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Abstract 

The aim of the paper is to shed light on the role played by regional knowledge bases in Industry 

3.0 in fostering new technologies in Industry 4.0 in European regions (NUTS3) over the period 

1991-2015. We find that 4.0 technologies appear to be quite related to 3.0 technologies, with some 

heterogeneity among different technology fields. The paper investigates the geographical 

implications. We find that the probability of developing Industry 4.0 technologies is higher in 

regions that are specialised in Industry 3.0 technologies. However, other types of knowledge bases 

also sustain regional diversification in Industry 4.0 technologies. 

 

JEL codes: B52, O33, R11 

 

Keywords: Fourth Industrial Revolution, Industry 4.0, regional innovation, patents, knowledge 

space, relatedness, EU regions 



2 
 

 

1. Introduction  

 

There is a long tradition of scholars pointing out that capitalist societies tend to go through a 

number of Industrial Revolutions (Perez and Soete 1988; Perez 2010). A well-established approach 

in the Economics of Innovation literature conceives the history of innovation as a temporal 

sequence of discrete jumps leading to new technological paradigms, followed by incremental 

changes along technological trajectories (Dosi 1982; Boschma 1999; Dosi and Nelson 2013). 

According to this view, the innovation process is characterized by historical moments in which the 

introduction of new and disruptive technologies (such as General-Purpose Technologies) paves 

the way for a complete re-organization of the economic system. 

 

Scholars argue that we are now in the maturity phase of the ICT technological paradigm, also 

known as the technological paradigm 3.0, in which 3.0 technologies are now being improved, 

without significative discrete jumps. At the same time, scholars claim that the technological 

frontier is rapidly moving ahead, leading the economic system towards a fully-fledged Fourth 

Industrial Revolution (Brynjolfsson and Mcafee 2011, 2014; Schwab 2017). This so-called 

technological paradigm 4.0 is not characterized by a single and easily identifiable technology, but 

concerns a set of very different technologies (Ménière et al. 2017; Popkova et al. 2019). In 

particular, 4.0 technologies often combine advanced 3.0 technologies (both hardware and 

software) with technologies pertaining to different application domains. The disruptive novelty 

brought about by the 4.0 paradigm is that this process of recombination introduces radical change 

in fields that have not been extensively affected by the 3.0 paradigm in the past. Examples are the 

application of Internet of Things technologies in the agricultural sector or Artificial Intelligence 

tools in legal and business services (Liao et al. 2017; Lu 2017). Thus, on the one hand, we observe 

a certain degree of continuity between the 3.0 paradigm and 4.0 technologies, in which the 4.0 

technological paradigm builds on the 3.0 paradigm through a process of continuous innovation. 

On the other hand, the broad recombinatory nature of the 4.0 paradigm introduces discontinuity in 

the innovation process: the application of advanced 3.0 technologies in new fields determines 

original and potentially disruptive 4.0 technical solutions that represent discrete jumps in the 

innovation process. 
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As happened with past industrial revolutions (Marshall 1987; Hall and Preston 1988; Boschma 

1999), it is reasonable to expect that the transition from the 3.0 to the 4.0 paradigm will bring 

changes in the geography of innovation. This may depend on the distribution of typical material 

and immaterial inputs that are necessary for the creation of the particular technical knowledge on 

which the paradigm relies. In other words, there might be a connection between the technological 

features of each paradigm and its subsequent geography of innovation. Consequently, it is 

important to understand the mechanisms that influence the capacity of a region to play an active 

role in the creation of new technological knowledge. In the end, regional development depends 

not only on the adoption of technologies imported from outside the region (Boschma and Balland 

2021a) but also on the possibility of producing new knowledge locally. Clearly, this is even more 

important when the unfolding of a new technological paradigm seems to be imminent. In this 

sense, regions face challenges and opportunities with huge impacts on their future development.  

