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Abstract — The literature on economic complexity has shown that the structure of the economy is a 

strong determinant of diversification, growth, innovation, inequality, and many other major socio-

economic outcomes. Most of the empirical analyses, however, remain at a very macro level. It is not 

clear whether key features of the structure and dynamics of the macroeconomy also apply at a more 

meso, or micro-level. In this study, we deep dive into the automotive components industry in Japan 

and contribute to the literature by analyzing within-product category complexity and by taking a 

dynamic approach to the product space. To achieve this objective, we use unique survey data 

containing detailed information on each auto part supplier’s product baskets to uncover the industry’s 

productive structure and the process underlying structural change. We compute and visualize the auto 

parts product space and confirm properties found for international and domestic economies - 

suggesting the existence of fractals. These properties include power–laws, nestedness, and core-

periphery structures. Moreover, this study develops exploratory and econometric approaches, unifying 

the measures of product relatedness and product complexity, explaining the productive structure’s 

dynamic process due to capability accumulation. The empirical analyses reveal that the events of new 

product appearance are not random but are instead significantly contingent on the network topology 

of the product space, which in turn shapes its structure. In particular, the effects of the network 

topology have a significant impact on the development of more complex products with sophisticated 

capabilities. 
 

Keywords — Product space, Relatedness, Economic complexity, Exploratory network analysis, Auto 

parts industry 
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1. Introduction 
 

Recent advances in economic complexity have shed new light on fundamental aspects of 
economic development that the conventional growth empirical literature has not fully 
explored. It has shown that the structure of the economy is a strong determinant of 
diversification, growth, innovation, inequality, and many other major socio-economic 
outcomes. In the related evolutionary framework, the process of knowledge production 
and technological change are key to understanding economic development and can be 
viewed as a cumulative, path-dependent, and interactive phenomenon (Arthur, 1989, 
1999; Boschma, 2004; Frenken and Boschma, 2007; Hidalgo, 2021; Balland et al., 2022). 
Therefore, the development path of economies is highly associated with their pre-existing 
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productive structures, which are defined as the links between products that economies 
can deliver rather than the products’ aggregated monetary value (Hausmann et al., 2007; 
Hausmann and Hidalgo, 2011). 

The entire economy can be represented by a bipartite network where links 
indicate that a country is a significant producer/exporter of a specific product. Hidalgo et 
al. (2007) used international trade data to first map this structure. This arrangement is 
further projected into a product-product network if two products then to be often 
simultaneously exported by the same countries. This network projection, referred to as 
product space, reflects the relatedness among products. Another piece of information 
extracted from the bipartite country-product network addresses the quality of capabilities 
available in a country and those required by a product. Hidalgo and Hausmann (2009) 
introduced a method to extract this hidden property of complexity by focusing on the 
diversity of a country, captured by the number of products exported by that country, and 
the ubiquity of a product captured by the number of countries exporting that product. The 
growing body of empirical studies using the measures of relatedness and complexity 
demonstrates the specific productive structures of countries or regions and their 
evolutionary process over the product space (Balland, 2016; Hidalgo et al., 2018; Hidalgo, 
2021).  
 However, the empirical literature has not yet addressed some key issues. First, 
there is little information regarding the qualitative changes occurring with products the 
economy already has, presumably due to the unavailability of data. Within-category 
structural change can not be tracked. A 1987 Ford Escort, however, is very different from 
a 2022’s Tesla S plaid. It is essential to uncover fine-grained structural change if we want 
to design a sound regional policy. 
 Second, from a methodological perspective, a framework that holds the 
productive structure as fixed would not be suitable to analyze the evolution of a network 
with more disaggregated products. Compare, for example, recent motor vehicles, such as 
electric or hybrid vehicles, with those featuring internal-combustion engines developed 
decades ago. It is easy to imagine that current technology-driven trends toward 
electrification and autonomous driving will dramatically reshape the industrial landscape 
through the co-evolution of the automotive and electronics sectors. Moreover, some auto 
part products with cutting-edge technologies have recently entered the market, while 
other products with obsolete technologies have disappeared. This contrast implies that an 
analytical framework explicitly incorporating a dynamic concept following technological 
progress is essential when analyzed at disaggregated product scales. 
 With a particular focus on the automotive components industry in Japan, this 
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study aims to uncover the industry’s productive structure and the process underlying its 
structural change by using unique survey data that contain detailed information on the 
product baskets of each auto part supplier. The automobile industry is highly complex 
and plays a vital role, along with related industries, in the Japanese economy (Hidalgo 
and Hausmann, 2009; Hausmann et al., 2014).1 Following the Hidalgo et al. (2007) 
approach, the auto parts product space visually represents the productive structure of the 
Japanese automobile industry. 
 This study’s contribution is four-fold. First, it complements the literature on 
relatedness and complexity by providing several stylized facts and empirical findings 
concerning the industry’s productive structure, which has hitherto been vague at the 
meso- and micro-levels. Previous works have confirmed that common properties, such as 
the nested and the core-periphery structures, exist in the productive international structure, 
as reflected by the country-product network, and in the domestic structure, as reflected 
by the region-product network. This study shows that these properties also exist in the 
industry’s structure as described by the firm-product network. The discovery of this 
fractal structure implies that, notwithstanding the differences in size, maturity, and 
industrial scope of economies, common principles and regularities would underlie the 
formation of productive structures. 
 Second, as a methodological contribution, this study develops a modeling 
approach that unifies the measures of product relatedness (capabilities overlap between 
products) and product complexity (quality of capabilities required for product 
manufacturing) and explains the productive structure’s dynamic process as a result of 
capability accumulation. The exploratory and econometric analyses reveal that the events 
of a product’s appearance are not random but are significantly contingent on the network 
topology of the product space, which in turn shapes the new structure of the product space. 
 Third, the analytical device used to describe the productive structure in a non-
aggregative manner offers a new perspective on conventional studies of Japanese 
automobile industries. In management science, researchers have focused on the 
distinctive Japanese interfirm relationships between automobile manufacturers and auto 
part suppliers as a source of competitive advantage (Asanuma, 1989; Dyer, 1996; Dyer 
and Nobeoka, 2000; Ahmadjian and Lincoln, 2001). These relationships are referred to 
as keiretsu networks and are characterized by long-term purchasing relationships, intense 
collaboration, cross-shareholding, and frequent exchange of personnel and technology 

