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Abstract 

Over the 20th century, the geography of breakthrough innovation in the United States – defined as the 

spatial distribution of the production of patents that are both novel and impactful – underwent three 

broad changes. At the start of the 20th century, breakthrough innovation was concentrated in populous 

and knowledge-diverse metropolitan areas. By the 1930s, breakthroughs were created less frequently 

across the entire country and so their invention had a less distinct geography. The substantial creation 

of breakthroughs resumed in the 1960s and was once their invention was concentrated in large and 

knowledge metropolitan areas. However, during the latter part of the century the invention of 

breakthroughs also frequently involved long-distance collaborations between inventors. In this paper, 

I document these historical changes to the geography of breakthrough innovation and propose a model 

to explain why they occurred. The model suggests that the geography of breakthroughs is established 

by four factors: (1) the prevailing knowledge intensity of breakthrough inventions, (2) the distance-

based frictions incurred by technologies used for collaboration, (3) the distance-based frictions 

incurred by the technologies used for knowledge-sourcing, and (4) the disruptiveness of the regime of 

technological change. I generate support for the model, and conclude the paper by discussing lessons 

that the 20th century’s geography of breakthrough innovation provide for anticipating possible futures 

for the geography of innovation in the 21st century, including in the years beyond COVID-19. 
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1) Introduction 

 

Innovation is a critical determinant of the competitiveness of firms and the aggregate economic 

prosperity of the residents of cities (Nelson and Winter, 1982; Moretti, 2012; Chetty et al., 2014). For 

these reasons, a widespread effort in urban economics, economic geography, and innovation studies 

seeks to uncover the types of spatial environments that enhance creativity and promote innovation. 

Such analyses often focus on the spatial concentration of actors in regions with high population 

densities and ready access to the flows of diverse ideas that circulate in those regions (Duranton and 

Puga, 2001; Mewes, 2019; Berkes and Gaetani, 2020). This research effort, however, is challenged by 

the fact that innovation has thrived in regions with very different local agglomeration densities. No 

two places have been more influential for the development of the agglomeration-based theory of 

innovation than Jane Jacobs’ (1962; 1969) neighborhood of Greenwich Village in New York City and 

AnnaLee Saxenian’s (1994) Silicon Valley, but the territorial form of these two agglomerations are 

vastly different: while ideas spilled across Greenwich Village’s narrow streets and alleyways, Silicon 

Valley is currently a suburban landscape, and during Silicon Valley’s initial phase of innovative 

growth, the region was almost rural (O’Mara 2018). Moreover, despite the current tendency for 

innovative activities to concentrate in large and dense metropolitan areas (Balland et al., 2020), 

important historical inventions such as the airplane and the cotton gin were made outside urban 

environments (Mokyr, 1990). The rise of non-local collaboration further complicates the relationship 

between agglomeration and innovation: the average distance between co-inventors of patents tripled 

in the United States between 1900 and 2015 (Van der Wouden, 2020; Clancy 2020). The prevalence 

of innovation in urban, suburban, and rural environments, as well as the rise of inter-regional 

collaborations between inventors, demonstrates that there is not a singular territorial form of 

economic activity that optimizes creativity and innovation in the absolute sense. 

 

Nonetheless, certain types of environments have proven to be advantageous for creative invention 

during specific periods of U.S. history. Anecdotal records and patent data indicate that rural 

innovation was prominent during the 18th and 19th centuries (Mokyr, 1990; Gordon, 2016; Balland et 

al., 2020; Mewes, 2019). Both patent data and employment records suggest that a big-city advantage 

for complex, high-impact, and well-compensated innovative activities emerged at the start of the 20th 

century (Desmet and Rossi-Hansberg, 2009; Bettencourt et al., 2007; Kemeny and Storper, 2020; 

Balland, et al., 2018; Mewes, 2019; Van der Wouden, 2019; Berkes and Gaetani, 2020). The 

agreement between patent data and employment records breaks down in the middle of the 20th 

century, when patent records indicate that innovation remained concentrated in large cities (Balland et 

al., 2018; Mewes, 2019) but employment records indicate that innovative occupations spread out 

across space (Desmet and Rossi-Hansberg, 2009; Kemeny and Storper, 2020). Finally, there is 

consensus that a strong big-city advantage for innovative activities emerged at the end of the 20th 
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century (Arzaghi and Henderson, 2008; Baum-Snow et al. 2020). However, during the late 20th 

century, non-local collaboration between patent inventors also became increasingly frequent, which 

suggests that a more complex geography of innovation emerged had started to emerge (Bathelt et al., 

2004; Van der Wouden, 2019). With these caveats in mind, Table 1 synthesizes the above-listed 

sources in a timeline of the broad shifts in the spatial distribution of innovative activity across in the 

United States. 

 

Table 1: Geographical Distribution of Innovative Activity by Historical Period Suggested by 

Existing Literature 

Before 1900 Early 20th Century Mid-20th Century Late 20th Century 

Dispersed 
across space 

Strongly 
concentrated in 

major metropolitan 
areas 

Spatially dispersed high-
wage employment; 

spatially concentrated 
patenting 

Spatially concentrated high-
wage employment; spatially 

concentrated patenting in major 
metropolitan areas but involving 

inter-regional collaborations 
Source: Author’s elaboration of sources cited in the paragraph above. 

 

The timeline in Table 1 is suggestive, but it is not a rigorous account of how the relationship between 

agglomeration and innovation evolved over time. The innovative activities summarized in Table 1 –

patent production and high-wage employment – vary in terms of the extent to which they demand 

creative insight, as patents are often awarded to incremental inventions and high wages may be paid to 

non-innovative work. The lack of a harmonized definition of innovative activity across the literature 

summarized in Table 1 motivates the first objective of this paper: to systematically describe how the 

relationship between agglomeration density and breakthrough innovation in the United States evolved 

over the 20th century.  

 

The second objective of this paper is to propose a cogent explanation for why the changes to the 

geographical distribution of breakthrough innovation occurred. In this respect, I argue that four 

interacting factors collectively determine the geographical distribution of breakthrough innovation: 

the knowledge intensity of breakthrough inventions, the distance-based frictions incurred by 

collaborative technologies, the distance-based frictions incurred by knowledge-sourcing technologies, 

and the disruptiveness of the prevailing regime of technological change. Resulting geographies of 

breakthrough innovation can be understood as outcomes of these factors. For example, breakthrough 

innovation concentrates in big and knowledge-diverse cities when the knowledge intensity of 

breakthroughs is high and knowledge-sourcing technologies incur strong distance-based frictions 

because inventors need to build on a large quantity of ideas to develop breakthroughs and because 

inventors are best able to source ideas that are nearby. I elaborate on these four factors in Section 5 of 
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the paper, and I in Section 6 I empirically show that changes in these factors’ conditions are correlated 

with changes in the geography of breakthrough innovation. 

 

Sections 3 and 4 of the paper describe the steps used to carry out the main empirical analysis. In that 

analysis, I examine how the propensity for inventors residing in knowledge-diverse city-regions in the 

U.S. to create breakthrough inventions changed over time using data from 4 million patents granted 

between 1900 and 1999. I define knowledge-diverse city-regions as the Core-Based Statistical Areas 

(CBSAs) where local inventors patent in a wide array of patent classes.1 Because the geography of 

breakthrough innovation may also be non-binary (i.e. not just urban vs. rural) or non-ordinal (i.e. not 

just a continuum of local knowledge density), I also examine changes in the propensity for inventors 

engaged in non-local collaborations to invent breakthroughs. The empirical analysis generates three 

findings. First, in the early 20th century, inventors residing in knowledge-diverse regions were 

disproportionately more likely than inventors residing in non-knowledge-diverse cities (hereafter, 

knowledge homogeneous regions) to develop breakthroughs. Second, in the mid-20th century, 

inventors located in knowledge-diverse regions were no more likely than inventors in knowledge-

homogeneous regions to develop breakthroughs. Third, at the end of the 20th century, inventors that 

both resided in knowledge-diverse regions and were engaged in non-local collaborations were more 

likely than all other types of inventors to develop breakthroughs. 

 

Before moving to the empirical analysis, I begin in Section 2 by introducing a literature on 

breakthrough invention and its geography. The main empirical analysis, the description of the 

theoretical model, and an analysis of the model’s feasibility follow. Finally, in Section 7 I discuss how 

the model proposed in this study revises a common interpretation for why economic activities 

dispersed across space during the mid-20th century, and I share lessons that this historical revision 

imply for the future of the agglomeration of breakthrough innovation, including in the years after 

COVID-19.  

