


1 
 

The emergence of Artificial Intelligence in European regions: the role of a local ICT base  
 

Jing Xiao*, Ron Boschma** 
 
 

May 25, 2021 
 
 
 
 
 
Abstract:  
The purpose of this study is to investigate how a regional knowledge base in Information and 
Communication Technologies (ICTs) influences the emergence of AI technologies in European 
regions. Replying on patent data and studying the knowledge production of AI technologies in 
233 European regions in the period of 1994 to 2017, our study reveals three results. First, ICTs 
are a major knowledge source of AI technologies and their importance has been increasing over 
time. Second, a regional knowledge base in ICTs is highly relevant for regions to engage in AI 
inventing. Third, the effects of regional knowledge base of ICTs are stronger for regions that 
recently caught up in AI inventing. Our findings suggest that ICTs play a critically enabling role 
for regions to diversify into AI technologies, especially in catching-up regions.   
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1. Introduction 
Artificial Intelligence (AI) has been drawing increasing attention in both academic and policy 
circles, due to its disruptive nature and enormous growth potential (Agrawal, Gans & Goldfarb, 
2019; Buarque, Davies, Hynes & Kogler 2020; European Commission, 2018). AI, along with 
other emerging technologies, are believed to be the core of innovations for the next generation. 
The diffusion of AI entails new opportunities for a region to expand its technological portfolio 
and create new growth paths, which matters for the region’s structural change and long-term 
sustainable development. Particularly, for the past several years, AI has been growing rapidly in 
research and patenting along its technological breakthroughs (WIPO, 2019). How to catch up the 
rising opportunities from the recent development of AI to preserve EU’s technological 
competence is high on the agenda for the European regions (European Commission, 2020). 
 
What drives the emergence of new growth paths in a region? It has been one of the core topics in 
the field of Evolutionary Economic Geography. This strand of literature approaches 
diversification as a process of regional branching: new technologies or activities are more likely 
to emerge in a region when they are related to the pre-existing local capabilities (Frenken & 
Boschma, 2007; Boschma & Frenken, 2011b; Boschma, 2017). Relatedness is argued to capture 
cognitive proximity, which, along with other dimensions, such as geographical or institutional 
proximity (Boschma, 2005), could facilitate knowledge diffusion within regions and thus explain 
why related activities are more likely to emerge (Boschma, 2017). This strand of research has 
often focused on the average effects of relatedness. However, relatedness effects may differ by 
different types of pre-existing technologies. Technological evolution is argued to be driven by a 
few radical technologies, termed as “General Purpose Technologies” (GPTs) by Bresnahan and 
Trajtenberg (1995) to highlight their far-reaching effects that lead to not only technological 
progress but also substantial changes in economic and social structures. Regions differ 
substantially in terms of technological and industrial structures as a consequence of previous 
GPTs, which thus sets the limitations for the emergence of future technologies. 
 
Surprisingly less attention has been paid to how regional branching is influenced by GPTs. In 
addition to technological relatedness, GPTs has been emphasized as a key tool for smart 
specialisation policy as the diffusion of GPTs is believed to create new opportunities by co-
invention of applications (Foray, David, & Hall, 2009; Montresor & Quatraro, 2017). However, 
our knowledge of how technological relatedness and GPTs could jointly influence regional 
technological evolution is limited. Particularly over recent decades, a new wave of disruptive 
technologies has been emerging and bringing in new transformative pressures for regions to 
strive for new diversifications. How do the currently predominated GPTs – Information and 
Communication Technologies (ICTs) play a role in the emergence of next generation of radical 
technologies? Does this role change along with the diffusion of ICTs? To the best of our 
knowledge, there has been no relevant study so far.  
 
To fill the gap, this study aims to investigate how regional knowledge base of ICTs influences 
the emergence of AI technologies in European regions. We argue that ICTs, as the currently 
predominated GPTs, should play a critical role in breeding the next generation of digital 
technologies in general and AI technologies in particular. First, ICTs provide knowledge base 
and building blocks that equip regions with digital capabilities and infrastructures to underpin the 
local capabilities of capturing AI opportunities. Second, the diffusion of ICTs unlocks new 
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technological opportunities for AI and thus increases recombination possibilities for regional 
technological diversification. 
 
Recent empirical studies have directed attention to regional diversification processes of newly 
emerging technologies, such as fuel cell technologies, nanotechnologies, biotechnologies and 
Industry 4.0 technologies (including AI) (Balland & Boschma, 2021; Colombelli, Krafft & 
Quatraro, 2014; Feldman, Kogler, & Rigby, 2015; Heimeriks & Boschma, 2014; Lafffi & 
Boschma 2021; Montresor & Quatraro, 2017; Tanner, 2016). Few studies, however, have 
examined the regional evolution of AI. One of the main reasons is attributed to the lack of 
appropriate data (Buarque et al., 2020). Over the last couple of years, EPO (2017) and WIPO 
(2020) have separately released methods to identify AI patents based on key phrase or patent 
classification code searching. Among the limited studies on regional development related to AI, 
one is by Buarque et al. (2020), which focuses on the geographical mapping of AI technologies 
in European regions and explores the role of AI in regional knowledge network. They find that 
AI successful regions are more likely to be the regions where AI technologies are most 
embedded in their knowledge space. Another one is by Balland and Boschma (2021), which 
focuses on the regional knowledge production of Industry 4.0 technologies (including AI) in 
general. They find that a new Industry 4.0 technology is more likely to emerge in a European 
region if the existing technologies in the region are highly related to Industry 4.0 technologies. A 
very recent study is by Laffi and Boschma (2021), which provides more direct evidence showing 
that the probability of emergence of Industry 4.0 technologies is higher for regions which 
specialize in Industry 3.0 technologies. These studies concentrate either on the current position 
of AI technologies in the knowledge space or on the relationship between Industry 3.0 and 
Industry 4.0 technologies in general. 
 
