the application number, name of applicants, address 
of applicants, and main 4-digit IPC class of invention patents of firm applicants. These 
patent applications were approved before June 2017. Therefore, we applied the patent 
data of 637 4-digit IPC sub-classes from 2003 to 2016 in the analysis. We observed the 
patent applications of firm applicants to measure cities' activities and outcomes in terms 
of technological innovation in a particular year. Based on raw data, the number of patent 
applications at the city-IPC-year level was calculated. Since the grants of patent rights 
attest to the validity of the applicants' technological innovation efforts, we only counted 
patent applications that are ultimately authorized. We excluded patent applications that 
were denied official grants because they cannot reflect a city's success in entering 
technical fields.  
 
(1) Revealed comparative advantage (RCA)  
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To determine whether a city has an advantage in a certain technology, we employed 
the revealed comparative advantage (RCA). RCA was calculated by the location 
quotient, which is the share of cities' specialization in the average national level of 
specialization in a specific technology. Formally, the RCA of each technology 
subcategory in each city is specified as follows: 

     �4�%�#�Ü!�Ö!�ç " �P
" #!�E�B$

�Í�Ø�Ö�â�á�â%&'( �Ô!�Î!�ß) �Ã �Í�Ø�Ö�â�á�â%&'( �Ô!�Î!�ß�Ô

�Ã �Í�Ø�Ö�â�á�â%&'( �Ô!�Î!�ß�´ ) �Ã �Ã �Í�Ø�Ö�â�á�â%&'( �Ô!�Î!�ß�Ô�Î
$
R#

" * ! �E�B$
�Í�Ø�Ö�â�á�â%&'( �Ô!�Î!�ß) �Ã �Í�Ø�Ö�â�á�â%&'( �Ô!�Î!�ß�Ô

�Ã �Í�Ø�Ö�â�á�â%&'( �Ô!�Î!�ß�´ ) �Ã �Ã �Í�Ø�Ö�â�á�â%&'( �Ô!�Î!�ß�Ô�Î
$+ #

         (1) 

Here, i, c and t stand for technology, city and year, respectively. �6�A�?�D�J�K%&'( �Ü!�Ö!�ç 
is the number of patents granted of subclass �E in city c in time �P. �4�%�#�Ü!�Ö!�ç equals one 
if the ratio of a specific technology �E to all technology invented by a city’s is higher 
than that of the national average level, and equals zero otherwise. 

(2) Relatedness (�î �Ü!�Ý!�ç, $and relatedness density (�&�A�J�O�E�P�U�Ü!�Ö!�ç) 

We followed Hidalgo et al. (2007) and defined relatedness between technology$�E 
and �F  as the minimum of the conditional probability that two technologies whose 
RCAs both equal one in the same cities. The calculation is: 

  �î �Ü!�Ý!�ç " -./ 
[�2
k�4�%�#�Ü!�Ö!�ç " #�+�4�%�#�Ý!�Ö!�ç " #
o!$$$�2
k�4�%�#�Ý!�Ö!�ç " #�+�4�%�#�Ü!�Ö!�ç " #
o
_  (2) 

A higher value of �î �Ü!�Ý!�ç implies that the two technologies tend to be developed in 
the same region. Relied on the relatedness constructed in Equation (2), technology 
relatedness density (�&�A�J�O�E�P�U�Ü!�Ö!�ç) is measured as the weighted average RCA of all other 
technologies in a certain city weighted by their relatedness with this particular 
technology and is calculated as follows: 

                            �&�A�J�O�E�P�U�Ü!�Ö!�ç "
�Ã �Ë�¼�º�Õ!�Î!�ß�� �Ô!�Õ!�ß�Õ

�Ã �� �Ô!�Õ!�ß�Õ
                (3) 

Higher density indicates that in city �?, this certain technology is encircled by many 
other highly developed technologies. 

