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Abstract 
The European Commission summarized six young General Purpose Technologies (GPTs) under the 

label of European Key Enabling Technologies (KETs) in 2009. GPTs are broad, pervasive and 

widely diffused technologies that enable knowledge creation and economic growth. This study 

analyzes to what extent the KETs’ structural relevance within their regional knowledge bases leads 

to regional knowledge creation. Additionally, we analyze whether the structural relevance and the 

regional knowledge presence in KETs interact with regards to regional knowledge creation. The 

‘structure’ of a regional knowledge base describes the relation of all knowledge being present within 

a given region, while ‘structural relevance’ describes a technology’s impact on the structure. Our 

analysis focuses on the time period from 1986-2015 and includes Germany’s 141 Labor Market 

Regions (LMRs) as regional spatial units. Our database consists of patent data from which we map 

the structure of the regional knowledge bases, by constructing technological spaces based on 

technology co-occurrences on patents. The structural relevance is operationalized with the help of 

Social Network Analysis (SNA), by measuring the changes that the removal of KETs causes in the 

structure of technological spaces. Our findings indicate that KETs enable knowledge creation in 

different ways. They show that the effects of KETs on regional knowledge creation activities are 

KET-specific. Furthermore, it proves essential to distinguish between ‘knowledge presence’ and 

‘structural knowledge relevance’ when addressing the innovation-spawning function of KETs. 

Thus, for both further research and for policy-making, it is a fundamental requirement to address 

KET-driven knowledge creation in particular KET-specific ways. 
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1 Introduction 
Recently, a group of young and emerging technologies became prominent at the level of European 

politics: Advanced Materials, Advanced Manufacturing Technology (AMT), Industrial 

Biotechnology, Micro- and Nanoelectronics (MNE), Nanotechnology, and Photonics. These six 

technologies were summarized under the concept of “Key Enabling Technologies” (KETs) by the 

European Commission (EC) in 2009 to attract particular attention to the foreseen economic and 

societal role of these technologies (European Commission 2009b, 2009a, 2012). Although KETs 

are horizontal technologies and comprise different technology fields (see Tab. 1), they share the 

same core features as young General Purpose Technologies (GPTs) (e.g., Aschhoff et al. 2010; 

Montresor & Quatraro 2017; Evangelista et al. 2018). GPTs are enabling technologies characterized 

by pervasive use across many sectors, scope for their own technological improvement, and 

innovational complementarities, the last of which are triggered as important components of 

innovations (Bresnahan & Trajtenberg 1995; Helpman & Trajtenberg 1996). Furthermore, they are 

widely diffused across the economy (Bresnahan & Trajtenberg 1995). Classical examples of GPTs 

are the steam engine, electricity, the internal combustion engine, semi-conductors, and ICTs 

(Bresnahan & Trajtenberg 1995; Lipsey et al. 1998).  

The concept of KETs entails their characteristics as emerging GPTs, their applicability in a variety 

of sectors, and an enabling function to spur innovations. The (political) designation of the KET label 

was followed by several studies focusing on the group of six KETs and also on the effects of these 

KETs at the regional level (e.g., Montresor & Quatraro 2015; Corradini & de Propris 2017; 

Montresor & Quatraro 2017; Evangelista et al. 2018, 2019; Montresor & Quatraro 2019; 

Wanzenböck et al. 2020; Janssen & Abbasiharofteh 2021). 

The present paper contributes to a better understanding of the structure underlying the effects of 

KETs and further provides important policy implications regarding the promotion of KETs at the 

regional level. We extend the scarce literature on KETs within a regional context by investigating 

the impact of the structural importance of KETs in regional knowledge bases on regional innovation. 

For this purpose, we first examine the question as to how the (regional) structural relevance of 

knowledge in one KET within a regional knowledge base acts as a driver of regional knowledge 

creation. Our underlying assumption is that regional innovation activities depend more on the 

structural role of KETs within the regional knowledge base than on the amount of KET knowledge 

present in the region. Second, we analyze how the impact of the structural relevance is mediated by 

the amount of KET-specific knowledge in the region, as we assume a substitution effect between 

the structural importance and the amount of KET knowledge in a region. Our questions are based 

on the (potential) effects of KETs as innovation-spawners and are posed against the backdrop of 
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KETs being technologies that have received much political attention. They are considered to be 

boosters of Europe’s re-industrialization, or more specifically to be suppliers of technological 

building blocks for solutions that target major societal challenges (such as climate change or the 

ageing of the society) (European Commission 2009b, 2009a, 2012). 

In our analysis, we assess each KET individually to advance the understanding of the specifics of 

each KET. As EU-policies often refer to the regional level, we analyze KETs from a regional 

perspective. The 141 German Labor Market Regions (LMRs) were chosen as spatial units of 

analysis. The LMRs are functionally defined regions that are larger than cities/counties and take 

commuter traffic into account (Kosfeld & Werner 2012). To address the structural relevance of 

KETs and the KET-specific dimensions, we use patent data to construct regional knowledge spaces 

(knowledge-/technology networks mapping the relatedness of technologies) (e.g., Hidalgo et al. 

2007; Neffke et al. 2011; Boschma et al. 2015) and apply measures of social network analysis 

(SNA). Finally, we analyze the impact of the structural relevance of KETs and the amount of KET 

knowledge on the regional innovation output by applying a set of linear panel regression models. 

The remainder of our paper is structured as follows. Section 2 provides a brief overview on the 

literature background of KETs and derives the hypotheses based on the theory. Section 3 describes 

our data and methodology. Our results are depicted and described in section 4 and discussed in 

section 5. Lastly, we conclude with a summary and show the limitations as well as research and 

policy implications of our results in section 6. 

2 Background 

2.1 General Purpose Technologies (GPTs) 
The term ‘General Purpose Technology’ (GPT) evolved in the 1990s and is rooted in the work of 

Bresnahan & Trajtenberg (1995). Although a large body of literature addresses GPTs, no coherent 

definition or way of identifying GPTs exists, as Cantner & Vannuccini (2012) show. However, at 

its core, a GPT can generally be described as a breakthrough technology (e.g., Youtie et al. 2008) 

that is radical in nature (e.g., Cantner & Vannuccini 2012). These technologies are particularly 

dynamic (Bresnahan & Trajtenberg 1995) and mainly characterized by pervasiveness in their use 

across various sectors, by an ongoing technological improvement, and by innovation-spawning 

effects that are based on complementary innovation (Bresnahan & Trajtenberg 1995; Helpman & 

Trajtenberg 1996). Furthermore, GPTs (can) diffuse across the whole economy after their first 

occurrence (Bresnahan & Trajtenberg 1995). These characteristics bestow an enabling function, in 

the sense that GPTs pave the way for “new opportunities rather than offering complete, final 

solutions” (Bresnahan & Trajtenberg 1995, p. 84). This results in GPTs being transformative and 
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being potential boosters of economic growth (Bresnahan & Trajtenberg 1995; Lipsey et al. 1998). 

Popular examples of GPTs comprise the steam engine, electricity, the internal combustion engine, 

semi-conductors, and ICTs (Bresnahan & Trajtenberg 1995; Lipsey et al. 1998). Recent additions 

to the group include biotechnology (e.g., Lipsey et al. 1998), nanotechnology (e.g., Lipsey et al. 

1998; Youtie et al. 2008; Shea et al. 2011) and artificial intelligence (Cockburn et al. 2019), which 

are considered to be at least possible or emerging GPTs. As Cantner & Vannuccini (2012) point out, 

some studies use a rather narrow definition of GPTs, considering them to be “singularities or 

extreme cases of radical innovations” (p. 5). Aghion & Howitt (1998), for instance, refer to the 

steam engine, the electric dynamo, the laser, and the computer, and Rosenberg & Trajtenberg (2004) 

mainly consider the steam engine, electricity, and information technologies as GPTs. Other scholars 

use a broader understanding of GPTs (e.g., Carlaw & Lipsey 2011). As Cantner & Vannuccini 

(2012) further outline, two generations of GPT-based models exist: While models from the first 

generation (e.g., Aghion & Howitt 1998) allow one GPT at a time, in models of the second 

generation several GPTs can co-exist (e.g., van Zon et al. 2003; Carlaw & Lipsey 2006, 2011). The 

present study follows the broader understanding and the idea of the co-existence of GPTs. 