The role of GPTs in technological diversification has been neglected in the extant literature. One 
exception is the study by Montresor and Quatraro (2017). They examine the effects of GPTs by 
focusing on a group of new generation key enabling technologies, such as industrial 
biotechnology and nanotechnology. However, there has been no direct evidence exploring how 
GPTs influence the emergence of AI at regional level. Particularly, to our best knowledge, there 
has been no studies so far that have explored explicitly which technologies serve as the main 
knowledge sources of AI technologies.   
 
To explore how a regional knowledge base in ICTs influences the emergence of AI technologies, 
we build a dataset for the period of 1994 to 2017 based on the patent data from the OECD 
REGPAT database. To analyze the knowledge source of AI technologies, we conduct a citation 
analysis to identify the technological fields of the patents that were cited by AI patent 
applications. We find that instruments and ICTs are two major knowledge sources cited by AI 
patent applications. Among others, the importance of ICTs, particularly those advanced digital 
technologies, has become increasingly important over time. In the period of 2012 to 2017, ICTs 
have surpassed instruments and become the largest knowledge source cited by AI patent 
applications. In addition, we calculate the average technological relatedness of ICTs to a region’s 
existing knowledge base and model its effects on regional knowledge production of AI. Based on 
a fixed effects negative binomial model, we find that regions with a high level of technological 
relatedness of ICTs increases AI inventing. The effects of technological relatedness of ICTs are 
stronger for regions that recently caught up in AI inventing.  
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The rest of the paper proceeds as follows. Section 2 reviews briefly the relevant literature and 
discusses the theoretical background. Section 3 describes the data and method. Section 4 displays 
the analyses and the findings, and the final section concludes and discusses the paper.  
 
2. Theoretical background 
 
2.1 Relatedness, recombination, and regional diversification 
Regional diversification concerns the emergence of new economic activities and new growth 
paths (Neffke, Henning & Boschma 2011; Isaksen, 2015; Tanner, 2016), which matters for 
structural change and long-term sustainable development for a region (Content and Frenken, 
2016; McCann, 2013). The extant literature has emphasized two critical mechanisms of regional 
diversification. The first mechanism is recombination process. In his seminal work, Schumpeter 
(1934) proposes “the carrying out of new combinations”, which is believed as the critical action 
behind knowledge creation and innovation (Weitzman, 1998), and highlighted as a key 
mechanism behind regional diversification, enabling recombining and modifying existing 
capabilities (Boschma & Frenken, 2011b). The other mechanism is knowledge diffusion. 
Relatedness captures cognitive dimension of proximity, which, along with other dimensions, 
such as geographical or institutional proximity (Boschma, 2005), are believed to facilitate 
knowledge transmission and spillovers through promoting interactive learning (Boschma, 2017). 
Learning allows agents to acquire new knowledge developed by others and improve the chances 
to create new knowledge through recombination. A burgeoning literature has provided widely 
supportive evidence for the relatedness hypothesis, no matter when diversification is measured 
by entry of new products, technologies or industries, or analyzed in different geographical units 
(such as country, region or city) (see. e.g., Boschma & Frenken, 2011a; Boschma, Balland & 
Kogler 2015; Boschma, Minondo & Navarro, 2013; Hidalgo, Klinger & Hausmann, 2007; 
Neffke et al., 2011; Rigby, 2015).  
 
2.2 The role of General Purpose Technologies 
The two mechanisms mentioned above suggest that the previous generation of technologies, 
especially those which are labeled as GPTs (General Purpose Technologies), given their two 
unique properties, is supposed to play a critical role in breeding the emergence of new generation 
of technologies. First, GPTs are pervasive in nature, which means GPTs will be applied in a wide 
range of sectors and eventually penetrate every part of the economy (Bresnahan & Trajtenberg, 
1995). The far-reaching effects of GPTs are not only beyond technological progress but also on 
changes of the behavioral pattern of the entire economy, leading to shifts of “techno‐economic 
paradigm” (Freeman and Perez, 1988; Perez, 2002). GPTs are relatively few, but represent the 
exemplary technologies behind industrial revolutions, such as steam engine of the first industrial 
revolution, electricity of the second and ICTs of the third (Helpman & Trajtenberg, 1996). 
Second, GPTs will unlock complementary innovation opportunities for other sectors along their 
diffusion processes (Bresnahan, 2012). Technologies are interdependent and cumulative in 
nature, which means the availability of complementary technologies is a prerequisite that 
technologies could function or generate economic impacts (Rosenberg, 1979). In some cases, 
recombination possibilities will only appear after a new technology is invented (Rosenberg, 
1979). As a GPT diffuses, it allows the actors in other sectors to recombine their existing 
technologies with the GPT and create new applications, leading to reconfiguration and evolution 
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of the user sectors’ technological portfolios. For example, Fai and Von Tunzelmann (2001) study 
the evolution of technological scale and scope by following the 32 largest inventing firms over 
60 years and find that technological diversity is positively related to the emergence of new 
technological paradigms. Mendonça (2006; 2009) finds that the emergence of ICT paradigm is a 
distinct force that drives traditional sectors to diversify into ICTs, not only as users but also as 
active knowledge producers.  
 