(3) Technology Complexity Index (TCI) and Knowledge Complexity Index (KCI)  

To measure the Knowledge Complexity Index (KCI) of regions and the Technology 
Complexity Index (TCI) of economic activities, Hidalgo and Haussmann (2009) create 
a "Method of Reflections" based on the hypothesis that cities with more complex 
knowledge structures create exclusive products that are infrequently produced by other 
economic systems. This approach has been used in a variety of contexts, including 
exports (Reynolds et al., 2018), patents (Balland et al., 2019), employment (Farinha et 
al., 2019), and so forth. 

The Knowledge Complexity Index (KCI) gauges the level of knowledge present in 
a city's economic activity (in our case, technology), which reflects the city's knowledge 
and productivity (Balland & Rigby, 2017; Balland et al., 2019; Dong et al., 2020). The 
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Technology Complexity Index (TCI), which measures a technology's knowledge 
intensity, is the product counterpart of KCI (Balland & Rigby, 2017; Sweet & Eterovic, 
2019). According to the complexity principle, cities with a more complex knowledge 
structure produce unique goods that are infrequently produced by other cities. Therefore, 
the complexity is simultaneously determined by two factors: (i) a city's diversity, i.e., 
the number of RCA technologies a city possesses; (ii) a product's ubiquity, i.e., the 
number of cities that have RCA in a specific technology. For instance, a type of 
technology is considered to be more complex if it can only be produced in a small 
number of cities, i.e., with high exclusiveness of technology. A city has greater 
knowledge complexity if it has RCA in many different technological fields. 

The formal calculation is: 

�&�E�R�A�N�O�E�P�U�Ö" �-�Ö!�4 " �Ã �/ �Ü!�Ö!�ç�Ö                  (4) 

 $�7�>�E�M�Q�E�P�U�Ü" �-�Ü!�4 " �Ã �/ �Ü!�Ö!�ç�Ü                  (5) 

Where M is a city-technology adjacency matrix �/ �Ü!�Ö!�ç. �/ �Ü!�Ö!�ç equals 1 if �4�%�#�Ü!�Ö!�ç$ 
takes 1, and equals 0 otherwise. Higher diversity means a city can invent more exclusive 
technologies that are less likely to be invented and imitated by other cities, leading to a 
tendency for a city's technological portfolio to be more complex. A technology with 
low ubiquity can only be specialized in a few places since the knowledge and skills 
needed to develop it are infrequently available, making the technology more 
complicated. Cities must become more specialized in less ubiquitous technologies if 
they want to receive high complexity scores. 

KCI and TCI can be calculated across iterations by merging diversity and ubiquity: 

�- �%�+�Ö!�ç " �-�Ö!�á!�ç "
�5

�Þ�Î!�,
�Ã �/ �Ü!�Ö!�ç�6�%�+�Ü!�á�?�5!�r�Ü             (6) 

�6�%�+�Ü!�ç " �-�Ü!�á!�ç "
�5

�Þ�Ô!�,
�Ã �/ �Ü!�Ö!�ç�- �%�+�Ö!�á�?�5!�r�Ö              (7) 

Higher value of �- �%�+�Ö!�ç suggests a city is more complex in its technology portfolio 
and higher value of �6�%�+�Ü!�ç indicates knowledge intensity of a technology is higher. 

Then, we made the difference between �6�%�+�Ü and �- �%�+�Ö to quantify the relative 
complexity of industry �E  to city �? ’s specialization basket. A positive �) �%�+�Ü!�Ö 
represents that industry �E has a higher level of complexity than city �?’s average. 

 �) �%�+�Ü!�Ö" �6�%�+�Ü
F �- �%�+�Ö                   (8) 

3.1.2 Environmental regulation 

The key independent variable is Environmental Regulation (ER) stringency. In the 
literature, there are several prevailing measurements for the stringency of 
environmental policy. The first one is usually based on a single indicator method, such 
as energy prices (Dechezleprêtre & Sato, 2020), inspections and violations of polluting 
companies (Brunnermerier & Cohen, 2003), pollutant emissions or emission intensity 
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(Ren et al., 2018), etc. The second one is to construct evaluation standards to score the 
level of environmental regulations from different perspectives. For example, the Public 
and Environmental Research Center (IPE) and the Natural Resources Conservation 
Association (NRDC) develop the pollution source regulatory information disclosure.2. 
The third one usually constructs a comprehensive index based on the result variables of 
various pollutant emissions using different indicator construction methods, which can 
reflect the intensity of environmental regulations more objectively (Dechezlepretre & 
Sato, 2020; Liu et al., 2021). 