 
1 Based on the 2015 input-output table categorized in the 37 sectors, Japan’s exports of the transportation equipment 
industry amounted to 18.5 trillion JPY (21.3% of the total exports). Further, this export demand has a significant ripple 
effect on the economy, inducing domestic intermediate products by 13.0 trillion JPY. 
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(Dyer, 1996). The case study literature suggests that when transactions of customized 
components with low modularity, longstanding, tightly integrated relationships, rather 
than arm’s-length relationships, contribute to the accumulation of shared human and 
physical assets by firms; as a result, a competitive advantage is built (Asanuma, 1989; 
Dyer, 1996; Hoetker et al., 2007). Only recently, Todo et al. (2016) and Bernard et al. 
(2019) used more comprehensive micro-level data and a systematic quantitative approach 
to investigate how much the supply chain structure affects aggregate levels of business 
productivity. However, these studies focused on inter-firm relationships and provided 
little insight into what products each firm develops. An analytical approach to estimating 
idiosyncratic capabilities hidden behind heterogeneous products offers further insight into 
the path-dependent development process and future potential of the Japanese automobile 
industry. 
 Finally, due to the Japanese automobile industry’s significant presence and 
competitive advantages in domestic and global markets, explaining an underlying 
mechanism responsible for the advent of new technologies is of interest to academia and 
policymakers. The Ministry of Economy, Trade, and Industry (METI) faces drastic 
changes in the automotive business environment and is establishing strategies for the 
automobile industry to enhance competitiveness, lead global innovation, and confront 
global issues, including climate change (METI, 2018). Thus, systematic quantitative 
evidence will help focus on these policy issues. In addition, the evidence will be helpful 
in policy design in a regional context, such as the industrial cluster policies (METI, 2009), 
since the automotive industry is characterized by a remarkable agglomeration co-located 
with its associated industries (Klier and McMillen, 2008; Yamada and Kawakami, 2016). 
 The remainder of this paper is organized as follows. The following section 
summarizes this study’s theoretical and methodological background. The subsequent 
section describes the data and establishes a collection of stylized facts regarding product 
portfolios from Japanese auto parts suppliers. The study implements these facts in an 
exploratory investigation of the auto parts industry’s productive structure using the 
metrics of product relatedness and complexity. Then, an econometric analysis examines 
the role of product relatedness and complexity in the events of product appearance. The 
final section provides concluding remarks and discusses the remaining agenda for future 
research. 
 
 
2. Theoretical and methodological background 
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Since the late 1980s, growth theories have introduced imperfect competition and 
emphasized the role of innovations in sustainable economic growth. These theories argue 
that structural transformations, via diversification of product variety (Dixit and Stiglitz, 
1977; Romer, 1987, 1990) and product quality improvement (Aghion and Howitt, 1992, 
1998), carry productivity growth to countries. Due to its nonrival nature, the freely 
available stock of knowledge or technology for R&D activities contributes to creating 
new products and driving turnovers. In parallel to the theoretical development of 
endogenous technological progress modeling, numerous empirical studies have explored 
how knowledge flows can be captured. In particular, implementing a wealth of patent data 
information has facilitated various approaches to measuring technological proximities 
between firms or industries (Scherer, 1984; Jaffe, 1986; Griliches, 1990; Jaffe et al., 1993; 
Bloom et al., 2013). These approaches have primarily focused on investigating R&D 
spillovers, that is, how much accessible knowledge can affect aggregate levels of firms’ 
or industries’ performance regarding patent numbers, stock value, and productivity. 
 Recent studies have examined the process underlying structural transformation 
regarding economic entities and their products at a disaggregated level. From complexity 
and evolutionary economics standpoints (Arthur, 1989, 1999; Boschma, 2004; Frenken 
and Boschma, 2007), the dynamics of knowledge production are cumulative, path-
dependent, and interactive phenomena. These concepts describe the development process 
of economies by emphasizing what specific types of products are produced rather than 
how much value an economy derives from its products (Hausmann et al., 2007; Hausmann 
and Hidalgo, 2011). Despite its theoretical validity, it is difficult to develop quantitative 
methods to capture this qualitative aspect. 
 Two distinct but highly associated empirical methods that are theoretically 
grounded in complexity and evolutionary thinking use disaggregated information by 
applying network science techniques. They adopt an agnostic view to infer an internal set 
of complementary non-tradable inputs (or capabilities) accumulated in countries and 
embedded in products (Hidalgo et al., 2007; Hidalgo and Hausmann, 2009). Although it 
is difficult to draft genetic capabilities exhaustively, the method developed by Hidalgo et 
al. (2007) indirectly captures the relatedness of capabilities between products by 
observing which are often exported by countries in tandem; if two products are co-
exported by many countries, they probably require the same capabilities (Hidalgo et al., 
2007). Hausmann and Klinger (2006) and Hidalgo et al. (2007) introduced the product 
space framework—a network projection connecting products with links based on their 
degree of relatedness—to show that countries are more likely to diversify product export 
mixes related to existing export products. This path-dependent branching-out process of 
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activities is observed for products and also for industries (Neffke et al., 2011), skills 
(Neffke, 2013), technologies (Boschma et al., 2014; Balland and Rigby, 2017), and 
research areas (Guevara et al., 2016); therefore, it can be generalized as the principle of 
relatedness (Hidalgo et al., 2018). 
 Another approach addresses capability quality referred to as complexity. Hidalgo 
and Hausmann (2009) introduced complexity metrics, which Hausmann et al. (2014) later 
referred to as the economic complexity index for countries and the product complexity 
index for products. Complexity indices are constructed by combining information on 
countries’ product diversification and the ubiquity of the delivered products; capability-
rich countries are expected to have more combinations of the capabilities that products 
require. Therefore, they have more diversified product compositions than countries with 
fewer capabilities. Focusing on product ubiquity means that countries with many and few 
capabilities will likely produce products that demand fewer capabilities; therefore, such 
products will be made in many countries. In the bipartite country-product network, 
diversity is captured by the number of products connecting to a country, and ubiquity is 
determined by the number of countries connected to a product. This way of indexation is 
justified because productive structures in international and domestic economies are 
characterized by nestedness, referring to a fundamental feature that the product mix 
present in a relatively nondiverse economy is likely to be a subset of that present in a 
relatively diverse economy (Hidalgo and Hausmann, 2009; Bustos et al., 2012). 
 The development of new products and resultant economic growth can also be 
understood as a path-dependent process combining the concepts of relatedness and 
complexity. A country manufacturing sophisticated products will likely have the 
knowledge to extract new combinations from a vast base of pre-existing capabilities and 
combine new capabilities with existing ones (Hidalgo and Hausmann 2009). Hausmann 
and Hidalgo (2011) and Cristelli et al. (2013) numerically show that a country’s expected 
number of products follows exponentially increasing returns to the accumulation of the 
capabilities it already possesses. Hidalgo and Hausmann (2009) and Hausmann et al. 
(2014) provide empirical support by showing that the measure of available capabilities is 
significantly predictive of a country’s future economic growth. 
 However, accumulating capabilities does not guarantee the immediate 
development of sophisticated products. Applying useful capabilities embedded in pre-
existing sophisticated products can potentially lead to a product with complex 
technologies. The more capabilities required to develop a product, the harder it is to add 
new capabilities and recombine new and existing ones (Fleming and Solenson, 2001). 
One of the primary concerns in patent literature is the possibility of declining patents 
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received per R&D investment, a feature confirmed in different industries and countries 
(Griliches, 1990; Kortum, 1993; Lanjouw and Schankerman, 2004). From a geographic 
perspective, Balland and Rigby (2017) found that technological complexity is unevenly 
distributed and that cities with more complex technological structures do not necessarily 
have the highest patenting rates. These empirical findings imply a complex combination 
of capabilities characterized by tacit knowledge that cannot simply be imitated and 
transferred without cost. 
 Based on these theories and methodologies, this study provides an in-depth 
investigation into the productive structure of the Japanese auto parts industry and the 
process underlying its structural transformation. 
 