2.2 Key Enabling Technologies (KETs) 
Regarding younger and co-existing GPTs, the European Commission (EC) introduced the concept 

of Key Enabling Technologies (KETs)1 for the European Union (EU) in 2009, in which the 

following six technology fields were grouped: Nanotechnology, Micro- and Nano-Electronics 

(including semi-conductors) (MNE), Industrial Biotechnology, Photonics, Advanced Materials, and 

Advanced Manufacturing Technology (AMT) (European Commission 2009b, 2012). Although the 

concept of European KETs was brought forward as an industrial policy approach without a clear-

cut theoretic conceptualization, the six KETs are young or even potentially emerging GPTs 

(Aschhoff et al. 2010; de Heide et al. 2013; Montresor & Quatraro 2017; Evangelista et al. 2018; 

Antonietti & Montresor 2021). The term ‘key’ addresses the (assumed) importance of these 

technologies for the European knowledge economy and for tackling societal challenges, such as an 

ageing society or climate change (e.g. the need to reduce carbon emissions). ‘Enabling’ refers to 

their features as GPTs, especially relating to industrial processes and with respect to their role in 

laying the foundation for further innovation (European Commission 2009b, 2009a, 2012; 

 
1 When we use the term ‘Key Enabling Technologies’ (KETs), we refer to the technologies summarized under this 
label by the European Commission. The term itself is not exclusive to the European KETs. 
However, in the present context ‘KETs’ is mainly used within EU-policies and rather sparsely by policy makers 
beyond the level of the EU commission. Only a few EU-members adopted the term, such as Germany, Austria or 
Belgium (de Heide et al. 2013; Butter et al. 2014). Examples for other technology-oriented approaches are the 
Technologies Clés (France), Platform Technologies (USA) or Industrial Technologies (China) (de Heide et al. 2013). 
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Montresor & Quatraro 2015). The KET concept was introduced to emphasize the foreseen potential 

of the six technology fields and to foster their development, application and commercialization, in 

order to enhance the EU’s industrial competitiveness and to tackle the EU’s societal challenges 

(European Commission 2009a, 2009b, 2009a, 2012). Hence, it is also expected that KETs will 

increase the economic development and success at the regional level (European Commission 

2009b). Based on their economic potential and the potential for diverse solutions to societal 

challenges, the six technologies were selected by the European Commission (EC) (European 

Commission 2009b; Evangelista et al. 2018) and defined as follows: 

“KETs are knowledge intensive and associated with high R&D intensity, rapid 
innovation cycles, high capital expenditure and highly-skilled employment. They 
enable process, goods and service innovation throughout the economy and are of 
systemic relevance. They are multidisciplinary, cutting across many technology areas 
with a trend towards convergence and integration.” (European Commission 2009b, p. 1) 

Due to their foreseen potential, KETs have drawn much attention from policy makers in the past 

years (Corradini & de Propris 2017) and enjoy prominent status in EU-industrial and in EU-cohesion 

policies. For instance, they play an important role in the Horizon 2020 framework program or in 

smart specialization strategies (European Commission 2012; Butter et al. 2014; Montresor & 

Quatraro 2017).2 In the following paragraph we derive three stylized facts from the main KET 

features, regarding their role within regional knowledge bases. 

2.3 Stylized facts of KETs in regional knowledge bases 
To be able to assess the importance of KETs in regional knowledge bases, we consider the regional 

structural relevance of KETs, which we define as the degree of the importance of KETs within the 

regional knowledge structure and its impact on it. We assess the regional knowledge structure 

through the relations of all technologies (as a proxy for knowledge) within the region to each other. 

To prepare for our analysis, we derive three stylized facts regarding the ’behavior’ of KETs within 

the regional knowledge structure, based on the GPT-characteristics of KETs from the literature. 

Innovations are combinations of pre-existing knowledge (Schumpeter 1947; Arthur 2007), thus each 

innovation establishes or strengthens a link within its inherent pre-existing knowledge. Hence, in 

KET-based innovations, KET knowledge is linked with other knowledge (from other KETs or non-

KETs). Since KETs (as GPTs) function as core building blocks of innovations and are broadly 

applicable across many fields (see sections 2.1 and 2.2), we expect KETs to be remarkably linked 

 
2 See Table Appendix A for an overview on the six KETs, which also indicates their multidisciplinary and cross-
sectional character. 
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to other technologies within the knowledge base. Presumably, this results in a high number of 

linkages from KETs to other technologies within a knowledge base, from which we derive: 

(S1) In terms of technological linkages, the knowledge base is structurally focused on 

KETs. 

Further, Antonietti & Montresor (2021) stress the importance of KETs for regional diversification 

and prove that a larger number of KETs within a region enhances the region’s probability for 

unrelated diversification if KET knowledge is combined with the knowledge of other technologies 

during the innovation process. From our point of view, this indicates that KETs possess a bridging 

function. Leaving aside the regional perspective and regarding the technological one, Corradini & 

de Propris (2017) provide evidence for the bridging function of KETs. According to them, KETs 

function as bridging platforms and can couple unrelated and more distant technologies/knowledge. 

Bridging platforms are nodes of technologies (e.g., KETs) that are very pervasive in respect to 

different technology fields. These nodes connect to other technologies and “[form] a platform that 

allows the technological integration across seemingly unrelated technologies by bridging the gaps 

across different knowledge landscapes” (Corradini & de Propris 2017, p. 198). This enables the 

coupling of two formerly unrelated technologies, which especially raises the potential for radical 

innovations (Corradini & de Propris 2017). Based on this idea that KETs link otherwise unconnected 

technologies and on the understanding that KETs embody the GPT characteristic of setting the stage 

for further innovation (Bresnahan & Trajtenberg 1995), we derive the following stylized fact: 

(S2) In terms of linkages that bridge knowledge gaps, the knowledge base is structurally 

focused on KETs. 

Derived from the pervasiveness, wide diffusion and bridging function of KETs (see section 2.2), as 

well as from the combination of linking distant knowledge and at the same time being connected to 

many different knowledge fields, we expect that KETs essentially contribute to the knowledge 

base’s cohesiveness. By connecting otherwise unconnected technologies (S2), KETs can also 

connect otherwise unconnected technology fields or different groups of related technologies. Thus, 

if the knowledge base is mapped as a technological space (see section 3.2), KETs act as a ‘connector’ 

of network components, making the structure more cohesive and less fragmented. 

(S3) KETs substantially ensure the structural cohesiveness of knowledge within the 

knowledge base. 
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2.4 Regional KET-based innovativeness 
Extant scientific literature on the group of KETs at the regional level focuses mainly on the effects 

of KETs. Addressed topics include KETs in the context of smart specialization (Montresor & 

Quatraro 2017, 2019), regional diversification (Antonietti & Montresor 2021), regional branching 

(Montresor & Quatraro 2017), regional knowledge creation in R&D networks (Wanzenböck et al. 

2020), or the KETs’ impact on relatedness and regional economic growth (Evangelista et al. 2018, 

2019). We extend the literature by focusing on the underlying structural prerequisites of the effect 

of KETs within the regional knowledge base with a special emphasis on the innovation-spawning 

effect of these technology fields. KETs, as GPTs (see section 2.2.), not only possess the potential to 

enable (complementary) innovation (Bresnahan & Trajtenberg 1995) in general, but can positively 

affect regional branching in a more exploratory manner, lowering the importance of relatedness at 

the same time (Montresor & Quatraro 2017). This could be, among other aspects, a consequence of 

the bridging function of KETs that Corradini & de Propris (2017) point out. 

Following the notion of recombinant innovation (Schumpeter 1947; Arthur 2007), the combination 

of KET knowledge with other knowledge represents the core of the innovation-spawning effect of 

KETs. They seem to be prone to spawn innovation via their structural characteristics, since they 

establish links to many other technologies, they link otherwise unconnected technologies, and they 

function as bridges between groups of (related) technology fields. Given this structural role of KETs 

(see also the three stylized facts in 2.3), we assume that the positive effect of KETs not only relies 

on the presence of KET-related knowledge in the region, but particularly on its structural relevance 

within the regional knowledge pool. Considering regional innovation generally, we hypothesize: 

(H1) An increase in the structural relevance of each KET in a region’s knowledge base 

leads to an increase of the total innovation output of the region. 

Although we assume that the structural relevance of KETs plays an essential role for regional 

innovativeness, we also expect that a high structural relevance in combination with a very strong 

focus on knowledge accumulation and knowledge creation in a specific KET tendentially reduces 

the enabling role of this KET. Since KETs are knowledge- and R&D intensive (European 

Commission 2009b, 2009a), we presume that knowledge creation in KETs binds resources at the 

cost of knowledge creation in other technology fields. Furthermore, if a KET is too dominant in the 

sense of a knowledge base highly focused on a KET, from our point of view this potentially 

diminishes the possibilities for knowledge combination between KETs and non-KETs and could 

even lead to a regional lock-in. However, considering the idea of recombinant innovation again 

(Schumpeter 1947; Arthur 2007), we assume that the specific KETs can only unfold their enabling 
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function when they possess a structurally important role within the knowledge base without too 

much knowledge in the respective KETs being present, which leads us to deriving the following 

hypothesis: 

(H2) The impact of the structural relevance of each KET in the regional knowledge base 

on the general level of innovativeness within the region is negatively moderated by 

the amount of KET-specific knowledge in the region. 

In the following section, we describe the data used, our operationalization of the presented concepts, 

and our method of analysis. 

3 Data and methods 

3.1 Data basis 

Our data basis consists of patent data obtained from the European Patent Office’s (EPO) database 

PATSTAT (2017b version) for Germany from 1986 to 2015.  

We select inventor-based patent data to proxy regional knowledge presence. As inventors possess 

the relevant knowledge and apply it in the innovation process, they serve as an indicator as to where 

the knowledge is located geographically. The patents are regionalized based on their inventors’ 

residence addresses. If co-inventors of a patent are located in different regions, the patent is assigned 

to all of the respective regions3. KET patents are identified as patents that have at least one 

technology code assigned to one of the KETs. As KETs are broad and horizontal technologies that 

share ‘natural overlaps’ due to an unsharp delineation from another (Larsen et al. 2011; van de Velde 

et al. 2012; Butter et al. 2014), we use a fine-grained list of the full-digit technology codes of the 

international patent classification (IPC) for the identification of KETs, as provided by van de Velde 

et al. (2012) (see appendix B). All six KET fields are considered individually in our analysis. 