 

Despite the Fourth Industrial Revolution is attracting full attention, its geography and local 

determinants are still barely investigated. Among the few works on the topic (Gress and Kalafsky 

2015; Strange and Zucchella 2017; Ciffolilli and Muscio 2018; Muscio and Ciffolilli 2020), the 

European Patent Office published a study on the geography of 4.0 innovation (Ménière et al. 2017), 

but it did not provide an analysis of its regional determinants. Balland and Boschma (2021b) 

identified European regions that display potential in the development of 4.0 technologies, showing 

the importance of relevant regional capabilities. They explored the connection between the local 

knowledge base and the ability of NUTS-2 regions in Europe to develop 4.0 technologies by 

applying the relatedness framework (Boschma 2017). 

 

So, although the literature on the geography of 4.0 innovation is growing, there is still little 

evidence on their regional determinants. We analyze the ability of NUTS-3 regions in 32 European 

countries (EU-27, UK and the 4 EFTA countries) to develop new 4.0 technologies in the period 

1991-2015. The present paper aims to move this literature a step forward with respect to at least 

three aspects. First, we shed new light on the connection between the two paradigms, exploring 

the degree of contuinity between the two from a relatedness framework. We do so by examing the 

degree of relatedness between 4.0 and 3.0 technologies, rather than providing a detailed technical 
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overview of 4.0 technologies, which is beyond the scope of this paper. Our findings show that 4.0 

technologies appear to be quite related to 3.0 technologies, with some heterogeneity among 

technological fields. Second, the paper explores the relationship between regional specialisation 

in 3.0 technologies and 4.0 knowledge creation in European NUTS-3 regions over the period 1991-

2015. Our findings show that the probability of developing 4.0 technologies is higher in regions 

specialised in 3.0 technologies, especially for those 4.0 technologies that are closer to the 3.0 

paradigm. Third, other types of technological specialisation are considered in order to test what 

kind of regional knowledge bases foster 4.0 knowledge creation. As recombinations lay at the heart 

of the 4.0 paradigm, we investigate whether local expertise and know-how in technologies coming 

from other fields may increase the ability of regions to diversify into 4.0 technologies. 

 

The paper is organized as follows. Section 2 briefly discusses the relevant literature. Section 3 

presents the data, while Section 4 and 5 explain the methodology adopted. Section 6 and 7 discuss 

the results and provide some robustness checks. Section 7 concludes.  

 

 

2. Literature review 

 

The long-term history of technology and innovation has been described in terms of a temporal 

sequence of discrete jumps and incremental changes. Dosi (1982, 1984; Dosi and Nelson 2013) 

developed an interpretative framework to describe this long-term pattern through the concepts of 

technological paradigms and technological trajectories. The advent of a new technological 

paradigm represents a discontinuity that sets into motion an incremental innovation process, which 

in turn take places along different technological trajectories. This framework has been further 

developed to include the phenomenon of Industrial Revolutions (Perez 2010). When some 

conditions are met, a new technological paradigm might have such disruptive consequences on the 

socio-economic system that the transition towards the new equilibrium represents a revolution.  

 

Another feature of the innovation process that has drawn full attention is that it is subject to path 

dependence processes (Nelson and Winter 1982; Dosi et al. 1988; Arthur 1994). It is widely 

recognized that the existing knowledge base has a strong influence on paths of new knowledge 
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creation and technological diversification. This influence is both direct and indirect. In the former 

case, the development of new technologies heavily relies and builds on existing technologies. In 

the latter, the availability of specific know-how, human capital, institutions, networks and peculiar 

resources that sustain the development of the existing knowledge base also shape future 

technological trajectories. From this point of view, the past and present technological structure 

conditions and shapes its future development (Castaldi and Dosi 2006). 

 

The idea of path dependency has been applied in the geography literature, and is now considered 

to be one of the main pillars of Evolutionary Economic Geography (Boschma and Lambooy 1999; 

Martin and Sunley 2006; Henning et al. 2013). A more recent body of literature has empirically 

analyzed this idea of history matters using the relatedness concept to understand the diversification 

process in countries and regions (Boschma 2017). The main finding arising from these studies is 

that technological diversification in regions is more likely in those technological fields that are 

technologically “closer” to the ones in which the region already has relevant expertise (Kogler et 

al. 2013; Boschma et al. 2015; Rigby 2015). Unrelated diversification is rare and more likely to 

happen under particular conditions, such as unrelated variety (Castaldi et al. 2015), responsive 

institutions (Boschma and Capone 2015) and inflow of external actors (Neffke et al., 2018). 

