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Abstract

Although technological change is widely credited as driving the last two hundred years of eco-
nomic growth, its role in shaping patterns of inequality remains under-explored. Drawing par-
allels across two industrial revolutions in the United States, this paper provides new evidence of
a relationship between highly disruptive forms of innovation and spatial inequality. Using the
universe of patents granted between 1920 and 2010 by the U.S. Patent and Trademark O�ce, we
identify disruptive innovations through their rapid growth, complementarity with other innova-
tions, and widespread use. We then assign more- and less-disruptive innovations to subnational
regions in the geography of the U.S. We document three findings that are new to the literature.
First, disruptive innovations exhibit distinctive spatial clustering in phases understood to be
those in which industrial revolutions reshape the economy; they are increasingly dispersed in
other periods. Second, we discover that the ranks of locations that capture the most disruptive
innovation are relatively unstable across industrial revolutions. Third, regression estimates sug-
gest a role for disruptive innovation in regulating overall patterns of spatial output and income
inequality
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1 Introduction

Technological change has played a central role in two centuries of unprecedented growth in pro-

ductivity, incomes, and world population (Maddison, 2007). The most important new technologies

have not, however, trickled out at a constant pace. At certain moments, they have generated ma-

jor waves of new outputs, industries, firms and types of work that together profoundly reshaped

the economy (Bresnahan and Trajtenberg, 1995; Helpman, 1998). These periods of intense change

are commonly described as industrial revolutions. The emergence of major technologies are also

distinctively spatially unequal, both between and within countries (Mokyr, 2010). For example,

the second industrial revolution unfolded in chiefly in Western Europe and North America during

the second half of the 19th and early 20th centuries. Within leading economies, some subnational

regions grew large and prosperous as they became centers of electrical and mechanical technologies

(e.g. Lamoreaux et al., 2004). Technological leadership in these periods is also associated with a

growing divergence between the incomes in emergent ‘cores’ and the rest of the world (Pomeranz,

2001). Gradually, major technologies of the second industrial revolution have spread out globally,

if unevenly; with this di↵usion has come a degree of catch-up in development (Comin and Hobijn,

2010; Kemeny, 2011).

Even as they now undergo worldwide di↵usion, the key, disruptive technologies of the third

industrial revolution – such as semiconductors, computers and related software – also originated

from a relatively small set of locations in the 1970s, with a few American regions leading the way.

It may therefore be no coincidence that, around the same time, after a long period of interregional

wage compression, spatial income inequality started rising in the United States (Moretti, 2012;

Manduca, 2019; Kemeny and Storper, 2020a; Gaubert et al., 2021). While accounts of the original

causal determinants of this divergence vary, it is widely agreed that a proximate cause is the rising

spatial concentration of college educated workers (Diamond, 2016; Giannone, 2017; Card et al.,

2021) – those same workers whose productivity the new technologies are said to augment (Autor

et al., 2008).

Nonetheless, the connections between geographical dimensions of technological change and

the spatial organization of work and its rewards remain insu�ciently well understood. In labor
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economists’ work on skill biased technological change, the focus has been squarely on changes in

the labor market. In this work, technologies are said to increase wage inequality, but their e↵ects

are mostly inferred rather than directly observed (i.e. Autor et al., 2003; Berger and Frey, 2016).

Separately, innovation scholars and historians have sought to identify key disruptive technologies

(i.e. Moser and Nicholas, 2004; Feldman and Yoon, 2012). But that work leaves the links be-

tween these technologies and the distribution of economic outcomes over time and space largely

unexplored. These hitherto distinct bodies of scholarship could benefit from more interaction.

This paper fosters such interaction by directly linking patterns of spatial inequality in income

and output to the geography of disruptive innovation in the United States. Building on an approach

developed in Petralia (2020b), we draw on detailed data from the U.S. Patent and Trademark O�ce

to distinguish more from less economically-disruptive innovations over the long period from 1920

to 2010. Inventor and assignee addresses on granted patents are used to geographically locate these

innovations in counties and commuting zones. Crucially, unlike most work on subnational spatial

inequality, our approach enables description of two key waves of disruption: the 1920s, in which

key electrical technologies of the second industrial revolution began to profoundly reshape the U.S.

economy (Field, 2003; David, 1990), as well as the post-1970 rise of the third industrial revolution.

The U.S. is a particularly good case for analyzing relationships between technology and spatial

economic inequality. It has been a dynamic innovation economy since at least the mid-19th cen-

tury, at the forefront of both the second and third industrial revolutions (Soskice, 2020). Through

its frontier development and extension of infrastructure, it experienced vigorous integration of its

internal markets, signalled by high rates of internal migration from 1880 to 1980, along with sig-

nificant capital mobility and rapid and low-cost technology di↵usion (Molloy et al., 2011; Ganong

and Shoag, 2017). This integration should generate strong forces pushing for interregional con-

vergence in productivity and wages. Hence, in seeking to better understand the role of new, key

technologies in shaping spatial economic inequality, our approach o↵ers key advantages: it a↵ords

opportunities for drawing parallels and contrasts between the current and prior revolutions, as well

as a less disruptive period in between; it permits comparison between the time- and space-paths of

most and least disruptive innovations; and it does so against a backdrop of a highly innovative and
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increasingly spatially integrated national economy.

Several of our findings are new to the literature. At moments of rising spatial income in-

equality, the most disruptive innovations – unlike the least disruptive innovations – concentrate in

space; conversely, when inter-regional economic inequality is in decline, disruptive innovations are

spreading out. We identify two historical episodes in which disruptive innovations undergo marked

concentration in space: one between 1920 and 1930, the other between 1980 and 2010. Between

these periods – at the time of the Great Leveling, when spatial economic and inter-personal income

inequality underwent major declines – disruptive innovations spread out across the regions of the

United States. Moreover, multivariate results are consistent with the idea that the spatial behavior

of disruptive innovation plays an important role in shaping spatial inequality.

2 Disruptive innovation and economic inequalities: literature

The present study builds on a large and varied literature that explores links between technological

change, the labor market and economic development. A first strand of research examines the

process of technological change over the long run, starting with the European industrial revolution

as a key turning point in modern economic history. Between roughly 1750 and 1820, a complex

set of technological and organizational innovations enabled humanity to escape persistent cycles

of Malthusian boom and bust with unprecedented and sustained growth in productivity, incomes

and population, that have now lasted more than two centuries (Freeman and Soete, 1997; Landes,

2003; Maddison, 2007; Mokyr, 2010).1

Within this two-century period, however, there has not been a continuous flow of equally sig-

nificant innovations. Specific major new technologies emerge periodically, and they set o↵ chain

reactions of spreading uses and additional innovations, as well as gradual spatial di↵usion. These

changes sweep across the economy and reshape employment, wages, skill requirements, and ways

of life (Rosenberg and Nathan, 1982). Adopting biological metaphors, Mokyr (1990) distinguishes

between two broad types of technological change: one marked by the gradual accretion of new

ideas; and another emanating from comparatively rare, discontinuous mutations.