 

2) Invention, Breakthroughs, and Location 

 

Economic geography theory argues that strong distance-based frictions in endogenous knowledge 

production cause innovative activities to concentrate in space (Jaffe et al., 1993; Berkes and Gaetani, 

2020). Those distance-based frictions result from the loss of information incurred by long-distance 

communication technologies when actors transmit messages using audio, visual, and physical 

                                                           
1 CBSAs include all metropolitan and micropolitan areas in the United States. There are a total of 982 U.S. 

CBSAs. Empirically, define knowledge-diverse metropolitan areas using a year-specific variable, so a 

metropolitan area that is not knowledge-diverse in one year may be knowledge-diverse in later years. 
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channels across distance (Storper and Venables, 2004). Face-to-face communication, which incurs 

minimal information loss, is only possible between actors that are located in the same physical 

location, so inventors that are located in knowledge-rich locations hold an enduring advantage in 

sourcing ideas and developing of new technologies (Gertler, 2003; Storper and Venables, 2004).  

 

The advantages of location in knowledge-rich environments should be particular relevant for 

inventors working to develop breakthrough inventions. Very few of the possible ideas that inventors 

can combine qualify as breakthroughs, so inventors have to search widely amongst the set of 

combinatorial possibilities to identify the few that do (Youn et al., 2015). In this regard, there are two 

characteristics that distinguish breakthroughs from other inventions. First, breakthroughs are novel in 

that they combine existing ideas in dramatically imaginative ways (Uzzi et al. 2013; Mewes, 20019; 

Berkes and Gaetani, 2020). Second, Breakthroughs are highly-impactful in that they combine ideas 

with a high level of complementarity and so enable a large quantity of subsequent innovation 

(Fleming et al., 2001). The combinations of ideas that are both novel and complementary comprise a 

very small region of the technological search space (Fleming and Sorenson, 2001), so inventors must 

search for knowledge extensively, must source knowledge intensively, and more often than not must 

locate in knowledge-diverse environments in order to invent breakthroughs.  

 

Duranton and Puga (2001) and Berkes and Gaetani (2020) develop formal models where distance-

based search costs cause innovating actors to locate in knowledge-diverse environments. In Duranton 

and Puga’s (2001) model, innovating firms agglomerate to minimize distance-based transaction costs 

while they search for inputs that are complementary to their production process. While Duranton and 

Puga’s (2001) model makes the identification of complementary pairings of inputs and outputs 

endogenous to the process of agglomeration, they exogenously introduce novelty in their model by 

assuming that all firms enter the market with a new production process. Berkes and Gaetani’s (2020) 

model explains the creation of novelty in densely populated cities through the increased exposure of 

inventors in dense cities to intra-industry spillovers. While their model makes the creation of novelty 

endogenous to the provision of local knowledge diversity, the model does not describe how 

complementary ideas are generated locally because all ideas in the model are made available to every 

firm after they are invented, regardless of a firm’s location. Moreover, in Berkes and Gaetani (2020), 

novel combinations of ideas are locally generated, but complementary combinations are universally 

generated. Therefore, neither Duranton and Puga’s (2001) nor Berkes and Gaetani’s (2020) model 

generates an explicit prediction for how distance-based frictions affect the search for combinations of 

ideas that are both novel and complementary. However, the two models collectively propose that the 

creation of novel and complementarity combinations are positive functions of the heterogeneity of 

ideas that circulate in local environs. 
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While there is widespread interest in the drivers of breakthrough innovation, its geography has not 

been extensively studied. Two exceptions are Grashof et al. (2019) and De Noni and Belussi (2021).  

Grashof et al. (2019) study the creation of novel and impactful patents in Germany and find that these 

patents are disproportionately created by firms that are located geographically inside innovative 

clusters but whose inventors are in the periphery of their clusters’ collaborative networks.2 From these 

results, the authors conclude that both local and non-local interactions between inventors are 

important for the creation of breakthroughs. De Noni and Belussi (2021) study the creation of novel 

and impactful patents in regions of the European Union between 2008 and 2014 and find that they are 

most frequently invented in regions with multiple but related industrial specializations. The authors 

interpret the benefits of specialization within co-agglomerated indutries as an outcome of the 

extensive knowledge heterogeneity that can be found within industries. Therefore, while De Noni and 

Belussi’s (2021) conceptualization of the diversity of knowledge in regions is more nuanced than a 

simplistic aggregate measure of specialization or diversity, their results are consistent with the view 

that the propensity for inventors to create breakthroughs increases when they have access to a diverse 

array of atomistic knowledge units. 

  

Additional studies have separately examined the geographical distribution of the creation of novel 

inventions and impactful inventions, but they have not studied the geographical distribution of novel 

and impactful in conjunction. Balland et al. (2020) show that overall patenting in the United States is 

concentrated in populous metropolitan areas and that this association is stronger for novel patents.3 

Mewes (2019) also studies the spatial concentration of overall patenting and novel patenting in the 

U.S. and finds both types of innovation to be concentrated in metropolitan areas with diverse local 

knowledge stocks. However, neither Balland et al. (2020) nor Mewes (2019) analyze the impact of 

novel patents on subsequent invention. Berkes and Gaetani (2020) perform a similar analysis using 

U.S. counties as their unit of observation. In addition, Berkes and Gaetani (2020) test the overall 

relationship between the novelty of patents and the impact of patents, measured using patent forward 

citation counts. They find that novel patents in the U.S. are disproportionately created in counties with 

high population densities and that novel patents are on average more impactful than non-novel 

inventions in terms of spurring subsequent innovation. However, Berkes and Gaetani (2020) do not 

analyze whether patents which are both novel and impactful are more often created in high-density 

counties. Finally, Castaldi et al. (2015) examine the knowledge-based characteristics of U.S. states 

                                                           
2 Grafhof et al. (2019) refer to breakthrough inventions as “radical inventions”. They define “radical inventions” 

as patents that are both novel and impactful, which is the definition of breakthroughs adopted by this paper. 
3 Balland et al. (2020) define novel patents as “complex” patents. Their measurement of “complexity”, which 

measures the newness of the subclassification codes on patents, closely resembles this paper’s definition of 

novelty. 
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that are more likely to produce high-impact patents, measured again using patent forward citation 

counts. They find that inventors in states with diverse stocks of circulating unrelated ideas tend to 

produce high-impact inventions more frequently. However, Castaldi et al., (2015) do not analyze the 

novelty content of these patents. In addition, Castaldi et al.’s (2015) study is at the state level, within 

which population density and local knowledge diversity substantially varies. Thus, while each of these 

four studies of U.S. invention suggest that agglomeration economies are important for overall 

patenting, novel patenting, and high-impact patenting, they do not analyze the relationship between 

agglomeration and the production of patents that are both novel and impactful. In addition, the two 

studies that do analyze the geography of the production of patents that are both novel and impactful 

(Grashof, et al., 2019; De Noni and Belussi, 2021) are focused on European regions. As a result, the 

geography of breakthrough innovations in the U.S. has yet to be systematically described. 

 

In addition to these issues related to the identification of breakthrough inventions, the geography of 

breakthrough innovation may contain important variations across time. As discussed earlier, the 

advantages that knowledge-diverse regions provide for the creation of breakthroughs is a function of 

the knowledge intensity of breakthrough innovation and the distance-based frictions incurred by the 

technologies used to collaborate and source knowledge. The states of these conditions are likely to 

change over time as the nature of the process of innovation and the state of communication 

technologies evolves (Lamoreaux and Sokoloff, 1996; Wuchty et al., 2007; Storper and Leamer 

2001). In addition, the disruptiveness of the dominant regime of technological change may change 

over time. Schumpeter (1934; 1942) proposes that there are times when technological change 

advances incrementally and that there are times when it advances disruptively. During an incremental 

regime, few if any breakthrough inventions are introduced so the production of breakthroughs should 

not have a distinctive geography.  

 

Two historical studies analyze the geographical concentration of innovation in the U.S. over an 

extended time period (Mewes, 2019; Balland et al., 2020). Both studies use USPTO patent records to 

measure innovative output and find that the spatial concentration of overall patenting increased 

between 1850 and 2000. While Balland et al. (2020) find that the increased concentration is even 

stronger for novel patents (measured by the age of the subclassification codes assigned to patents), 

Mewes (2019) does not identify a significant difference between increased agglomeration of overall 

patenting and novel patenting using a slightly different measure of novelty. Again, neither study 

examines changes in the geographical concentration of breakthrough inventions.   

 

Finally, there is growing recognition that the geography of innovation is more complex than a binary 

typology of spatial concentration or dispersion or an ordinal gradient spanning the two. In particular, 

non-local collaboration allows inventors to bridge separate inventive milieus, experiment with 
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underexplored combinatorial possibilities, and possibly introduce high-impact inventions (Bathelt et 

al. 2004; Esposito and Rigby, 2018). While past studies have documented the increase in the 

prevalence of non-local collaborations (van der Wouden, 2020; Clancy, 2020), the relationship 

between non-local collaboration and the invention of breakthroughs has not been systematically 

studied. 