 

The innovation considered in the present study is of a particular type, since it involves a change of 

technological paradigm. However, it is less clear whether the rise of the 4.0 paradigm represents a 

discontuity in the history of technology and innovation, or whether it shows signs of continuity in 

which processes of path dependency prevail. Some scholars emphasize its more radical and 

disruptive features, associating it with the Fourth Industrial Revolution (Brynjolfsson and Mcafee, 

2011, 2014; Schwab 2017). Other scholars highlight the fact that 4.0 technologies combine 

technologies of the 3.0 paradigm with other technologies in particular application domains. This 

would imply that 3.0 technologies are being used and improved without significative discrete 

jumps, although, at the same time, they lead to radical change and disruptions in new fields of 

application (Liao et al. 2017; Lu 2017). This makes it crucial to determine whether 4.0 technologies 

and 3.0 technologies display some degree of cumulativeness, and which 4.0 technologies are closer 

to the ICT paradigm (continuity), and which ones are not (discontitnuity). 
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For a region, moving to 4.0 knowledge creation means to manage to exploit at its best all those 

elements that are necessary to reach the edge of the innovation frontier. Many regions in Europe 

show the ambition to do so (Santos et al. 2017; Reischauer 2018). However, there is little 

understanding which of them have the real potential to diversify into the technologies of the Fourth 

Industrial Revolution, as its geography and regional determinants are still underinvestigated (Gress 

and Kalafsky 2015; Strange and Zucchella 2017; Ciffolilli and Muscio 2018). The European Patent 

Office published a study with some evidence on the geography of 4.0 innovation (Ménière et al. 

2017). However, this study did not provide an analysis of its regional determinants. Balland and 

Boschma (2021b) investigated the potential of NUTS-2 regions in Europe to develop 4.0 

technologies. Using the analytical framework of relatedness (Boschma  2017), they found that 

regions were more likely to diversify into 4.0 technologies where they could draw on relevant local 

capabilities. However, what Balland and Boschma (2021b) did not investigate was the connection 

with 3.0 technologies, and to what extent there is discontinuity or continuity when shifting to a 

new paradigm from a geographical perspective. 

 

The question has not yet been addressed whether a change of technological paradigm can be 

interpreted as a form of diversification in which regions leverage on their knowledge base and 

local inputs to develop new 4.0 technologies and “jump” into the new paradigm. The geographical 

implication of the possible relatedness between 3.0 and 4.0 technologies is that, in case of high 

levels of cumulativeness between the two paradigms, regions characterized by a well-developed 

3.0 knowledge base might have an advantage in the production of 4.0 knowledge. Moreover, there 

is little understanding of what types of local knowledge bases are needed to develop what kinds of 

4.0 technologies. Given the technological heterogeneity of the 4.0 paradigm, the local 3.0 

knowledge base might have differentiated impacts on the development of different 4.0 

technologies, depending on their level of cumulativeness with 3.0 technologies. What is more, the 

local know-how in a specific 4.0 technology might be a strategic asset for a region to diversify in 

other 4.0 technologies. This might be self-reinforcing: the higher the number of 4.0 technologies 

produced in a region, the easier it could be for that region to diversify in other 4.0 technologies. 

There is no evidence yet whether such a marginal effect exists. Furthermore, although 3.0 and 4.0 

knowledge bases in regions are expected to be a strategic element in fostering 4.0 diversification, 

it is possible that other types of knowledge bases also play a role. As technologies coming from 
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application fields are combined, a strong local knowledge base in these technologies could 

facilitate the diversification process in regions towards 4.0 technologies. Finally, analyses on 4.0 

technologies have so far been done for NUTS-2 regions in Europe. We will look at the more 

detailed level of NUTS-3 regions instead, which enables us to analyze more precisely the 

importance of local capabilities. 