 

3. Data and stylized facts 
 

3.1 Data description 

This study used data extracted from published survey books assembled by Sogogiken, a 
management and technical consulting company. These books present annual domestic 
transactions between first-tier auto part suppliers and car manufacturers for each 
automotive component2 . Sogogiken selects the products listed in the books as main 
components. Because some products are replaced with more advanced ones and 
embedded into modularized products, the list varies by year. Conversely, product delivery 
destinations remain the same and comprise 11 car manufacturers: Toyota, Nissan, Honda, 
Mazda, Mitsubishi, Isuzu, Suzuki, Daihatsu, Subaru (formerly Fuji Heavy Industries), 
Hino, and UD Trucks (formerly Nissan Diesel). All products are classified to belong to 
any ex-ante categories based on a bill of materials (Table 1). Since the volume of auto 
parts transactions is not displayed for many products (shown in a physical unit, if any), 
this study captures the transactions by (unweighted) occurrence. 
 One advantage of using this data is that products and firms listed in the books 
are not based on standard industrial classifications, which state that auto part products 
delivered from suppliers to car manufacturers are not limited to those classified as motor 
vehicle parts and accessories (JSIC code: 5422). These include a broader range of product 
classifications, such as chemical and carbon fibers, glass and rubber products, and 
electrical machinery. Disaggregating information on delivery to car manufacturers allows 
one to identify more realistic productive structures and their co-evolutionary process 

 
2 Car manufacturers that conduct in-house auto parts production are included as first-tier suppliers. 



9 
 

within the automobile industry. However, there are some issues when interpreting the 
analyses. First, these data do not provide any information on product transactions 
delivered by second-tier and lower-tier suppliers. Second, the data only record domestic 
product delivery, and third, product transaction information is limited to automotive 
manufacturing. 
 The following empirical analyses use data from four years: 1988, 1998, 2008, 
and 2016. Table 1 summarizes the numbers of auto part suppliers and primary products 
in total and by category for each year. The total number of products tends to increase over 
the analysis period. In particular, electrical parts increased by 52 from 1988 to 1998, 
showing significant progress in vehicle electrification during the 1990s. Auto parts for 
hybrid vehicles (HV) appeared in 2008, while those for electric and fuel cell vehicles (EV 
and FCV) appeared in 2016. Conversely, first-tier suppliers decreased by 14% from 1988 
to 2016, partly due to the growing merger and acquisition activities trend. 
 

(Table 1 around here) 

 

3.2 Stylized facts 

This study uses the Sogogiken data to establish the following three stylized facts about 
product portfolios of auto part suppliers, which motivated the exploratory and 
econometric analyses implemented in the later sections. 
 Fact 1: Very few suppliers deliver a wide range of products, whereas most 
suppliers specialize in a few products. Fig 1(a) presents the size of suppliers’ product 
portfolios in descending order for 2016, spread out over a range from 1 to 73 auto parts. 
Denso is the supplier with the largest portfolio, followed by Toyota’s in-house production, 
with 44 products, and Hitachi Automotive Systems, with 39 products. Of the 515 
suppliers, only 36 (7%) have portfolios with more than 10 product types; conversely, 75% 
of suppliers specialize in 1 to 3 product types. Fig 1(b) shows that a power-law 
distribution approximates the cumulative distribution function for the suppliers’ product 
portfolios in 2016. 
 Fact 2: Rare (ubiquitous) products delivered by a small (large) number of 
suppliers tend to be produced by diversified (specialized) suppliers. Fig 1(c) shows the 
inverse relationship between the number of suppliers for each product and the median of 
suppliers’ portfolios that manufacture that product for 2016; the correlation coefficient is 
í������3����������3URGXFWV�SORWWHG�LQ�WKH�XSSHU�OHIW�VLGH�RI�WKH�GLDJUDP��VXFK�DV�K\EULG�
control computers and battery current sensors for HV, appear to have relatively complex 
structures. In contrast, products in the lower right, such as those manufactured by casting 
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or forging molten metal, have simple structures. Care must be taken when interpreting the 
attributes of the products plotted in the lower left, which are produced only by limited 
suppliers with small portfolio sizes. These products are primarily auto parts for fuel cell 
vehicles and tend to be produced by suppliers who serve a vast range of customers and 
car manufacturers. 
 Fact 3: The supplier–product relationship exhibits a highly nested structure in 
both supplier diversity and product ubiquity. The nestedness feature can be represented 
by the binary supplier–product matrix ۻ, which summarizes the product portfolios of all 
suppliers and consists of an equivalent description of the bipartite supplier–product 
network. The generic element of the matrix ۻ is defined as follows: 

 
௦ܯ = 1 if supplier ݏ delivers product , 
௦ܯ = 0 otherwise. 

 
Fig 1(d) shows the matrix ۻ for 2016, where entities equal to 1 are indicated in red. 
Suppliers represented in rows are sorted according to the number of different products 
each delivers (diversification); products in columns are arranged by the number of 
suppliers delivering each product (ubiquity). A substantially triangular matrix shape 
characterizes nestedness, as shown in Fig 1(d), indicating that, when viewed vertically, a 
relatively specialized supplier’s product portfolio is likely to be a subset of a diverse 
supplier’s portfolio. Viewed horizontally, suppliers that produce relatively rare products 
are likely to be a subset of those producing somewhat ubiquitous products. 

 
(Fig 1 around here) 

 
 These stylized facts tend to remain stable over time (see sections 1 and 2 in S1 
Materials) and have been confirmed in the structures of countries’ and regions’ product 
baskets (Hidalgo and Hausmann, 2009; Bustos et al., 2012; Hausmann et al., 2014). 
Therefore, arguments on the level of sophistication of economies and products, asserted 
in literature focusing on global and national economies, are expected to also hold at the 
industrial scales. First, in the automotive components industry, rare products 
manufactured by a few highly diversified suppliers require a specific combination of 
capabilities; thus, they are probably more sophisticated than ubiquitous products. Second, 
suppliers with large portfolios can practically relate their capabilities to manufacture a 
broader range of products; they should have more potential to develop new and 
sophisticated products than suppliers with small portfolios. The following sections further 
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explore stylized facts using relatedness and complexity metrics and provide additional 
empirical evidence. 
 