Our study focuses on the 30-year-period from 1986-2015 and the analysis is based on the application 

of 5-year annually moving windows (1986-1990, 1987-1991 etc.). We choose Germany as our focal 

country, since it is very strong in KET patenting and in KET-based products, compared to other EU-

countries (Butter et al. 2014). To regionalize, we choose the level of the 141 German Labor Market 

Regions (LMRs), as defined by Kosfeld & Werner (2012), that are functionally classified spatial 

entities between the NUTS-2 and NUTS-3 level, considering commuter traffic (Kosfeld & Werner 

2012). Regions without any KET patents throughout the focal 30-year period are omitted from the 

sample. For each LMR and 5-year moving window, we construct regional technological spaces as 

described in the following section. 

 
3 We therefore assume that all inventors share the knowledge of a patent, as knowledge is non-exclusive. 
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3.2 Operationalization 

Technological Spaces 
In the current study we operationalize different knowledge via different technologies and construct 

so-called technological spaces to analyze the structural relevance of KETs in German LMRs. The 

technological spaces are networks functioning as relational maps of the knowledge bases. In the 

present case, nodes in these networks represent different technologies and links between the nodes 

incorporate the relatedness of the technologies. Technological spaces, also known as knowledge 

spaces (Kogler et al. 2013), can be constructed at any spatial scale and are based on the concept of 

product spaces by Hidalgo et al. (2007) (Neffke et al. 2011; Boschma et al. 2015; Vlčková et al. 

2018). Product spaces are networks representing an economy, with products as nodes and their 

degree of relatedness as links (Hidalgo et al. 2007), whereas technological spaces map the 

relatedness of technologies instead of products (Boschma et al. 2015). Knowledge 

spaces/technological spaces can be utilized, for instance, to assess the specialization of regions in 

specific technologies (Vlčková et al. 2018). Furthermore, they are an important tool to analyze the 

structure of the relations of technologies within regions (Neffke et al. 2011; Kogler et al. 2013). As 

these characteristics show, the term ‘space’ should be understood in a relational way. In our context, 

we construct regional technological spaces based on technology-patent co-occurrences. The nodes, 

in the form of technologies (IPC-codes), are linked by the patents in which they appear together. To 

account for the frequency of the co-occurrence of two different technologies, our networks are edge-

weighted; the more often two technologies co-occur in patents, the higher the edge-weight and the 

more proximate the two technologies. We divide the edge-weight by 1, as we use a distance-based 

network indicator. As a higher co-occurrence explains a higher proximity, we need to invert the 

proximity to assess the distance of technologies. 

Assessing the structural relevance of KETs 
To investigate the role of KETs within regional knowledge bases, we evaluate their technological 

spaces’ network centralization and network cohesion with the help of three global network 

indicators. Regarding the network centralization, we compute the degree centralization and the 

betweenness centralization. Considering network cohesion, we compute the connectedness. 

Degree centralization is employed as a measurement, since we assume that the regional 

technological spaces are structurally centralized on KETs, in terms of linkages between technologies 

(S1). Betweenness centralization is used as we assume that the technological spaces are centralized 

on KETs when it comes to the bridging function of technologies (S2). Connectedness is used as a 

cohesiveness-indicator, since we assume that KETs substantially ensure the technological spaces’ 

cohesiveness (S3). 
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Based on (Freeman 1978), network centralization is a measurement at the level of the whole network 

and related to different node centralities, such as degree centrality and betweenness centrality. It is 

the sum of the differences between the maximum value of a node centrality and the centrality value 

of each other node in the network, divided by the maximum possible sum of differences in node 

centrality, which Freeman (1978, p. 228) formulates as follows. 

𝐶𝑋 =
∑ [𝐶𝑋(𝑝∗) −  𝐶𝑋(𝑝𝑖)]𝑛

𝑖=1

𝑚𝑎𝑥 ∑ [𝐶𝑋(𝑝∗) −  𝐶𝑋(𝑝𝑖)]𝑛
𝑖=1

 

𝐶𝑋(𝑝𝑖) represents the respective node centrality (in our case degree centrality or betweenness 

centrality), of which the maximum value in the network is 𝐶𝑋(𝑝∗). Accordingly, 𝑚𝑎𝑥 ∑ [𝐶𝑋(𝑝∗)𝑛
𝑖=1

−  𝐶𝑋(𝑝𝑖)] stands for the highest possible sum of differences in the node centrality within a network 

of n nodes. In other words, degree centralization indicates whether the network consists only of a 

few nodes with many links (and many nodes with only a few links), or if the number of links is more 

evenly distributed. Betweenness centralization indicates to what extent the network comprises nodes 

that have a high betweenness centrality, meaning they have a link that bridges to a network 

component that would be unconnected without this link. If all nodes possess equal centralities, 

centralization is 0. A star network with only one very central node possesses the maximum possible 

centralization, represented by the value 1. This is valid for both betweenness and degree 

centralization (Freeman 1978). We use the centralization measures to determine to what extent a 

network depends on specific (central) nodes. 

The connectedness measures the network cohesion. It generally describes the share of nodes that 

belong to the same component and thus specifies how well a network is connected, following Graf 

(2017). The connectedness is calculated using the following formula, where rij is 1 if nodes i and j 

are in the same component and 0 if both nodes are part of different components, while n is the total 

number of nodes in the network. 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠 =  
∑ 𝑟𝑖𝑗𝑖≠𝑗

𝑛(𝑛 − 1) 

For each region, each KET, and each time period, we compute the values of these three network 

indicators, subsequently remove all KET patents of one KET type from the network, recompute the 

network indicators, and determine the differences to which the indicators’ values were changed by 

the KET-removal (inspired by Buarque et al. 2020). The omission-based differences in the 

indicators describe the structural changes in the networks caused by the omission of KETs and hence 

the structural relevance of the omitted KET in the original network. 
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The following formula describes the 

structural change StrChg regarding network 

indicator i in the technological space of region 

r with respect to the omitted KET k. The value 

of indicator i is represented by v for the 

complete network and by c for the network 

where KET k was omitted: 

𝑆𝑡𝑟𝐶ℎ𝑔𝑟𝑖𝑘 =  𝑣𝑖𝑟 −  𝑐𝑖𝑟𝑘 

As this process does not reveal if a change in 

the network structure traces to the structural 

role of the omitted KET in the respective 

network or if the difference occurs due to the 

simple reduction of network edges, we 

perform a robustness check. We compute the impact of the removal of a random sample of patents 

for each region. The number of patents in the random sample is identical with the number of omitted 

KET patents. This process is repeated 1,000 times and only the structural changes within a 95%-

interval are used to account for the randomness of the process, starting from the lower 2.5% to the 

upper 97.5%. We then compare this range to 𝑆𝑡𝑟𝐶ℎ𝑔𝑟𝑖𝑘. If the structural change 𝑆𝑡𝑟𝐶ℎ𝑔𝑟𝑖𝑘 lies 

within this distribution we set it to zero as it can be explained by removing random network edges. 

The above-described process is repeated for each specific KET in each 5-year window in each 

region. Regarding the described robustness check, figures 1-3 exemplify the distribution of the 

Fig. 1: Distribution of the structural impact of omitting random 
patents on the degree centralization in the technological space of 
the LMR Soest. (Own computation) 

Fig. 3: Distribution of the structural impact of omitting 
random patents on the connectedness in the technological 
space of the LMR Soest. (Own computation) 

Fig. 2: Distribution of the structural impact of omitting random 
patents on the betweenness centralization in the technological 
space of the LMR Soest. (Own computation) 
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structural impact of omitting random patents, measured by the change in each of the three network 

indicators in the technological space of the LMR ‘Soest’4. To make the arbitrary number of 1,000 

samples comprehensible, the distributions for 50, 100, 500 and 1,000 random samples are displayed 

(each point is one iteration). As can be seen, we observe no change in the general distribution after 

1,000 iterations.  After the computation of the structural change 𝑆𝑡𝑟𝐶ℎ𝑔𝑟𝑖𝑘, we construct a 

composite indicator that describes the structural relevance of KETs in the technological space by 

combining the three global network indicators. We label this index Structural Technology Impact 

Index (STII). The STII consists of the sum of normalized5 structural changes 𝑆𝑡𝑟𝐶ℎ𝑔𝑛𝑜𝑟𝑚 in the 

technological space of region r with respect to technology (KET) k, and the different network 

indicators bet (betweenness centralization), deg (degree centralization) and con (connectedness), 

divided by the number n of network indicators used (in our case 3). 

𝑆𝑇𝐼𝐼𝑟𝑘 =
𝑆𝑡𝑟𝐶ℎ𝑔𝑛𝑜𝑟𝑚,𝑑𝑒𝑔,𝑟,𝑘 + 𝑆𝑡𝑟𝐶ℎ𝑔𝑛𝑜𝑟𝑚,𝑏𝑒𝑡,𝑟,𝑘 +  𝑆𝑡𝑟𝐶ℎ𝑔𝑛𝑜𝑟𝑚,𝑐𝑜𝑛,𝑟,𝑘

𝑛  

In general, our procedure has two distinct advantages over the use of common node-level indicators. 

First, computing network indicators on a node-level based on co-occurrences on patents leads to a 

dependence of these indicators on the size of the analyzed technology. Consequently, a simple 

comparison of these node-level indicators would be a pitfall if technologies of different sizes (e.g., 

KETs) are compared, since a technology with many patents naturally has a higher degree centrality. 