 

3. Data on technologies 

The study relies on patent data which is considered a good proxy for inventions and knowledge 

creation (Strumsky, Lobo and van der Leeuw, 2012; Strumsky and Lobo, 2015). The use of patent 

data allows identifying the regional knowledge base by looking at the technological codes that 

describe the patents produced in a region. Patent data are taken from the OECD Regpat database 

(Maraut et al., 2008) and the inventions are regionalized according to the inventors’ share. The 

geographical level of the analysis is the NUTS-3 European regions (EU27, the UK and the EFTA 

countries) and the overall time span considered is 1991-2015. 

 

The first empirical challenge is to select among the CPC classification technological codes that 

represent 3.0 and 4.0 technologies. It is possible to argue that, given its phase of maturity, there is 

a broad consensus on the technological boundaries of the 3.0 paradigm. In order to select 3.0 

technological patent codes, we adopted the classification of High-Tech IPC codes made by 

Eurostat (High-tech industry and knowledge-intensive services (htec), Annex 6) (Inaba and 

Squicciarini 2017). Two classes of ICT codes were selected, namely Computer and automated 

business equipment (ht_a) and Communication technologies (ht_f). These sets of IPC codes were 

mapped in the correspondent CPC codes using the official concordance tables.  

 

Identifying a precise set of 4.0 technologies is not an easy task. There is a narrative of the Fourth 

Industrial Revolution based on anecdotes and examples of single technologies (e.g. artificial 

intelligence, 3D- printing, big data analytics, cloud computing, smart sensors). Only few studies 

provide a comprehensive description from a technological perspective, such as Chiarello et. al  

(2018) who exploited Wikipedia data to map clusters of Industry 4.0 technologies. A landmark 

study by the European Patent Office (Ménière et al. 2017) provides a sample of technological 

patent codes related to 4.0 technologies. This work is based on the expertise of technicians and 
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patents examiners from the EPO. This paper makes use of the 4.0 technological codes provided by 

the EPO. Ménière et al. (2017) represents the most complete and reliable source available.  

 

The EPOs’ experts created a meaningful taxonomy of 4.0 inventions (patents) that allows 

assigning each technology to a specific class according to its characteristics. In particular, three 

macro technological classes were identified, each of them composed by some sub-categories, as 

reported in Table 1 in Annex A. The three classes are: Core technologies, Enabling technologies 

and Application domains. The class of Core technologies corresponds to the building blocks upon 

which 4.0 technologies are developed and include basic hardware technologies (sensors, 

processors, advanced memories), software technologies (adaptive databases, mobile operating 

systems, virtualisation) and connectivity systems (network protocols, adaptive wireless data 

systems). These are the advanced 3.0 technologies that can be recombined with other technologies 

in the context of the 4.0 technological paradigm. The second category, Enabling technologies, 

builds upon and complements the Core technologies paving the way for technological 

recombinations. Among Enabling technologies we find analytics systems, user interfaces (virtual 

reality), 3d technologies (printers and scanners), artificial intelligence (machine learning and 

neural networks), position determination systems (enhanced GPS), smart power supply 

technologies and intelligent safety systems. Finally, the Application domains refer to the final and 

recombinatory applications of 4.0 technologies in different parts of the economy, such as 

applications pertaining to individuals (wearables, health monitoring devices), application for the 

home environment (domotics), for moving vehicles, business enterprises (smart offices), 

manufacture (smart factories) and infrastructure. 

 

The EPO study identified CPC codes belonging to at least one of the three macro classes. For the 

purpose of the study, the technological classes considered in the analysis are required to be 

mutually exclusive. Consequently, a new classification of 4.0 CPC codes is proposed, with 7 

classes, as reported in Table 1. Each new class of 4.0 technologies corresponds to one of the three 

EPO classes, or to a mix of them. Classes 2, 3, 5 and 6 present a mix of the technological 

characteristics of macro-classes. If a technological code belongs both to the 3.0 definition and the 

4.0 definition, the latter prevails and the CPC is considered as 4.0. As a robustness check, an 
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alternative criterion was adopted in which only “pure” 3.0 and 4.0 CPC were considered, after 

having discarded those corresponding to both the definitions.  