 

4. Exploratory network data analysis  
 

4.1 Product relatedness 

 Measuring the degree to which products require similar capabilities (i.e., product 
relatedness) helps understand the path-dependent process of structural changes in 
industries. This study develops a co-occurrence-based measure to assess product 
relatedness, assuming that if auto part suppliers manufacture products in tandem, similar 
capabilities would be required (Hausmann and Klinger, 2006; Hidalgo et al., 2007). The 
co-occurrence product–product matrix ۱ is obtained from the bipartite supplier–product 
relations, represented by the matrix ۻ as: 

 
۱ =  ,ۻ܂ۻ

 
where the non-diagonal elements ܥ count the number of suppliers that deliver both 
auto parts ݅ and ݆, and the diagonal elements ܥ calculate the number of suppliers that 
deliver auto part ݅. 
 Since the number of suppliers producing each auto part influences the probability 
of co-occurrence, regardless of capabilities’ relatedness between products, the relative 
measure of relatedness controlling for such an effect should be determined. This study 
adopts the association strength measure, expressed by the ratio of the probability of the 
observed co-occurrence ( ܲ

) to that of a null model ( ܲ
 ) (Van Eck and Waltman, 2009; 

Hidalgo et al., 2009; Neffke et al., 2011). If production occurs independently, the 
probability of finding suppliers that produce both auto parts ݅ and ݆ is given by: 

 

ܲ
 =

ܥܥ
ܰଶ , 

 
where ܰ is the total number of suppliers in the total population and ܥ is the number of 
suppliers producing auto part ݅. Hence, the relative estimate of the product relatedness 
between auto parts ݅ and ݆ is given by: 
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ܴ = ݇ ܲ


ܲ
 = ݇

ܥ ܰΤ
ܥܥ ܰଶΤ = ݇

ܰܥ
ܥܥ

, 

 
where ݇ = 1 ܰΤ  is a normalizing factor used to express the measure that lies between 0 
and 1. 
 The product relatedness matrix ܀ with the elements of ܴ can be interpreted 
as the auto parts product space, defined as the set of all relatedness measures between all 
the auto part product pairs (Hidalgo et al., 2007). Fig 2(a) shows the number of pairs with 
relatedness values below a certain threshold for 2016. The product space represents a 
sparse structure as a whole; of all 37,675 possible product pairs of products, only 6,798 
pairs (18.0%) have some relatedness values. Moreover, relatedness values are 
heterogeneously distributed, with 5,641 pairs (15.0%) between 0 and 0.1 and 1,157 pairs 
(3.1%) over 0.1, suggesting that weak ties connected many related pairs. Fig 2(b) shows 
the cumulative frequency of a product’s connections related to other products for 2016. 
This figure corresponds to the cumulative degree distribution of the product–product 
network, connecting the nodes of distinct products if they are related. Plotting on a log-
log scale illustrates that a handful of highly connected hubs coexist with numerous 
smaller-degree nodes. 

 
(Fig 2 around here) 

 

 The auto parts product space structure (or the interconnectivity of products) can 
be explored through network visualization that connects related products. Following the 
procedure developed by Hidalgo et al. (2007), a maximum spanning tree (MST) is first 
built to draw the relevant, productive structure. The MST is constructed as a single tree 
with as many nodes as it could incorporate, maximizing the sum of the weight of links. 
The isolated nodes of products are delivered by specialized suppliers that manufacture 
only one product. Then, all links with significant weights over a certain threshold are 
superposed. The force-directed layout algorithm fixes the relative positions of nodes so 
that shorter links connect closely related pairs of nodes. Individual nodes are colored 
according to the product categories shown in Table 1. 
 Informative visualization of a network should not be too sparse or too dense. The 
present case achieves good visualization by using a proper threshold value so that the 
emerged network simultaneously contains highly connected dense cores and scarcely 
sparse peripheries. For 2016, this core-periphery network structure could be obtained by 
choosing the threshold value of 0.1, as shown in Fig 3(a). For comparison purposes, the 
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same threshold value is also applied to visualize the productive structures for 2008, 1998, 
and 1988, as shown in Figs ��E���G�. 
 

(Fig 3 around here) 
 
 Examining Figs 3(a)–3(d) reveals some interesting qualitative properties. The 
literature suggests relatively stable productive structures of international and domestic 
economies (Hidalgo et al., 2007; Hidalgo, 2009; Neffke et al., 2011; Bustos et al., 2012); 
however, the more disaggregated productive structure within the industry differs. While 
these networks have roughly maintained the core-periphery structure over the four 
periods, a densely connected large core emerges over time. The degree of clustering for a 
whole network, captured by the average clustering coefficient, increases over time. The 
core in 1998 was initially composed of products classified into engine body parts (colored 
in red) and electrical parts (blue). During the 1990s, the core was remarkably enhanced 
by newly emerged electrical components rather than by the evolution of existing ones. 
Products for HV (green) appeared in the 2000s and tended to be at the core. Some smaller 
sub-clusters surrounding the larger core also appeared after 1998. Products forming the 
densely larger core tend to be manufactured by a few suppliers with large portfolios; 
therefore, they are considered highly sophisticated auto parts. Conversely, many products 
consistently fall on the periphery of networks. Some engine body parts and electrical 
components in or around the central cluster in 1988 retreated to the periphery in recent 
years. These peripheral products tend to be delivered by multiple suppliers with small 
portfolios, thus regarded as less sophisticated auto parts. 
 The indices that characterize the network’s local attribute also capture this 
substantially heterogeneous structure of visualized networks. As measures of the 
influence of each product and its local link density, Fig 4 shows the respective distribution 
of (a) eigenvector centrality and (b) the local clustering coefficient for the classified 
products (see section 4 in S1 Materials for details on these indicators). Generally, the 
products located in the core (periphery) feature large (small) values of centrality and 
clustering coefficient. 
 

(Fig 4 around here) 
 
 The visual representation shown in Figs 3(a)–3(d) suggests that auto parts 
classified into the same product category are not necessarily closely connected. 
Furthermore, as shown in Fig 4, the products’ centrality values and clustering coefficient 
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are broadly distributed within the product category, indicating that conventional ex-ante 
classification based on a bill of materials does not capture the whole range of factors 
influencing the relatedness among products. Therefore, a product-relatedness approach 
based on a co-occurrence measure is more relevant to deepen insights into the productive 
structure of the auto parts industry. 
 
4.2 Product complexity 

The method introduced by Hidalgo and Hausmann (2009) proposed a radical new way to 
capture the complexity of countries and products from the information contained in global 
export patterns. The key idea is those complex products are simultaneously rare (few 
countries significantly export them) and found only in places that produce many other 
products (they could make many). We follow this approach and derive complexity from 
the production patterns of the supplier-auto part network.   
 