Attempts to capture empirically the distinction between major and less important innovations
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have opened a Pandora’s Box of competing terminology and shifting emphases. Within this broad

semantic field, our preferred term is ‘disruptive’ innovation, signalling technologies that generate

major discontinuities in terms of the locations that produce them, and the skills and tasks for which

they complement and substitute.2 In the spirit of Mokyr’s distinction described above, disruptive

innovations punctuate equilibria, and set the economy on a new path. Historians sometimes label

such technologies as ‘general purpose’ signalling their ability to spur a wide range of new uses, while

also inspiring a chain of many further innovations (Bresnahan and Trajtenberg, 1995). Meanwhile,

other strands of research favor di↵erent terms, such as ‘radical’ (Perez, 2010; Schumpeter, 1943);

‘sleeping beauties’ (Teixeira et al., 2017); ‘unconventional’ (Berkes and Gaetani, 2021); ‘atypical’

(Mewes, 2019); ‘complex’ (Balland and Rigby, 2017); ‘breakthrough’ (Phene et al., 2006; Esposito

et al., 2021); and ‘promiscuous’ (Foster and Evans, 2019).

Semantics aside, there have been multiple technological-industrial revolutions since the 18th

century, each corresponding to a wave of new, disruptive technologies. Thus, water power and

textiles are linked to the first industrial revolution; steam power and railroads to a second revolu-

tion (though, for some this was a continuation of the first revolution); fossil fuels, electricity and

mechanization are widely considered the heart of the second industrial revolution; and of course

semiconductors, computers and related digital technologies are the enabling technologies of the

third industrial revolution. Revolutions do not happen in an instant, of course. This means there

can be considerable di↵erences in how di↵erent scholars date the beginning and end of these waves.3

Within each wave, a major new technology initially has a fallow period of slow productivity growth,

later followed by a period of ‘reaping,’ as the disruptive innovation begins to intensively reshape

economic activity (David, 1990; Helpman and Trajtenberg, 1998b; Lipsey et al., 2005). In the

case of the second industrial revolution, David et al. (2005) and Petralia (2020a) find that the

1920s was the major reaping period for the electricity and related technologies that were initially

invented between 1880 and 1910.4 Similarly, researchers were at first perplexed by the ‘missing’

productivity e↵ects of the major innovations of the 1970s and 1980s, but they subsequently started

finding them from the 1990s onward (Bresnahan et al., 2002). Historians agree that, although the

electrical dynamo was invented during the 1860s, and the 1880s witnessed the emergence of the first
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electrical power stations, it was not until the 1910s and 1920s that the e↵ects of these innovations

began to powerfully reshape the economy of the United States (Field, 2003; David, 1990; Freeman

and Louçã, 2001). Similarly, though silicon semiconductors were conceptualized in the early 20th

century, and key working transistors came out of Nobel-prize winning work at Bell Labs in the

1940s and 1950s, it was not until the late 1970s and 1980s that computers, and subsequently the

internet, begin to transform the organizational patterns of economic activity in the United States.5

Just as these key technologies emerge unevenly in time, they also arise in specific national and

sub-national locations. The first industrial revolution began with a major pulse of innovation –

the factory system – in Europe during the 18th and early 19th centuries, and earliest in the En-

glish Midlands. World manufacturing then concentrated in Britain, and subsequently developed

in a broad central arc of the European continent, as well as in the northeastern United States.

Though there exist di↵erent views on why the first industrial revolution happened where it did

(c.f. Mokyr, 2010; Allen, 2009), the consequences of the geographical concentration of industrial

activity are clear: incomes in the industrialized West sharply diverged from the rest of the world

(Pomeranz, 2001). Related work documents the subsequent di↵usion of these and other key inno-

vations, and their growth-enhancing e↵ects (Keller, 2004; Kerr, 2008; Comin and Hobijn, 2010),

noting that absorption, and thus catch-up, is conditional upon institutional and other features of

lagging economies (Abramovitz, 1986; Kemeny, 2010).

While this first strand of work has largely focused on national economies, a second is explicitly

concerned with subnational regional variation in the production and absorption of innovations.

Much of this work has a shorter time frame, tracing the geography of the current revolution since

the 1970s, within which it is clear that core technologies have emerged with a strongly spatially

concentrated form (Saxenian, 1996; Storper, 1997; Duranton and Puga, 2004; Crescenzi et al., 2020).

The important new technologies of the current period have emerged alongside major changes in the

inter-regional sorting of labor and capital (i.e., Storper and Walker, 1989; Boschma and Van der

Knaap, 1999; Rosenberg and Trajtenberg, 2004; Storper et al., 2015; Berger and Frey, 2016). Recent

contributions along these themes have documented how new occupations and innovations that are

disruptive and more complex have emerged in a highly geographically-concentrated manner, in
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locations marked by larger populations and dense hubs of educated workers (Lin, 2011; Balland

et al., 2020; Bloom et al., 2021).

Although key innovations and the jobs linked to them may initially exhibit strong spatial con-

centration, Vernon’s (1966) intuition that they may eventually disperse, driven by processes of

maturation and standardization, is also supported by considerable research. Norton and Rees

(1979) adapt the product-cycle framework, for example, to explain the mid-20th century rise of

the Sunbelt and decline of former second industrial revolution hubs in the Midwest and Northeast.

Bloom et al. (2021) observe that, as work activities linked to disruptive innovations spreads out

over subnational space, they also become progressively de-skilled. Meanwhile, Griliches (1957),

Pred (1975), Phene et al. (2006), and Feldman et al. (2015) trace the spread of knowledge and

certain key technologies in sub-national space. One implication of this work is that technologies

that are standardizing and spreading out will continue to yield new adaptive innovations. But,

these innovations and their geography are likely to be di↵erent from those that are most disruptive.

A third major strand of relevant work, operating at a more microeconomic level, is concerned

with the links between technological change and wage formation. Such studies, emerging chiefly

from labor economics, start from a framework in which income or wage inequality is shaped by

the introduction of new technologies. New technologies complement workers performing specific

tasks or holding particular skills, while they act as a substitute for the jobs of others (Autor et al.,

2003; Bresnahan et al., 2002; Gordon, 2017; Acemoglu and Restrepo, 2021). Changes in labor

demand are in a race against the creation of the supply of workers with suitable skills, with levels

of inequality hanging in the balance (Goldin and Katz, 2009). More macro-approaches look for other

factors that can influence the overall income distribution, such as policy shifts, wars, international

trade, urbanization, inter-regional integration, and the size of the financial sector (Lindert and

Williamson, 2016). But these are debates about emphasis; there are basically no accounts in which

technological change does not play a major role in shaping the income distribution through its

influence on wages, as well as through other mechanisms such as returns to capital and changes in

the distribution of capital ownership associated with new technologies (Bresnahan and Trajtenberg,

1995; Wright, 1990; Aghion and Howitt, 2000; Acemoglu, 2002; Helpman, 2009; Galor, 2011; Storper
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et al., 2015; Aghion et al., 2019). This body of theory and empirical work has added enormously

to our understanding of inequality. And yet, in that part of it exploring skill-biased technological

change, technologies are not observed directly, hence their links to wage formation remain oblique.

Instead, their e↵ects are said to be observed through the trace elements of educational attainment,

occupational definitions, and task composition of work.