Considering the availability of city-level data and the challenges the single 
indicator and objective score, this study uses the third method and follows Wang and 
Feng (2014) and Du et al. (2021) to construct a comprehensive index of environmental 
regulation at city level by the entropy weighting method. We select some sub-indicators 
that are related to the stringency of environmental regulation (Zhao & Sun, 2016; Ren 
et al., 2018; Liu et al., 2021), including garbage harmless treatment rate, smoke and 
dust removal rate, industrial solid waste utilization rate, SO2 removal rate, and sewage 
treatment rate. The raw data is from China's environmental statistical yearbook. The 
concept of the entropy weight method is the greater the degree of dispersion and 
differentiation of a sub indication can contain more information, and then the higher 
the weight it will get (Huang et al., 2018; Liu et al., 2019; Yuan et al., 2019). The 
calculation process is as below: 

We started to standardize each raw sub-indicator j (j=1,2,...,m) to get rid of the 
effects of various dimensions. 

                     �T�Ý�Ö�ç
�Û "

�ë�Õ�Î�ß�?�à �Ü�á0�ë�Õ�ß,

�à�Ô�ë0�ë�Õ�ß, �?�à �Ü�á0�ë�Õ�ß,
                     (9) 

Where �T�Ý�Ö�ç is the sub-indicator j related to environmental regulation of city c 
(c=1,2,..n) at time t, �I �E�J0�T�Ý�ç,  and �I�=�T0�T�Ý�ç,  are the smallest and largest values of a 
specific indicator j at time t among all cities, respectively.  

Then, we calculated the entropy �A�Ý�ç  based on the contribution of each 

standardized indicator �U�Ý�Ö�ç"
�ë�Õ�Î�ß

�Û �>�5

�Ã 0�ë�Õ�Î�ß
�Û �>�5,�Ù

�Î�8�-
 : 

                 �A�Ý�ç " 
F
�5

�ß�â�Ú0�á,
�Ã �U�Ý�Ö�ç�H�K�C0�U�Ý�Ö�ç,

�á
�Ö�@�5 $                (10) 

The divergence coefficient �@�Ý�ç will be: 

                         �@�Ý�ç " $# 
F�A�Ý�ç                       (11) 

The larger �@�Ý�ç, the more important the indicator. The weight of indicator j at time 
t is: 

 
2  



 1  

                        �S�Ý�ç "
�×�Õ�ß

�Ã �×�Õ�ß
�Ø
�Õ�8�-

                         (12) 

The environmental regulation stringency index will be the weighted sum of the 
selected sub-indicators: 

                          �' �4�Ö�ç " �Ã �S�Ý�T�Ý�Ö�ç
�Û $�à

�Ý�@�5                    (13)     

Figure 1 shows the geographical distribution of the mean environmental regulation 
and city-level index from 2003-2016 across cities. Generally, we find ER decreases 
from east to west. Cities with stricter ER mainly concentrate in northern and eastern 
coastal areas, while those with a lower level of ECI are mainly distributed in midwest, 
southern and northeastern areas.  

 

Figure 1. The geographical distribution of the environmental regulation index 

across cities (2003-2016) 

Figure 2 exhibits a geographical distribution of the mean knowledge complexity 
index (KCI) at the city level from 2003-2016. Cities with higher KCI are mainly located 
in eastern coastal areas and the four municipalities (Beijing, Shanghai, Chongqing, and 
Tianjin), and Jiuquan3 in northwest China.  

 
3 Jiuquan is  the known for modern spaceflight and nuclear industry in China. 
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Figure 2. The geographical distribution of knowledge complexity 

across cities (2003-2016) 

3.1.3 Control variables  

We followed Dong et al.(2020) and used population density (Pop_Den), total 
population (Pop), foreign direct Investment (FDI), and gross domestic product (GDP) 
as control variables. The China City Statistic Yearbooks were used to collect all of the 
control variables at the city level. These factors could capture the differences in size, 
economic development, openness, and agglomeration economies between cities. 