 

3) Methods 

3.1) Identifying Breakthrough Inventions 

 

Breakthroughs inventions are the subset of inventions that are both novel and highly impactful. To 

empirically identify breakthroughs, one must assess individual inventions along both of these 

dimensions. Past research has defined novel inventions as those which generate entirely new ideas or 

recombine existing ideas in new ways. To this end, Uzzi et al. (2013) compute the atypicality of the 

knowledge combinations in scientific articles using z-scores, which calculate the extent to which each 

combination of knowledge units in a given invention deviates from the combinations inventors have 

made in the past. Kim et al. (2016) and Mewes (2019) apply this method subclassification codes listed 

on patents, taking those subclass codes as indicators of the knowledge components in each invention. 

Berkes and Gaetani (2020) apply z-scores to the citations made by patents to a similar effect. 

Atypicality, measured at the pairwise level between all ideas combined in an invention, can be 

aggregated to the invention level to compute the overall novelty of an invention. 

 

In this study, I identify novel inventions by assessing the atypicality between their internal elements. I 

calculate the atypicality of all combinations of knowledge units in each patented invention by 

calculating z-scores for all USPTO utility patents issued between 1900 and 1999.4 I use the coarse-

grained subclasses for this purpose, at which scale there are about 16,000 unique USPC subclasses 

(Kim et al. 2016). Because z-scores require a sufficient pre-history of patenting to accurately measure 

the mean frequency of the combination of any two subclasses, I compute Z-scores for the 

combinations of subclasses on patents granted starting in 1900 (Mewes 2019). The z-score of the 

combination of subclass i with subclass j on a patent is given by Equation 1: 

 

(1) 𝑍𝑖,𝑗 = 𝑜𝑖,𝑗−𝑢𝑖,𝑗

𝜎𝑖,𝑗
 

 

                                                           
4 I source raw patent data and their USPC subclasses from the publicly-accessible Patents View website: 

https://www.patentsview.org/ 
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In Equation 1, 𝑜𝑖,𝑗is the number of past co-occurrences of subclasses i and j on all previously-granted 

patents. The term 𝑢𝑖,𝑗 gives the expected number of past co-occurrences of subclasses i and j if 

inventors were to combine subclasses randomly. Its value is computed as follows: 

 

(2) 𝑢𝑖,𝑗 = 𝑛𝑖∗𝑛𝑗

𝑁
 

 

In Equation 2, 𝑛𝑖 and 𝑛𝑖 are the respective cumulative number of patents that contain subclasses i and 

j on all prior patents, and N is the cumulative count of all prior patents. 

 

Finally, the variance of the subclass pairing, 𝜎𝑖,𝑗
2 , is given by Equation 3:  

 

(3) 𝜎𝑖,𝑗
2 = 𝑢𝑖,𝑗 (1 − 𝑛𝑖

𝑁
) (𝑁−𝑛𝑗

𝑁−1
) 

 

𝑍𝑖,𝑗 is positive when two subclasses are combined more frequently than expected given a random 

process, and negative when two subclasses are combined less frequently than expected given a 

random process. To generate a straightforward measure of the extent to which a combination is 

atypical, I follow Mewes (2019) and define atypical combinations as those with negative Z-scores. In 

addition, I define novel patents as those that introduce one or more atypical combinations of 

subclasses. I define all patents which do not introduce an atypical combination of subclasses as a 

“normal” patent. 

 

The second criterion of breakthroughs is that they have outsized impact on subsequent innovation. To 

identify high-impact inventions, researchers often count the number of forward citations received by 

patents (Cremers et al., 1999; Hall, Jaffe, and Trajtenberg, 2001). Esposito (2020) develops a related 

approach by tracing the flow of knowledge between individual patents based on the co-occurrence of 

combinations of subclassification codes found on different patents. There are two advantages to the 

latter method. First, citation records are unavailable for patents granted before 1947 (Akcigit, et al. 

2017) but the subclass codes used by Esposito’s (2020) method are available for all USPTO utility 

patents starting in 1836. Second, the same subclassification codes used to compute patent impact can 

also be used to assess the novelty profile of patents using Z-scores (Kim et al., 2016; Mewes, 2019). 

Thus, subclassification codes allow the novelty and impact of individual patents to be assessed using a 

common data input. The one exception is the small number of patents that are assigned to just one 

subclass. Because patents assigned to a single subclass do not contain any combinations of subclasses, 

their novelty cannot be measured and I must omit them from the study. 
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To compute the impact of individual patents on subsequent invention, I follow the method of Esposito 

(2020) to count the number of subsequent inventions that draw knowledge from each patent. I deviate 

slightly from the method of Esposito (2020) by using course-grained USPC subclassification codes 

instead of the most-disaggregated codes. I make this change because course-grained subclasses allow 

me to use the same classification scheme across the entire analysis. In keeping with the method of 

Esposito (2020), I reduce the computational intensity of the task by restricting my dataset to the first 8 

subclasses on patents. While less than 5% of patents are affected by omitting these excess subclasses, 

taking this subset requires me to restrict the sample of patents that I analyze to patents with 7 of fewer 

subclasses. After using the method described in Esposito (2020) to predict the flow of knowledge 

between patents, I compute the impact of patents by counting the number of patents that draw 

knowledge from each focal patent within 10 years of the grant year of each focal patent. Because my 

dataset ends in 2010, the 10-year window for forward citations allows me to compute the impact of 

patents granted up to 1999 without right truncation. 

 

Table 2 presents a typology of patents that vary in terms of impact and novelty. In the subsequent 

analyses I treat the number of knowledge-based descendents of a patent as a continuous variable. 

However, for simplicity in Table 2 I convert patent impact into a binary measure by defining high-

impact inventions as those that are in the top decile of the impact distribution for the same cohort 

year. The first quadrant of the 2x2 matrix describes the patents that do not introduce novelty and have 

low impact. Patents of this type are failed conservative experiments and they account for 72.4% of all 

USPTO utility patents granted between 1900 and 1999. The second quadrant of the matrix describes 

the inventions that do not introduce novelty but are nonetheless highly impactful. These incremental 

improvements account for 5.8% of USPTO patents granted 1900-1999. The third quadrant describes 

novel inventions that have low impact. These failed radical experiments account for 19.1% of USPTO 

patents 1900-1999. Finally, quadrant 4 describes the small percentage of inventions that are both 

novel and highly-impactful. These breakthrough inventions are rare, comprising just 2.7% of all 

USPTO patents 1900-1999. They are created when inventors deviate from the status quo in useful 

ways.  
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Table 2: Typology of Inventions by Novelty and Impact 

 Low-Impact High-Impact 

Normal 

(1) 
Failed conservative 

experiments 
 

72.4% of Patents 

(2) 
Incremental 

improvements 
 

5.8% of Patents 

Novel 

(3) 
Failed radical 
experiments 

 
19.1% of Patents 

 

(4) 
Breakthroughs 

 
 

2.7% of Patents 
 

Note: Dataset continues all USPTO utility patents assigned between 2 and 7 subclasses and granted between 

1900 and 1999. High-Impact patents are those in the top decile of their cohort year in terms of impact on 

subsequent invention. Because of integer cutoffs, the High-Impact column does not sum to 10%. 

 

3.2) The Geography of Breakthroughs 

 

After classifying each patent based on the typology in Table 3, I link patents to the metropolitan areas 

where they are invented. To do so, I use place-of-residence data provided van der Wouden (2020) for 

all U.S. inventors between 1836 and 1975, and I use place-of-residence data publicly available on the 

PatentsView website for all U.S. inventors between 1976 and 1999.5 I use constant-boundary 2015 

definitions of metropolitan areas for this purpose. Because the innovative potential of inventors is 

expected to be greater for inventors residing in knowledge-diverse metropolitan areas (Duranton and 

Puga, 2001; Berkes and Gaetani, 2020), I measure the local knowledge diversity of the regions in 

which each patent is produced. I measure local knowledge diversity by counting the number of unique 

USPC coarse-grained subclassification codes assigned to the patents produced by inventors that reside 

in each core-based statistical area (CBSA) in a given year. Next, I transform the raw counts of local 

knowledge diversity into a binary variable by defining knowledge-diverse CBSAs as those where 

inventors produced patents in 10% or more of the USPC course-grained subclassification codes 

assigned to all U.S. patents in a given year. All CBSAs that do not meet the diversity criterion are 

labeled “knowledge-homogeneous cities”. For example, in 1950 the USPTO assigned patents using 

                                                           
5 van der Wouden’s (2020) dataset provides better geographical coverage for historical patents invented by 
multiple co-inventors than the publicly available dataset, HistPat (Petralia, et al. 2016), 
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7,454 unique course-grain subclass codes, so in 1950 diverse CBSAs were those that produced patents 

with at least 745 unique subclasses. In 1950, 13 CBSAs met the knowledge diversity criterion.6  

 

A core argument of this paper is that the generation of novelty is not important per se, because many 

novel inventions have minor downstream impact. Indeed, I find that there is no between the 

production of novelty and the knowledge diversity of the regions where those patents are invented in 

Figure 1. I produce Figure 1 by aggregating the total number of patents produced, the number of novel 

patents produced, and the number of high-impact patents produced to the CBSA level. The figure 

shows that the concentration of total patenting in knowledge-diverse cities (solid line) is identical to 

the concentration of novel patenting in knowledge-diverse cities (dashed line). Thus, my data affirm 

the conclusion of Mewes (2019), that novel patenting is no more concentrated in knowledge-diverse 

cities than overall patenting is. On the other hand, Figure 1 shows that high-impact patenting (dotted 

line, defined as in Table 3) is more concentrated in knowledge-diverse cities than is overall patenting. 