Second, when analyzing technologies in the technological space, often a 4-digit CPC/IPC-level 

network is constructed. This complicates the comparison of finer grained technologies or of 

technologies that comprise more than one 4-digit class, as these would skew the indicators in their 

favor. Our method applies the analysis at the level of the patent and thus is independent from the 

classification level of the technology. As all the indicators are positively correlated (if we remove a 

KET, we expect the values for all three indicators to drop), the changes do not offset each other in 

the 𝑆𝑇𝐼𝐼𝑟𝑘 construction. Needless to say, the use of a composite indicator leads to information 

losses. Considering all three network indicators separately for each of the six KETs in our 

investigation, however, would lead to an overload of information. This would make the 

interpretation of the results nearly impossible as three indicators are considered for each of the six 

KETs, all with their own interaction effects. For this reason, and as we aim to provide basic 

insightsfor further research on the innovation-spawning effect of KETs, we focus on the 𝑆𝑇𝐼𝐼𝑟𝑘 and 

provide more detailed results on the single network indicators in appendix D. 

 

 
4 Soest was chosen randomly to illustrate our procedure. 
5 We normalized the indicators for each time-period and KET on a scale of -1 and 1, keeping the structure of the 
distribution. The absolute max. value is used to 0-1-normalize all negative and all positive values of the indicator. 
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Variables 
To assess our derived hypotheses, we use the annual regional inventor-based patent count6 as our 

dependent variable in order to proxy the regional innovation activities. We are aware of the pitfalls 

and constraints that patent data entails, as not all innovations which are employed in processes or 

products are patented (e.g., Griliches 1990). We assume that, nevertheless, the cumulated annual 

patent count in a region acts as a good proxy for the general innovativeness. 

Both the 𝑆𝑇𝐼𝐼𝑟𝑘 and the regional number of KET patents are plugged into our analysis as independent 

variables (see ‘model specification’ below). Regarding the control variables, we include the regional 

knowledge complexity, the size of the technological space and the number of patents in the previous 

period. Since regions with a higher complexity are assumed to be more innovative (Antonelli et al. 

2020), we control for regional complexity by using an indicator that is grounded on the methods of 

reflections (Hidalgo & Hausmann 2009) and on the revealed technological advantages (RTAs) of 

regions. It considers regional diversity and technological ubiquity (Balland & Rigby 2017). We 

calculate the regional complexity based on the same 5-year moving window that we used to compute 

the 𝑆𝑇𝐼𝐼𝑟𝑘 .  

We use the number of different technologies (4-digit IPC codes) to measure the size of the regional 

technological space based on the 5-year moving windows. The number of different technologies 

equals the number of nodes in the technological space and is important to include, since we presume 

the omission of patents (links) to cause a stronger structural effect in smaller networks. As 

innovative regions usually keep up their high number of patents, we take the regional innovativeness 

from the previous time period into account. The descriptive statistics of the variables described 

above are reported in Appendix C. 

Model specification 
Following this, our data now consists of a panel data set ranging over 26 5-year windows within the 

focal period 1986-2015 in all 141 LMR. In order to test our hypotheses H1 and H2, a set of 

regression models is calculated. We conduct an OLS panel regression analysis over all 5-year-

windows with the logged regional patent count as the dependent variable. The independent variables 

are (a) the STIIs per KET, (b) their respective patent count (H1), and the interaction effect between 

these two (H2). The robust Hausman test (e.g., Hausman 1978; Wooldridge 2002) allows for a 

random effects panel regression, which we thus use in our analysis. Furthermore, we use a random 

effects model, as it assists in controlling for unobserved heterogeneity. The stylized model adopts 

the following form: 

 
6 A patent was assigned to multiple regions if its inventors resided in more than one region. 
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LogPatrt = α + β1STIIkrt-5 + β2Countkrt-5 + β3STIIkrt-5XCountkrt-5 + β4PatentCountrt-5 + β5Controlrt 

+ urt + εrt 

where LogPat corresponds to the logged number of patents in a region, STII to our Structural 

Technology Impact Index, Count to the number of patents in a specific KET, and PatentCount to 

the number of patents in a region (5-year lagged) to control for path-dependence in knowledge 

creation. Control describes the remaining control variables. k denotes the specific KET, r the 

respective labor market region (LMR), t the 5-year-period, urt the between-entity error, and εrt the 

within-entity error. The variance inflation factor indicates that our regression does not suffer from 

multicollinearity issues (Belsley et al. 1980). 

4 Results 
This section reports the results of the regression analysis in two parts. First, the direct impact of the 

structural relevance of KETs in the technological space on the innovativeness of regions is analyzed 

(H1), together with the effect of the regional presence of KET knowledge on regional 

innovativeness. Second, the stated interaction effect is described and analyzed, both statistically and 

visually. While our analysis is based on the use of our composite indicator STII, we provide further 

details by attaching the results based on the three single network indicators in appendix D. 

Starting with the effect of KET knowledge on the regional patent activity, table 2 reports the 

regression results and displays five models. Model 1 consists of the control variables and acts as a 

baseline. Here, we observe an interesting behavior of the regional knowledge complexity. It does 

not significantly impact the logged total number of patents in a region. This seems to be surprising, 

given the literature that highlights the importance of knowledge complexity in the creation of new 

knowledge (Antonelli et al. 2020). However, as other studies found, the connection between 

complexity and innovation can be ambiguous as more complex knowledge is harder to build upon 

(Balland & Rigby 2017). The other two control variables behave as expected. Given that knowledge 

is path-dependent (Dosi 1988) and can be geographically sticky (von Hippel 1994; Lundvall & 

Johnson 1994; Balland & Rigby 2017), it is not surprising that the 5-year lagged total patent number 

of a region positively impacts the present patent count. Furthermore, the general size of the regional 

technological space indicates a diversified knowledge base which positively impacts the total 

number of patents in a region. This could also be an explanation for the insignificance of the regional 

knowledge complexity, as it inherently describes a similar phenomenon, even though the variance 

inflation factor does not indicate multicollinearity issues (with a value of 1.17). Model 2 includes 

the patent count of each KET and model 3 includes the structural relevance of each KET in the 

technological space. In the fourth model these variables are combined. Our first observation is that 
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the independent variables are very robust over the first four models. Thus, our indicator (STII) 

describes aspects of regional KET knowledge that are inherently different from the total regional 

patent count of each KET. In the following, we concentrate on model 4. 

Starting with photonics, we can observe a significant positive impact of its structural relevance on 

the regional patent activity. The structural relevance of AMT also positively impacts the regional 

innovativeness. Nanotechnology shows an impact, but on a lower alpha (<0.1). The p-value of the 

coefficient is very close to 0.05 (0.05009), which is why we believe it is valid to interpret the results. 

The impact of nanotechnology is weaker (0.069) in comparison to photonics and AMT. Hence, we 

can partially accept hypothesis H1, which states that an increase in the structural relevance of each 

KET within the knowledge base leads to an increase of the total number of regional innovations. 

AMT, photonics, and nanotechnology exhibit the expected behavior, while the structural relevance 

of MNE, advanced materials, and industrial biotechnology shows no significant effect on the 

regional patent activity. Furthermore, it seems that KETs that impact the regional innovativeness by 

their patent count are not always the ones that impact the regional patent activity by their structural 

relevance. This shows differences in (a) the relevance of specific KETs and (b) the effect of the 

amount of knowledge in a region and its importance for the regional knowledge structure. Even 

though this is not part of the hypotheses, we observe a positive impact of the patent count in 

photonics and advanced materials. The effect of photonics is only marginally significant (p<0.1). 

Interestingly, there even is a negative impact of the patent numbers in Micro- and Nanoelectronics 

and AMT on the regional innovativeness, while nanotechnology and industrial biotechnology show 

no significant impact. From a KET-specific perspective, the combination of the (non-)existing 

impacts of the dimensions ‘structural knowledge relevance’ and ‘knowledge presence’ on the 

regional innovation output differs from KET to KET. These surprising results highlight the need for 

(a) a differentiated view on KETs and (b) the second part of our analysis, in which we assume a 

mediating effect of the number of KET patents on the impact of the structural relevance of KETs 

on the regional patent output. Model 5 shows the results of this analysis. Furthermore, to ease the 

interpretability of our results, the interaction effects are visualized based on the marginal effects of 

the structural relevance, given different patent counts (fig. 4 and fig. 5). Starting with the model 

results, we only observe two interaction effects that are significant on a 0.05 alpha and we find 

negative interaction effects both for AMT and nanotechnology. This indicates a substitution effect 

between the patent count of the respective KET and its structural relevance in a region on the 

regional logged patent activity. Figures 4 and 5 display the marginal effects of both KETs over their 

respective patent count in a region. Note, that the predicted patent numbers are transformed back 

from their logged format. Starting with AMT, (a) we find a strong indication for an increase of the 
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positive effect with a higher structural relevance when fewer AMT patents are present in a region. 

Additionally, we can observe that even with a weak structural relevance (-0.5) and a high patent 

count (500) the effect is higher than with a few patents and a high structural relevance, the 

confidence interval is much larger enclosing the whole confidence intervals of both other marginal 

effects (with 10 and 100 patents). Thus, although we find some indications that a higher patent count 

is more important than a high structural relevance, no statistical significance exists in this 

observation. We, therefore, derive that focusing structural relevance should be more robust in its 

effect on the regional innovativeness for AMT. Nanotechnology is the second KET with a 

significant interaction effect and reveals a similar behavior. With an increase of the patent count of 

nanotechnology in a region, the region’s predicted patent number based on the structural relevance 

of nanotechnology decreases with an increasing structural relevance. Furthermore, with a very low 

number of patents in a region, the slope of the marginal effects is near zero and thus nanotechnology 

depends on the number of its patents to have an effect in the region. Furthermore, we also observe 

that the confidence intervals of the marginal effects with a higher regional nanotechnology patents 

number are larger. Thus, we derive that even though a low structural relevance with a high number

Fig. 5: Marginal effects of the Structural Technology Impact Index 
(STII) for different patent numbers in Nanotechnology (NT) on the 
patent output in German Labor Market Regions (LMR) (Authors’ 
own computation). 