Table 1. Descriptive statistics 

 Variable  Obs  Mean  Std. Dev.  Min  Max 
Entry 1715860 0.055 0.228 0 1 

Density 1715860 7.245 7.895 0 100 
GCI 1715860 0.055 .18 -1 1 
ER 3633 0.664 0.151 0.169 0.978 
Pop 3658 453.71 409.499 16.37 11098.4 
Pop den 3383 438.777 327.429 4.7 2661.54 
FDI 3509 77293.266 199091.48 0 3082563 
GDP 3657 16091150 23735765 317731 2.818e+08 

3.2 Model specification 

By employing a linear probability model with fixed effects, we estimated the 
likelihood that a city will specialize in a new specific technology (Balland et al., 2019; 
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Dong et al., 2022). 

The basic model specification is as below: 

�2�N�K�>0�' �J�P�N�U�Ü!�Ö!�ç " #, " �Ù�41 �Ù�5 �Û�' �4�Ö!�ç�?�51 �Ù�6 �Û�&�A�J�O�E�P�U�Ü!�Ö!�ç�?�51 �Ù�7 �Û
�)�%�+�Ü!�Ö!�ç�?�51 �Ù�8 �Û�)�%�+2�O�M�Ü!�Ö!�ç�?�51 �Ú�Û�: �Ö!�ç�?�51 �Ü�Ü1 �ò�Ö1 �ä�ç1 �Ý�Ü!�Ö!�ç      (14)                              

The dummy variable �' �J�P�N�U�Ü!�Ö!�ç takes 1 if city c does not have RCA in year t-1 and 
then develops RCA in year t in the technology domain i. �Ù�5 estimates how ER relates 
to the probability of entering in a new specific technology. �&�A�J�O�E�P�U�Ü!�Ö!�ç�?�5 refers to the 
technological relatedness density, measuring how technology �E is closely connected to 
city �? ’s other existing technologies at �P
F# . $�)�%�+�Ü!�Ö!�ç�?�5  captures the difference 
between technology and knowledge complexity of city �? at year �P
F#. Considering 
that the city tends to step into new technology spaces with similar complexity to its 
existing knowledge portfolio (Dong et al., 2021), we include its quadratic term 
�)�%�+2�O�M�Ü!�Ö!�ç�?�5 , and �Ù�8  is expected to be negative to indicate the inverse U-shape 
relationship between GCI and entry probability �: �Ö!�ç�?�5  are city-specific control 
variables, including GDP, foreign direct investment, total population, and population 
density. We controlled for city and technology-fixed effects to absorb some technology-
specific heterogeneities (�Ü�Ü! �ò�Ö) that might not be able to be observed in our controls. 
We also included year-fixed effects to control for some time-specific changes, such as 
policy shock. 

To examine the hypothesis H2, we included the cross-term ER*Green in Equation 
(14) as below: 

�2�N�K�>0�' �J�P�N�U�Ü!�Ö!�ç " #, " �Ù�41 �Ù�5 �Û�' �4�Ö!�ç�?�51 �Ù�5 �Û�' �4�Ö!�ç�?�5 �Û�)�N�A�A�J�Ü1 �Ù�6 �Û
�&�A�J�O�E�P�U�Ü!�Ö!�ç�?�51 �Ù�7 �Û�)�%�+�Ü!�Ö!�ç�?�51 �Ù�8 �Û�)�%�+2�O�M�Ü!�Ö!�ç�?�51 �Ú�Û�: �Ö!�ç�?�51 �Ü�Ü1 �ò�Ö1 �ä�ç1
�Ý�Ü!�Ö!�ç                                                         (15) 

Where �)�N�A�A�J�Ü  is a dummy indicating whether a technology belongs to green 
technology or not (�)�N�A�A�J�Ü=1 if is a green technology and =0 otherwise). The green and 
non-green technologies are classified based on the 4-digit code of International Patent 
Classification (IPC) of each patent and the green innovation classification of 
Intellectual Property Organization (WIPO). All variables are defined in the same way 
as in Equation (14).  