 

 

Table 1 – The new classification of 4.0 CPC codes based on EPO’s classification 

New classification of 4.0 technologies (CPC) 
EPO’s classification of 4.0 technologies (CPC) 

Core tech. Enabling tech. Application dom. 

1 Core technologies 1 0 0 

2 Core and applied technologies  1 0 1 

3 Core and enabling technologies 1 1 0 

4 Enabling technologies 0 1 0 

5 Enabling and applied technologies 0 1 1 

6 Core, enabling and applied technologies 1 1 1 

7 Applied technologies 0 0 1 

Source: Authors’ elaboration 

 

 

4. Estimation of relatedness between technologies 

The aim of the paper is to look at the local determinants of knowledge creation in 4.0 technologies. 

Following the relatedness framework, we expect the “closer” the knowledge base of a region is to 

4.0 technologies, the more likely the region will develop 4.0 technologies. This requires a measure 

of technological distance between technologies. Following literature (Boschma, Balland and 

Kogler 2015; Rigby 2015), we computed a so-called “knowledge space”, namely a kxk matrix - 

with k equals to the number of technologies – in which each element of the matrix is a standardized 

measure of the frequency with which the two technologies considered (i.e. two CPC codes) co-

occur in a single patent in the sample of patents considered. The knowledge space was computed 

for 4 non-overlapping periods: 1991-1996;1997-2002;2003-2008;2009-2015. The calculations 

were made by exploiting some Python functions based on the EconGeo R package (Balland 2017). 

 

Figure 1 presents the relatedness between the seven classes of 4.0 technologies and the two classes 

of 3.0 technologies for the last period: the lighter the colour, the higher the relatedness is between 

two technologies. 4.0 Core technologies (in particular class 1, 2 and 3) are on average the closest 
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to the 3.0 class of Communication technologies (ht_f). This supports the interpretation of 4.0 Core 

technologies as very advanced 3.0 technologies: 4.0 Core technologies and 3.0 Communication 

technologies are often combined in the same invention. Interestingly, the 4.0 applied technologies 

(class no. 7) displays also high levels of relatedness with the 3.0 class of Computer and automated 

business equipment (ht_a) which suggests that this kind of technologies are somehow 

complementary for the realization of applied 4.0 solutions. 

 

Figure 1 – Relatedness between 4.0 technologies and 3.0 technologies 

 

Figure 2 shows the relatedness between 4.0 technologies. Some of  them are highly related, 

meaning that they frequently co-occur in the same patent, such as classes 1 and 3, and 4 and 5. 

 

Figure 2 – Relatedness between 4.0 technologies 
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Do 4.0 technologies display higher levels of relatedness with technologies other than 3.0 ones? 

Figure 3 compares, for each of the seven classes of 4.0 technologies, the relatedness values of the 

top 2-related technologies to the relatedness values of the top 2-related 3.0 classes. What Figure 3 

shows is that for none of the seven 4.0 classes, 3.0 technologies are among the 2 top-related 

technologies: other technologies are characterized by significantly higher levels of relatedness. 

 

Figure 3 – Top 4.0 related technologies 
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5. Modelling the entry of 4.0 technologies in European regions 

To assess the importance of local determinants for the entry of new 4.0 technologies in a region, 

we estimate linear probability models based on a panel data structure with fixed effects for 4.0 

technologies and time periods. Following studies on regional diversification, all observations 

include 4.0 technologies in which a region is not specialized (measured as a relative technological 

advantage (RTA) <1). The dependent variable is a dummy variable, !"#$%!,#,$, that takes value 1 

when region r develops an RTA higher than 1 in a 4.0 technology i at time t, and 0 otherwise. 

Different specifications of the entry models aim at exploring different aspects that influence the 

probability of a region to develop new 4.0 technologies.  