Fig. 4: Marginal effects of the Structural Technology Impact Index 
(STII) for different patent numbers in Advanced Manufacturing 
Technology (AMT) on the patent output in German Labor Market 
Regions (LMR) (Authors’ own computation). 
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 Dependent variable  
log(Pat + 1) 

Independent variables (1) (2) (3) (4) (5) 
Constant 3.421*** (0.035) 3.414*** (0.035) 3.417*** (0.035) 3.408*** (0.035) 3.419*** (0.035) 

Complexityr,t -0.004 (0.012) -0.018 (0.013) -0.005 (0.012) -0.017 (0.013) -0.018 (0.013) 
Patr,t-5 0.0001*** (0.00001) 0.0001*** (0.00001) 0.0001*** (0.00001) 0.0001*** (0.00001) 0.0001*** (0.00001) 

TechSpace Sizer,t 0.012*** (0.0001) 0.012*** (0.0001) 0.012*** (0.0001) 0.012*** (0.0001) 0.012*** (0.0001) 
CountPhotonics,r,t-5 

 
0.0004** (0.0002) 

 
0.0004* (0.0002) 0.0003 (0.0002) 

CountAdvMat,r,t-5 
 

0.001*** (0.0003) 
 

0.001*** (0.0003) 0.001*** (0.0003) 
CountMNE,r,t-5 

 
-0.003* (0.002) 

 
-0.004* (0.002) -0.003 (0.002) 

CountAMT,r,t-5 
 

-0.0002 (0.0002) 
 

-0.0004** (0.0002) -0.0001 (0.0002) 
CountIndBio,r,t-5 

 
0.0001 (0.0001) 

 
0.0001 (0.0001) 0.00004 (0.0002) 

CountNanotech,r,t-5 
 

0.001 (0.001) 
 

0.001 (0.001) 0.001 (0.001) 
STIIPhotonics,r,t-5 

  
0.101*** (0.031) 0.103*** (0.031) 0.106*** (0.035) 

STIIAdvMat,r,t-5 
  

0.022 (0.032) 0.008 (0.032) 0.033 (0.035) 
STIIMNE,r,t-5 

  
-0.049 (0.040) -0.038 (0.040) -0.004 (0.055) 

STIIAMT,r,t-5 
  

0.168*** (0.028) 0.171*** (0.028) 0.199*** (0.030) 
STIIIndBio,r,t-5 

  
-0.024 (0.028) -0.026 (0.028) -0.038 (0.030) 

STIINanotech,r,t-5 
  

0.064* (0.035) 0.069* (0.035) 0.114*** (0.040) 
CountPhotonics,r,t-5XSTIIPhotonics,r,t-5 

    
-0.0001 (0.001) 

CountAdvMat,r,t-5XSTIIAdvMat,r,t-5 
    

-0.002* (0.001) 
CountMNE,r,t-5XSTIIMNE,r,t-5 

    
-0.011 (0.013) 

CountAMT,r,t-5XSTIIAMT,r,t-5 
    

-0.001** (0.0003) 
CountIndBio,r,t-5XSTIIIndBio,r,t-5 

    
0.001 (0.001) 

CountNanotech,r,t-5XSTIINanotech,r,t-5 
    

-0.010** (0.005) 
Observations 2,841 2,841 2,841 2,841 2,841 

R2 0.791 0.793 0.796 0.798 0.800 
Adjusted R2 0.791 0.792 0.796 0.796 0.799 

F-Statistic 10,743.290*** 10,829.330*** 11,056.270*** 11,123.520*** 11,291.260***  
Note: *p<0.10, **p<0.05, ***p<0.01 

Table 1: Regression results (Authors’ own computations). (Knowledge complexity = Complexity, total number of regional patents = Pat, size of the techspace = TechSpace Size, 
number of KET patents = Count, structural technology impact index (structural relevance) = STII, advanced materials = AdvMat, micro- and nanoelectronics = MNE, advanced 
manufacturing technology = AMT, industrial biotechnology = IndBio, nanotechnology = Nanotech, photonics = photonics, region = r, focal time period = t, previous time period = 
t-5). 
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of nanotechnology patents predicts a higher patent count, the results for a lower number of 

patents and a higher structural relevance are much more robust. Summarizing these results, we 

can accept hypothesis H2 which states that the impact of the structural relevance of each KET 

in the regional knowledge base on the innovativeness within the region is negatively moderated 

by the amount of KET-specific knowledge in the region with respect to nanotechnology and 

AMT. The other KETs do not display a significant interaction effect. In summary, our results 

display a highly KET-specific pattern. For three KETs we find a positive impact of their 

structural relevance on the total regional patent activity and, even though this is beyond our 

hypothesis, we find an impact of the presence of KET knowledge on regional innovativeness 

for four KETs. There seems to be a major difference between the effect of the number of KET 

patents in a region and their structural relevance, which certainly calls for further research. 

5 Discussion 
This section discusses the results presented in section 4. Instead of a clear pattern, we find 

highly KET-specific results regarding the effects of KETs on regional knowledge creation. Our 

findings add to the suggestion by Montresor & Quatraro (2017), that the degree of the six KETs’ 

enabling power differs between them. Considering the effect of the structural relevance of KETs 

in the regional knowledge base, we found that AMT, nanotechnology, and photonics positively 

affect regional knowledge creation. Hence, we can verify that these three KETs do enable 

innovation via their structural role. AMT holds the strongest effect, which is in line with the 

literature describing AMT as a core enabler for other technologies, including other KETs 

(European Commission 2009b; van de Velde et al. 2012; de Heide et al. 2013; Butter et al. 

2014). The structural relevance of nanotechnology, on the contrary, only has a small but 

nevertheless significant effect. Here it may play a role that AMT is a rather engineering-based 

and manufacturing-oriented technology, while nanotechnology in comparison is more science-

based and R&D-driven (Wanzenböck et al. 2020). Being aware that further research is required 

to explore the inter-KET differences in further detail, we suggest that this difference could be 

due to AMT having more application opportunities than nanotechnology, given that both are in 

comparable structurally relevant positions. Advanced Materials, similar to AMT, hold 

comparatively wide application opportunities, even among KETs (e.g., Aschhoff et al. 2010; 

Butter et al. 2014), and are rather application-oriented (Wanzenböck et al. 2020). Nevertheless, 

in contrast to AMTs, our results do not display any significant innovation-spawning effect of 

advanced materials via their structural relevance.  
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Generally, these results indicate that KETs do not only differ in their effects, but especially 

seem to rely on different mechanisms underlying their effects, which goes beyond the six 

technology fields being merely different types of technologies. This is furthermore supported 

by our surprising results with regards to the impact of the amount of KET knowledge, 

operationalized by the patent count of KETs. While the structural relevance of KETs either has 

a positive effect or no effect on regional knowledge creation, the amount of KET knowledge 

can either affect regional knowledge creation positively, not at all, or even negatively. The latter 

is the case for AMT and MNE and could be due to the fact that KETs are knowledge- and R&D-

intensive technologies (European Commission 2009b, 2009a). For this reason, knowledge 

creation in KETs potentially binds resources at the cost of innovation in other fields. Especially 

AMTs seem prone to this effect; while their strong structural relevance has a positive effect, a 

high patent count in AMT negatively affects regional innovation activities. AMT fulfills the 

role of enabling production processes (European Commission 2009b; van de Velde et al. 2015), 

thus a structural relevance is more important than a vast amount of AMT knowledge in the 

region, as the latter could lead to focusing too much on the KET itself instead of its enabling 

functions. The results for AMT, photonics, and nanotechnology indicate that the respective 

KET’s core features are especially prominent, such as functioning as a bridging platform and 

connecting distant, otherwise unconnected knowledge (Corradini & de Propris 2017). 

Even though we did not analyze the regional specialization in KETs, our findings regarding 

photonics and advanced materials support the finding of Montresor & Quatraro (2017) that a 

specialization in KETs makes relatedness in the regional branching process less binding, 

meaning that formerly more distant knowledge could be combined when KETs are involved. 

In this sense, the significant positive effect of the patent count of photonics and advanced 

materials on regional innovativeness is likely to indicate that these KETs possess the ability to 

spawn innovation and enhance capabilities for more unrelated development paths by just being 

present in the region, independent from their structural relevance (and thus independent from a 

rather central or peripheral role within the knowledge base). 

Generally, the results from the first part of our analysis emphasize the importance of 

distinguishing between the dimensions ‘knowledge presence’, meaning the pure quantity of 

knowledge in a specific KET, and ‘structural knowledge relevance’, meaning the structural role 

that a KET plays in the regional knowledge base. This distinction accentuates that KETs do not 

only differ in terms of their enabling power (Montresor & Quatraro 2017), but we suggest that 

their enabling power is based on different, KET-specific, ways of enabling and on differently 

working mechanisms underlying the effects of the different KETs. 
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In the second step of our analysis, we focus on the interaction effects between the presence of 

KET knowledge, proxied by the number of patents in the respective KETs and the structural 

relevance of KET knowledge, proxied by our Structural Technology Impact Index (STII). In the 

cases of Advanced Manufacturing Technology (AMT) and nanotechnology, we found a 

negative moderating effect of the respective number of patents on the effect of the structural 

relevance of the respective KET on innovation. This indicates that both technologies may 

hamper regional innovation activities when they are too dominant in the region both structurally 

and nominally at the same time. An important structural role and at the same time a high amount 

of knowledge in the respective KET would mean that the region is too focused on both 

technologies in these cases. As indicated above, KETs are knowledge- and R&D intensive 

technologies (European Commission 2009b, 2009a). Being overly focused on AMT and 

nanotechnology would be likely to bind regional capacities which were necessary for 

innovation in other fields. 