Because these results show that novelty does not benefit from location in knowledge-diverse regions 

but the creation of high-impact inventions does, local knowledge may help inventors less for finding 

novel combinations of ideas than for finding complementary combinations of ideas. Therefore, in the 

proceeding empirical analysis, I take the geographical distribution of the production of novelty as a 

given, and examine how the impact of novel patents varies with local knowledge. 

 

Figure 1: Percentage of Patents Produced in Knowledge-Diverse Cities by Patent Type 

 

                                                           
6 In 1950, the knowledge-diverse CBSAs were (in descending order), New York, Chicago, Los Angeles, 

Philadelphia, Cleveland, Boston, Detroit, Pittsburgh, Cincinnati, San Francisco, Washington DC, Milwaukee, 

and Bridgeport CT. 
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4. Results: The Geography of Breakthrough Innovation 

 

For the reasons discussed above, I examine changes in the benefits of local knowledge diversity on 

the invention of breakthroughs by testing whether the average impact of novel patents varies with 

local knowledge diversity. I begin to perform this examination in Figure 2 by plotting changes in the 

average impact of four types of patents over time: novel patents invented in knowledge-diverse cities 

(Nov | Div), novel patents invented in knowledge-homogeneous cities (Nov | Homog), normal patents 

invented in knowledge-diverse cities (Norm | Div), and normal patents invented in knowledge-

homogeneous cities (Norm | Homog). Because there are about 4 million observations in the dataset, it 

is infeasibly to plot a scatterplot so instead I plot best-fit lines with 95% confidence intervals. The 

large number of observations also renders the most common moving-average fit line (LOESS 

regression) infeasible, so I produce the fit lines using a Generalized Additive Model (GAM) with a 

cubic spline smoothing parameter (Wood et al. 2017). I use this same plotting method for all 

subsequent figures. 

 

Figure 2: Average Patent Impact by Novelty and Knowledge Diversity of City of Invention 

 
 

Figure 2 generates three inferences. First, across all years, novel patents invented in knowledge-

diverse cities (Nov|Div) were on average the most impactful type of patents, followed by novel 

patents invented in knowledge-homogeneous cities (Nov|Homog) inventions. Second, the average 

impact of all types of inventions increased over time. Third, the increases in average impact were 

larger in knowledge-diverse cities: the impact of Nov|Div patents increased relative to Nov|Homog, 

and the impact of Norm|Div increased relative to Norm|Homog.  

 



  

14 
 

The increase in the average impact of Nov|Div patents relative to Nov|Homog patents suggests that 

the invention of breakthrough patents increasingly concentrated in knowledge-diverse cities over 

time. However, there are two reasons to exercise caution when interpreting this raw data. First, the 

large increases in average impact for all types of patents over time make it difficult to identify 

differential trends. Second, patents vary in terms of the number of subclasses assigned to them. 

Patents with more subclasses have higher impact values by virtue of their larger subclass count. The 

latter consideration arises because the method used to identify knowledge-based descendants searches 

for overlapping subclasses and combinations of subclasses on patents (Esposito 2020). Patents 

assigned many subclass codes therefore have more opportunities for knowledge-based descendants. 

 

To take these two considerations into account, I compute the predicted impact of patents by adjusting 

for the year a patent is granted and the number of subclasses assigned to it. To compute predicted 

impact, I regress raw patent impact against a year*subclass count factor variable. I collect the 

residuals from the regression and plot them against the each patents’ grant year, broken out by patent 

type to derive predicted impact values by patent type. The regression model used to predict these 

impact values is given by Equation 4: 

 

(4) 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝑌𝑒𝑎𝑟𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝐸𝑝 

 

In the dataset, there are 99 years and the number of subclasses assigned to patents ranges from 2 to 7, 

creating 594 unique values of the interaction factor variable. The predicted impact values, broken out 

by patent type and CBSA type, are presented in Figure 3. 
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Figure 3: Predicted Patent Impact by Novelty and Local Knowledge Diversity of CBSA of 

Invention 

 
Note: The regression used to estimate predicated impact is given in Equation 4. 

 

Figure 3 shows that the impact of patents with different levels of novelty and invented in cities with 

different levels of knowledge diversity had three distinct periods during the 20th century. The first 

period was 1900 to 1930. During this period, novel patents were more impactful than normal patents. 

In addition, starting in 1910 novel patents invented in knowledge-diverse cities were significantly 

more impactful than novel patents invented in knowledge-homogeneous cities. The second period was 

1930 to 1965, during which the predicted impact of novel inventions declined. By 1950, novel patents 

invented in knowledge-diverse cities were no more impactful than normal patents, and novel patents 

invented in knowledge-homogeneous cities were much less impactful than normal patents. The third 

period was 1965 to 1999, during which the predicted impact of novel inventions made in knowledge-

diverse increased above that of normal patents. In addition, the predicted impact of novel patents 

invented in knowledge-homogeneous cities declined. This latter result shows that by the end of the 

20th century, breakthrough innovation was concentrated in knowledge-diverse cities. 

 

While Figure 3 shows that breakthrough innovation concentrated in knowledge-diverse cities at the 

end of the 20th century, the propensity for teams of inventors to collaborate non-locally also increased 

during the study period (Van der Wouden, 2019; Clancy, 2020). The increase in non-local 

collaboration suggests that the classical model of local innovation resulting from high distance-based 

communication costs became more complex (c.f. Duranton and Puga, 2001; Storper and Venables, 

2004; Berkes and Gaetani, 2020). Therefore, I examine the relationship between the engagement of 

inventors in non-local collaborations and the creation of breakthroughs in Figure 4. To do so by 

comparing the average impact of patents invented by inventor-teams located in single CBSAs and in 
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multiple CBSAs. In addition, I decompose inventor-teams based on the knowledge diversity of their 

home cities by differentiating between multi-locational teams that reside in knowledge-diverse and 

knowledge-homogeneous cities. To ease interpretation, I momentarily omit all inventor-teams with 

teammates that resided in both knowledge-diverse and knowledge-homogeneous cities (I analyze 

these mixed teams in Appendix A). Finally, I omit all patents invented by lone inventors. 

 

Figure 4: Average Patent Impact of Collaborative Patents by Type of Collaboration 

 
 

Figure 4 shows that the average impact of novel patents produced by teams in knowledge-diverse 

cities and in knowledge-homogeneous cities were statistically identical until 1960. In addition, before 

1980 there was no significant difference in the average impact of novel patents produced by single-

location or multi-locational teams. However, after 1980 novel patents produced by teams in 

knowledge-diverse cities became significantly more impactful than novel patents produced by single-

location teams in knowledge-diverse cities or by teams of any type located in knowledge-

homogeneous cities. The theoretical model proposed in Section 5 will discuss how this spatial pattern 

can emerge when the state of collaborative and knowledge-sourcing technologies fit certain 

conditions. 

 

Finally, in Figure 5 I display the predicted impact of patents based on their novelty, the knowledge 

diversity of their inventors’ CBSAs, and whether their collaborative teams are multi-locational. As 

before, I compute the predicted impact of patents by regressing patent impact against the 

Year*NrSubclasses factor variable as in equation 4 and aggregate the residuals by year and patent 

type. 
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Figure 5: Predicted Patent Impact of Collaborative Patents by Type of Collaboration 

 
Note: Regression to estimate predicted impact is given in equation 4. 

 

Figure 5 shows that the predicted impact of all types of collaborative patents was identical until 1975. 

After 1975, the predicted impact of novel patents created by multi-locational teams residing in 

knowledge-diverse cities increased far above the predicted impact of any of the other types of patent. 

Thus, Figure 5 shows that the increasing concentration of breakthrough innovation in knowledge-

diverse cities documented in Figure 3 was driven by inventors that collaborated with non-local 

teammates. Moreover, breakthrough innovation at the end of the 20th century was most common in 

large innovative clusters connected to other distant large innovative clusters.  

 

5. Interpretation of the Causes of Changes in the Geography of Breakthroughs 

 

What explains the changes in the geography of breakthrough inventions documented in the text 

above? In this section, I propose that the geography of breakthrough innovation is influenced by the 

conditions of four factors: (1) the disruptiveness of the regime of technological change, (2) the 

knowledge-intensity of breakthrough invention, (2) the state of long-distance collaboration 

technology, and (3) the state of long-distance knowledge-sourcing technology.  