 

Model A – Baseline specification 

The baseline specification of the model aims at verifying a standard result of the regional 

diversification literature in the context of 4.0 knowledge creation. More specifically, we test 

whether the probability to develop an RTA in a specific 4.0 technology is higher for those regions 

that are characterized by a local knowledge base close to that 4.0 technology. To do so, we 

calculated the relatedness density around the seven classes of 4.0 technologies (Balland et al. 2019) 

for each region. The relatedness density around a specific 4.0 technological class i in region r at 

time t is defined as the sum of technological relatedness &#,%,$	of technology i to all other 

technologies j (4.0 or not 4.0) in which the region has a RTA, divided by the sum of technological 

relatedness of technology i to all other technologies j in the reference region (i.e. the EU28 + EFTA 

countries) at time t: 

 

(!)*#!+"!,,_+!",.#%!,#,$ =
∑ (12!,%,$&#,%,$%∈!,%'#

∑ &#,%,$%'#
∗ 100 

 

A region r has a (12!,%,$ in technology j at time t when the share of patents in technology j at time 

t in the region is greater than the same share in the reference area. 

 

(12!,%,$ = 1 .6
7*#!"#,!,%$ ∑ 7*#!"#,!,%$%8

∑ 7*#!"#,!,%$! ∑ ∑ 7*#!"#,!,%$%!8
> 1

(12!,%,$ = 0 	 :#ℎ!$<.,!
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Thus, the higher is the value of relatedness density with respect to a certain 4.0 technology, the 

closer that technology is to the regional knowledge base. 

 

To get a first indication, we compare in Figure 4 regions with an RTA in 4.0 technologies 

(indicated with a black grid pattern) and regions with high values of relatedness density (the darker 

the colour the higher the value) with respect to Core 4.0 technologies in period 4. What can be 

observed is that regions specialised in 4.0 technologies are also characterized by a high relatedness 

density. Moreover, also surrounding regions often tend to display high relatedness density values. 

 

Figure 4 – Regional specialization in Core 4.0 technologies (black grid) and relatedness density 

(field colour) around Core 4.0 technologies (period 4)  
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Another way to look at the possible connection between relatedness density and the development 

of a specialization in 4.0 technologies is to classify regions in four category. Table 2 classifies the 

regions according to their level of relatedness density (values lower or higher than the median 

value) and their specialization in Core technologies (RTA lower or higher than 1) in period 4. 204 

out of the 242 regions (84%) that present a 4.0 specialization in Core technologies display also 

higher than median values of relatedness density to 4.0 Core technologies. On the contrary, 656 

out of the 1,146 regions (57%) that are not specialized in the production of Core technologies are 

characterized by lower than median values of relatedness density to Core technologies. It is 

interesting to note that many capital regions (for example Wien, Berlin, Madrid, Paris, Budapest) 

are characterized by both a specialisation and high levels of relatedness with respect to Core 

technologies. Instead, among the regions with a high relatedness density but without a 

specialization we can find advanced regions like Utrecht, Milan, Bergamo and Birmingham. 

 

Table 2 – Relatedness density and specialization in Core technologies: a classification of European 

NUTS3 regions (period 4) 
 Specialisation (RTA>1) No specialization (RTA<0) 

High relatedness density  

(> median value) 
204 490 

Low relatedness density 

(< median value) 
38 656 

 

 

In order to provide more systematic evidence, we conducted econometric analysis. Our entry 

model includes relatedness density as the main independent variable of interest. In more details: 

 

(1)  

 

where  $!)!,#,$() represents the value of the relatedness density in region r for 4.0 technology i at 

time t-1. The coefficient =) is expected to be positive and significant, indicating a positive effect 

of relatedness to 4.0 technology i in the precedent period on the probability of developing an RTA 

in that technology in the following period. Two controls variables are included, namely regional 

!"#$%!,#,$ = '!,#,$ + )%$!*!,#,$&% + +%,-,_/!"0!,$ + +'1/,!,$ + 2# + 3$ + 4!,#,$ 
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population density (7:7_+!",!,$) and the regional gdp (>+7!,$, calculated in pps). Both variables 

are considered at the beginning of the period and derived from Cambridge Econometrics1. Finally, 

?# and @$ represent fixed effects at the technological and temporal level.  