A fourth and final strand of relevant work is addressed specifically to the post-1980 rise in

spatial income inequality in the U.S. (Drennan et al., 1996; Moretti, 2012; Kemeny and Storper,

2012; Ganong and Shoag, 2017; Manduca, 2019; Gaubert et al., 2021). One view postulates that

spatial inequality is largely due to barriers to worker mobility, on the basis that frictionless mobility

will generate a tendency towards inter-place equalization of real incomes. In some current versions of

that perspective, limits on housing supply are the primary drivers (Gyourko et al., 2013; Ganong and

Shoag, 2017), In this line of work, little attention is paid to changes in the spatial structure of labor

demand (Roback, 1982; Glaeser and Gottlieb, 2006; Partridge, 2010). A contrasting argument is

that recent spatial inequality is indeed strongly shaped by the geography of labor demand (Galbraith

et al., 2014; Diamond, 2016; Autor, 2019). Connecting some of the strands reviewed thus far, this

latter account can be considered as a spatialization of arguments around skill-biased technological

change, in which the new technologies of the third industrial revolution spawned industries that are

highly spatially concentrated, employing workers that enjoy task- and education premiums, with

the overall result being rising spatial inequality (Berger and Frey, 2016; Giannone, 2017; Kemeny

and Storper, 2020b). However, in empirical work on these themes, actual technologies remain

under-explored. Moreover, almost all of the work remains narrowly focused on the recent period of

divergence, leaving open how technology or other factors may have reduced inequality during the

Great Leveling from 1940-1980, when regions of the U.S. were instead in a long period of income

convergence.

This review motivates the priority tasks in the present research: identifying particular kinds

of innovation that are likely to be economically disruptive; placing such technologies in space and

time; tracing directly the relationship between the geographies of regional economic performance

and disruptive innovations.
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3 Data and Methods

3.1 Identifying disruptive innovations

We identify three features that distinguish more- from less-disruptive innovations, drawing on the

extensive historical literature on general-purpose technologies (i.e., Bresnahan and Trajtenberg,

1995; Helpman and Trajtenberg, 1998b,a; Aghion and Howitt, 2000; David and Wright, 2003; Moser

and Nicholas, 2004; Lipsey et al., 2005; Hall and Trajtenberg, 2006; Rosenberg and Trajtenberg,

2010; Feldman and Yoon, 2012).

1. Growth: Disruptive technologies have a particularly wide scope for improvement and elab-

oration, expressed as an intensive process through which technologies are further developed

and perfected. Consider, for instance, Jack Kilby’s 1958 invention of the first microchip while

at Texas Instruments. The vast potential for improvement of this technology is evidenced by

the enormous quantity of subsequent refinements – from Robert Noyce’s more practical sili-

con version invented a year later, to contemporary neural-network-based chips. The e↵ects of

these improvements can be seen in dramatic increases in processing power that have enabled

the modern information economy.

2. Innovation Complementarity : When disruptive technologies are introduced, they intro-

duce a wide array of possibilities to complement with existing technologies. In a sequence of

problem solving, they enable many technologies that are new to the world. Returning again

to Kilby’s integrated circuit, this technology opened up possibilities to innovate in products

and services that didn’t exist before, particularly around the creation of portable computing

machines.

3. Use Complementarity : Disruptive technologies are also characterized by their widespread

use throughout the economy, in products and processes. Electric power, for example, became

widely used in an enormous range of products and processes: household appliances, trans-

portation services, chemical reactions, information transmission. After its introduction, it

gradually became a central input in nearly all manufacturing processes.
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3.1.1 Operationalization

In order to identify disruptive technologies and their geography, we use historical patenting in-

formation provided by the United States Patent and Trademark O�ce (USPTO), which makes

available the patent document for each patent it has granted since 1920.6 We make use of several

features of patent documents. First, we use the class structure built into the patent system in

which each patent is assigned to at least one technology class.7 There are currently more than 400

di↵erent technological classes in use in the U.S. Patent Classification, and whenever a new class

is created, or an existing one redefined, all available patents are reclassified to maintain temporal

consistency. Patent examiners are responsible for assigning each patent to at least one technology

class, according to type of invention to which it claims rights. All patent classifications in each

patent document are used, counting equally each appearance of a technological class.8 In addition,

we make use of the aggregation of classes into six broad economically-relevant categories: Chemical;

Computers & Communications (C&C); Drugs & Medical (D&M); Electrical & Electronic (E&E);

Mechanical; and Others.9 We also leverage the information contained within each document’s

detailed description.

In each year, we identify a set of the most disruptive technologies, defined as patent classes in

the USPTO terminology, based on class averages of Growth, Use Complementarity and Innovation

Complementarity. Following Petralia (2020b), we operationalize these characteristics as follows:

1. Growth: To capture a technology’s scope for improvement and elaboration, we measure

growth rates over time of its patent class. This adapts an approach found in work by Hall

and Trajtenberg (2006) who consider the growth of a specific subset of classes, and Moser and

Nicholas (2004), who measure growth at the more aggregate category scale. Growth rates for

patent class c will be calculated as � Pc =
Pc,t�Pc,t�5

Pc,t�5
� 1, where P represents the number of

patents in a given year t.

2. Innovation complementarity: We count the average number of patent classes with which

each technology co-occurs in patent claims, ignoring co-occurrences within the same aggregate

category (Chemicals, Mechanical, etc). Since patent claims identify the set of ‘new to the
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world’ innovations in patent documents, technologies that co-occur with a wide and diverse

set of claims within patent documents outside their category are considered to enable a wider

range of innovation than classes with fewer co-occurrences.

3. Use complementarity: We exploit the high-dimensional information contained in patent

descriptions in order to identify the uses of di↵erent technologies. For intuition, consider the

case of technologies X and Y. While X and Y may not co-occur frequently with each other

as described in the previous point, the detailed description of patents in technology X may

nonetheless refer to core methods, concepts or notions of technology Y. In this case we would

consider X to be a ‘user’ of Y. In this example, technology Y is not used by X to create

something new to the world (they not co-occur in patent claims), however, some of the core

methods, concepts or notions of technology Y enable technology X. We operationalize this in-

tuition by developing a set of technology-specific keywords, using a data-driven algorithm that

identifies keywords (2-grams) that distinctively represent specific classes of patents. Then,

we trace these technology-specific keywords within the detailed texts of individual patents in

other technologies. Technology X is defined as a user of Y if it has a su�cient number of

patents mentioning at Y keywords. To arrive at a measure of the use complementarity of Y,

we then count all the technologies (classes) that are users of Y.10

Each of these three characteristics is a necessary but insu�cient indicator a technology’s dis-

ruptiveness. For instance, a mature technology might be pervasive and thus have high levels of

use complementarity, while having exhausted its capacity for growth and innovation. Similarly, a

technology that grows quickly but has little scope for complementarity will not produce economy-

wide disruptive e↵ects. We therefore consider as disruptive only those technologies that rank above

average in all three criteria. Note that patent classes contain substantial heterogeneity – not all

within can be expected to be equally disruptive. Technologies least likely to be disruptive will be

found in those classes that score below average in all three characteristics. This leaves a third,

more indeterminate middle category of innovations that may be above average in certain features

and below average in others. In the empirical work that follows, we mainly draw on the contrast

between the two categories at the extremes - the most and least disruptive.
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The result is a classification that identifies disruptive innovations relative to other innovations

that have emerged at the same time. Our approach allows cross sectional comparisons to other

technologies, but it does not track changes over time in the overall quantity of disruptiveness present

in the economy. Hence, with this measure we cannot directly validate historians’ claims of bursts of

particularly disruptive innovation, though we do explore how such arguments fit with the shifting

geography of disruptive innovation over our study period.

[Table 1 about here.]