To test hypotheses H3 and H4, we included the cross term of Density*ER and 
GCI*ER based on the subset of green technologies, estimating whether ER could lead 
to a technology breakthrough and help the city enter more complex green  technology 
domains.  

�2�N�K�>0�' �J�P�N�U�Ü!�Ö!�ç " #, " �Ù�41 �Ù�5 �Û�' �4�Ö!�ç�?�51 �Ù�6 �Û�' �4�Ö!�ç�?�5 �Û�&�A�J�O�E�P�U�Ü!�Ö!�ç�?�51
�Ù�7 �Û�' �4�Ü!�ç�?�5 �Û�)�%�+�Ü!�Ö!�ç�?�51 �Ù�8 �Û�&�A�J�O�E�P�U�Ü!�Ö!�ç�?�51 �Ù�9 �Û�)�%�+�Ü!�Ö!�ç�?�51 �Ù�: �Û�)�%�+2�O�M�Ü!�Ö!�ç�?�51
�Ú�Û�: �Ö!�ç�?�51 �Ü�Ü1 �ò�Ý1 �ä�ç1 �Ý�Ü!�Ö!�ç                                       (16) 

�Ù�6 is expected to be negative and �Ù�7 is expected to be positive in Equation (16). 
All variables are defined in the same way as in Equation (14).  
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4 Results and discussions 

4.1 Baseline result 

Table 2 shows the overall effect of environmental regulation.               in 
the most baseline model (Column (1)), the significantly positive coefficient of density 
indicates that the probability of specializing in new technologies is higher if this 
technology is more closely related to its own existing technological infrastructure. This 
result is consistent with the previous relevant studies on diversification (Boschma & 
Capone, 2015; Balland et al., 2019). The coefficients of the square term of GCI (GCI_sq) 
in both columns are negative, indicating that there exists an inverse U-shaped link 
between the GCI and the chance of entering a new technology domain. It also implies 
that cities lean to diversify into technology spaces with similar complexity levels to the 
existing knowledge base, which is in line with the previous literature (Dong et al., 2022).  

Column (2) exhibits the estimated result based on Equation (15). The coefficient 
on environmental regulation (ER) is positive, suggesting that stricter environmental 
regulation (ER) improves the possibility of diversifying into new technology spaces. 
H1 – the Porter hypothesis - is supported. Column (3) distinguishes the effect of 
environmental regulation on the green and non-green technology diversification 
process by adding the cross-term ER*Green (Equation (15)). We can see that the 
coefficient on ER*Green is significantly positive, suggesting that environmental 
regulation’s effect is larger for green innovation than for non-green innovation. At a 5% 
significant level, the coefficient on ER loses its significance after considering 
ER*Green. This indicates that the stimulating effect of environmental policy is mainly 
driven by the effect on green technology and environmental policies are more likely to 
encourage cities to enter green innovation space than non-green innovation space. The 
environmental policy intervention could provide such sources, reduce uncertainties, 
deal with this market failure, and incentivize the market to invest in green innovations. 
Such a result supports our hypothesis H2. 
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Table 2 Baseline result 
 (1) (2) (3) 
VARIABLES All All All 
ER  0.0095*** 0.0038* 
  (0.0019) (0.0020) 
Density 0.0063*** 0.0063*** 0.0063*** 
 (0.0001) (0.0001) (0.0001) 
ER*Green   0.0346*** 
   (0.0035) 
GCI 0.0121*** 0.0123*** 0.0128*** 
 (0.0016) (0.0016) (0.0016) 
GCI_sq -0.0437*** -0.0439*** -0.0449*** 
 (0.0027) (0.0027) (0.0027) 
Controls YES YES YES 
Observations 1,646,642 1,641,719 1,641,719 
Year FE YES YES YES 
City FE YES YES YES 
Industry FE YES YES YES 
Adjusted R-squared 0.0930 0.0930 0.0930 