 

The disruptiveness of the regime of technological change captures the extent to which technological 

knowledge advances through the creation of novel inventions versus normal or incremental ones 

(Schumpeter, 1934; Schumpeter, 1942). During periods of time when the disruptiveness of the regime 

of technological change is high, a large number of breakthroughs are created to the economy and so 
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their invention can take on a distinct geography. When the disruptiveness of the regime of 

technological change is low, few breakthroughs are developed so their spatial distribution is indistinct 

– or more technically, undefined. 

 

The knowledge intensity of breakthrough inventions is the prevailing returns that sourcing a larger 

number of knowledge-based inputs has on the creation of high-impact novelty (Wuchty, et al. 2007; 

Jones, 2009; Balland et al., 2018; Bloom et al., 2020). When the knowledge intensity of 

breakthroughs is high, the impact of novel inventions responds positively to the use of a large number 

of ideas when creating them. 

 

Long-distance collaboration technology refers the devices used by inventors to collaborate with co-

inventors that reside in other regions, such as letters, email, videoconferencing, and long-distance 

travel. The robustness of long-distance collaboration technology is defined as its information loss 

relative to face-to-face collaboration. Face-to-face collaboration suffers no minimal information loss 

but it is only readily viable for inventors that reside in the same region (Storper and Venables, 2004). 

One might imagine very robust long-distance collaboration technologies are perfect substitutes for 

face-to-face communication, which would allow inventors are able to create novelty through 

collaborations across distance with no loss in impact. However, it is uncertain if long-distance 

collaboration technologies will ever advance to that point. 

 

Long-distance knowledge-sourcing technology refers to the items inventors use to source ideas from 

non-local regions in which they do not have active collaborators. These items include scientific 

articles, patent documents, and physical technological devices that can be reverse-engineered. The 

robustness of long-distance knowledge-sourcing technologies can be assessed based on the 

information lost when sourcing knowledge across long distances relative to the information lost when 

inventors source local knowledge. Inventors that source knowledge locally benefit from physical 

presence and embeddedness in an environment of shared norms, so the information lost in sourcing 

local knowledge is less than than the information lost when sourcing non-local knowledge. (Gertler, 

2003). One might imagine fully robust long-distance knowledge-sourcing technologies that are 

perfect substitutes for local knowledge sourcing; however, such a state of knowledge sourcing 

technologies also has not yet come to pass. 

 

The four factors, described above, interact to produce distinctive geographies of breakthrough 

innovation. To begin to understand how they do so, I first consider changes in the disruptiveness of 

the regime of technological change. Only when the regime of technological change is disruptive are a 

sufficient number of breakthroughs introduced to the economy for their invention to have a defined 
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geography. Therefore, limit the subsequent discussion to the changes in the geography of 

breakthroughs under the condition that the regime of technological change is disruptive. 

 

When the regime of technological change is disruptive, the geography of breakthrough innovation 

depends on how much knowledge inventors need to access in order to create breakthroughs and the 

distance-based frictions they incur when accessing that knowledge. Notably, when the knowledge 

intensity of breakthroughs is low, the effective cost of accessing knowledge across long distances also 

must be low. Therefore, whenever the knowledge intensity of breakthroughs is low, we might 

anticipate that breakthrough innovation will be dispersed across space. These conditions may describe 

U.S. invention during the 19th century, when innovation was less complex (Balland et al. 2020) and 

anecdotal evidence indicates that many breakthroughs were invented in the countryside (Mokyr, 

1990). However, when the knowledge intensity of breakthroughs is high, the geography of their 

production is determined by the difficulties inventors face in accessing distant knowledge. When 

inventors face difficulty in accessing distant knowledge, they will agglomerate when they developing 

breakthroughs, resulting in a strong spatial concentration of breakthrough innovation.  

 

The most interesting outcomes of the model occur when the technologies inventors use to access non-

local knowledge, namely long-distance knowledge sourcing technologies and long-distance 

collaborative technologies, improve asymmetrically. When the knowledge intensity of breakthroughs 

is high, long-distance knowledge sourcing technologies are strong, and long-distance collaboration 

technologies are weak, innovation will disperse across space because inventors are able to source all 

ideas across distance with relative ease. When the knowledge intensity of breakthroughs is also high 

but long-distance knowledge sourcing technologies are weak and long-distance collaborative 

technologies are strong, the geography of breakthroughs takes a multi-nodal layout across space, with 

core innovative hubs connected by long-distance collaborative networks. This outcome arises because 

productive long-distance collaborative relationships require shared trust, norms, and expectations that 

are highly selective between individuals and require extensive investments of time and attention. 

These high costs to relationship building imply that inventors will only invest in building relationships 

with others that are located in regions with rich local knowledge environments. Moreover, when 

inventors use social proximity to overcome the distance-based frictions of sourcing knowledge 

(Boschma, 2005), the geography of the resulting inventions will be multi-nodal.  

 

In Table 3, I summarize the geography of breakthrough innovation in a disruptive regime of 

technological change under different levels of knowledge-intensity and different strengths of long-

distance collaborative and knowledge-sourcing technologies.   
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Table 3: Geography of Breakthroughs in Disruptive Regimes of technological Change 

Long-Distance 

Collaborative 

Technologies 

Long-Distance 

Knowledge-Sourcing 

Technologies 

Knowledge-Intensity of 

Breakthroughs 

Low High 

Weak 
Weak Dispersed 

Perfectly 

Concentrated 

Strong Dispersed Dispersed 

Strong 
Weak Dispersed Multi-Nodal 

Strong Dispersed Dispersed 

 

6. Empirical Assessment of the Theoretical Model  

 

How did the state of the disruptiveness of the regime of technological change, the knowledge intensity 

of breakthroughs, and the distance-based frictions incurred by collaborative and learning technologies 

evolve over the 20th century? In this section, I review evidence from patent records to understand how 

these three factors that influence the geography of breakthrough innovated changed over the study 

period. 

 

I begin by studying the evolution of the knowledge intensity of breakthrough innovation, which I 

define as the additional knowledge sources for helping inventors to create high-impact novelty. To 

perform this analysis, I examine if the average impact of patents with many knowledge-based parents 

increased more than the average impact of patents with few knowledge-based parents over the 20th 

century. To measure the number of prior knowledge sources that each patent draws ideas from, I 

compute the in-degree of patents using the graph of knowledge flows described in Section 2. To 

simplify the analysis, I transform the number of knowledge sources used by the inventors of each 

patent into a binary variable by defining patents with “many knowledge-based parents” as the patents 

in the top decile of their grant year cohort in terms of the number of prior patents they draw 

knowledge from. I define patents as having “few knowledge-based parents” if they fall in the bottom 

90% of their grant year cohort.  

 

As in the previous analyses, I adjust for the relationships between the number of subclasses on a 

patent and the year it is granted by regressing patent impact against a Decade*SubclassCount factor 

variable, as in Equation 4. I collect the residuals from the model, aggregate them to groups based on 

the novelty and knowledge-intensity of patents, estimate GAM-function fit lines to these predicted 

impact values, and plot those fit lines with 95% confidence intervals by year. The resulting fit lines 

are shown in Figure 6. A similar figure using raw impact values is presented in Appendix B. 
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Figure 6: Predicted Patent Impact by Novelty and Number of Patent Parents 

 
Note: Regression to estimate predicted impact is given in Equation 4. 

 

In Figure 6, the predicted impact of novel patents with many patents (green line) is slightly but 

statistically-significantly higher than the predicted impact of novel patents with few patents (orange 

line) until about 1965. After that date, the predicted impact of novel patents that source knowledge 

from many parent patents increases sharply while the predicted impact of novel patents with few 

parents declines. Therefore, I conclude that knowledge intensity of breakthroughs was moderate until 

1965 but very high after 1965. The relationships identified in Figure 6 are also present within 

technological fields, as shown in Figure B2 in Appendix B which illustrates the predicted impact of 

the four types of patents with the inclusion of an aggregate technology class fixed effect.  