Table 1 provides a snapshot of the most and least disruptive technology classes in 1925-1930 and

2005-2010, with rankings based on the average values of the indicators, normalized by demeaning

and dividing by the standard deviation. The table o↵ers a view of disruptive innovation that

is consistent with existing historical and anecdotal evidence, where the 1920s are dominated by

mechanical and electrical categories and the most recent period by computers and electronics (i.e.

Freeman and Louçã, 2001). Individual disruptive technology classes can be seen to be clustered

together. Recently most of the highly disruptive electrical and electronic technologies listed in the

lower half of the table – such as those related to the production of solid state devices – are linked

to computers, broadly conceived. Least disruptive technologies in the 1920s include sca↵olding,

wooden receptacles, and railway draft appliances; in 2005-2010 sca↵olding again appears, alongside

several technology classes related to paper goods.

3.2 Locating disruptive innovations in subnational space

Patent documents list address information for inventors and/or assignees. We obtain this informa-

tion from two data sources: For the 1920 to 1975 period, we rely on the HistPat dataset, which

contains county-level information identifying the location of the inventor(s) and/or assignee(s) for

99.3% of all patents granted between 1836 and 1975 (Petralia et al., 2016).11 For the period from

1975 to 2010, we use similar information obtained directly from the USPTO.12 Individual patents

are then assigned to geographical locations.13

As noted, we aim to identify the economic e↵ects of disruptive innovations at the scale of local

labor markets. The spatial extent of local labor markets has profoundly changed over the nearly
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century-long study period. In 1920, there was less than one car for every 10 people in the United

States (Mom, 2014), and as recently as 1911, horses outnumbered cars in New York City (Morris,

2007). By contrast, by 2010, the country contained almost as many highway vehicles as people

(U.S. Department of Transportation, 2021). The study period also includes the rollout of the

interstate highway system, which is widely credited as having revolutionized patterns of settlement

as well as economic activity (Baum-Snow, 2007; Michaels, 2008; Allen and Arkolakis, 2014). The

suburbanization that emerged in part through these changes in trade costs expanded the spatial

extent of local labor markets, generating sprawling and integrated regional economies. This means

that, in earlier portions of the period under investigation, smaller spatial units are most likely to

capture the concept of interest; this is reflected in the large volume of empirical work examining the

19th and early 20th century in the U.S. focused at the scale of counties (i.e. Kim, 2007; Fishback

and Cullen, 2013; Abramitzky and Boustan, 2017; Akcigit et al., 2017). Closer to the present,

meanwhile, larger units will be optimal for measurement, reflecting the sprawl mentioned above.

This presents empirical challenges: we can either use the same spatial units over the 90 years under

investigation, which risks introducing potentially significant measurement error at one end of the

full study period or the other, or we can use one set of units to track changes in one sub-period

and a di↵erent set for the other. We prefer the latter. We use units that best fit the spatial extent

of local labor markets in each period in question, though at specific points in this paper when our

analysis demands common units, we make use of them.

For the period covering the second industrial revolution (1920 to 1930), we use counties as our

unit of analysis. Meanwhile, for the 1980-2010 period, we adopt commuting zones as our primary

spatial unit. Commuting zones are groups of counties that are linked through the intensity of travel

patterns, and distinguished by weak inter-area commuting; they therefore e↵ectively represent

functionally-integrated economic units (Tolbert and Sizer, 1996). Commuting zones o↵er concrete

advantages over other competing measures: unlike metropolitan Core Based Statistical Areas,

they can be constructed for the full study period as needed; they cover the entire, contiguous 48

states; they also avoid problems of incomplete identification present in metropolitan areas in public

use data since 1980. For this latter period, we adopt 1990-vintage commuting zone definitions,
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consisting of 726 local labor markets.

3.3 Exploring the relationship between disruptive innovation and spatial in-

equality

In addition to univariate descriptive analyses, we also estimate a series of simple panel regression

models predicting changes in local growth in either per capita manufacturing output or income.

Across these models, the independent variable of interest is local disruptive innovation. Our aim in

these estimates is to consider how the marginal disruptive innovation may be related to patterns

of growth in output or income. We estimate variants of the following baseline equation:

yc,t = dc,t + ldc,t +X 0
c,t + uc,t (1)

where y is log per capita output or income for location c in time t. The log of the number of local

patents in the most disruptive classes taken out in either the most recent 5 or 10 years is captured

by d. Similarly, ld represents log of counts of local patents in classes that are deemed least likely

to be disruptive over the same period. X 0 is a vector of location-specific features, and u is the

standard disturbance term. In X 0 we include some measures likely to be related to the dependent

variable that are common to both periods, like population. We also include some control variables

that are period-specific. To identify any in-built catch-up e↵ects, as in a conventional convergence

model, we include a one-period lag of the dependent variable.

For the observed decade during the second industrial revolution, estimates are generated by

di↵erencing values of the dependent variable and patent measures between 1920 and 1930, with

covariates set to initial-period values. For the more recent period, a decadal panel spanning 1980

to 2010 allows estimation of a two-way fixed e↵ects model, in which we include time-varying con-

trols; location-specific fixed e↵ects that will absorb bias from unobserved, but relatively stationary

features of each local economy, including their overall propensity to be innovative; and year fixed

e↵ects that can account for unobserved national-level dynamics, such as business cycles. In each

time period, the key independent variable of interest is d; all else equal, we expect changes in d to

be positively related to changes in local levels of output or income per capita.
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The long run timeframe of this study entails some compromises in terms of measuring our

dependent variable of interest.14 Recall that the theoretical motivation is to capture spatial eco-

nomic inequalities, by which we mean indicators of inequalities in development. In the economic

development literature generally, development is almost always operationalized through per capita

output, incomes or wages, acting as proxies for productivity and well-being. For the period around

the second industrial revolution, we use information from historical iterations of the Census of

Manufactures made available by Haines (2005), as a means of constructing measures of local man-

ufacturing output per head.15 They key innovations in this period were largely in electrical and

mechanical areas related to manufacturing activity, hence, this indicator should reasonably ac-

curately gauge their economic impacts. Over the 1980 to 2010 period, we again cannot directly

measure per capita gross domestic product, but we follow common practice in the literature on re-

gional convergence (i.e., Barro and Sala-i Martin, 1991; Carlino and Mills, 1993; Drennan and Lobo,

1999), proxying development performance by using income-side data from the National Income and

Product Accounts (NIPA), made available by the Bureau of Economic A↵airs.16 We aggregate per

capita personal income (PCPI) to the commuting zone level, and adjust it for inflation to constant

2010 dollars using the Bureau of Labor Statistics’ Consumer Price Index for All Urban Consumers

(CPI-U).

We supplement our key dependent and independent variables with other measures of local eco-

nomic structure. In both periods, we account for di↵erences in industrial structure and population.

In the period spanning the second industrial revolution these data are again drawn from Haines

(2005). From that source we also include a measure of the urban population share in each county, on

the basis that the shift from rural to a more urban manufacturing pattern could partially explain

growth accelerations (Atack and Bateman, 1999; Kim, 2005). Additional measures from Haines

(2005) include the share of foreign born in 1920 in each county, motivated by a range of potentially

beneficial e↵ects, including entrepreneurship, innovation; and labor market recomposition (Hunt

and Gauthier-Loiselle, 2010; Ottaviano and Peri, 2012; Rodriguez-Pose and Von Berlepsch, 2014).