 

Model B – Effect of 3.0 technologies 

To test the impact of regional specialization in 3.0 technologies, we added the two variables 

Computer and automated business equipment (ℎ#_*!,$()) and Communication technologies 

(ℎ#_6!,$()) that represent 3.0 technologies, and which take value of 1 when the region has an 

RTA>1 in the respective 3.0 technology at time t-1, and 0 otherwise. Appendix Annex C1 presents 

maps of European NUTS3-regions with respect to their scores on the two 3.0 technologies. A 

positive and significant value of coefficients =* and =+ would suggest that, ceteris paribus, regions 

specialised in 3.0 technologies are more likely to develop 4.0 technologies. This takes the 

following form: 

 

(2)  

 

Model specification 3 adds two interaction terms that explore whether the effect of a specialization 

in 3.0 technologies on the probability of developing 4.0 technologies is greater for those 4.0 

technologies that are technologically closer to the 3.0 paradigm:  

 

(3)      !"#$%!,#,$ = A!,#,$ + =)$!)!,#,$() + =*ℎ#_*!,$() + =+ℎ#_6!,$() + =,ℎ#_*_."#	!,$() +

																												=-ℎ#_6_."#!,$() + CD"#$!,$ + ?# + @$ + E!,#,$ 

 

where: 

ℎ#_*_."#	!,$() = !7:123 ∗ ℎ#.!,$() 

ℎ#_6_."#	!,$() = !7:123 ∗ ℎ#_6!,$() 

 

and !7:123 is a dummy variable taking value 1 when the observation concerns Core, Core and 

applied, and Core and enabling 4.0 technologies (classes 1,2,3).  

 
1 Source: https://www.camecon.com/european-regional-data/ 

!"#$%!,#,$ = '!,#,$ + )%$!*!,#,$&% + )'ℎ#_6!,$&% + )(ℎ#_7!,$&% + +8"#$!,$ + 2# + 3$ + 4!,#,$ 
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Model C – Effect of other 4.0 technologies 

We also estimate the possible effect of existing regional specialisations in 4.0 technologies on the 

probability of developing a new specialisation in another 4.0 technology. The analysis is based on 

model A and includes two dummy variables 6!<_:#ℎ!$40!,$() and I*"%_:#ℎ!$40!,$() which 

take value 1 if the region had a specialisation (RTA>1) in, respectively, one or two 4.0 

technologies, and in more than two 4.0 technologies, different from . at time t-1. In this way, we 

verify whether the marginal effect of a 4.0 specialisation on the probability of developing a new 

specialisation in another 4.0 technology is increasing with the number of present 4.0 

specialisations. In this case, we would have =/ >	=0. Appendix Annex C2 provides a map of all 

European NUTS3 regions scoring on the number of 4.0 technologies in which they are specialised. 

 

(4)     !"#$%!,#,$ = A!,#,$ + =)$!)!,#,$() + =*ℎ#_*!,$() + =+ℎ#_6!,$() + =06!<_:#ℎ!$40!,$() +

																											=/I*"%_:#ℎ!$40!,$() + CD"#$!,$ + ?# + @$ + E!,#,$ 

 

 

Model D – Effect of ‘top-related’ technologies 

Model D includes the variable #:7$!)!,$(), which captures the specialization of region r in the so-

called top 4.0 related technologies. More precisely, #:7$!)!,$() takes value 1 when the region is 

specialised in at least one of the two top-related technologies with respect to 4.0 technology i. The 

relatedness density variable is excluded from this specification because it is highly correlated with 

this variable #:7$!)!,$(), leading to an endogeneity problem.  