2.3 Diffusion of ICTs as digital base of AI 
Building upon the two premises of GPTs, we argue that diffusion of ICTs serves as the digital 
base for the emergence and development of AI. First, the diffusion of ICTs provides pervasive 
digital infrastructures for adoption of AI. As indicated by the model of Perez (2002), in the early 
stage of the diffusion of GPTs, which she refers to as “installation period”, GPTs emerge as 
disruptive technologies and start to reshape the whole economic system by directing to new 
investment opportunities. One consequence of this period is that a large scale of new 
infrastructures is set up for future exploitation of the GPTs more efficiently. It is not only that 
technologies build upon each other, but also on technological paradigms. In the example of the 
adoption of ICTs, studies show that the energy infrastructure (electricity) plays a fundamental 
role, especially for low-income countries which face energy constraints (Aebischer & Hilty, 
2015; Armey & Hosman, 2016). Apparently, due to the differentiated economic paths and 
industrial structures, regions differ substantially in terms of the infrastructures related to the 
previous technological paradigm, which will restrict future diversification possibilities. This 
“lock-in” effect may especially apply to less developed regions, which have limited 
recombination opportunities or are in the periphery of knowledge space. E-skills or e-
competencies, or the general quality of human capital in a broader sense, constitutes another 
important dimension of local capabilities that matter for the emergence of new technologies. 
Castellacci, Consoli and Santoalha (2020) shows that e-skills, measured as the regional intensity 
of users or developers of ICTs, play a stronger role in regional technological diversification for 
less developed regions or regions with low levels of relatedness. Similarly, Cohen and Levinthal 
(1989; 1990) emphasize the importance of previous knowledge in understanding, assimilating 
and utilizing external knowledge in innovation. This type of “absorptive capacity” is critical for 
the adoption of new knowledge. For example, based on survey data, a McKinsey report shows 
that about 75% of AI adopters (firms) reply on their existing digital knowledge and capabilities 
(Bughin & Van Zeebroeck, 2018).  
 
Second, the diffusion of ICTs unlocks new technological opportunities for AI and thus increases 
recombination possibilities for regional technological diversification. In the diffusion process, 
ICTs sectors are evolving with a high speed of updates and iterations of technologies. Several 
technological shifts, for example, from computer-dominant to internet/web-services dominant 
technologies, were observed in the past decades. The technological updates provide new 
opportunities for the users or downstream industries to create new innovational 
complementarities (Bresnahan & Trajtenberg, 1995). For example, the rise of e-commerce or e-
advertisement exhibits a deep penetration of ICTs to traditional sectors, like retailing and 
advertising industries. Meanwhile, the rapid evolution of ICTs opens up new technological 
opportunities, acting as key enablers for the advancement of AI. The recent study by Montresor 
and Quatraro (2017) shows that a new generation of technologies plays a critical role in 
promoting regional technological diversification in European regions. They highlight that key 



6 
 

enabling technologies not only augment the diversity of recombinant technologies but also 
unlock the recombination constraints. The recent upsurge of AI, to a large extent, benefits from 
the advances in machine learning, which in turn, depends crucially on the increasing computing 
power, high-speed connectivity, and availability of large volume of data (WIPO, 2019). In this 
sense, ICTs can be regarded as a critical external knowledge source for AI, not only feeding new 
technologies but bridging possibilities for recombination.  
 
3. Data and methodology  
3.1 Data 
The data we use are from the OECD REGPAT database (January 2020 edition1). The OECD 
REGPAT data have been geocoded and linked to regions across OECD and European countries 
(see, Maraut, Dernis, Webb, Spiezia & Guellec, 2008, for more details). This gives us a unique 
opportunity to compare regional differences in terms of knowledge production of AI 
technologies. In addition, we use patent citation data from OECD (July 2020 edition) to identify 
the possible knowledge sources of AI patents by tracing the citation flows.  
 
The OECD REGPAT database comprises two types of datasets: patent applications to the EPO 
(European Patent Office) and patent applications under the Patent Co-operation Treaty (PCT). 
The PCT is an international patent system, which facilitates applicants to seek for international 
patent protection. By relying on the patent data under the PCT, we could capture the patent 
applications with higher technical values because an international patent application usually 
involves much higher costs. This may also generate less country-based biases in the analysis of 
cross-section comparison, considering that PCT is an international patent system (Tanner 2016).  
 
Identifying AI patent applications  
WIPO has recently developed and published a PATENTSCOPE Artificial Intelligence Index as a 
search model for AI patent applications (WIPO 2019, 2020). The index comprises key phrases, 
IPC (International Patent Classification) and CPC (Cooperative Patent Classification) codes and 
can be used as key search criteria for capturing AI technologies. We use the CPC codes in our 
analysis to identify AI patent applications, because classification codes can provide a completer, 
more precise search compared to key phrases. Particularly, the CPC is an extension of the IPC 
and a more fined grained scheme2, which may better capture the AI technologies that are 
scattered in different technological fields. 
 
Based on the CPC codes listed in the index, we have identified 13,781 unique AI patent 
applications under the PCT from 1980 to 20173, accounting for about 4% of all applications 
during the period. Figure 1 displays the number of AI applications under the PCT over time. The 

 
1 The REGPAT database (January 2020 edition) derives from the PATSTAT (Worldwide Statistical Patent Database)’s 
EP Register (Spring 2020 version). The REGPAT database was not updated in the version of July 2020. Therefore, 
we use the version of January 2020. 
 
2 CPC has about 250,000 classification entries while IPC has about 70,000 classification entries. 
 
3 This analysis focuses on the period of 1980 to 2017. First, it is because no AI patent applications under the PCT 
are identified before 1980 in the REGPAT database. Second, it is because this version of REGPAT database only 
covers a small part of patent applications in 2018 and 2019 (priority year).   
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figure shows that AI patent applications started to increase at a faster pace from 1990s 
particularly from 2012. The rapid growth is attributed to the breakthroughs in machine learning 
which benefit from increasing computing power, data availability and connectivity over recent 
years (WIPO 2019). To exhibit a more intuitive picture of the technological base of AI patent 
applications, we aggregate the frequency of CPC classes of AI technologies (within AI patent 
applications) into 4-digit level (subclass level). In Table 1, we display the top 10 technological 
fields4 of AI technologies. Table 1 shows that AI technologies concentrate mainly in the CPC 
class of instruments (3-digit level) such as technologies related to recognition of data, digital data 
processing and computational models, which are related to basic AI techniques such as machine 
learning. We can also find the presence of AI technologies in the technological areas where AI is 
applied into practice, such as computer vision, speech recognition, health and transportation.  
 