Furthermore, we include a variable measuring the availability and exploitation of natural resources,

the share of primary inputs used in manufacturing (PI), since natural resource exploitation during
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this period is often mentioned as crucial factor of the early US development process Wright (1990).

We use additional sources of data to account for specific factors that may have played a role in the

early development of regions in the 1920s. Following Acemoglu et al. (2016), to capture variation

in local state capacity, we include information on the number of post o�ces per county.17 Further-

more, since it has been argued that the presence of a university in a city has a considerable impact

on local wages and capabilities (Moretti, 2004), we count the local presence of land-grant colleges.

[Table 2 about here.]

In the later period, control variables are largely drawn from public use extracts of population

censuses, harmonized and made available to the public via IPUMS (Ruggles et al., 2021). These

data are drawn from the largest available public use sample in each available year; this means five

percent samples for 1980, 1990 and 2000, and a three percent sample covering 2009-2011 (which for

convenience we call 2010). Adapting the probabilistic method described by Dorn (2009), we assign

fractions of individuals in the Census to 1990-vintage commuting zones based on the proportion

of each County Group (1980) or Public-Use Microdata Area (PUMA – 1990-2010) that belongs

in each commuting zone. From the resulting data, we measure the share of local workers having

attained at least four years of college education; as well as employment shares in computer and

data processing sectors; in finance, insurance, and real estate (FIRE) and manufacturing.

Table 2 presents summary statistics, separated by major period. In the period spanning the

1920s, the average county was granted 145 patents, though the large standard deviation indicates

the considerable dispersion of this indicator. The average county generated 28 more-disruptive

patents and 10 least-disruptive. In the more recent period, the average commuting zone had

a decadal patent rate of over one thousand, again with the standard deviation indicating the

presence of major geographical variation. The most- and least-disruptive patents follow a similar

pattern. There is a strong, substantive logic to the abundance of the most disruptive patents

relative to the least. These most disruptive patents should be strongly growing in importance

and number. Meanwhile, the least disruptive technologies are by definition nearing a stage of

saturation, hence their size should be comparatively diminutive. The average county in 1920 had

47,000 residents; between 1980 and 2010, the average commuting zone had around ten times that
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population. In each case there are major di↵erences in population indicated by the dispersion

in the series. In practical terms, commuting zones include locations as small as Murdo, South

Dakota, with a population of under 1,000, and as large as Los Angeles, at over 15 million residents

in 2010. Other features of regional economies appear distributed as expected, including meaningful

variation around educational attainment, industrial structure, immigration, and of course output

and income.

4 Results: geographies of technological disruption and develop-

ment

4.1 Disruptive technologies concentrate in space in periods of industrial up-

heaval

Figure 1 displays the evolution of geographic concentration in patents that fall into patent classes

we consider disruptive, with variation in disruptiveness defined on the basis of methods described in

section 3.1. The leftmost panel of Figure 1 displays the evolution of Gini coe�cients, Theil indices

and coe�cients of variation, each describing how patterns of disruptive technologies across counties

have changed over the 1920s. The three measures present largely consistent but slightly di↵erent

pictures of the location of new, disruptive technologies. The Theil index presents a somewhat

turbulent narrative in which concentration rises between 1920 and 1925, then falls up to 1929, and

then begins to rise again. Over the same period, the Gini coe�cient and coe�cient of variation

both suggest that disruptive innovations are progressively concentrating at the county level over

the decade.

[Figure 1 about here.]

The right panel of Figure 1 displays the analogous evolution of the geography of disruptive

innovation for the 1980-2010 period, at the level of commuting zones. Across the di↵erent measures

of spatial inequality, each series rises quite consistently over the 30-year period. Over this recent

period in which new, key technologies are believed to be most profoundly disrupting economic
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activity in the United States, they are emerging in an increasingly selective regional geography.

One might reasonably wonder whether such geographical patterns are, as we suggest, cyclical.

A competing possibility is that the growing geographical clustering of disruptive innovations merely

reflects more fundamental shifts in patterns of settlement and overall economic activity. On that

logic, since 1980 at least, the U.S. has been experiencing growing concentration of population and

output in larger urban centers (Black and Henderson, 2003; Balland et al., 2020). In reality, these

processes are likely to be endogenously related to one another, with innovation as both outcome

and driver of agglomeration (Duranton and Puga, 2001; Gordon and McCann, 2005; Asheim et al.,

2011). Consideration of these relationships during the second industrial revolution is illuminating.

Over the late 19th and early 20th centuries, the U.S. urban system had not yet fully completed its

frontier transition (Leyk et al., 2020). The settler population was actively expanding and spreading

toward the West and South, widening markets as well as the range of feasible locations for many

traded goods to be produced (Kim, 1995). In this light, the patterns in Figure 1 indicating a growing

concentration of disruptive innovations are all the more striking. Technological concentration in

one period marked by dispersal in population, employment and output hints at the existence of a

distinctive and powerful logic shaping the geography of these innovations.

In Figure 2 we seek to further contextualize these findings, revisiting the geography of innovation

shown in Figure 1 with some significant di↵erences. First, Figure 2 describes changes in the location

of innovation across the entire 90-year study period – a shift that necessitates consistent spatial units

(in this case, commuting zones). Second, while the left panel visualizes changes in the geography

of the most disruptive innovations, for contrast the right panel shows the spatial evolution of the

least disruptive new technologies.

Comparing across the two panels, Figure 2 shows that the most and least disruptive innovations

exhibit strongly di↵erentiated locational patterns. The leftmost panel captures the rising spatial

concentration of disruptive innovations over the 1920s, with some of the instability seen at the

county scale in the Theil series, but also the broadly rising pattern of concentration; this is followed

by a gradual spreading out of disruptive innovations from the mid-1930s to approximately 1980,

after which we observe once again the spatial concentration during the third industrial revolution.
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We interpret this to mean that innovations with greater disruptive potential follow a wave-like

pattern of rising and then falling spatial concentration that mirrors temporal patterns that economic

historians highlight as peaks and troughs of industrial revolutions.

[Figure 2 about here.]

Examining the right panel of Figure 2, we observe that technologies that have the least potential

for disruption appear to be spreading out over space over the entire 90-year period. This hints at a

deepened di↵usion process for the creation of new ideas whose underlying concepts and knowledge

bases are more peripheral to the overall technological frontier. As we have seen that some of the least

disruptive innovations involve ‘mature’ technologies, it suggests these became more easily accessible,

perhaps driven by the wider settlement process underway in the United States. Nonetheless, it

is striking that the progressive dispersal of such innovation in an ever-widening circle of locations

proceeds even during periods of peak technological upheaval, and even when indicators of population

and output grow increasingly concentrated.

4.2 Waves of concentrated disruptive innovation reshape the ranks of regional

technological leadership

In this section we explore which cities have become sites of concentrated disruptive innovation. We

also consider whether holding a leadership position in disruptive innovation in one period leads to

being a leader in a subsequent one.