From the structure of the bipartite supplier–product network summarized in the matrix 
denoted by ݇௦) ݏ the diversity of supplier ,ۻ

()) is given by the degree centrality of node 
 :as ݏ
 

݇௦
() =  ௦ܯ


, 

 

where ܯ௦ is defined above. Analogously, the ubiquity of product  (݇
()) is given by 

the degree centrality of node  in the bipartite network as: 
 

݇
() =  ௦ܯ

௦
. 

 

The diversity ݇௦
() and the ubiquity ݇

() are understood as crude estimates of suppliers’ 

ability and products’ disvalue, respectively. 

 Complexity measures for both suppliers and products are calculated with an 

iterative linear algorithm, referred to as the Method of Reflections (Hidalgo and 

Hausmann, 2009); the information given by the initial quantities of diversity ݇௦
() and 

ubiquity ݇
() is refined at the higher ݊th order of reflection: 
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݇௦
() =

1

݇௦
()  ௦ܯ


݇

(ିଵ), 

݇
() =

1

݇
()  ௦ܯ

௦
݇௦

(ିଵ). 

 

The economic meaning of ݇௦
() and ݇

() changes continuously with each iteration. For 

example, ݇
() represents product ubiquity, whereas ݇

(ଵ) captures the average diversity 

of suppliers that deliver product . Then, ݇
(ଶ) refines the measure of ubiquity ݇

() via 

the average ubiquity of the products delivered by supplier ݏ (݇௦
(ଵ)). 

  

 

 The seminal contribution by Hidalgo and Hausmann (2009) has inspired several 

other approaches, which have in turn generated a substantial conversation in the literature 

(Balland et al., 2022). Given the structure of the supplier-product matrix, we use the 

variation proposed by Tacchella et al. (2012) to limit the weight of overspecialized 

suppliers. The modified non-linear metrics using the binary supplier–product matrix ۻ, 

which relate to the degree of suppliers’ fitness (i.e., competitiveness) ܨ௦ to the degree of 

products’ quality ܳ. In the formulas, while the complexity of suppliers is defined by the 

sum of the complexity of the delivered products, the complexity of products decreases 

significantly if poorly diversified suppliers manufacture the products. This plays a role 

for our data structure, since we have an important amount of low ubiquity products. This 

idea is reflected by the following non-linear relation between the complexity of suppliers 

and the products they deliver. With the initial conditions ܨ௦
() = and ܳ ݏ 1

() =  , 1

the respective complexity metrics for suppliers and products are intermediately calculated 

by: 
 

෨௦ܨ
() = σ ௦ܳܯ

(ିଵ)
 , 

෨ܳ
() =

1

σ ௦ܯ
1

௦ܨ
(ିଵ)௦

, 

 
and then normalized by using the averages of the intermediate values as: 
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௦ܨ
() =

෨௦ܨ
()

ർܨ෨௦
()

௦

, 

ܳ
() =

෨ܳ
()

ർ ෨ܳ
()



. 

 
Cristelli et al. (2013) numerically show that these coupled metrics have a unique 
asymptotic solution for each supplier and product, independent of the initial condition. 
The fixed points of ܨ௦כ  and ܳכ   provide a clear ranking of suppliers and products in 
terms of complexity. 
 Employing the non-linear metrics on complexity, Tables 2(a) and 2(b) list the 20 
highest- and lowest-ranked auto part products for each year, respectively.3 In 1988, the 
top-ranked auto parts were related to engine body parts (colored in red) and electrical 
parts (blue), although most engine body parts lost their position over time. Newly 
emerged hybrid and fuel cell vehicle parts (green and orange, respectively), which tend 
to be produced by suppliers with large portfolios, assumed high ranks in 2008 and 2016. 
Although electrical parts always made the top 20, their contents were largely replaced 
with new products, including various sensors. Conversely, the least complex auto parts 
belong to engine body parts and vehicle interior and exterior parts (pink). Unlike high-
ranked products, low-ranked products experienced little change during the study period 
(Fig 5). 
 

(Table 2 around here) 
 

(Fig 5 around here) 
 
4.3 A unified exploratory network data analysis 
Since the concepts of product relatedness and complexity capture the different but closely 
associated features of capability arguments, a unified approach using relatedness and 
complexity information is useful for exploring the productive structure and its dynamic 
process in more detail. First, it is visually studied where sophisticated (unsophisticated) 

 
3 This study aims to investigate the productive structure of the auto parts industry from a technological perspective, 
and it only focuses on the complexity of auto part products. The authors can provide the results of the complexity of 
suppliers upon request. 
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products with large (small) complexity values tend to be located in the auto parts product 
space. Figs 6(a) and 6(b) show the location of the top 20% and bottom 20% of products, 
respectively, in terms of complexity for 2016. Fig 6(a) suggests that the core of the 
product space primarily comprises sophisticated products classified into electrical parts 
and hybrid vehicle parts. Sophisticated fuel cell vehicle parts and driving parts are not in 
the core but act as network hubs. Conversely, Fig 6(b) shows that the network’s periphery 
contains unsophisticated products classified into engine body parts, driving parts, and 
vehicle body parts. 
 

(Fig 6 around here) 
 
 Second, to explore the path-dependent accumulation of capabilities and the 
resulting development of products, this study investigates the location of newly emerged 
products in the auto parts product space. Fig 6(c) shows the location of products found in 
2016 that were not produced in 1988. Although new products tend to be in the core and 
the smaller clusters surrounding them, some are also found in the periphery. It is 
noteworthy that not all new products during these three decades were sophisticated. 
Among the new products, Fig 6(d) shows the location of sophisticated products in the top 
20%, in terms of complexity, for 2016. The new sophisticated products emerge from the 
densely connected core or the hubs connecting peripheral products to the core (see section 
3 in S1 Materials). This implies that, since capabilities are supposed to accumulate heavily 
in the dense clusters of the product space, the path-dependent accumulation of capabilities 
is significant for developing sophisticated products. 
 