Robust standard errors in parentheses�× *** p<0.01, ** p<0.05, * p<0.1 

4.2 Heterogeneity in knowledge structure 

Table 3 exhibits the result regarding how the technology structure, namely, density 
and complexity, affects the role of environmental policy based on Equation (16). 
Column (1) shows the estimated result about whether environmental policy helps cities 
to gain path-breaking green innovation. We can see that the cross-term Density*ER is 
significantly negative, which means that environmental regulation helps cities generate 
a path breakthrough and develop less related green technology, which proves that 
environmental regulation could compensate for the weak capabilities to develop less 
related technology in a region. Column (2) shows the estimated result about how 
complexity matters in terms of the role of environmental policy on technology. The 
significant and positive coefficient on GCI*ER indicates that environmental regulation 
helps cities diversify into more complex green technology spaces. We consider 
both Density*ER and GCI*ER in Column (3). The result is still robust. 

To sum up, the above results prove our hypotheses H3 and H4: environmental 
regulations enable unrelated and complex green diversification. Environmental 
regulations, an external source, can provide "niches" for green innovations and alter the 
transition into path-breaking and complex green technology space. 
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Table 3 Heterogeneity analysis in density and complexity 
 (1) (2) (3) 
 Green Green Green 
ER 0.0405*** 0.0134** 0.0336*** 
 (0.0061) (0.0059) (0.0065) 
Density 0.0100*** 0.0064*** 0.0094*** 
 (0.0008) (0.0002) (0.0008) 
Density*ER -0.0048***  -0.0039*** 
 (0.0009)  (0.0010) 
GCI*ER  0.1206*** 0.0728*** 
  (0.0218) (0.0220) 
Controls YES YES YES 
Observations 266,309 266,309 266,309 
Year FE YES YES YES 
City FE YES YES YES 
Industry FE YES YES YES 
Adjusted R-squared 0.0894 0.0893 0.0894 

Robust standard errors in parentheses�× *** p<0.01, ** p<0.05, * p<0.1 

4.3 Heterogeneity in regions 

Considering there is a huge regional difference in China and the technology 
diversification depends a lot on the regional capabilities (Boschma & Capone, 2015; 
Boschma et al., 2017), the impact of the environmental policy is expected to be varied 
across regions. This section re-performs the above analysis relying on the sub-sample 
of different regions in China, namely, the East, Middle, and West regions. The result is 
shown in Table 4.  

For the result of the overall impact of the environmental policy, the coefficient of 
ER is significantly positive in columns (1) and (5), and significantly negative in column 
(3) at 10% significance level. In the East area of China, the porter hypothesis effect 
dominates, and the environmental policy helps regions specialize in new technology. In 
the Middle area, the crowding-out effect dominates, and the environmental policy 
deters regions from entering new technology space. In the West area, the stimulating 
effect of the environmental policy on diversifying to new technology spaces is 
significant but weaker than that in the East area. 

The rationale behind such different impacts is related to the regional capability and 
institutional background. As we can see in Appendix 1, the environmental regulation 
stringency decreases from East to West. East area is relatively developed with higher 
innovation ability. The residents here usually have more demand for a better 
environment, and the government here can provide support to invest in new and risky 
technology. Therefore, firms here can more easily invent new technology that has less 
harmful effects on the environment. The middle region usually relies on polluted and 
energy-intensive industries a lot, so it need to pay more in the transition to a green 
economy. In addition, cities in this region do not have enough capacity to invest in new 
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technology. Thus, the middle region suffers from the crowding-out effect the most. The 
west region is less developed and suffers less from pollution. The lowest regulation 
level makes cities there less likely to be affected by the crowding-out effect. 

Columns (2), (4), and (6) examine the effect of environmental policy across 
different regions in terms of branching into green technology. In general, the positive 
coefficient on ER*Green demonstrates that environmental policy helps cities enter the 
green technology spaces in all regions. To be more specific, in the East region of China, 
the probability of entering green and non-green technology space experience an 
increase when the environmental regulation is higher, while the effect on green 
technology is stronger. In the West region, environmental regulation deters cities from 
entering non-green technology space but encourages cities to enter green technology 
space. Such a result indicates that the relative strength of the “Porter” effect and 
crowding out effect is different between green and non-green technology. 
Environmental regulation could help cities specialize in green domains but squeeze out 
the investment in non-green domains. In the West areas, environmental regulation does 
not significantly affect the probability of entering non-green technology space but 
improves the likelihood of diversification into green technology space.  
 