In a five year window within each industrial revolution, Table 3 lists the top 25 regions based

on counts of disruptive innovation per thousand inhabitants. It lists counties that are hubs of

disruptive innovation in 1925-30, while for the later period it lists commuting zones. Over the

1925-30 period, leading disruptive technology regions were mostly concentrated in the Northeast

and Midwest – the old industrial heartland of the electrical-mechanical age. The distribution of

disruptive innovations per thousand across these centers is relatively even, such that those in the

middle of the list generate about a third of the number of disruptive innovations per capita as those

at the very top. At the very top of the list is Schenectady, home of General Electric, as well as
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the American Locomotive Company, the latter focused on steam and diesel locomotives, as well as

steel production. Larger counties on the list, like Lucas, Hamilton, New York, Allegheny, and Cook

each represent significant industrial cities of the second industrial revolution: respectively, Toledo,

Cincinnati, New York, Pittsburgh and Chicago. Though we show measures scaled to population in

Table 3, absolute counts of disruptive innovation over this period favor large locations, including

many of the biggest urban counties such as Wayne (Detroit); Los Angeles; Cuyahoga (Cleveland);

Philadelphia, Milwaukee, St. Louis and San Francisco.

[Table 3 about here.]

The list describing the 2005-2010 period looks di↵erent in a number of ways. It is more con-

sistently made up of large population centers, which are also drawn from a wider range of regions

of the United States. Almost a quarter lie on the Pacific coast, and Sunbelt cities like Austin

and Raleigh bring in the Old South. Regional economies known for leadership in high-technology

sectors of the third industrial revolution appear on the list, including San Francisco, San Jose,

Austin, Boston, and Seattle. Among the smaller places Rochester, Minnesota and Poughkeepsie,

New York both host large IBM research and design facilities. One di↵erence between the two pe-

riods is the degree of concentration of disruptive patents in the more recent period, with San Jose

having generated approximately 1.6 times as many disruptive patents as the second-place location,

and almost seven times as many as the middle of the list. By contrast, over the 1925-1930 period,

the leading county had 1.2 times as many as the second place location, and less than three times

as many as the middle of the list.

Based on this picture, we can ask whether the same regional economies are hubs of innovation

across the two study periods. To respond to this question, we again require consistent units. Hence,

in Table 4, we aggregate up to the level of 1990-vintage commuting zones. Only four regions that

out of the top 25 most disruptive locations in 1925-1930 remain so in 2005-2010. The overwhelming

majority of leading places are leaders in only one period. A similar picture emerges if we measure

total patents, such that only half the locations that are in the top 25 in the 1920s remain so in the

2000s. This greater intertemporal consistency no doubt emerges as a consequence of the fact that

big populations exhibit greater long-run persistence.
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[Table 4 about here.]

Being at the top in per capita terms means being a center of the disruptive technologies of

the specific industrial revolution at hand. There is substantial turbulence or di↵erence in regional

leadership of disruptive technological change from one revolution to another. On a total patenting

basis, however, there is less volatility over time, perhaps reflecting some long-term advantage of

being a large city-region in the urban system in successfully transitioning as a technology center

from one period to another. Still, almost half of the leaders in the 2000s were not to be found there

during the the second industrial revolution, reflecting the entrance of major new innovation centers

as new technologies rely less on the innovators and inputs from previous rounds, creating what has

been termed a ’window of locational opportunity’ (Scott and Storper, 1987; Storper and Walker,

1989). Long-run stability is most evident among the non-innovative laggards.

4.3 Spatially concentrated disruptive innovation is associated with greater spa-

tial economic inequalities

[Table 5 about here.]

Next we turn to regression estimates measuring the association between disruptive innovation

and either output or income. Table 5 reports estimates for variants of equation (1), which relates

changes in location-specific measures of disruptive innovation to changes in local per capita out-

put. In both industrial revolutions, we detect a robust, positive relationship between the marginal

instance of local disruptive innovation and economic performance. Models 1 and 2 are di↵erenced

between 1920 and 1930, such that the dependent variable is the change in log manufacturing output

per worker. In Model 1, innovative output, as represented by total patents, is positively and sig-

nificantly linked to growth in per capita output in manufacturing. Controls behave approximately

as expected, including a lagged dependent variable that is negatively and significantly linked to

output, indicating a conditional convergence dynamics that fit with State-level evidence on income

spanning this period (Barro, 1991). Model 2 disaggregates total patents, with key predictors cap-

turing additional patents granted in the most and least disruptive technology classes over the study
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period. Disruptive patents remain positively and significantly associated with growth in output per

worker. Meanwhile, the addition of least disruptive patents is not significantly related to changes

in manufacturing output over this period.

Based on a decadal panel specification with two way fixed e↵ects, results for the more recent

period up to 2010 track the relationship between changes in disruptive innovation and log per capita

personal income. The inclusion of local fixed e↵ects should absorb bias that arises from di↵erences

in overall innovative capacity, as long as this characteristic is relatively stationary; it also accounts

for other unmeasured but relatively non-dynamic features of locations. As in Model 1 for the 1920s,

Model 3 confirms that, over this more recent period, increases in local patenting are linked to rising

output per head, significant against a threshold of 0.05. Mirroring the estimates for the second

industrial revolution shown in Model 2, in Model 4 we decompose total patents into their extremes:

patents in the most disruptive classes, and those in classes deemed to be least likely to be disruptive.

The coe�cient on disruptive patents is positive and statistically significant at a 0.01 percent level,

the greater precision in the estimate as compared to all patents in Model 3 indicating the greater

clarity o↵ered by a focus on disruptive innovation. In keeping with Model 2, the addition of new,

least-disruptive patents are unrelated to changes in per capita personal income. Meanwhile, the

�-convergence process detected in the early period is no longer in evidence.18

Overall then, for each of the key periods in two industrial revolutions, the regressions in table 5

suggest that the relationship between overall local patenting and local output or income is partly

a function of those innovations that are most disruptive. Considering these relationships in light

of the distinctive patterns of geographical concentration of disruptive innovations we document in

Figure 1 suggests that disruptive innovation acted as a force spurring growing regional inequalities,

whether in terms of manufacturing output per capita in the 1920s, or per capita personal incomes

as the third industrial revolution unfolded.

[Figure 3 about here.]

Exploring this idea further, Figure 3 visualizes changes in spatial inequality that emerge from

predicted values of local per capita personal income that emerge from Model 4, Table 5, setting

all independent variables to 1980 mean levels, except for disruptive innovation, which we allow to
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change according to actual values. These predictions are then used to build standard inequality

indices used earlier in the paper. This figure is not meant to be interpreted as a direct gauge of

disruptive innovation’s marginal e↵ects, rather it represents a counterfactual scenario that more

directly highlights the how the growing concentration of disruptive innovations in space yields

tangible increases in spatial inequality.

5 Conclusion: the future of disruption and its geographies

Over the past century, disruptive innovations in the United States follow alternating wave-like

patterns of rising and falling spatial concentration that closely mimic peak and trough periods

of industrial revolutions (Field, 2003; David, 1990). The least disruptive innovations, by contrast,

were quite consistently spreading out over the regional geography of the country. Further, there was

only partial overlap in the geography of disruptive innovations across the two industrial revolutions,

with turbulence in the ranks of the most innovative places and thus limited path dependence in

disruptive innovation. In contrast, there was mostly stability in the geography of places excluded

from the business of leading in the generation of the most disruptive innovations. Finally, we found

a robust association between regional disruptive innovation and measures of economic performance.

This relationship remains after accounting for the influence of a host of other factors shaping such

outcomes, including other markers of innovative e↵ort. Taken together, these results are consistent

with the idea that disruptive innovation has played an important role in shaping patterns of spatial

economic inequality over the past century.