In the case of AMT, we find a substitution effect between the amount of knowledge and its 

structural relevance. Furthermore, as the specific results also suggest, the structural relevance 

is an important driver of regional innovativeness, while we find evidence that the presence of 

AMT knowledge causes a negative impact on regional innovativeness. The case of 

nanotechnology seems rather special: In comparison to AMT, nanotechnology could be more 

specialized, which would explain why a high structural relevance does not increase the regional 

patent activity as much. Nanotechnology could also bring the risk for regional over-

specialization or lock-in effects. However, a region in which the structural relevance of 

nanotechnology is low but the number of nanotechnology patents is high does have a higher 

predicted patent count. This could be explained by regions attracting a higher human capital 

stock due to the R&D-intensity and complexity of nanotechnology, while - at the same time - 

not being overly focused on nanotechnology. We assume that the regions which drive these 

results are characterized by a high degree of openness, a high amount of human capital, and 

high R&D-funding. However, further research has to confirm these assumptions. 

Summarizing these findings, we assume that even though all KETs share GPT-characteristics, 

the way they enable innovations is inherently different in structure. While some rather 

‘classical’ GPT-like technologies are part of the the KET-classification (e.g., AMTs), generally 

the group of KETs is highly diverse. Some technologies are specialized and require a high 

degree of R&D (e.g., industrial biotechnology, nanotechnology), while others are more 

application-focused (e.g., advanced materials). These structural differences are one possible 
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explanation for the highly diverse results of our analysis. Therefore, KETs cannot be analyzed 

as one technological group but have to be considered separately and uniquely. 

6 Summary and conclusion 
The aim of this paper is to extend the literature on European Key Enabling Technologies 

(KETs) with a special focus on their role in the regional knowledge base, mapped as 

technological space, and the effect of their structural position in the technological space on 

regional knowledge creation. The literature remains vague on the role of KETs in the regional 

knowledge creation process, even though the enabling role of KETs and certain positive effects 

of KETs on regional economic development have been verified (e.g., Montresor & Quatraro 

2017; Evangelista et al. 2018; Wanzenböck et al. 2020; Antonietti & Montresor 2021). 

Nevertheless, to the best of our knowledge, no studies exist that focus on the structural 

relevance of KETs in the regional knowledge base as a key driver of regional innovativeness. 

Hence, we analyzed to what extent regional knowledge creation is driven by KET-knowledge 

and the structural relevance of KETs in their regional knowledge bases. We focused on a 30-

year period, with German Labor Market Regions (LMR) as our observational entities, and we 

operationalized knowledge creation activities via the regional innovation output, proxied by 

patent applications. Given the results presented in section 4, we found evidence for the 

innovation-enabling role of (most) KETs.  

However, the results especially point out an essential difference between the effect of the 

amount of specific KET-knowledge in a region and its structural relevance. Some KETs possess 

an enabling role via their structural relevance while other KETs can enable innovation by 

following the tendency that more knowledge in the specific KET also triggers more innovation 

at the regional level (advanced materials, photonics). Considering the knowledge presence, the 

effect can also be negative. Each KET has a different combination regarding the impacts of 

‘structural knowledge relevance’ and ‘knowledge presence’. Additionally, we found that in the 

two cases of nanotechnology and Advanced Manufacturing Technology (AMT) a substitution 

effect is in place between their structural relevance and the amount of technology-specific 

knowledge in the region. In general, this points out that KETs do enable regional knowledge 

creation – however in different ways. The results not only emphasize the inherent heterogeneity 

of KETs as multidisciplinary and cross-sectoral technologies, but in our view particularly imply 

the demand to be cautious when addressing the six technology fields as a single group 
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(especially in the context of knowledge creation activities). This aspect should not get lost when 

addressing the impact of KETs. 

KETs, as young GPTs, are seen as enablers for regional innovativeness and growth (Bresnahan 

& Trajtenberg 1995; European Commission 2009b, 2009a; Montresor & Quatraro 2017; 

Evangelista et al. 2018, 2019). Our results suggest that an undifferentiated approach for 

subsidizing KETs to facilitate innovativeness is unadvisable. The diverse results highlight the 

need for a specialized and targeted funding approach to the specific KETs in specific 

circumstances. Furthermore, the KET-specific effects on regional knowledge creation underline 

the importance to distinguish between the dimensions of ‘structural relevance’ and ‘knowledge 

presence’ when addressing the effects of KETs and their underlying mechanisms. KETs share 

GPT-characteristics, but obviously comprise different and diverse technology fields. This 

indicates for both further research and for policy making that the heterogeneities of KETs 

deserve a stronger focus than the shared GPT-characteristics under which they are framed. 

Considering our results, a few limitations need to be discussed. First, our study is focused on 

patent data and consequently can only provide approximations regarding the applied indicators 

for the regional innovativeness or regarding the amount of KET knowledge within a region. 

This is due to the fact that not all innovations are patented (e.g., Griliches 1990). Second, a 

usage of more control variables at the regional level was not possible, due to data availability 

constraints linked to the long time period under investigation that even includes years before 

Germany’s re-unification. Third, this study is centered on the structural relevance of KETs, but 

our results reveal that for some KETs it is (also) the amount of KET knowledge that is vital for 

the effect of these KETs on the general regional innovativeness. Hence, KET knowledge should 

be addressed in more detail. Fourth, considering the highly KET-specific results and the natural 

heterogeneities of KETs, it could prove useful to evaluate whether KETs could be more 

consistently grouped by subgroups across the KET fields, which share similar characteristics 

regarding the enabling function and their effects. Additionally, further research should evaluate 

the question as to which factors cause the (strong) differences in the effects of KETs. 

Generally, our work contributes to the limited regional literature on European KETs and serves 

as an important orientation for future research on KETs. In this context, it addresses the scarcity 

of insights regarding the prerequisites at the core of their enabling function and consequently 

expands the knowledge on KETs in a regional context. At the same time our results call for 

awareness to consider the heterogeneities regarding the six KET fields, by illustrating that no 

clear and consistent impact of the different KETs on regional knowledge creation activities 

exists, which has to be considered by scholars and addressed by policy-makers alike. 
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Appendix A: Overview on the six European Key Enabling Technologies (KETs) 

Table Appendix A: Overview on KETs (Based on: European Commission 2009b, 2009a; Aschhoff et al. 2010; van de Velde et al. 2012; de Heide et 

al. 2013; van de Velde et al. 2015; Evangelista et al. 2018) 

KET field Summary of KET field Examples for industries of application/fields of application/applications 

Adv. Mat. Broad field without a clear 
definition 

Examples for sectors/industries: 
All Manufacturing Industries 
Examples for applicational fields/applications: 
Semiconductors, Engineering, Aerospace, Automotive, Construction, Software, Medicine/health, Energy / environment 

AMT 

AMTs are a combination of 
various technology fields. They 
are employed in manufacturing 
processes which make 
processes faster, reduce 
resource consumption, waste, 
and costs.  

Examples for sectors/industries: 
Generally important in capital intensive industries and in industries where assembly processes are complex 
Examples for applicational fields/applications: 

- Process technologies/production systems of relevance for production of KETs/process technologies; related to making manual labor obsolete; numerically 
controlled technologies, measuring technologies 

- Related to automation, robotics, and computer integrated manufacturing 

Ind. 
Biotech. 

Industrial application of 
biotechnology, e.g., for 
industrial processes, chemicals, 
and fuel production 

Examples for sectors/industries: 
Chemical, pharmaceutical, food industries 
Examples for applicational fields/applications: 
Production of chemicals, plastics, detergent, food, biofuels; e.g., industrial application of micro-organisms (e.g., yeast, bacteria, mould), and enzymes 

MNE 
Semiconductor components 
and electronic subsystems 
which are highly miniaturized 

Examples for sectors/industries: 
Medical, automotive, transportation, aeronautics and spacecraft, markets for consumers or industrial equipment 
Examples for applicational fields/applications: 
Products and services in which some kind of smart control is needed. E.g.: Cameras, wireless technologies, a car’s fuel efficiency control  system 

Nanotech. 
Relates to 
structures/devices/systems at 
the nanometer scale 

Examples for sectors/industries: 
Wide range of industries, e.g.: manufacturing, chemical, electronics, automotive, textiles, healthcare, environmental sector, energy sector 
Examples for applicational fields/applications: 
Coatings (e.g., nano-structured coatings), microelectronics, telecommunication products (e.g., displays), medicine/health (e.g., nano cancer therapy) 

Photonics 

Related to light; encompasses 
the generation of light as well 
as the detection and 
management  

Examples for sectors/industries: 
Electronics, instruments, chemicals 
Examples for applicational fields/applications: 
Optical systems/components, consumer electronics, displays, solar energy, optical communications, medical/life science 
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Appendix B: International Patent Classification (IPC) codes of Key Enabling 
Technologies (KETs) 