 

 
Figure 1. Number of AI patent applications under the PCT over time 
 
 
 
 
 
 
 
 

 
4 We calculate the share of frequency of each 4-digit CPC class within all AI patent applications between 1980 to 
2017. The top 10 technological fields account for almost 90% of AI patent applications during the period.  
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Table 1. Top 10 technological fields (4-digit CPC classes) of AI technologies for the period between 1980 to 2017 

CPC CPC subclass description (4-digit) 
CPC class description (3-

digit) 
Share 

G06K Recognition of data; presentation of data; record carriers; handling record carriers Instruments 14.23% 

A61B Diagnosis; surgery; identification Health; Amusement 14.14% 

G06F Electric digital data processing Instruments 11.86% 

G06N Computer systems based on specific computational models Instruments 11.41% 

G06T Image data processing or generation, in general Instruments 10.85% 

G05D Systems for controlling or regulating non-electric variables Instruments 8.08% 

B60W 

Conjoint control of vehicle sub-units of different type or different 
function; control systems specially adapted for hybrid vehicles; road vehicle 
drive control systems for purposes not related to the control of a particular sub-
unit 

Transporting 6.48% 

G10L 
Speech analysis or synthesis; speech recognition; speech or voice 
processing; speech or audio coding or decoding 

Instruments 5.50% 

B62D Motor vehicles; trailers Transporting 2.75% 

G05B 
Control or regulating systems in general; functional elements of such systems; 
monitoring or testing arrangements for such systems or elements 

Instruments 2.55% 

Source of CPC description: EPO 

 
To assign the patents into regions, we can depend on the location information of either applicants 
or inventors. However, big firms (as one major group of patent applicants) usually register their 
patents under their headquarters (Maraut et al., 2008). Using the location information of 
applicants may therefore bias the geographical patterns of AI inventing activities. Thus, we use 
the location information of inventors to assign patents into regions. Since our study aims to 
identify and measure knowledge production/distribution based on the frequency of patent 
applications instead of assessing the relative regional contribution of inventors from different 
regions, a non-fractional count of inventors is preferred when we assign patents to regions. We 
use this non-fractional count as a measure of AI inventing for each region, which means patent 
applications are counted every time for a region when an inventor is geolocated in this region. 
Only 8.5% of the 13,781 AI patent applications involve one inventor. About 90% involve 2-10 
inventors. In terms of the geographical distribution of AI inventing, the top 20 countries account 
for over 96% of all AI patent applications under the PCT from 1980 to 2017, including the US, 
Japan, China, Germany, South Korea, the UK, the Netherlands, Canada, France, Israel, Sweden, 
Australia, India, Switzerland, Spain, Singapore, Finland, Italy, Ireland and Denmark. 
 
AI inventing in Europe  
Since our main interest is on AI inventing in European regions, our analysis only includes the 
regions within EU27+3 countries5. As AI technologies are still in their early stage of 
development, our analysis starts from 1994 when AI technologies begun to develop and diffuse 
at a faster pace (WIPO, 2019). This ends up with 233 European regions (NUTS2 level) with AI 

 
5 EU 27+3 countries include Austria, Belgium, Bulgaria, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, 
Portugal, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the 
Netherlands, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, plus the UK, Switzerland, and Norway.  
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inventing for the period of 1994 to 20176. Figure 2 displays the histogram of the number of AI 
patent applications7. About 97% of the regions have less than 10 AI patent applications during 
the whole period. The distribution of AI inventing is highly skewed over time and space.  
 

 
Figure 2. Histogram of the number of AI patent applications of European regions 
 
Figure 3 maps the number of AI patent applications across the European regions over four 
periods: 1994-1999, 2000-2005, 2006-2011, 2012-2017, respectively. During the early period, 
there are only a limited number of regions with AI patent applications and AI inventing 
concentrates in three German regions, namely Stuttgart (DE11), Oberbayern (DE21) and 
Mittelfranken (DE25). Over time, it is noted that more regions are involved in AI patent 
applications. Especially, during the period of 2012 to 2017, 53 regions are found to have more 
than 20 AI patent applications. To exhibit the hotspots of AI inventing, we map the share of AI 
patent applications of European regions over the same periods, see Figure 4. It is noted that the 
hotspots of AI patent applications concentrate in a few regions in Western European countries, 
such as Germany, the Netherlands, and France. From the period of 2012-2017, the top 5 regions 
account for almost 40% of all AI patent applications, including North Brabant (NL41) in the 
Netherlands, Oberbayern (DE21) and Stuttgart (DE11) in Germany, Inner London (UKI1) in the 
UK, and Ile de France (FR10) in France.  
 

 
6 Some inventors are only assigned to a country but not an accurate region, we removed these inventors (61 
inventors in 13 countries). The regions with no AI patent application in the whole period are not included as we 
will use fixed-effects estimator in the econometric analysis.  
7 The observation is on a yearly basis.  
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Figure 3. Number of AI patent applications of European regions 
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Figure 4. Share of AI patent applications of European regions 
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3.2 Variables for econometric analysis 
Dependent variable: measuring knowledge production of AI technologies 
One aim of this study is to examine the role of technological relatedness of ICTs in the 
emergence of AI technologies. We use the number of AI patent applications as the indicator of 
production of AI technologies in a region. To avoid the situation where some regions may have a 
very small number of counts, we divide the whole analysis period into eight sub-periods8 and use 
the sum of each sub-period of each region as the dependent variable. In this paper we model 
regional number of AI technologies as a function of technological relatedness of ICTs. 
Compared to an entry model in which the probability of a new technological specialization is 
modeled as a function of the relatedness of focal technology to the local structure of existing 
technologies, we think our model may better capture the regional variation in AI knowledge 
production and how it is related to local ICT base at the early development stage of AI. 
 