Still, much more work is required to understand the links between technology and the geography

of inequality. It would be particularly interesting to understand more precisely the nature and geog-

raphy of technology during the peak spatial and inter-personal convergence period of the American

economy from 1940 to 1960. What we do not know from this analysis is the precise extent to which

the technological contribution to the 1940-1980 Great Leveling in both regional development and

income inequality was due to the spatial deconcentration of disruptive innovations; to an overall

decline in disruptiveness; to a decline in the skill-bias of disruptive innovations; or to some as yet

unobserved quality of disruptiveness that may have changed between the two high inequality and
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concentration periods and the intervening Great Leveling. These questions are therefore urgent for

further research that would build upon the present results.

Building such an understanding is particularly urgent as we appear to be on brink of a fourth in-

dustrial revolution, perhaps based upon breakthroughs in robotics, artificial intelligence, genomics,

and decarbonization technologies. Historical research, such as we report on in this paper, does not

promise prediction of future processes, but provides a useful framework of questions to ask as such

processes begin to unfold. In particular, as these technologies emerge from their current experi-

mental phase, we should carefully consider whether they manifest analogous forms of geographical

concentration to their forebears, reinforcing ‘superstar’ agglomerations of knowledge workers, ma-

jor firms and supply chains, and incomes, but also possibly generating some new superstars in the

urban-regional system (Kemeny and Storper, 2020a). In this case, then the contemporary geog-

raphy of regional economic divergence may be a prelude to another round of uneven development

within innovative countries. At the global scale, the current period is di↵erent from the great

divergence of the first industrial revolution, as East Asia has now arisen as a third great pole of

innovation and world economic growth, and – at least among the three poles of North America,

Western Europe and East Asia, per capita incomes are converging. And yet within that third great

pole of the world economy, the subnational geography of innovation is highly concentrated. On the

other hand, if the upcoming waves of technological disruption are more similar to the disruptions of

the Great Leveling, the future of interpersonal and spatial development indicators might look more

egalitarian. The social, economic, political and cultural consequences of more versus less egalitarian

technological disruption processes are profound; hence, it behooves us to continue deepening the

historical understanding of why some disruptions are more spatially concentrated and inegalitarian

than others, and to be highly attentive to how the now-unfolding new waves of innovation fit in

this picture.
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Notes

1While some eschew the term ‘revolution’, preferring instead an image of gradual unfolding, it is widely agreed

that a major phase change occurred with early industrialization (Crafts, 2004).

2The term ‘disruptive’ is itself highly polysemic, used by varied strands of academic work, as well as by journalists,

pundits, and tech entrepreneurs, through which it has entered the general lexicon. In academic work, a literature

in business studies aims to explore the positions of firms whose practices or products disrupt existing industries

and markets (such as Bower and Christensen, 1995; Christensen et al., 2018). In economics, it is used mostly to

characterize major e↵ects on the economy as a whole, wrought through changes in employment, industry structure,

productivity, incomes, wages, overall growth, and geography (i.e., Bloom et al., 2021). As our review makes clear,

the research reported in this paper is situated within this latter tradition.

3For instance, Lindert and Williamson (2016) date the start of the second industrial revolution at around 1870

and the end around 1920, whereas Jovanovic and Rousseau (2005) argue it spanned the period 1889 to 1929.

4Field (2003) has a di↵erent, but partially overlapping formulation, one that puts greater emphasis on the 1929-

1941 period.

5While it is worth noting the lively debate around the measurement of the productivity e↵ects of the digital

revolution (i.e., Brynjolfsson and Hitt, 1996; Gordon, 2000), there remains little dispute about the broad timing with

which information technologies began to restructure the U.S. economy.

6All patent documents granted since 1920 can be accessed at: https://bulkdata.uspto.gov

7
http://www.uspto.gov/learning-and-resources/electronic-bulk-data-products

8Each class appearance counts as one – there are no fractional counts. However, as explored in Petralia (2020b),

an alternate strategy that uses fractional counts produces material similar results.

9See Hall et al. (2001) for details. The concordance is available at http://www.nber.org/patents/.

10 Our implementation is identical to the one described in Petralia (2020b), please refer to its Appendix B for a

detailed explanation of the procedure.

11The latest version of thisHistPat can be downloaded at https://dataverse.harvard.edu/dataverse/HistPat.

Petralia et al. (2016) contains a detailed documentation of the methodology used to create it and a set of tests to

discard the existence of potential biases using manually collected data.

12Data is available at: https://www.patentsview.org/download/

13Note that we assign patents to locations without taking into consideration the share of inventors per location. For

instance, if a patent contains three inventors from Boston and one from Los Angeles we assign 1 count to each location.

We do this for two reasons, on the one hand, this procedure help us netting out the e↵ect of inventive activity becoming

more collaborative over time. Using this procedure prevents more populous locations from receiving a disproportionate

amount of patent counts. Additionally, disregarding fractional counts makes the comparison between HistPat and

more recent data possible. This is because the HistPat database identifies locations in patents but not the inventors,
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making it impossible to weight contributions.

14These limitations mean that we cannot simply run one model that spans the entire 90-year study period.

15ICPSR 2896 is available at https://www.icpsr.umich.edu/icpsrweb/

16At a detailed subnational scale, information on per capita GDP are only available after 2000.

17Original records available at: https://catalog.hathitrust.org/Record/002137107

18Concerned with the possibility that our inclusiuon of a lagged dependent variable might render our estimated

standard errors inconsistent, in the Appendix we report a version of Model 4 using the Arellano-Bond estimator.

Results remain materially consistent with those presented in the main table.
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Figure 1: Tracing the geographical concentration of disruptive innovation in the United States,
1920-1930 and 1980-2010

Source: Authors’ elaboration based on HistPat & Lai Database. Geographic units are counties in the left
panel, and commuting zones in the right panel. Consult Section 3.2 in the text for a detailed discussion of

geographic definitions.
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Figure 2: Tracing the geographical concentration of more and less disruptive innovation in the
United States, 1920-2010

Source: Authors’ elaboration based on HistPat & Lai Database. Geographic units are commuting zones.
Consult Section 3.2 in the text for a detailed discussion of geographic definitions.
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Figure 3: A counterfactual scenario relating disruptive innovation and spatial inequality, 1980-2010

Note: Figure traces changes in per capita personal income inequality based on Model 4, Table 5, except
with all predictors except the most disruptive innovations set to 1980 means.
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Table 1: Most and least disruptive patent classes in key periods of each industrial revolution

Period Disruptiveness Category Class

1925-1930 Most Electrical and Electronic Electricity: circuit makers and breakers
Mechanical Clutches and power-stop control
Mechanical Brakes
Others Liquid heaters and vaporizers
Mechanical Plastic and nonmetallic article shaping or treating
Others Refrigeration
Mechanical Movable or removable closures
Mechanical Glass manufacturing
Electrical and Electronic Electric lamp and discharge devices
Electrical and Electronic Inductor devices

Least Others Hydraulic and earth engineering
Others Fire escape, ladder, or sca↵old
Drugs and Medical Dentistry
Chemical Ammunition and explosives
Chemical Fluid reaction surfaces (i.e., impellers)
Mechanical Railway draft appliances
Mechanical Vehicle fenders
Mechanical Ordnance
Mechanical Elongated-member-driving apparatus
Others Wooden receptacles