 
5. Econometric analysis 
 

This section applies econometric models to examine the extent to which the product 
space’s topology (i.e., the degree of capabilities overlaps between products) and product 
complexity (i.e., the degree of capabilities accumulation) contribute to diversifying into 
new products. Using the measure of product relatedness, the binary dependent variable 
 :,,௧ is defined as݀݁ݐ݈ܴܽ݁

 
,,௧݀݁ݐ݈ܴܽ݁ = 1 if new product ݅ not present in year ݐ െ 1 but emerges by year ݐ 

is related to pre-existing product ݆ present in year ݐ െ 1, 
,,௧݀݁ݐ݈ܴܽ݁ = 0 otherwise. 
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The dependent variable assumes the value of 1, representing that a newly emerged 
product is developed based on specific capabilities embedded in the existing connected 
products. Among the independent variables, the following three measures characterizing 
the local topology of product ݆  in year ݐ െ 1  are introduced: (1) the eigenvector 
centrality ݐ݊݁ܥ,௧ିଵ , measuring how closely product ݆  is located to the core of the 
product space; (2) the local clustering coefficient ݐݏݑ݈ܥ,௧ିଵ , measuring how densely 
neighbors of product ݆  are connected; (3) the Burt’s constraint measure ݐݎݑܤ,௧ିଵ , 
measuring the extent to which product ݆, directly and indirectly, bridges various products 
belonging to different communities (see section 4 in S1 Materials). Another independent 
focal variable is the product ݆ ’s complexity ݉ܥ,௧ିଵ . The logit function of the 
probability that diversifies into new product ݅ is estimated based on the following linear 
predictor: 
 
logit൫ܴ݈݁ܽ݀݁ݐ,,௧൯ = ߚ + ,௧ିଵݐ݊݁ܥଵߚ + ,௧ିଵݐݏݑ݈ܥଶߚ + ,௧ିଵݐݎݑܤଷߚ +  .,௧ିଵ݉ܥସߚ
 
 The model is first estimated using the pooled data for all three periods (1988–
1998, 1998–2008, and 2008–2016) and then estimated using the data from each separate 
period. The pooled data model includes period-specific fixed effects. Section 5 in S1 
Materials provides a summary of descriptive statistics for the variables. All results 
presented in Tables 3 and 4 are based on the logistic regression with random effects on 
newly emerged product ݅ to deal with a suspected overdispersion problem in the error 
term. 
 The first column of Table 3 presents the result using the pooled data, and the 
second to fourth columns show the results for each separate period. Among the local 
topology measures, the coefficient of centrality is significantly positive in the pooled data 
model, suggesting that capabilities overlap with many other products is essential for 
product development. Although the centrality effect is significantly negative in the 1988–
1998 period, the importance of sharing many capabilities has increased in recent years. 
In general, the densely shared capabilities also significantly positively affect the 
development of related new products except in 1998–2008, when non-incumbent 
suppliers developed some auto parts for HV. Since Burt’s constraint measure is small 
when the product bridges a variety of other products, the negative sign for this coefficient 
means that various capabilities significantly contributed to product development. The 
insignificant coefficient of this constraint measure in the 2008–2016 period resulted from 
the size of the product space shrinking, in terms of the average path length, forming one 
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massive core component, as suggested in Fig 3. 
 While the effect of product complexity on the development of related products 
is significantly positive in the pooled data and the 1988–1998 period data models, the 
magnitude is too small. For the 1998–2008 and 2008–2016 models, the coefficients of 
product complexity are statistically insignificant. These results suggest that while 
capabilities accumulation was conducive to diversifying into new products, more 
complex capabilities create more difficulty in developing sophisticated products. The 
period-specific fixed effects are significantly negative for 1998–2008 and 2008–2016, 
making it harder to introduce new products to the market over time. 

 
(Table 3 around here) 

 
 As studied in the previous section, not all new products are sophisticated. 
Following the path-dependent development arguments, it is difficult to add new 
capabilities or recombine new and existing ones to develop new products; however, new 
sophisticated products can only be developed by relating the capabilities used in a wide 
range of pre-existing products. Furthermore, the earlier exploratory network analyses 
show that newly sophisticated products typically appear from the densely connected core 
or the network hubs in the product space. The interaction terms, which represent the effect 
of the product space topology of pre-existing products conditional on the complexity of 
newly developed products, are additionally introduced into the previous baseline 
specification to investigate this phenomenon statistically. 
 Based on the pooled data model shown in the first to third columns of Table 4, 
all the estimates of the interaction terms emphasize the contribution of the product space’s 
local attributes to bringing sophisticated new products to the market. The results for each 
of the three periods (the fourth to twelfth columns of Table 4) show that every local 
topology measure significantly contributes to developing new sophisticated products, 
particularly in the later periods. These results imply that when existing related products 
widely, densely, and diversely share capabilities with other products, developing more 
complex products with sophisticated capabilities will likely be promoted. Overall, these 
empirical findings provide significant insight into the nature of the path-dependent 
development process and the consequent evolution of the productive structure in the 
automotive industry. 
 

(Table 4 around here) 
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Conclusion 
 
Recent research efforts applying a network science approach have explained the path-
dependent accumulation of capabilities and resulting international and domestic 
economic development. However, the feature of structural change focusing on specific 
industries has not yet been addressed. Clarifying the industries’ productive structure is of 
interest to academia and policymakers, particularly when focal industries have a 
significant presence and play a key role in economies. This study investigates the 
industry’s productive structure and its structural change process, focusing on Japan’s 
automotive components industry. 
 Using unique survey data that contain detailed information on each auto part 
supplier’s product basket, this study establishes a collection of stylized facts about 
product portfolios from auto part suppliers. (1) Very few suppliers deliver a wide range 
of products, and most suppliers specialize in a few products. (2) Rare (ubiquitous) 
products delivered by a small (large) number of suppliers tend to be produced by 
diversified (specialized) suppliers. (3) The supplier–product relationship, represented by 
the binary supplier–product matrix, exhibits a highly nested structure, both in supplier 
diversity and product ubiquity. 
 Motivated by these facts, this study clarifies the productive structure of the auto 
parts industry. More specifically, the capabilities similarity between all the auto product 
pairs (product relatedness) is measured and then visually represented as the auto parts 
product space. The visual network representation allows the identification of the core-
periphery structure. These structural properties in the industry include the power-law 
structure of the cumulative frequency of the suppliers’ product portfolio, the inverse 
relationship between the number of each product’s suppliers and the portfolio size of 
suppliers that deliver related products, the nestedness of the supplier–product network, 
and the core-periphery structure of the product space. These properties are all in common 
with those in the international and domestic economies, meaning that, notwithstanding 
the differences in size, maturity, and industrial scope of economies, common principles 
and regularities underlie the formation of productive structures. 
 Although the core-periphery structure can be confirmed in 1988, newly emerged 
products, such as recent electric and hybrid vehicle parts, remarkably enhance the core. 
Some smaller clusters surrounding the larger core also appeared after 1998. These 
findings suggest that an analytical framework incorporating a dynamic concept following 
technological progress would be indispensable, unlike the global and national economies. 
 As another line of network analysis, the degree of product sophistication 
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(product complexity) can be measured by combining information on countries’ product 
diversification and the ubiquity of the delivered products. An unambiguous ranking of 
products is provided based on the complexity measure, calculated by a non-linear iterative 
algorithm. The result shows that most top-ranked engine body and electrical parts in 1988 
lost their position over time. Moreover, some newly emerged electric, hybrid vehicle, and 
fuel cell vehicle parts, which tend to be produced by suppliers with large portfolios, were 
highly ranked in 2008 and 2016. Conversely, the least complex auto parts, i.e., engine 
body parts and vehicle interior and exterior parts, experienced little change in position 
during the study period. 
 Finally, the study examines how much the topology of the product space and 
product complexity contribute to diversifying into new products by applying econometric 
models. The results show that, in general, high network centrality, local density, and local 
brokerage in the product space contribute to diversifying into new products. Focusing on 
developing products with sophisticated capabilities further emphasizes the role of these 
local attributes of the product space. These results reveal that the emergence of products, 
especially sophisticated products, is not random but rather significantly contingent on the 
network topology of the product space, which in turn shapes the new structure of the 
product space. 
 The study opens several avenues for future research. The first is related to the 
studied industrial scope. The empirical analyses are implemented based on the detailed 
information on auto parts transactions between suppliers and car manufacturers; however, 
auto parts suppliers also transact with firms in other industries, such as electrical 
machinery and aircraft parts manufacturers. From a perspective of inter-sectoral co-
evolution, determining the capabilities required to produce auto parts related to products 
from other industries is of much interest if any available data allows such analyses. 
  Second, the features of productive structure and its evolution of the automobile 
industry would be heterogeneous in some countries. Different historical trajectories and 
institutions may lead to varying configurations of the industrial landscape (Neffke et al., 
2011). An international comparison could potentially explore the generality and 
specificity of the arguments. 
 Finally, and more importantly, the analytical approach must incorporate a 
geographical context as another dimension to affect capabilities sharing and diffusion. A 
growing body of literature on the geography of innovation has shown the geographical 
concentration patterns of innovation activities and emphasized the role of the 
geographically proximate knowledge base on the underlying process of innovation 
(Balland, 2016). Clarifying what kinds of technological capabilities and associated 
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knowledge bases are deeply rooted in regions and to what extent areas can develop their 
technical capabilities would be highly informative and help establish a sound regional 
policy framework. 
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Table 1. Number of suppliers and auto-parts. 