Independent variables: measuring relatedness with existing technologies in a region 
To indicate technological relatedness of ICTs to a region’s existing knowledge base, we develop 
a variable measured as the average density of relatedness of ICTs to a region’s existing 
knowledge base. The variable is developed in two steps. We first calculate the proximity 
between all technologies. To this end, we conduct a co-occurrence analysis to measure the 
relatedness between technologies. This approach is developed by Hidalgo et al. (2007) where 
they measure proximity of products based on the likelihood of simultaneous occurrence of two 
exported products in a country, given the assumption that related products share similar factor 
endowments or capabilities. This approach has been widely adopted in previous studies on 
industrial diversification or regional branching (see, e.g., Cortinovis et al., 2017; Xiao et al., 
2018; Boschma et al., 2013; Hausmann et al. 2010). A patent usually involves multiple 
classification codes to indicate the technological fields covered by the patent. We assume that all 
the co-classified technological fields share technological relatedness and their proximity to each 
other can be captured by the likelihood of their co-occurrence in a patent. We calculate the 
proximity among all technological fields (at 4-digit IPC level9) by the likelihood of their co-
occurrence in non-AI patent applications10, as shown in Equation (1). 
 
𝜑,,௧ = min {𝑃൫𝑥,௧ห𝑥,௧൯, 𝑃൫𝑥,௧ห𝑥,௧൯}                                                                                          (1) 
 
where φ indicates the proximity index. The index is the minimum conditional probability that a 
patent involves one technological filed given that it involves another technological filed. The 
second step is to link the proximity index with a region’s existing knowledge base. A region’s 
knowledge base is indicated by the collection of technological fields of its patent portfolio. 
Again, to avoid potential endogeneity, we exclude all AI patent applications when identifying a 
region’s existing knowledge base. The average density of relatedness of ICTs to a region’s 
existing knowledge base is calculated as shown in Equation (2).  
 
 

 
8 The eight sub-periods include 1994-1996, 1997-1999, 2000-2002, 2003-2005, 2006-2008, 2009-2011, 2012-2014, 
2015-2017. 
9 IPC is used here because most existing definitions of ICT are based on IPC classification.  
 
10 We exclude AI patent applications to avoid potential endogeneity biases.  
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𝑑ప,,௧
തതതതതത = ቀ

∑ ക,ೖ, ೣೖ,ೝ,ೖ
∑ ക,ೖ,ೖ

ቁ                                                                                                                     (2) 

 
where the subscript i or k refers to a technological filed; 𝑥,,௧ is a dummy variable to show 
whether technology k is present in region r at year t. 𝑑,,௧ is the density around technology i in 
region r at year t, calculated as the sum of proximities of technology i to all technologies that are 
present in region r at year t divided by the sum of proximities of technology i to all technologies. 
The density varies between 0 to 1. A higher density means a higher level of relatedness of 
technology i to the technologies that are present in region r. At the end, we take the average 
density of all ICTs for each region. We use a broad definition of ICTs to calculate the average 
density of relatedness of ICTs to a region’s existing knowledge base. The definition of ICTs is 
elaborated in Section 4.1 at below.  
 
4. Analyses and results 
4.1 Knowledge sources of AI patents 
As a newly emerging technology, the development of AI may draw upon various sources of 
established knowledge. To identify the knowledge sources of AI patents, we rely on the citation 
analysis, where the patent citation data are used as a proxy to measure knowledge flows or 
spillovers (Jaffe & Trajtenberg, 1998; Jaffe, Trajtenberg & Fogarty, 2000). To quantify the 
relative intensity of knowledge flows among different sources, we use the technology 
classification to group the technological fields of the patents that were cited by the AI patents.  
 
The classification we use is mainly based on the typology by Schmoch (2008, updated in 2019) 
which groups all patentable technological fields into five general categories (based on IPC 
classification), including electrical engineering, instruments, chemistry, mechanical engineering, 
and other fields. Electrical engineering further constitutes 8 sub-categories, including electrical 
machinery, apparatus, energy; audio-visual technology; telecommunications; digital 
communication; basic communication processes; computer technology; IT methods for 
management; and semiconductors. To capture the role of ICTs in a broader sense and the ICTs at 
the technological frontier respectively, we use two definitions of ICTs in the citation analysis: 
the broad definition (defined as the category of electrical engineering excluding the sub-category 
of electrical machinery, apparatus, energy) and the restrictive definition (defined as those ICTs 
that are categorized into high technology by Eurostat (2006), including computer and automated 
business equipment, semiconductors, and communication technology). Accordingly, we revise 
Schmoch’s typology into 6 general categories in our analysis:  

 electrical machinery, apparatus, energy, 
 ICTs (broad definition) 
 instruments,  
 chemistry,  
 mechanical engineering, 
 other fields. 

 
More than 88% of the IPC classes defined by restrictive definition of ICTs fall within the broad 
definition of ICTs. The rest concentrate in the IPC class of “B41J” which is grouped into the 
category of mechanical engineering in Schmoch’s typology. In our analysis with AI patent 
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applications, the restrictive definition is a subset of the broad definition because no cited 
technological filed falls within “B41J”. 
 
To measure the intensity of knowledge flows between technological categories and AI, we 
calculate the share of citations: the cited number of each technological category divided by the 
total cited number. We report the results over four periods, 1994-1999, 2000-2005, 2006-2011, 
2012-2017, respectively in Table 2.11 The two major knowledge sources of AI patent 
applications are instruments and ICTs (broad definition). For AI patent applications between 
1994 to 1999, the share of cited number is 46% for instruments and 35% for ICTs (broad 
definition) respectively. The share of ICTs (restrictive definition) is 17%. Over time, the relative 
importance of ICTs (measured by both broad definition and restrictive definition) is increasing. 
At the same time, the share of instruments is decreasing. For AI patent applications between 
2012 to 2017, ICTs have become the largest knowledge source of AI patent applications. About 
43% of cited technologies are from the category of ICTs (broad definition). During the same 
period, the share of ICTs (restrictive definition) has increased to 25%. This indicates an 
increasing importance of digital base for the recent development of AI, which is consistent with 
the recent trend in AI patenting where machine learning has been predominating in the patent 
applications related to AI techniques and AI related patents (WIPO, 2019).  