2005-2010 Most Computers and Communications Communications: electrical
Electrical and Electronic Radiant energy
Electrical and Electronic Active solid-state devices
Electrical and Electronic Chemistry: electrical current producing apparatus
Computers and Communications Optical waveguides
Electrical and Electronic Illumination
Electrical and Electronic Television
Computers and Communications Telecommunications
Electrical and Electronic Measuring and testing
Mechanical Optical: systems and elements

Least Others Horizontally supported planar surfaces
Chemical Organic compounds – part of the class 532-570 series
Mechanical Manufacturing container or tube from paper
Others Excavating
Chemical Coating implements with material supply
Others Tent, canopy, umbrella, or cane
Others Harvesters
Others Fire escape, ladder, or sca↵old
Chemical Organic compounds – part of the class 532-570 series
Others Envelopes, wrappers, and paperboard boxes
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Table 2: Summary statistics for disruptive innovation and other key variables

1920–1930 1980–2010

Mean Standard Deviation Mean Standard Deviation
Total patents 145 1,037 1,126 6,075
Most disruptive Patents 28 200 586 2,995
Least disruptive Patents 10 70 66 207
Per capita manufacturing output, 1850$ 112 159 – –
Per capita personal income, 2010$ – – 29,848 6,755
Population (000s) 47 151 464 1,120
Share urban population 0.07 0.2 – –
Share foreign-born 0.05 0.06
Number of post o�ces 18 14 – –
Land grant university 0.03 0.16 – –
Share of primary inputs 0.54 0.151
Share 4+ years of college – – 0.20 0.07
Share computer industry employment – – 0.007 0.01
Share manufacturing industry employment 0.20 0.09
Share FIRE industry employment – – 0.05 0.02
Observations 2,438 2,236
Locations 2,438 655

Note: Units of observation in the 1920-1930 period are counties; in the 1980-2010 period they are commuting zones.
During the 1920-30 period, all patenting variables are described in terms of decadal flows; in the 1980-2010 period
they are measured in terms of 5-year flows. FIRE refers to industries classed as finance, insurance or real estate. See
text for more detailed description of variables.
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Table 3: Top 25 most disruptive places in each period, according to the number of disruptive
patents per thousand inhabitants

1925-1930 2005-2010

Disruptive Largest city in Disruptive
County Patents/000 Population Commuting Zone Patents/000 Population

Schenectady, NY 3.111 125, 021 San Jose, CA 14.453 2, 521, 876
Branch, IN 2.463 23, 950 Boise City, ID 8.863 645, 142
Sullivan, NH 2.347 24, 286 Burlington, VT 6.951 334, 495
Lucas, OH 1.585 347, 709 Fort Collins, CO 4.998 582, 859
Coos, NH 1.489 38, 959 San Francisco, CA 4.783 4, 896, 022
Warren, OH 1.463 27, 348 Rochester, MN 4.649 253, 379
New York, NY 1.458 1, 867, 312 Poughkeepsie, NY 4.238 931, 061
Hamilton, OH 1.435 589, 356 Austin, TX 3.952 1, 779, 457
Rock, WI 1.267 74, 306 Lawton, OK 3.299 183, 112
Essex, MA 1.179 498, 040 Portland, OR 2.803 2, 133, 238
Knox, OH 1.125 39, 338 San Diego, CA 2.679 3, 104, 346
Essex, NJ 1.103 833, 513 Elmira, NY 2.599 350, 074
Brule, SD 1.079 7, 416 Boston, MA 2.561 5, 163, 543
Washington, CO 1.043 9, 591 Raleigh, NC 2.508 1, 876, 821
Allegheny, PA 1.038 1, 374, 410 Palm Bay, FL 2.424 682, 251
Union, NJ 1.032 305, 209 Minneapolis, MN 2.303 3, 197, 939
Fairfield, CT 0.996 386, 702 Albany, NY 2.231 1, 112, 237
Cook, IL 0.967 3, 982, 123 Seattle, WA 2.181 4, 285, 519
Hartford, CT 0.962 421, 097 Eugene, OR 2.122 1, 045, 295
Bossier, LA 0.951 28, 388 Bu↵alo, NY 2.095 2, 353, 374
Fairfax, VA 0.950 25, 264 Binghamton, NY 2.014 294, 870
Hampton, VA 0.940 6, 382 Manchester, NH 1.982 1, 271, 163
Erie, OH 0.902 42, 133 Brick Township CDP, NJ 1.909 1, 208, 464
Westchester, NY 0.898 520, 947 Pullman, WA 1.901 82, 075
Richland, OH 0.895 65, 902 Cedar Rapids, IA 1.878 274, 746
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Table 4: Turbulence in the leadership ranks of commuting zones across the 1925 to 2010 period.

2005-2010

Not in Top 25 Top 25

Disruptive patents/capita 1925-1930 Not in Top 25 527 21
Top 25 19 4

Total Disruptive patents 1925-1930 Not in Top 25 534 12
Top 25 12 13

Note: Because of the need for consistent units in this analysis, we aggregate counties over the 1925-30 period up to
the level of commuting zones.
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Table 5: Local disruptive innovation and development indicators for the second and third industrial
revolution, 1920-1930, and 1980-2010

2nd Industrial Revolution 3rd Industrial Revolution

Di↵erenced �yc Decadal FE Panel
(1) (2) (3) (4)

All patents (log) 0.085⇤⇤⇤ 0.011⇤

(0.018) (0.005)

Most disruptive patents (log) 0.054⇤⇤⇤ 0.011⇤⇤

(0.020) (0.0043)

Least disruptive patents (log) 0.036 0.0059
(0.02) (0.0034)

Population (log) 0.074⇤ 0.094⇤ -0.072 -0.102
(0.037) (0.042) (0.024) (0.027)

Urban Population share 0.00003 -0.00001
(0.0001) (0.0001)

Foreign-born share -0.0001 -0.0002
(0.0005) (0.0005)

Primary inputs 0.914⇤⇤⇤ 0.922⇤⇤⇤

(0.172) (0.174)

Land grant university -0.052 -0.045
(0.062) (0.064)

Post o�ces -0.004⇤⇤ -0.005⇤⇤

(0.002) (0.002)

yc,t�1 -0.204⇤⇤⇤ -0.199⇤⇤⇤ -0.049 -0.041
(0.028) (0.029) (0.023) (0.026)

4+ Years College share 0.146 0.078
(0.108) (0.116)

Computer employment share 0.279 0.308
(0.339) (0.339)

FIRE employment share 2.66⇤⇤⇤ 2.853⇤⇤⇤

(0.371) (0.461)

Manufacturing employment share 0.397⇤⇤⇤ 0.447⇤⇤⇤

(0.073) (0.086)

Period 1920-1930 1920-1930 1980-2010 1980-2010
State FEs Yes Yes No No
CZ FEs No No Yes Yes
Year FEs No No Yes Yes
Observations 2,438 2,438 2,900 2,900
R2 0.148 0.146 0.934 0.904

Note: ⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001. Panel models report cluster-robust (CZ-level) standard errors
in parentheses. The 1920-30 period reports cluster-robust (State-level) standard errors in parentheses. Unit of
observation in models 1-2 is the county; in 3-4 it is the commuting zone. Dependent variable in models 1 and 2 is
change in log manufacturing output per worker. Dependent variable in models 3-4 is log per capita personal income
(PCPI). PCPI is inflation-adjusted to constant 2010 dollars.
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