 

Next, I investigate changes in the strength of long-distance communication technologies. As discussed 

earlier, there are two types of long-distance communication technologies: long-distance collaboration 

technologies, and long-distance knowledge-sourcing technologies. I measure the strength of each type 

of long-distance communication technology based on the revealed ability for inventors to create high-

impact novelty while collaborating with distant teammates or while sourcing knowledge from distant 

environs. Figure 5 in Section 4 presented evidence that long-distance collaborative technology was 

weak before 1960 but grew stronger thereafter. In particular, the average impact of novel patents 

invented by multi-locational teams in knowledge diverse cities climbed well above that of novel 

patents invented by single-location teams starting in the 1960s.  
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To assess the strength of long-distance knowledge-sourcing technologies, I test whether novel patents 

created by inventors who source knowledge locally are more impactful than novel patents created by 

inventors who source knowledge non-locally. In administering this test, I define = local knowledge 

sourcing as knowledge sourced from locations in which multi-locational teams have on-the-ground 

collaborators. Only one teammate needs to reside in a given CBSA for the knowledge sourced from 

that CBSA to be considered local. To aggregate this pairwise patent-patent level indicator to the 

individual patent level, I compute whether an above-average number of the knowledge sources used 

in a given patent were sourced from CBSAs in which the patent’s inventors reside; I define patents 

that fit this condition as “patents that source knowledge with proximity”.7 Patents that source a below-

average quantity of knowledge from CBSAs in which the patents’ inventors reside are defined as 

“patents that source knowledge without proximity”. As in the previous analyses, I account for changes 

in the average impact of patents across time and across patents assigned a different number of 

subclasses by regressing the impact of patents against a Year*NrSubclasses factor variable as in 

equation 4 to compute predicted impact. I plot the predicted values, aggregated by patent type, in 

Figure 7. 

 

Figure 7: Predicted Patent Impact by Novelty and Extent to which a Patent Sources Knowledge 

with Proximity 

 
Note: Regression to estimate predicated impact is given in equation 4. 

 

                                                           
7 I re-compute the average number of local knowledge sources on patents each each year, so in any given year 
half of all granted patents are defined as patents that source knowledge with proximity. 
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Figure 7 indicates that novel patents using knowledge sourced with proximity were more impactful 

than novel patents using knowledge sourced without proximity during the full study period. 

Moreover, the green line is always significantly above the orange line. The persistent advantage of 

sourcing knowledge with proximity for creating high-impact novel patents is also robust to the 

inclusion of fixed effects for the aggregate classification code of patents (Appendix C). These results 

suggest that minimal progress was made over the 20th century to improve the ability for inventors to 

source knowledge from locations where they do not have active collaborators. When viewed 

alongside Figure 5’s finding that breakthroughs were disproportionately produced by multi-locational 

teams toward the end of the 20th century, Figure 7 suggests that multi-locational teams have emerged 

in response to the inability for inventors to source knowledge from regions where they do not have 

collaborators. 

 

Finally, I document changes in the disruptiveness of the regime of technological change over the 20th 

century. I measure the disruptiveness of the technological change regime by comparing the average 

impact of novel patents relative to that of normal patents. Again, I control for changes in the impact of 

patents across decades and across patents with different numbers of subclass codes by plotting 

predicted impact values using equation 2. The predicted impact values, presented in Figure 8, show 

that novel patents were more impactful than normal patents during the early 20th century. Thereafter, 

the average impact of novel patents decline and eventually fall below that of normal patents. 

 

Figure 8: Predicted Patent Impact by Novelty 
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The decline in the impact of novel patents relative to normal patents between 1900 and 1950 indicates 

that technological change was less disruptive during the middle and end of the 20th century. The low 

level of disruptiveness at the end of the century seems at odds with the earlier finding that the average 

impact of novel patents invented in knowledge-diverse cities rebounded during the 1960s (Figure 5). 

One possible explanation to reconcile these two findings is that the novelty produced in knowledge-

diverse at the end of the 20th century was qualitatively distinctive. Therefore, to test whether inventors 

in knowledge-homogeneous cities developed fundamentally different types of novelty than did 

inventors in knowledge-diverse cities, I analyze how the average impact of novel inventions evolved 

relative to normal inventions within broad technological fields. If inventors in knowledge-

homogeneous cities develop a large quantity of low-impact novelty in technological fields that are 

generally low impact, then controlling for the mean impact of each technological field will project 

these values out of the data. In Figure 9, I plot the residuals of a model of patent impact that adds 

USPC primary class fixed effects to the normal control variables of Year*NrSubclasses fixed effects. 

The regression model is given by equation 7, where 𝐹𝐸𝐶438 designates fixed effects at the primary 

class level, at which scale there are 438 unique classes: 

 

(7) 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝑌𝑒𝑎𝑟𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝐹𝐸𝐶438 + 𝐸𝑝 

 

Figure 9: Predicted Patent Impact by Novelty with Aggregate Technology Class Fixed Effects 

 
Note: The regression used to estimate predicated impact is given in Equation 7. 

 

In Figure 9, the average impact of novel patents declines during the first several decades of the 

century, bottoms out in 1955, and jumps after 1985. The relationship presented in Figure 9 is robust to 
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the use of a more detailed course-grained subclass-specific fixed effect (Appendix D). Contrasting 

Figure 9 with Figure 8 indicates that the regime of technological change became very disruptive 

within technological classes at the end of the 20th century, but that disruption did not extend beyond 

technology classes. Moreover, while many novel and impactful technologies were introduced between 

1985 and 1999, they were not sufficiently impactful to shift the entire economy into a disruptive 

regime of technological change. This finding is similar to Gordon’s (2016) inference that the 

information technology revolution failed to revolutionize a broad an expanse of the economy. Thus, 

we may conclude from Figure 9 that a narrow sector of the economy became disruptive between 1985 

and 1999. 

 

To conclude the analysis, in Table 4 I assemble together the observed state of the knowledge-intensity 

of breakthrough innovation, the state of collaborative technologies and learning technologies, and the 

disruptiveness of the regime of technological change to generate the empirically-predicted state of the 

geography of breakthrough innovation for the early, mid, and late 20th century. 

 

Table 4: Observed States of Factors of the Model and the Predicted Geography of 

Breakthrough Inventions 

 Time Period 

Factor 1900-1930 1930-1970 1970-1999 

Knowledge Intensity Moderate Moderate High 

Disruptiveness High Low High within sectors 

Long-Distance Collaboration Tech Weak Weak Strong 

Long-Distance Knowledge-

Sourcing Tech 
Weak Weak Weak 

Predicted Geography of 

Breakthroughs by Model 

Weakly 

concentrated 
Undefined Multi-Nuclei 

Note: Empirical observation of the model factors are given in Section 6. The predicted geography of 

breakthrough inventions is presented in Table 3. 

 

To explore the validity of the model, the predicted geographies of breakthrough innovation from 

Table 4 can be compared to the observed geographies documented in Figures 3 and Figure 5. Notably, 

the states of breakthrough innovation predicted in Table 4 closely correspond to the empirical 

distributions found in Figures 3 and 5. During the first third of the 20th century, the weakness of long-

distance collaboration and knowledge-sourcing technologies, high disruptiveness, and moderate 

knowledge intensity of breakthroughs implies a weakly concentrated geography of breakthrough 

innovation. Figure 3 bears out this prediction by showing that the predicted impact of novel patents 
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was slightly higher for patents invented in knowledge-diverse cities than for patents invented in 

knowledge-homogeneous cities. During the mid-20th century (approximately 1930-1970), long-

distance collaboration and knowledge-sourcing technologies were still comparatively poor and the 

knowledge intensity of breakthroughs was moderate. While these factors ceteris paribus would 

predict a spatially-concentrated geography of breakthrough innovation, the disruptiveness of the 

regime of technological change was low. The disruptiveness of the regime of technological change 

was low, the geography of breakthrough innovation was undefined. This proposition is confirmed in 

Figure 3 where the average impact of novel patents is shown to be no higher than the average impact 

of normal patents, regardless of the local knowledge diversity in which the novel patents are invented. 

Finally, at the end of the 20th century, the combination of a high knowledge intensity of 

breakthroughs, strong long-distance collaboration technology, weak long-distance knowledge-

sourcing technology, and a high disruptiveness of technological change within sectors predicts a 

multi-nuclei geography of breakthrough innovation. The geography predicted by these parameters 

corresponds to the observed distribution described in Figure 5, where high-impact novelty was shown 

to be produced by multi-location teams with co-inventors residing in multiple knowledge-diverse 

cities. 

 

An important caveat regarding the geography of breakthroughs at the end of the 20th century is that 

the breakthroughs produced during this period were not very impactful outside the sectors in which 

they were invented. This finding, evident by comparing Figure 8 with Figure 9, indicates that 

breakthroughs made in knowledge-diverse cities during the late 20th century were made were solved 

relatively esoteric technological problems. Over time, these inventions may have diffused throughout 

the economy and instigate an economy-wide period of disruptive technological change. However, 

such a transformation had not taken hold by the end of the 20th century. 

 

7. Discussion 

 

The spatial concentration of innovation is not an inherent quality of density, agglomeration, or 

urbanization (c.f. Duranton and Puga, 2001; Bettencourt, et al. 2007; Mewes, 2019; Balland et al., 

2020; Berkes and Gaetani, 2020). Instead, innovation organizes in concentrated, dispersed, or multi-

nuclei spatial arrangements as a result of fundamental changes in institutions and communication 

technologies. These institutional and technological factors determine whether novelty will be 

rewarded by the economy, inventors’ general need to interact in order to create impactful novelty, and 

the frictions involved in sustaining innovative interactions across distance.  