Nanotechnology Photonics 
Industrial 
Biotechnology 

Advanced 
Materials 

Micro- and Nano-
electronics (MNE) 

Advanced Manufacturing 
Technology (AMT) 

B82Y F21K C02F 3/34 B32B 9 G01R 31/26 B01D 15 
C04B 
11/028 

C21C 
5/52 

B81C F21V C07C 29 B32B 15 G01R 31/27 B01D 67 
C04B 
35/622 

C21C 
5/54 

B82B F21Y C07D 475 B32B 17 G01R 31/28  B01J 10 
C04B 
35/624 

C21C 
5/56 

  
G01D 
5/26 C07K 2 B32B 18 G01R 31/303  B01J 12 

C04B 
35/626 C21C 7 

  
G01D 
5/58 C08B 3 B32B 19 G01R 31/304 B01J 13 

C04B 
35/653 C21D 

  
G01D 
15/14 C08B 7 B32B 25 G01R 31/317 B01J 14 

C04B 
35/657 

C22B 
11 

  
G01G 
23/32 C08H 1 B32B 27 G01R 31/327 B01J 15 

C04B 
37 

C22B 
21 

  G01J C08L 89 B82Y 30 G09G 3/14 B01J 16 
C04B 
38/02 

C22B 
26 

  G01L 1/24 C09D 11 C01B 31 G09G 3/32 B01J 19/02 
C04B 
38/10 C22B 4 

  G01L 3/08 C09D 189 C01D 15 H01F 1/40 B01J 19/08 
C04B 
40 

C22B 
59 

  
G01L 
11/02 C09J 189 C01D 17 H01F 10/193 B01J 19/18 

C04B 
7/60 C22B 9 

  
G01L 
23/06 C12M C01F 13 H01G 9/028 B01J 19/20 

C04B 
9/20 C22C 1 

  G01M 11 C12P C01F 15 H01G 9/032 B01J 19/22 
C07C 
17/38 C22C 3 

  G01P 3/36 C12Q C01F 17 H01H 47/32 B01J 19/24 
C07C 
2/08 

C22C 
33 

  G01P 3/38 C12S C03C H01H 57 B01J 19/26 
C07C 
2/46 

C22C 
35 

  G01P 3/68 C07K 14/435 C04B 35 H01S 5 B01J 19/28 
C07C 
2/52 

C22C 
47 

  G01P 5/26 C07K 14/47 C08F H01L B01J 20/30 
C07C 
2/58 C22F 

  
G01Q 
20/02 C07K 14/705 C08J 5 H03B 5/32 B01J 21/20 

C07C 
2/80 

C23C 
14/56 

  
G01Q 
30/02 C07K 16/18 C08L H03C 3/22 B01J 23/90 

C07C 
201/16 

C23C 
16/54 

  
G01Q 
60/06 C07K 16/28 C22C H03F 3/04 B01J 23/92 

C07C 
209/82 C25B 9 

  
G01Q 
60/18 C12N 15/09 C23C H03F 3/06 B01J 23/94 

C07C 
213/10 

C25B 
15/02 

  
G01R 
15/22 C12N 15/11 D21H 17 H03F 3/08 B01J 23/96 

C07C 
227/38 C25C 

  
G01R 
15/24 C12N 15/12 G02B 1 H03F 3/10 B01J 25/04 

C07C 
231/22 C25D 1 

  
G01R 
23/17 C12N 5/10 H01B 3 H03F 3/12 B01J 27/28 

C07C 
249/14 

C30B 
15/20 

  
G01R 
31/308 C12P 21/08 H01F 1/0 H03F 3/14 B01J 27/30 

C07C 
253/32 

C30B 
35 

  
G01R 
33/032 C12Q 1/68 H01F 1/12 H03F 3/16 B01J 27/32 

C07C 
263/18 

C40B 
60 

  
G01R 
33/26 G01N 33/15 H01F 1/34 H03F 3/183 B01J 29/90 

C07C 
269/08 

D01D 
10 

  
G01S 
7/481 G01N 33/50 H01F 1/42 H03F 3/21 B01J 31/40 

C07C 
273/14 

D01D 
11 
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Nanotechnology Photonics 
Industrial 
Biotechnology 

Advanced 
Materials 

Micro- and Nano-
electronics (MNE) 

Advanced Manufacturing 
Technology (AMT) 

  G01V 8 G01N 33/53 H01F 1/44 H03F 3/343 B01J 38 
C07C 
277/06 

D01D 
13 

  G02B 5 G01N 33/68 H01L 51/30 H03F 3/387 B01J 39/26 
C07C 
29/74 

D01F 
9/133 

  
G02B 
13/14 G01N 33/566 H01L 51/46 H03F 3/55 B01J 41/20 

C07C 
303/42 

D01F 
9/32 

  G03B 42 C12N 1/19 H01L 51/54 H03K 17/72 B01J 47 
C07C 
315/06 

D06B 
23/20 

  
G03G 
21/08 C12N 1/21   H05K 1 B01J 49 

C07C 
319/26 

D21H 
23/20 

  G06E C12N 1/15   B82Y 25 B01J 8/06 
C07C 
37/68 

D21H 
23/70 

  
G06F 
3/042 C12N 15/00     B01J 8/14 

C07C 
4/04 

D21H 
23/74 

  
G06K 
9/58 C12N 15/10     B01J 8/24 

C07C 
4/06 

D21H 
23/78 

  
G06K 
9/74 C12P 21/02     B01J 10 

C07C 
4/16 

D21H 
27/22 

  
G06N 
3/067       B01L 

C07C 
4/18 F24J 1 

  
G08B 
13/186       B04B 

C07C 
41/34 F25J 3 

  
G08C 
19/36       B04C 

C07C 
41/58 F25J 5 

  
G08C 
23/04       B32B 37 

C07C 
45/78 

F27B 
17 

  
G08C 
23/06       B32B 38 

C07C 
45/90 

F27B 
19 

  
G08G 
1/04       B32B 39 

C07C 
46/10 

F27D 
19 

  G11B 7/12       B32B 41 
C07C 
47/058 

F27D 
7/06 

  
G11B 
7/125       B81C 3 

C07C 
47/09 

G01C 
19/5628 

  G11B 7/13       B82B 3 
C07C 
5/333 

G01C 
19/5663 

  
G11B 
7/135       B82Y 35 

C07C 
5/41 

G01C 
19/5769 

  
G11B 
11/03       B82Y 40 

C07C 
51/42 

G01C 
25 

  
G11B 
11/12       C01B 17/20 

C07C 
51/573 G01R 3 

  
G11B 
11/18       C01B 17/62 

C07C 
51/64 

G11B 
7/22 

  
G11C 
11/42       C01B 17/80 

C07C 
57/07 

H01L 
21 

  
G11C 
13/04       C01B 17/96 

C07C 
67/48 

H01L 
31/18 

  
G11C 
19/30       C01B 21/28 

C07C 
68/08 

H01L 
35/34 

  H01J 3       C01B 21/32 C07C 7 
H01L 
39/24 

  H01J 5/16       C01B 21/48 
C07D 
201/16 

H01L 
41/22 

  
H01J 
29/46       C01B 25/232 

C07D 
209/84 

H01L 
43/12 

  
H01J 
29/82       C01B 31/24 

C07D 
213/803 

H01L 
51/40 

  
H01J 
29/89       C01B 9 

C07D 
251/62 

H01L 
51/48 
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Nanotechnology Photonics 
Industrial 
Biotechnology 

Advanced 
Materials 

Micro- and Nano-
electronics (MNE) 

Advanced Manufacturing 
Technology (AMT) 

  
H01J 
31/50       C01C 1/28 

C07D 
301/32 

H01L 
51/56 

  
H01J 
37/04       C01D 1/28 

C07D 
311/40 

H01S 
3/08 

  
H01J 
37/05       C01D 3/14 

C07D 
499/18 

H01S 
3/09 

  
H01J 
49/04       C01D 5/16 

C07D 
501/12 

H01S 
5/04 

  
H01J 
49/06       C01D 7/22 

C07F 
7/20 

H01S 
5/06 

  
H01L 
31/052       C01D 9/16 

C07H 
1/06 

H01S 
5/10 

  
H01L 
31/055       C01F 1 C07K 1 

H05B 
33/10 

  
H01L 
31/10       C01G 1 

C08B 
1/10 

H05K 
13 

  
H01L 
33/06       C02F 11/02 

C08B 
17 H05K 3 

  
H01L 
33/08       C02F 11/04 

C08B 
30/16   

  
H01L 
33/10       C02F 3 C08C   

  
H01L 
33/18       C03B 20 

C08F 
2/01   

  
H01L 
51/50       C03B 5/24 

C09B 
41   

  
H01L 
51/52       C03B 5/173 

C09B 
67/54   

  H01S 3       C03B 5/237 
C09D 
7/14   

  H01S 5       C03B 5/02  C09J5   

  H02N 6       C03C 21 C12M   

  H05B 33       C03C 29 C12S   
 
Table Appendix B: Technology codes of the International Patent Classification (IPC) which were 
assigned to the European Key Enabling Technologies (KETs). (Source: van de Velde et al. 2012) 
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Appendix C: Descriptive statistics of used variables 
Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max 

TechSpace Sizer, 2,841 236.910 121.908 11 135 335 550 
Patr 2,841 1,173.598 1,710.810 7 215 1,463 13,277 

Complexity r 2,841 -0.006 0.271 -2.980 -0.113 0.101 1.455 
CountPhotonics,r 2,841 32.499 57.172 0 3 37 581 