 
11 To be able to compare the citation patterns between periods, we restrict to the cited patents that were 
published in the recent 11 years for each period. For example, for period of 1994 to 1999, we include cited patents 
there were published between 1989 to 1999. This analysis includes all AI patents identified in the PCT database.  
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Table 2. The share of cited number of each technological category by AI patent applications 

  
Electrical 

machinery, 
apparatus, energy 

ICT  
Instruments Chemistry 

Mechanical 
engineering 

Other fields 
Broad Restrictive 

1994-1999 

Cited number 4 73 35 94 3 21 11 

Share 2% 35% 17% 46% 1% 10% 5% 

2000-2005 

Cited number 24 222 94 232 17 41 10 

Share 4% 41% 17% 42% 3% 8% 2% 

2006-2011 

Cited number 46 350 205 391 21 116 23 

Share 5% 37% 22% 41% 2% 12% 2% 

2012-2017 

Cited number 59 1434 832 1195 86 457 71 

Share 2% 43% 25% 36% 3% 14% 2% 
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4.2 The effects of technological relatedness of ICTs 
We conduct an econometric analysis to test the effects of technological relatedness of ICTs to a 
region’s existing knowledge base on regional knowledge production of AI inventing. The final 
dataset for the econometric analysis is a balanced panel covering 233 European regions over 8 
periods. Table 3 display a summary of variable description and descriptive statistics. Table A1 in 
the Appendix shows the correlation matrix between the variables. In addition to the dependent 
and independent variables, we include a control variable of population to account for regional 
differences in size that are changing over time. Since the dependent variable is the number of AI 
applications, we expect a positive relationship between population size and regional number of 
AI patent applications. The data of population are from Eurostat. Population has missing values 
because of the changes of NUTS classification systems over time12. Moreover, we include the 
dummy variable for time periods to control for time effects in general. The inclusion of the 
period dummy variables is expected to capture the major time-varying heterogeneity between 
regions. Independent and control variables are measured at one year before each period. In our 
dataset, there are about 53% of observations have no AI inventing and the distribution of AI 
inventing is highly skewed.  
 

Table 3. Variable description and summary statistics 

Variables Description Obs Mean Median 
Std. 
Dev. 

Min. Max. 

AI_inventing Number of AI patent applications 1,864 4.34 0 17.47 0 335 

Ave_density Average density of technological relatedness 1,864 0.28 0.24 0.23 0 0.94 

Pop Population 1,661 14.27 14.27 0.68 12.40 16.30 

Note: There are missing values for the variable of population, which is because of the changes of NUTS classification systems over 
time. 

 
Since the dependent variable is the number of AI patent applications, we use count model to 
model the effects of technological relatedness on AI inventing. Fixed effects are used to account 
for unobserved heterogeneity that is constant over time at regions. Since our data suffer from the 
problem of overdispersion (variance is higher than mean), this suggests a negative binomial 
model. However, many studies indicate that the method for (conditional) fixed effects negative 
binomial regression that many statistical software products (such as Stata) depend on is not valid 
because it fails to control for unchanging covariates (Allison & Waterman 2002; Greene 2005; 
Guimarães, 2008). Following the suggestion by Allison (2012), we use the unconditional fixed 
effects negative binomial model by including dummy variables for each region as our benchmark 
estimation model. 
 
To facilitate interpretation, we standardize technological relatedness and population in the 
regressions. The results are reported in Table 4. In Specification (1), we only include the main 
predictor. In Specification (2), we add population as control variable. In Specification (3), we 
include period dummies as control variables.   
 

 
12 The changes of NUTS classification systems over time make it difficult to consistently trace the regional statistics 
over a long period of time for the regions which are affected. This is one reasons why we do not include more 
regional-level control variables as there will be many missing values. Another reason is because we include period 
dummies to control for time effects, which we believe would capture the major time-varying heterogeneity.  
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Table 4. The effects of technological relatedness of ICTs on AI inventing 

Variables (1) (2) (3) 

Ave_density 1.618*** 1.242*** 0.479*** 

 (0.0923) (0.101) (0.110) 

Pop (log)  5.630***  

  (0.667)  

Constant -0.356 -0.209 -1.211*** 

 (0.477) (0.450) (0.429) 

Obs 1,864 1,661 1,864 

    

Period dummies No No Yes 

Log likelihood -3081.0321 -2723.1711 -2884.9414 

LR chi2 1491.38 1424.67 1883.56 

Prob > chi2 0.0000 0.0000 0.0000 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  

 
The coefficient of negative binomial model is interpreted as the expected difference in the logs 
of expected counts of the dependent variable given one-unit change of the independent variable, 
while all the other variables are held constant. From Specification (1), we find that if the average 
density of technological relatedness of ICTs was to increase by one-unit, the expected difference 
in the logs of expected counts of AI patent applications would increase by 1.618 unit, while all 
the other variables are held constant. The significant coefficient reveals a positive effect of 
average density of technological relatedness of ICTs on regional AI inventing. In Specification 
(2) when we include the control variable of population, the positive relationship between 
technological relatedness and regional AI inventing is still significant, although the magnitude 
decreases slightly. For the control variable, as expected we find a significantly positive effect of 
population on AI inventing. In Specification (3) when we include period dummies as control 
variables, the positive coefficient of technological relatedness is still statistically significant, but 
the magnitude decreases by about two thirds. The results show that technological relatedness of 
ICTs to a region’s existing knowledge base is an important predictor for AI inventing at 
European regions. But the effect of technological relatedness on AI inventing is reduced when 
time effects are accounted for.  
 