Table 4 Heterogeneity in regions 

VARIABLES East East Middle Middle West West 
 (1) (2) (3) (4) (5) (6) 

Density 0.0066*** 0.0066*** 0.0061*** 0.0061*** 
0.0056**

* 0.0056*** 
 (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002) 
ER 0.0194*** 0.0147*** -0.0065* -0.0120*** 0.0066** -0.0011 
 (0.0038) (0.0039) (0.0033) (0.0034) (0.0030) (0.0030) 
ER*Green  0.0284***  0.0338***  0.0477*** 
  (0.0064)  (0.0057)  (0.0062) 
GCI 0.0244*** 0.0248*** -0.0149*** -0.0143*** -0.0062** -0.0054* 
 (0.0030) (0.0030) (0.0028) (0.0028) (0.0028) (0.0028) 
GCI_sq -0.1079*** -0.1087*** -0.0072 -0.0080* 0.0040 0.0031 
 (0.0055) (0.0055) (0.0046) (0.0046) (0.0042) (0.0042) 
Controls YES YES YES YES YES YES 
Observations 628,020 628,020 546,081 546,081 467,618 467,618 
Year FE YES YES YES YES YES YES 
City FE YES YES YES YES YES YES 
Industry FE YES YES YES YES YES YES 
Adjusted R-
squared 0.0938 0.0939 0.0861 0.0861 0.0887 0.0889 

Robust standard errors in parentheses�× *** p<0.01, ** p<0.05, * p<0.1 
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5 Conclusion 

This study probes whether environmental policy can help cities branch into a less 
related and more complex technology. Using China's annual patent data at the city level 
from 2003 to 2016, our results show that (i) environmental policy fosters cities to 
branch into new green technology spaces in general; (ii) environmental policy fosters 
cities to develop less related and more complex technology; (iii) the effects of 
environmental policy have a regional heterogeneity. For example, the environmental 
policy may harm the probability of entering new technology domains in the middle area. 

In doing so, this study fills the research gap from the following perspectives. First, 
by quantifying cross-technology relatedness from the regional diversification literature, 
we differ from the previous environmental policy literature, which only uses the lagged 
innovation to measure the path-dependent process. In addition, we delve into city-
specific knowledge structures embedded in different technology and explore the 
effectiveness of the environmental policy, which sheds light on the environmental 
policy literature. Second, compared with the existing regional diversification literature 
mainly discussing green diversification within the nature of the technology itself, we 
focus on how environmental policy affects the branch into different technology 
domains. As a different external shock compared with the other supporting policies, 
exploring the environmental policy’s effect during the diversification process 
complements the regional diversification literature. 

The result of this study has some practical implications. At the broader level, 
environmental regulations are fundamental to fighting climate change. However, 
citizens, firms, and cities will be less likely to support new environmental regulations 
if they hinder economic opportunities. Unpacking this tension and showing that 
environmental regulation promotes green diversification means that such green policy 
are economically and politically viable.  

At the regional level, path dependence means that less developed regions have 
difficulties in branching into more complex and green spaces. They are more likely to 
be confined in high-carbon and high-pollution regimes. This is particularly problematic 
as the urgency to deal with environmental degradation and climate change is more vital 
in less developed regions. Therefore, proper interventions, such as providing niches for 
these technologies with environmental policies, can help regions jump the 
technological trajectories and create new and more complex green technology 
development paths. This is vital to environmental justice and sustainable development 
across cities.  

In addition, our results identify that the environmental policy helps regions gain a 
path-breakthrough, but cities may differ in capacities and willingness to respond to the 
policy. Therefore, how to coordinate different regions and provide necessary support to 
less developed areas is significant to sustainable development and environmental 
justice as well. 
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Appendix 

Appendix 1. Environmental regulation stringency across regions 

 
 Variable  Obs  Mean  Std. Dev.  Min  Max 
East 1374 .714 .14 .178 .978 
Middle 1145 .653 .148 .211 .971 
West 1114 .613 .149 .169 .951 
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