 

The focus of this paper was to document changes in the spatial distribution of breakthrough 

innovation in the United States evolved over the 20th century and to propose an explanation for why 
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those changes occurred. To this end, I began the paper by describing how the advantages afforded by 

locating in knowledge diverse cities and participating in multi-locational collaborations for creating 

high-impact novelty changed over time. Thereafter, I proposed a model in which breakthrough 

inventions are generated through interactions sustained by collaboration technologies and knowledge-

sourcing technologies that incur different levels of distance-based frictions and within regimes of 

technological change that vary in terms of their disruptiveness and knowledge-intensity. Finally, I 

showed that the model predicts geographical distributions of breakthrough innovation which closely 

align with the observed distributions in the United States over the 20th century. 

 

Explicit recognition of how institutional factors and communication technologies shape spatial 

distributions of innovation can help to revise existing understandings of why certain geographies have 

emerged historically. One example is the mid-20th century, which is broadly understood to be an era 

during which economic activities in the U.S. spread out across space (Rosen, 1979; Roback, 1982; 

Glaeser and Tobio, 2007; Glaeser, 2008). According to this literature, the spreading out of economic 

activities in the middle of the 20th century was in-part caused by improvements in communication 

technologies and decreases in transportation costs. However, the results from this study suggest that a 

reduction in the disruptiveness of the regime of technological change also may have supported the 

dispersal of economic activities during the mid-20th. As documented in Figure 3, breakthrough 

innovation did not disperse across space during the mid-20th century; instead, few to any 

breakthroughs were invented across the entire country during that time period. This reduction in the 

disruptiveness of the regime of technological change may have suppressed firms’ demand for location 

in dense agglomerations, because the advantages of agglomeration are larger for firms that compete in 

environments riddled by uncertainty and rapid change (Duranton and Puga, 2001; Delgado et al., 

2015; Lin, 2012; Berger and Frey, 2016; Kemeny and Storper, 2020).  

 

This historical insight may prove helpful for predicting future changes to the geography of 

breakthrough innovation. The COVID-19 pandemic has shifted many strongly agglomerated high-

skilled service jobs to remote work (Dingel and Neiman, 2020). Recent advancements in 

communication technologies are generally thought to have reduced the costs associated with sharing 

knowledge across space (Catalini et al., 2018; Dong et al., 2018; Agrawal et al., 2017; Clancy, 2020). 

While the future may break from the past and a geographically-dispersed distribution of breakthrough 

innovation may indeed prevail, this study emphasizes that there is no historical precedent from the 

20th century in the United States for such a dispersal of breakthrough innovation in the absence of a 

reduction in the disruptiveness of the regime of technological change. Therefore, any prediction of the 

post-COVID-19 geography of breakthrough innovation needs to pay careful attention to a possible 

decline in technological disruption. Notably, market concentration in firms in the United States has 

reached its highest value since the 1970s (Autor et al., 2017; Grullon et al., 2019). The ongoing 
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increase in market concentration may either cause, or be a result of, a slowdown in technological 

change as the competencies of incumbent firms are less frequently disrupted by new product or 

process technologies. If technological change is increasingly advanced through incremental 

inventions, as was the case during the mid-20th century, then companies and industries may de-

agglomerate following COVID-19 not just because of the widespread adoption of Skype and Zoom, 

but also because of the advantages of co-location will be less important in a period of greater 

technological stability. 

 

The current literature on the effect of market concentration and the geographical distribution of 

economic activity has not yet investigated this relationship between oligopolistic market structure and 

the demand for co-location (Manduca, 2019; Feldman et al. 2020). Instead, that literature focuses on 

how rents accrued by oligopolistic firms concentrate wealth in those their immediate spatial environs. 

The policy response advocated by the existing literature is to increase antitrust enforcement in order to 

reduce inter-regional income inequality. Increasing antitrust enforcement may reduce inter-regional 

income inequality by shrinking the monopoly rents bestowed on “superstar metros”. However, 

increasing competition in innovative industries through antitrust enforcement may also increase inter-

regional income inequality by stimulating Schumpeterian competition, meaning faster and more 

disruptive technological change. Management theory, network theory, and product cycle theory all 

emphasize that small firms better adapt to disruptive technological change than large ones (Acs and 

Audretsch, 1988; Feldman and Audretsch 1999). In addition, economic geography has strongly 

argued that cities and regions informally coordinate production amongst small firms when market 

conditions are fast-moving and riddled with uncertainty (Scott, 1988; Saxenian, 1994; Levinthal, 

1997; Storper et al., 2016). If the organizational ties of firms are broken through antitrust 

enforcement, an alternative organization of inter-inventor coordination is likely to emerge. 

Historically, in the absence of organizational ties, that coordination has been achieved through co-

location. 

 

In conclusion, the analysis in this paper generates three core insights for interpreting and forecasting 

the geography of breakthrough innovation. First, the geography of breakthrough innovation changes 

over time as social, economic, and technological conditions evolve. Second, by identifying changes to 

the broader social, economic and technological conditions and by modeling their interrelationships, 

research can inform and improve predictions for past and future distributions of the geography of 

breakthrough innovation. Third, breakthrough innovation in the post-COVID-19 era is likely to 

involve high knowledge intensity, powerful collaborative technologies, high market concentration, 

and a possible reduction in the disruptiveness of the regime of technological change. Careful 

measurement and modeling of these four factors is needed for researchers and policy makers to 

understand and rectify the new geographical and technological challenges that are bound to emerge. 



  

29 
 

Bibliography 

 

Acs, Z., and Audretsch, D. (1988). Innovation in Large and Small Firms: An Empirical Analysis. 

American Economic Review 78(4). 678-690. 

 

Agrawal, A., Galasso, A., and Oettl, A. (2017). Roads and Innovation. Review of Economics and 

Statistics 99(3). 417-434. 

 

Arthur, B. “The Nature of Technology: What It Is and How It Evolves”. Free Press. New York. 

 

Arzaghi, M., and Henderson, V. (2008). Networking off Madison Avenue. The Review of Economic 

Studies 74(4). 1011-1038. 

 

Autor, D., Dorn, D., Katz, L., Patterson, C., and Van Reenen, J. Concentrating on the Fall of the 

Labor Share. American Economic Review: Papers and Proceedings 107(5). 180-185. 

 

Balland, P.A., and Rigby, D. (2018). The Geography of Complex Knowledge. Econ. Geog. 93(1).  

 

Balland, P.A., Jara-Figueroa, C. Petralia, S., Steijn, M., Rigby, D., and Hidalgo, C. (2020). Complex 

Economic Activities Concentrate in Large Cities. Nature Human Behavior (4).  

 

Bettencourt, L., Lobo, J., Helbing, D., Kühnert, C., and West, G. (2007). Growth, Innovation, Scaling, 

and the Pace of Life in Cities. PNAS 104(17). 7301-7306. 

 

Berkes, E., and Gaetani, R. (2020). The Geography of Unconvential Innovation. The Economic 

Journal. Forthcoming. 

 

Bathelt, H., Malmberg, A., and Maskell, P. (2004). Clusters and Knowledge: Local Buzz, Global 

Pipelines, and the Process of Knowledge Creation. Progress in Human Geography 28(1). 31-56. 

 

Castaldi, C., Frenken, K., and Los, B. (2015). Related Variety, Unrelated Variety, and Technological 

Breakthroughs: An Analysis of U.S. State-Level Patenting. Regional Studies 49(5). 767-781. 

 

Catalini, C., Fons-Rosen, C., and Gaule, P. (2018). How do Travel Costs Shape Collaboration? NBER 

Working Paper Series #24780. 

 



  

30 
 

Baum-Snow, N., Gendrom-Carrier, N., and Pavan, R. (2020). Local Productivity Spillovers. Working 

Paper. <https://www.nicolasgendroncarrier.com/_pdf/localspillovers_20200506_paper_v2.pdf> 

 

Clancy, M. (2020). The Case for Remote Work. Iowa State University Economics Working Papers 

#20007. 

 

Cremers, K., Harhoff, D., Narin, F., Scherer, F., and Vopel, K. (1999). Citation Frequency and the 

Value of Patented Inventions. Review of Economics and Statistics 81(3). 511-515. 

 

Desmet, K., and Rossi-Hansberg, E. (2009). Spatial Growth and Industry Age. Journal of Economic 

Theory 144(6). 

 

Dingel, J., and Neiman, B. (2020). How Many Jobs can be Done at Home? Becker Friedman Institute 

Working Paper Series. 

 

Dong, X., Sheng, S., and Kahn, M. (2018). The Role of Transportation Speed in Facilitating High 

Skilled Teamwork. NBER Working Paper Series #24539. 

 

Dosi (1982). Technological Paradigms and Technological Trajectories. Research Policy. 11(3). 147-

162. 