CountAdvMat,r 2,841 24.366 43.651 0 2 25 350 
CountMNE,r 2,841 2.073 4.504 0 0 2 47 
CountAMT,r 2,841 81.115 132.162 0 11 91 1,272 

CountIndBio,r 2,841 47.056 93.691 0 4 44 711 
CountNanotech,r 2,841 5.082 11.125 0 0 5 106 

STIIPhotonics,  2,841 0.034 0.124 -0.441 -0.022 0.058 1.000 
STIIAdvMat,r 2,841 0.043 0.118 -0 -0.01 0.1 1 

STIIMNE,r 2,841 0.009 0.092 -1 -0.001 0 1 
STIIAMT,r 2,841 0.082 0.140 -0.320 -0.008 0.135 0.990 

STIIIndBio,r 2,841 0.047 0.136 -0.703 -0.017 0.068 0.979 
STIINanotech,r 2,841 0.022 0.109 -1 -0.003 0.005 1 

CountPhotonics,r,t-5 2,841 24.359 47.825 0 2 25 581 
CountAdvMat,r,t-5 2,841 19.018 38.634 0 1 18 350 

CountMNE,r,t-5 2,841 1.590 4.055 0 0 1 47 
CountAMT,r,t-5 2,841 66.927 120.024 0 7 72 1,272 

CountIndBio,r,t-5 2,841 40.094 86.646 0 2 36 711 
CountNanotech,r,t-5 2,841 3.101 8.628 0 0 2 106 

STIIPhotonics,r,t-5 2,841 0.031 0.121 -0.441 -0.021 0.050 1.000 
STIIAdvMat,r,t-5 2,841 0.038 0.117 -0.359 -0.010 0.050 1.000 

STIIMNE,r,t-5 2,841 0.010 0.087 -0.559 0.000 0.000 1.000 
STIIAMT,r,t-5 2,841 0.079 0.145 -0.495 -0.008 0.130 0.990 

STIIIndBio,r,t-5 2,841 0.054 0.142 -0.703 -0.011 0.074 0.979 
CountNanotech,r,t-5  2,841 0.018 0.101 -1 0 0 1 

Patr,t-5 2,841 1,001.889 1,562.109 2 159 1,217 13,277  

Table Appendix C: Descriptive statistics of variables employed in the regression analysis (see section 3) Source: Authors’ own computations. (Size of the techspace = 
TechSpace Size, total number of regional patents = Pat, knowledge complexity = Complexity, number of KET patents = Count, structural technology impact index (structural 
relevance) = STII, advanced materials = AdvMat, micro- and nanoelectronics = MNE, advanced manufacturing technology = AMT, industrial biotechnology = IndBio, 
nanotechnology = Nanotech, photonics = photonics, region = r, focal time period = t, previous time period = t-5). 
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Appendix D: Detailed results of the analysis   
Dependent variable:  

log(Pat + 1) 
Independent variables (1) (2) (3) (4) (5) 

Constant 3.421*** (0.035) 3.414*** (0.035) 3.455*** (0.033) 3.447*** (0.034) 3.464*** (0.033) 
Complexityr -0.004 (0.012) -0.018 (0.013) -0.003 (0.012) -0.016 (0.013) -0.018 (0.013) 

Patr 0.0001*** (0.00001) 0.0001*** (0.00001) 0.0001*** (0.00001) 0.0001*** (0.00001) 0.0001*** (0.00001) 
Techspace sizer 0.012*** (0.0001) 0.012*** (0.0001) 0.011*** (0.0001) 0.011*** (0.0001) 0.011*** (0.0001) 

CountPhotonics,r 
 

0.0004** (0.0002) 
 

0.0004* (0.0002) 0.001** (0.0003) 
CountAdvMat,r 

 
0.001*** (0.0003) 

 
0.001*** (0.0003) 0.001*** (0.0003) 

CountMNE,r 
 

-0.003* (0.002) 
 

-0.003 (0.002) -0.002 (0.002) 
CountAMT,r 

 
-0.0002 (0.0002) 

 
-0.0003* (0.0002) -0.0001 (0.0002) 

CountIndBio,r 
 

0.0001 (0.0001) 
 

0.0001 (0.0001) 0.0002 (0.0002) 
CountNanotech,r 

 
0.001 (0.001) 

 
0.0004 (0.001) 0.002* (0.001) 

DegreePhotonics,r,t-5 
  

0.054** (0.026) 0.057** (0.026) 0.062** (0.030) 
BetweenessPhotonics,r, t-5 

  
-0.005 (0.025) -0.002 (0.025) -0.002 (0.029) 

ConnectednessPhotonics,r, t-5 
  

0.073*** (0.027) 0.068** (0.027) 0.058* (0.032) 
DegreeAdvMat,r, t-5 

  
-0.0003 (0.024) -0.016 (0.024) 0.008 (0.028) 

BetweenessAdvMat,r, t-5 
  

0.020 (0.027) 0.019 (0.027) 0.022 (0.032) 
ConnectednessAdvMat,r, t-5 

  
0.001 (0.031) -0.002 (0.031) -0.016 (0.037) 

DegreeMNE,r, t-5 
  

-0.018 (0.030) -0.017 (0.030) -0.002 (0.040) 
BetweenessMNE,r,t-5 

  
0.031 (0.035) 0.039 (0.035) 0.040 (0.051) 

ConnectednessMNE,r,t-5 
  

-0.048 (0.034) -0.052 (0.034) -0.044 (0.048) 
DegreeAMT,r,t-5 

  
0.027 (0.021) 0.021 (0.021) 0.048** (0.023) 

BetweenessAMT, r,t-5 
  

-0.044* (0.024) -0.038 (0.024) -0.099*** (0.029) 
ConnectednessAMT,r,t-5 

  
0.209*** (0.028) 0.208*** (0.028) 0.229*** (0.033) 

Degree IndBio,r,t-5 
  

-0.051* (0.026) -0.049* (0.026) -0.065** (0.028) 
BetweenessIndBio,r,t-5 

  
-0.013 (0.022) -0.017 (0.022) -0.028 (0.025) 

ConnectednessIndBio,r,t-5 
  

0.025 (0.026) 0.027 (0.026) 0.049* (0.029) 
DegreeNanotech,r,t-5 

  
-0.010 (0.029) 0.001 (0.030) 0.039 (0.033) 

BetweenessNanotech,r,t-5 
  

0.020 (0.025) 0.023 (0.025) -0.008 (0.032) 
ConnectednessNanotech,r,t-5 

  
0.048 (0.031) 0.041 (0.031) 0.053 (0.038) 

     (continued on next page) 
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     (continued from previous page) 
CountPhotonics,r,t-5XDegreePhotonics,r,t-5 

    
-0.0004 (0.0005) 

CountPhotonics,r,t-5XBetweenessPhotonics,r,t-5 
    

0.0003 (0.001) 
CountPhotonics,r,t-5XConnectednessPhotonics,r,t-5 

    
0.0003 (0.001) 

CountAdvMat,r,t-5XDegreeAdvMat,r,t-5 
    

-0.001** (0.001) 
CountAdvMat,r,t-5XBetweenessAdvMat,r,t-5 

    
0.001 (0.001) 

CountAdvMat,r,t-5XConnectednessAdvMat,r,t-5 
    

0.002 (0.002) 
CountMNE,r,t-5XDegreeMNE,r,t-5 

    
-0.0005 (0.006) 

CountMNE,r,t-5XBewtweenessMNE,r,t-5 
    

-0.007 (0.013) 
CountMNE,r,t-5XConnectednessMNE,r,t-5 

    
0.002 (0.012) 

CountAMT,r,t-5XDegreeAMT,r,t-5 
    

-0.001*** (0.0002) 
CountAMT,r,t-5XBetweenessAMT,r,t-5 

    
0.002*** (0.0003) 

CountAMT,r,t-5XConnectednessAMTt,r,t-5 
    

-0.00002 (0.001) 
CountIndBio,r,t-5XDegreeIndBio,r,t-5 

    
0.0003 (0.0003) 

CountIndBio,r,t-5XBetweenessIndBio,r,t-5 
    

0.0005 (0.0004) 
CountIndBio,r,t-5ConnectednessndBio,r,t-5 

    
-0.001 (0.001) 

CountNanotech,r,t-5XDegreeNanotech,r,t-5 
    

-0.008** (0.003) 
CountNanotech,r,t-5XBetweenessNanotech,r,t-5 

    
0.007* (0.004) 

CountNanotech,r,t-5XConnectednessNanotech,r,t-5 
    

-0.007 (0.006) 
Observations 2,841 2,841 2,841 2,841 2,841 

R2 0.791 0.793 0.804 0.805 0.811 
Adjusted r2 0.791 0.792 0.803 0.804 0.808 
F statistic 10,743.290*** 10,829.330*** 11,580.870*** 11,643.370*** 11,970.860*** 

Note: *p<0.10, **p<0.05, ***p<0.01 
  

Table Appendix D: Detailed results of the analysis. Results for each network indicator and each KET. Source: Authors’ own computations. (Knowledge complexity = 
Complexity, total number of regional patents = Pat, size of the techspace = TechSpace Size, number of KET patents = Count, degree centralization = Degree, betweenness 
centralization = Betweenness, techspace connectedness = Connectedness,  advanced materials = AdvMat, micro- and nanoelectronics = MNE, advanced manufacturing 
technology = AMT, industrial biotechnology = IndBio, nanotechnology = Nanotech, photonics = photonics, region = r, focal time period = t, previous time period = t-5) 