Compared to the other global players, such as the US and China, Europe has been lagged behind 
in the investments of the first waves of AI and related technologies (European Commission, 
2018; WIPO, 2019). As shown in Figure 3 in Section 3.1, most AI inventing concentrates in a 
few German regions in the early period. However, the diffusion of AI technologies has been 
accelerating recently, especially since 2012. Many European regions have been catching up, 
reflected by the increase of AI patent applications and the spread of AI inventing to more 
European regions. To examine whether there are any catch-up effects of technological 
relatedness of ICTs, we create a dummy variable (catchup) with 1 indicating the regions which 
transit from without AI patent application in the early period (1994-2005) to with AI patent 
applications in the recent period (2006-2017). We include an interaction term between 
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technological relatedness and catchup to indicate the catch-up effects. To test the robustness of 
the results, we use different thresholds to determine whether it is a catch-up region. The results 
are reported in Table 5. 
 

Table 5. The catch-up effects of technological relatedness of ICTs on AI inventing 

Variables ≥5 ≥10 ≥15 

Ave_density 0.328*** 0.391*** 0.419*** 

 (0.113) (0.111) (0.110) 

Ave_density*catchup 2.050*** 2.409*** 2.897*** 

 (0.380) (0.550) (0.740) 

Constant -1.173*** -1.182*** -1.187*** 

 (0.423) (0.424) (0.425) 

Obs 1,864 1,864 1,864 

    

Period dummies Yes Yes Yes 

Log likelihood -2865.9461 -2871.3893 -2873.513 

LR chi2 1921.55 1910.67 1906.42 

Prob > chi2 0.0000 0.0000 0.0000 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  

 
As reported in Table 5, the coefficient of Ave_density*catchup indicates the catch-up effect of 
technological relatedness of ICTs on AI inventing. The first column displays the results when the 
catch-up regions are identified if they have no AI patent applications in the period of 1994 to 
2005 but have at least 5 AI patent applications in the period of 2006 to 2017. The significant 
coefficient of the interaction term shows a strong positive catch-up effect of technological 
relatedness of ICTs. The effect of technological relatedness on AI inventing decreases slightly 
but still significant. In the second and third column, we test the results by using different 
thresholds of defining catch-up regions. The coefficients of interaction terms are both 
significantly positive and the magnitude increases as the threshold increases. The results show 
that ICTs are an important enabler for regions which caught up in AI inventing. The catch-up 
effects are stronger for regions which caught up fast.  
 
5. Robustness check 
In the econometric analysis, we use the average density of relatedness of ICTs to a region’s 
existing knowledge base to indicate regional knowledge base of ICTs. To check whether our 
main findings are sensitive to a different measure of independent variable, we employ an 
alternative indicator – related variety within ICTs for a robustness check. Related variety is a 
measure to capture both relatedness and variety across activities in a region. The literature on 
regional innovation has widely discussed the role of related variety, such as related industries, in 
providing opportunities for recombination of knowledge and facilitating regional innovation and 
growth. (Frenken, Van Oort & Verburg, 2007, Neffke et al., 2011, Boschma et al., 2013). 
Following Frenken et al. (2007), we calculate related variety within ICTs as the weighted sum of 
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entropy at the level of five-digit IPC within each three-digit IPC within ICTs, as shown in 
Equation (3a) and (3b).  
 
𝑅𝑉 = ∑ 𝑃௦  𝐻௦

ௌ
௦ୀଵ                                                                        (3a) 

𝐻௦ = ∑


ೞ
 𝑙𝑜𝑔ଶ (

ଵ


ೞ
ൗ

)∊௦                                                            (3b)                                           

where the subscript i denotes a five-digit IPC which is exclusively under a three-digit IPC s; P 
refers to the share of patent applications; 𝐻௦ refers to the five-digit variety within each three-digit 
IPC. We re-estimate the benchmark model and the models with interaction term based on different 
thresholds, respectively, and report the results in Table 6. 
 
From Table 6, it is noted that related variety within ICTs shows a significantly positive effect on 
AI inventing, even though with a lower magnitude than technological relatedness of ICTs. The 
catch-up effects are only significant when the threshold is set up at ≥10. One possible explanation 
is that the variable of related variety within ICTs tends to capture the general composition of 
knowledge base within ICTs. By contrast, the variable of regional relatedness of ICTs tends to 
capture the specific relatedness between ICTs and local knowledge base. Another explanation is 
that we have many regions with missing values for the variable of related variety within ICTs. 
These regions have limited number of ICTs and thus no variation in the share of patent applications 
between 3-digit IPC and 5-digit IPC. The reduced number of observations may lead to the 
insignificance of results in some specifications. But even with the reduced number of regions, it is 
noted that the sign of catch-up effect is still positive across the specifications with different 
thresholds and the magnitude tends to increase as the threshold increases. 
 

Table 6. Robustness check: related variety within ICTs as independent variable 

  
Benchmark model 

Catch-up effects 

Variables ≥5 ≥10 ≥15 

RV 0.135** 0.118* 0.102* 0.119** 

 (0.0581) (0.0617) (0.0601) (0.0589) 

RV*catchup  0.136 0.464** 0.525 

  (0.170) (0.229) (0.337) 

Constant -1.240*** -1.237*** -1.233*** -1.232*** 

 (0.417) (0.418) (0.418) (0.418) 

Obs 1,591 1,591 1,591 1,591 

     

Period dummies Yes Yes Yes Yes 

Log likelihood -2748.2313 -2747.9047 -2745.9997 -2746.8949 

LR chi2 1670.23 1670.89 1674.70 1672.91 

Prob > chi2 0.0000 0.0000 0.0000 0.0000 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  
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Recall that we use the broad definition to define ICTs when calculating the technological 
relatedness in Section 3.2. This may raise a concern of whether our findings are sensitive to 
change of definition of ICTs. To address this concern, we use the restrictive definition of ICTs 
for a robustness check. We re-estimate the effects of technological relatedness of ICTs without 
the interaction terms, with interaction term based on different thresholds, respectively, and report 
the results in Table 7. The results show that our main findings hold. When we use the restrictive 
definition of ICTs, both the effects of technological relatedness and the catch-up effects are a 
relatively weaker than when ICTs are based on the broad definition. This may indicate that what 
matters for the emergence and catch-up of AI inventing reside more in the ICTs in a broad sense 
than those advanced ICTs.  
  