 

  

Year 1988 1998 2008 2016

Suppliers 596 584 567 514

Auto parts 197 249 254 275
1 Engine body parts 71 79 75 72
2 Electrical parts 33 67 68 68
3 Drivivng parts 36 40 41 42
4 Suspension and brake parts 19 22 24 21
5 Body parts 38 41 40 35
6 HV parts 6 14
7 EV parts 4
8 FCV parts 19
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Table 2. The most and least complex auto-part products. a Top 20 auto-parts. b 
Bottom 20 auto-parts. The colors in the table represent the product categories shown in 
Table 1. 
a 

b 

Product category 

 

1 supply pump 1 oil nozzle 3 hybrid control computer_HEV 3 hybrid control computer_HEV

1 injection system 1 supply pump 1 supply pump 3 battery cooling system

1 oil nozzle 1 injection system 1 injection system 3 battery current sensor

1 pressure regulator 2 engine control unit_deisel 2 engine control unit_deisel 5 fuel cell stack

1 ACV 2 electronically controlled carburetor 2 A/F sensor 5 high-pressure hydrogen tank

1 HAC 2 spark plug 2 air quality sensor 2 ECU_ suspension

1 ISC 1 ACV 2 ECU_4WS 1 injection system

1 electric fuel pump 2 O2 sensor 2 O2 sensor 1 supply pump

2 spark plug 1 pressure regulator 2 air-flow meter 2 engine control unit_deisel

1 injector 1 ISC 2 accelerator pedal position sensor 2 ECU_4WS

2 distributor 2 air-flow meter 2 crank position sensor 6 4WD_electric

2 igniter 1 HAC 1 pulsation damper 2 A/F sensor

2 air-flow meter 2 engine control temperature senseor 1 pressure regulator 2 air quality sensor

2 wiper 2 knock sensor 1 electric fuel pump 2 O2 sensor

2 window washer 2 ultrasonic sensor 2 automatic light control sensor 2 air-flow meter

2 alternator 2 sonar 2 knock sensor 2 ECU_power steering

2 starter 1 pulsation damper 2 ultrasonic sensor 2 yaw rate sensor

2 flasher unit 1 carburetor 2 sonar 2 ETC

2 headlamp 1 throttle body 6 4WD_electric 2 knock sensor

2 high-mounted stop lamp 2 automatic air conditioner sensor 2 yaw rate sensor 5 hydrogen injector_FCV

2008 20161988 1998

1 pulley 1 cylinder head gasket 1 cylinder head gasket 1 cylinder head gasket

1 cylinder head gasket 1 fuel tank 1 fuel tank 1 fuel tank

1 fuel tank 8 sealant 1 connecting rod 1 air intake hose

8 seat 8 paint 1 air intake hose 1 connecting rod

8 bumper_steel 8 door trim 2 wire harness 1 crankshaft_forging

1 oil pan 8 seat 3 battery_HEV 1 oil pan

8 door trim 8 head lining 1 oil pan 8 mark

8 headrest 8 floor carpet 1 intake manifold 7 suspension ball joint

1 flywheel 1 intake manifold 8 door trim 8 window glass

1 rocker arm 1 air intake hose 8 seat 8 door trim

8 door hinge 8 headrest 8 power seat 8 seat

1 crankshaft_forging 1 oil pan 8 headrest 8 headrest

1 cylinder headcover 1 timing belt cover 8 floor carpet 8 power seat

6 clutch housing 2 battery 8 head lining 6 differential gear

1 timing gear 1 rocker arm 6 aluminum wheel 6 steering column

1 timing gear cover 1 accelerator pedal 7 lower control arm 8 head lining

6 differential gear 6 MT lever 1 engine assy 8 floor carpet

1 intake manifold 1 cylinder headcover 7 upper arm 2 horn

8 spare tire carrier 7 brake pedal 8 window glass 2 battery

1 exhaust pipe 6 clutch pedal 2 car audio 1 accelerator pedal

1988 1998 2008 2016

1 Engine body parts
2 Electrical parts
3 Driving parts
4 Suspension and brake parts
5 Body parts
6 HV parts
7 EV parts
8 FCV parts
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Table 3. Econometric analysis of product development (baseline model). 