 

Duranton, G., and Puga, D. (2001). Nursery Cities: Urban Diversity, Process Innovation, and the Life 

Cycle of Products. American Economic Review 91(5). 1454-1477. 

 

Esposito, C. (2020). The Emergence of Knowledge Production in New Places. PEEG Working Paper 

#2046.  

 

Esposto, C., and Rigby, D. (2019). Buzz and Pipelines: The Costs and Benefits of Local and Nonlocal 

Interaction. Journal of Economic Geography 19(3): 753-773. 

 

Feldman, M., and Audetsch, D. Innovation in Cities: Science-Based Diversity, Spcialization, and 

Localized Competition (34). 409-429. 

 

Feldman, M., Guy, F., and Iammarino, S. (2020). Regional Income Disparities, Monopoly and 

Finance. Cambridge Journal of Regions, Economy and Society 14(1). 25–49. 

 



  

31 
 

Fleming, L. (2001). Recombinant Uncertainty in Technological Search. Management Science 47(1). 

117-132. 

 

Fleming, L., and Sorenson, O. (2001). Technology as a Complex Adaptive System: Evidence from 

Patent Data. Research Policy 30(7). 1019-1039. 

 

Florida, R. (2002). The Rise of the Creative Class. Basic Books. New York. 

 

Gertler, M. (2003). Tacit Knowledge and the Economic Geography of Context, or The Undefinable 

Tacitness of Being (There). Journal of Economic Geography 3(1). 75-99. 

 

Glaeser, E. (2008). Cities, Agglomeration, and Spatial Equilibrium. Oxford University Press. 

 

Glaeser, E. (2011). Triumph of the City: How our Greatest Invention makes us Richer, Smarter, 

Greener, Healthier, and Happier. Penguin Books. New York.  

 

Glaeser, E., and Tobio, K. (2008). The Rise of the Sunbelt. Southern Economic Journal 74(3). 609-

643. 

 

Gordon, R. (2016). The Rise and Fall of American Growth. Princeton University Press. 

 

Grashof, N., Hesse, L., and Fornahl, D. (2019). Radical or Not? The Role of Clusters in the 

Emergence of Radical Innovations. European Planning Studies 27(10). 1904-1923. 

 

Grullon, G., Larkin, Y., and Michaely, R. (2019). Are US Industries Becoming More Concentrated? 

Review of Finance 23(4). 697-743. 

 

Hall, B., Jaffe, A., and Trajtenberg, M. (2001). The NBER Patent Citations Data File: Lessons, 

Insights, and Methodological Tools. NBER Working Paper #8498. 

 

Jaffe, A., Trajtenberg, M., and Henderson, R. (1993). Geographic Localization of Knowledge 

Spillovers as Evidenced by Patent Citations. Quarterly Journal of Economics 108(3). 577-598. 

 

Jones, B.  (2009). The Burden of Knowledge and the “Death of the Renaissance Man”: Is Innovation 

Getting Harder? The Review of Economic Studies  76(1). 283–317. 

 



  

32 
 

Kemeny, T., and Storper, M. (2020). Superstar Cities and Left-Behind Places: Disruptive Innovation, 

Labor Demand, and Interregional Inequality. LSE International Inequalities Institute Working Paper 

#41. 

 

Kim, D., Cerigo, D., Jeong, H., and Youn, H. (2016). Technological Novelty Profile and Invention’s 

Future Impact. EPJ Data Science 5(8). 

 

Kuhn, T. (1962). “The Structure of Scientific Revolutions”. University of Chicago Press.  

 

Lamoreaux, N., and Sokoloff, K. (1996). Long-Term Change in the Organization of Inventive 

Activity. PNAS 93(23). 12686-12692. 

 

Manduca, R. (2019). Antitrust Enforcement as a Federal Policy to Reduce Regional Economic 

Disparities. Annals of the American Academy of Political and Social Science 685(1). 156-171. 

 

Mewes, L. (2019). Scaling of Atypical Knowledge Combinations in American Metropolitan Areas 

from 1836 to 2010. Economic Geography 95(4). 341-361. 

 

Mokyr, J. (1992). The Lever of Riches: Technological Creativity and Economic Progress. Oxford 

University Press. 

 

O’Mara, M. (2019). The Code: Silicon Valley and the Remaking of America. Penguin Press. New 

York. 

 

Powell, W., Koput, K., and Smith-Doerr, L. (1996). Interorganizational Collaboration and the Locus 

of Innovation: Networks of Learning in Biotechnology. Administrative Science Quarterly 41(1). 116-

145. 

 

Saxenian, A. (1996). Regional Advantage. Harvard University Press. 

 

Schumpeter, J. (1934). The Theory of Economic Development: An Inquiry into Profits, Capital, 

Credit, Interest, and the Business Cycle. Harvard University Press. 

 

Schumpeter, J. (1942). Capitalism, Socialism, and Democracy. Harper & Brothers. New York. 

 

Storper, M., and Leamer, E. (2001). The Economic Geography of the Internet Age. Journal of 

International Business Studies 32(4). 641-665. 



  

33 
 

 

Storper, M., and Venables, A. (2004). Buzz: Face-To-Face Contact and the Urban Economy. Journal 

of Economic Geography. 4(1). 351-370. 

 

Sorenson, O., Rivkin, J., and Fleming, L. (2006). Complexity, Networks, and Knowledge Flow. 

Research Policy 35(7). 994-10017. 

 

Uzzi, B., Mukherjee, S., Stringer, M., and Jones, B. (2013). Atypical Combinations and Scientific 

Impact. Science 342(6157). 468-472. 

 

Van der Wouden, F. (2020). A History of Collaboration in U.S. Invention: Changing Patterns of Co-

Invention, Complexity, and Geography. Industrial and Corporate Change 29(3). 

 

Wood, S., Pya, N., and Saefken, B. (2017). Smoothing Parameter and Model Selection for General 

Smooth Models. Journal of the American Statistical Association 111(516). 1548-1563. 

 

Wuchty, S., Jones, B., and Uzzi, B. (2007). The Increasing Dominance of Teams in Production of 

Knowledge. Science 316(5827). 1036-1039 

 

Youn, H., Strumsky, D., Bettencourt, L., and Lobo, J. (2015). Invention as a Combinatorial Process: 

Evidence from U.S. Patents. J. R. Soc. Interface 12. 1-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

34 
 

Appendix A: Multi-Locational Collaboration Type 

 

The following figures examine the average impact of novel and normal patents that are created 

through non-local collaborations based on the knowledge diversity of their respective cities. For 

simplicity, I restrict the data to collaborative teams located in two metropolitan areas. This generates 3 

types of collaborative possibilities: collaborations between inventors located in two knowledge-

diverse cities (Div-Div), collaborations between inventors located in one diverse and one 

homogeneous city (Mixed), and collaborations between inventors located in two homogenous cities 

(Homog-Homog). 

 

Figure A1: Average Impact of Multi-Locational Patents by Collaboration Type 

 
 

To compute the residual impact of inventions, I collect residuals from the following model and 

display them in Figure A2: 

𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝑌𝑒𝑎𝑟𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝐸𝑝 
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Figure A2: Predicted Impact of Multi-Locational Patents by Collaboration Type, 
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Appendix B: Knowledge Intensity and Impact of Patents 

 

Figure B1 plots the raw patent impact of novel and normal patents with many and few patents by year. 

 

Figure B1: Predicted Impact by Novelty and Knowledge Intensity 

 
 

 

Figure B2 plots the residuals from the following model: 

 

(4) 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝐷𝑒𝑐𝑎𝑑𝑒𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑙𝑎𝑠𝑠𝐹𝐸𝑝 + 𝐸𝑝 

 

Figure B2: Predicted Impact by Novelty and Knowledge Intensity 
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Appendix C: Residual Impact of Locally-Sourced and Non-Locally Sourced Patents,  

 

Figure C plots the residuals from the following model: 

 

 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝐷𝑒𝑐𝑎𝑑𝑒𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐶𝑙𝑎𝑠𝑠𝐹𝐸𝑝 + 𝐸𝑝 

 

In the model, C438 is a factor variable designating the primary class that a patent is assigned to. In the 

USPC classification scheme, there are 438 unique classes. 

 

 

Figure C: Residual Impact of Locally-Sourced Knowledge 
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Appendix D: Disruptiveness of Regime of Technological Change 

 

Figure D plots the residuals from the following model: 

 

 𝐼𝑚𝑝𝑎𝑐𝑡𝑝 = 𝐷𝑒𝑐𝑎𝑑𝑒𝑝 ∗ 𝑁𝑟𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑒𝑠𝑝 + 𝑆𝑢𝑏𝑙𝑐𝑎𝑠𝑠𝐹𝐸𝑝 + 𝐸𝑝 

 

The subclass fixed effect is a factor variable designating the primary subclass that a patent is assigned 

to. In the USPC classification scheme, there are about 16,000 unique classes. 

 

Figure D: Residual Impact of Novel and Normal Patents 

 