Table 7. Robustness check: based on restrictive definition of ICTs 

  
Benchmark model 

Catch-up effects 

Variables ≥5 ≥10 ≥15 

Ave_density 0.381*** 0.207* 0.283** 0.321*** 

 (0.112) (0.115) (0.113) (0.112) 

Ave_density*catchup  1.871*** 2.176*** 2.503*** 

  (0.337) (0.487) (0.657) 

Constant -1.257*** -1.223*** -1.231*** -1.234*** 

 (0.430) (0.423) (0.425) (0.426) 

Obs 1,864 1,864 1,864 1,864 

     

Period dummies Yes Yes Yes Yes 

Log likelihood -2888.582  -2868.3952 -2874.5569 -2877.939 

LR chi2 1876.28 1916.66 1904.33 1897.57 

Prob > chi2 0.0000 0.0000 0.0000 0.0000 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.  

 
6. Discussion and conclusion 
Through the lens of regional technological diversification, this paper focused on two specific 
research questions. How important are ICTs for emergence of AI technologies? And how does 
regional knowledge base of ICTs influence knowledge production of AI of European regions? 
Based on the patent data from the OECD REGPAT database, our findings show that ICTs are a 
major knowledge source of AI technologies and their importance has been increasing over time. 
We also find that technological relatedness of ICTs to a region’s existing knowledge base is an 
important predictor for the emergence of AI inventing in European regions. Especially, the 
effects of technological relatedness of ICTs are stronger for regions which recently caught up in 
AI inventing. Our findings indicate that local infrastructure and capabilities of ICTs serve as the 
digital base for the emergence and development of AI in European regions. Meanwhile, the 
development of ICTs itself also unlocks new technological possibilities. Both effects display the 
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enabling nature of GPTs not only feeding new technologies but bridging possibilities for 
recombination. 
 
The contribution of this paper is three-fold. First, our study theoretically contributes to the 
literature on Evolutionary Economic Geography by providing new insights of how regional 
branching is influenced by the diffusion of GPTs.  Although technological relatedness and GPTs 
have been separately emphasized as key tools for smart specialisation policy (S3) (Boschma & 
Giannelle, 2014; Foray, David, & Hall, 2009), few studies that have investigated how GPTs 
influence regional diversification and development through the mechanism of technological 
relatedness. Montresor and Quatraro (2017) is one exception, which explores the role of GPTs in 
regional branching. But they focus on GPTs as a group of new generation key enabling 
technologies. This raises a question of whether the new emerging technologies could capture the 
two properties of GPTs fully. Our findings show that the role of ICTs may go beyond the 
advanced technologies but resides more in ICTs in a broader sense. Our findings suggest that 
future studies could go beyond the few key enabling technologies but have a more holistic view 
to investigate the successive nature of technological evolution. In addition, unlike previous 
studies, we used citation analyses to exhibit how important ICTs are as one knowledge source of 
AI and how the importance changes over time.  
 
Secondly, our study methodological contributes to the literature on regional diversification. In 
the recent studies that focus on regional diversification processes of newly emerging 
technologies, relatedness is usually measured as the proximity of focal technologies to the local 
structure of existing technologies. The proximity between technologies is specified by a 
“technology space”, which is usually developed based on the frequency of co-occurrence of 
technologies in a specific relation, such as co-location in a region, or co-classification in a patent. 
This approach is useful when the focal technological are stable and mature. But it may set 
limitations when it is used to measure relatedness of newly emerging technologies, particularly 
when they are still in the early stage of development. For example, the definition of AI is still 
fuzzy and has been updating along the fast development of the field (EPO, 2017, WIPO, 2019). 
In the case of patents, the patent classification codes, such as IPC and CPC, might not have been 
updated to take full account of emerging technologies. In this sense, the focus only on the 
relatedness of AI technologies in the current knowledge network may not capture the full picture 
of its diversification process, as the proximity may not be stable to capture the full picture 
between AI and other technologies. In our study, instead of focusing on the role of regional 
knowledge base of AI, we pay attention to the role of regional knowledge base of ICTs. It is not 
only a relevant technology for AI inventing but also a mature GPT, which is more stable to 
capture regional knowledge base. This may provide a new view for those studies which aim to 
investigate the role of relatedness in regional branching of emerging technologies.  
 
Third, our findings also suggest some policy implications. As discussed above, our findings 
suggest that future regional policies may consider going beyond advanced enabling technologies 
but pay attention of the role of GPTs in a broader sense in regional development. In addition, 
past European regional policies on digital technology and AI have paralleled to each other 
(European Commission, 2016; 2018). For example, e-infrastructure has been addressed in the 
policies in promoting EU’s digital future (European Commission, 2016) and AI technology 
separately (European Commission, 2018). Our findings indicate a close and successive 



22 
 

relationship between digital technology and AI and thus suggest many initiatives or investment 
opportunities could be jointly coordinated and designed in the future policies.  
 
The new wave of technological change gives new momentum for the field of Evolutionary 
Economic Geography. It may not only generate new academic debates in terms of how regions 
embrace the opportunities and challenges arising from the new technologies but also influence 
the policy approach to integrate the role of technological change in future policy design. We 
hope this study could attract more future studies to improve our understanding of the micro 
foundation of how GPTs influence regional diversification.  
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Appendix  
 

Table A1. Correlation matrix of variables 

Variables (1) (2) (3) 

AI_inventing (1) 1   

Ave_density (2) 0.3791 1  

Pop (3) 0.2019 0.3746 1 

 
 
 