 
Standard errors in parentheses 
* Significant at the 10 % level; ** at the 5 % level; *** at the 1 % level 
  

Centj,t-1 0.724 *** -1.310 *** 3.017 *** 3.543 ***
(0.076) (0.114) (0.142) (0.195)

Clustj,t-1 0.696 *** 1.906 *** -0.186 1.069 ***
(0.109) (0.163) (0.177) (0.262)

Burtj,t-1 -9.348 *** -27.185 *** -1.721 *** 0.523
(0.667) (1.549) (0.667) (0.460)

Compj,t-1 0.007 *** 0.006 ** -0.002 0.002
(0.002) (0.002) (0.003) (0.004)

Period 1998–2008 -0.552 ***
(0.196)

Period 2008–2016 -1.474 ***
(0.209)

Constant -1.365 *** -0.201 -2.815 *** -4.980 ***
(0.156) (0.190) (0.230) (0.317)

# of Obs. 30,796 11,773 10,168 8,855
AIC 26,102 11,696 8,698 4,768
Log likelihood -13,043 -5,842 -4,343 -2,378
Pseudo R2 0.052 0.132 0.153 0.190

Independent
variables

Baseline model
Pooled 1988–1998 1998–2008 2008–2016
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Table 4. Econometric analysis of product development (models with the interaction terms). 

 
Standard errors in parentheses 

* Significant at the 10 % level; ** at the 5 % level; *** at the 1 % level 

  

Centj,t-1 0.589 *** 0.716 *** 0.720 *** -1.217 *** -1.312 *** -1.310 *** 2.894 *** 3.016 *** 3.023 *** 3.039 *** 3.415 *** 3.538 ***
(0.077) (0.076) (0.076) (0.115) (0.114) (0.114) (0.144) (0.142) (0.142) (0.200) (0.199) (0.195)

Clustj,t-1 0.706 *** 0.698 *** 0.585 *** 1.921 *** 1.906 *** 1.865 *** -0.184 -0.185 *** -0.311 *** 1.030 *** 1.133 *** 0.574 **
(0.110) (0.109) (0.110) (0.163) (0.163) (0.164) (0.177) (0.177) (0.179) (0.264) (0.263) (0.276)

Burtj,t-1 -9.480 *** -9.164 *** -9.380 *** -27.484 *** -27.422 *** -27.184 *** -1.796 *** -1.810 *** -1.770 *** 0.421 0.818 * 0.338
(0.671) (0.666) (0.667) (1.558) (1.564) (1.549) (0.676) (0.691) (0.667) (0.463) (0.456) (0.466)

Compj,t-1 0.007 *** 0.007 *** 0.007 *** 0.006 ** 0.006 ** 0.006 ** -0.002 -0.002 -0.002 0.003 0.002 0.003
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.004) (0.004) (0.004)

Centj,t-1*Compi,t 0.064 *** -0.446 *** 0.044 *** 0.067 ***
(0.006) (0.072) (0.009) (0.009)

Clustj,t-1*Compi,t 0.032 *** 0.126 * 0.030 *** 0.045 ***
(0.005) (0.066) (0.007) (0.008)

Burtj,t-1*Compi,t -0.119 *** 0.637 0.014 -0.252 ***
(0.046) (0.461) (0.020) (0.095)

Period 1998–2008 -0.665 *** -0.534 *** -0.627 ***
(0.207) (0.201) (0.198)

Period 2008–2016 -1.645 *** -1.446 *** -1.595 ***
(0.220) (0.214) (0.212)

Constant -1.317 *** -1.377 *** -1.294 *** -0.182 -0.200 -0.205 -2.836 *** -2.812 *** -2.808 *** -4.866 *** -4.923 *** -4.793 ***
(0.161) (0.159) (0.157) (0.193) (0.190) (0.192) (0.230) (0.230) (0.236) (0.311) (0.330) (0.313)

# of Obs. 30,796 30,796 30,796 11,773 11,773 11,773 10,168 10,168 10,168 8,855 8,855 8,855
AIC 25,920 26,095 26,059 11,638 11,696 11,694 8,668 8,700 8,682 4,685 4,753 4,731
Log likelihood -12,951 -13,038 -13,020 -5,812 -5,841 -5,840 -4,327 -4,343 -4,334 -2,336 -2,370 -2,359
Pseudo R2 0.059 0.052 0.054 0.136 0.132 0.132 0.156 0.153 0.154 0.205 0.193 0.197

1988–1998PooledPooledPooled
Independent
variables

Models with the interaction terms
2008–2016 2008–2016 2008–20161988–1998 1988–1998 1998–2008 1998–2008 1998–2008
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Fig 1. Stylized facts for the year 2016. a) Distribution of the number of auto part 
suppliers’ portfolios. b) Cumulative distribution function for the number of suppliers’ 
product portfolios. c) Inverse relationship between the number of suppliers for each 
product and the average median portfolio of suppliers that deliver the corresponding 
products. The points corresponding to two or more products are colored in darker blue. 
d) Nestedenss of the supplier–product relationship. 
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Fig 2. Distribution of relatedness for the year 2016. a) Cumulative distribution of the 
number of links under certain thresholds. b) Cumulative degree distribution of the 
product–product network. For the network including all relatedness links, the median of 
the number of links each node has is 47, whereas the maximum is 153. For the network 
with significant links having a proximity value of 0.1 or larger, the median is 6, whereas 
the maximum is 67. 
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Fig 3. Visualization of the auto parts product space for the years (a) 2016, (b) 2008, 
(c) 1998, and (d) 1989. The average path length and the average clustering coefficient 
are calculated based on the networks of the MST superposed by all links with a proximity 
value of 0.1 or larger. Care must be taken when interpreting the nodes isolated from 
network structures. It is possible that suppliers that deliver only one (isolated) auto part 
product to car manufacturers also deliver their products to other industries, such as 
electrical machinery and aircraft manufacturing. 
  

Year # of nodes Ave. path
length

Ave. culstering
coefficient

1988 197 7.11 0.32
1998 249 7.28 0.38
2008 254 4.80 0.50
2016 275 4.60 0.58
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Fig 4. Local attributes of the auto parts product space. a) Distribution of the 
eigenvector centrality. b) Distribution of the local clustering coefficient. The eigenvector 
centrality and the local clustering coefficient indices are calculated based on the full 
networks without imposing any thresholds.  
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Fig 5. Changes in the ranking of auto parts. Auto parts are ranked according to the 
product complexity for 1988, 1998, 2008, and 2016. Each line represents the movement 
of the auto part product in the ranking. Lines colored in red (blue) are the top (bottom) 30 
products in the initial year (1988). Many top-ranked auto parts lost their position, while 
low-ranked products experienced little change in position during the study period. The 
dots plotted in 1998, 2008, and 2016 represent new products first found in each year. 
While the new products tend to be evaluated as relatively sophisticated, not all newly 
emerged products are sophisticated. 
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Fig 6. Location of sophisticated and unsophisticated products in the auto parts 
product space. a) Location of the top 20% of complex products for 2016. b) Location of 
the bottom 20% of less complex products for 2016. c) Location of the newly appeared 
products found in 2016 but not in 1988. d) Location of the newly appeared products 
ranked in the top 20% of complex products for 2016. Figs 6(a)–6(d) are depicted based 
on the 2016 product space. 