 

(5)  !"#$%!,#,$ = A!,#,$ + =*ℎ#_*!,$() + =+ℎ#_6!,$() + =,#:7$!)!,$() + CD"#$!,$ + ?# + @$ + E!,#,$ 

 

6. Results 

Table 3 reports the results of the estimations of all models. First, the coefficient of the relatedness 

density variable is positive and highly significant in all specifications. This result confirms that the 

relatedness framework also holds in the context of 4.0 knowledge creation (Balland and Boschma 

2021b): the probability of developing a specialization in a 4.0 technology is higher in those NUTS3 

regions characterized by a knowledge base technologically close to that 4.0 technology. 
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Table 3 – Estimation results 
Dependent variable: Entry(r,i,t) 

 A B1 B2 C D 

Reldens 0.00530*** 0.00466*** 0.00452*** 0.00380***  

 (0.000427) (0.000437) (0.000439) (0.000406)  

      

ht_a  -0.00740 -0.00812 -0.00785 0.00986 

  (0.00814) (0.0118) (0.00793) (0.00808) 

      

ht_f  0.0743*** 0.0536*** 0.0590*** 0.0918*** 

  (0.00933) (0.0120) (0.00840) (0.00931) 

      

ht_a_int   0.00310   

   (0.0157)   

      

ht_f_int   0.0534**   

   (0.0189)   

      

f_other40    0.0318***  

    (0.00587)  

      

m_other40    0.0667***  

    (0.00937)  

      

Toprel     0.0555*** 

     (0.0105) 

      

Gdp -0.00000204*** -0.00000194*** -0.00000187*** -0.00000203*** -0.000000554 

 (0.000000391) (0.000000391) (0.000000392) (0.000000371) (0.000000367) 

      

pop dens 0.00000194* 0.00000186* 0.00000187* 0.00000171* 0.00000190* 

 (0.000000901) (0.000000893) (0.000000894) (0.000000762) (0.000000891) 

N 17,938 17,938 17,938 17,938 17,938 

R2 0.027 0.032 0.032 0.035 0.026 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Models B1 and B2 analyse the role of 3.0 regional specializations in fostering 4.0 technologies. 

The results of model B1 highlight a positive and significant effect on the entry probability only for 

Communication technologies (ht_f) but not for Automated business equipment (ht_a). It is worth 

noting that the magnitude of the coefficient is particularly relevant (0.0743), more than ten times 

bigger than the effect of relatedness on the entry probability (0.00466). Furthermore, model B2 

tells us that this effect is even greater when the probability of developing specific types of 4.0 

technologies is measured. Indeed, when considering Core 4.0 technologies, the impact of 

specialization in Communication technologies is much higher than the overall effect 

(0.0534+0.0536=0.107). These results confirm our expectations on the possible implications of 

technological cumulativeness between 3.0 and 4.0 technologies for the geography of 4.0 

innovation. A local knowledge base in Communication technologies allows the region to leverage 

on the cumulative dimension of the 4.0 technological paradigm and, consequently, to produce 

more easily those kinds of 4.0 technologies that are more related to the 3.0 paradigm.  
 

Model C demonstrates that having a specialization in some 4.0 technologies increases the 

probability of developing additional specializations in other classes of 4.0 technologies. Moreover, 

the higher the number of existing 4.0 specialisations, the easier it is for the region to diversify in a 

new 4.0 technology. Both coefficients of variables 6!<_:#ℎ!$40!,$() and I*"%_:#ℎ!$40!,$() 

are positive and significant, with the latter being higher than the former. 
  
Model D shows how also a regional specialisation in those technologies that display the highest 

levels of 4.0 relatedness foster regional 4.0 innovation. Also in this case, the coefficient is positive, 

significant and high in magnitude (0.0555). This suggests that regional specialisation in 3.0 

technologies is not the only driver of the development of 4.0 technologies. 

 

Looking at the control variables, Table 3 shows that the coefficient of GDP is negative and usually 

significant, although the magnitude is barely negligible. Similarly, the positive, significant 

coefficient of population density does not provide relevant additional information. 

 

7. Robustness checks 
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We performed a number of robustness checks. First, we included a time-invariant version of the 

regional 3.0 specialization variables. The rationale behind this choice is that, with the unfolding of 

the 4.0 technological paradigm, also those technologies classified as 3.0 might evolve in a similar 

direction, becoming more related to at least some of the 4.0 technologies. For this reason, we 

considered only the 3.0 specialization in the first period, when the 4.0 phenomenon was not present 

yet. The results in Table 4 are in line with the previous ones, with the exception of the interaction 

term for Communication technologies (ht_f_int_p1) which is not more significant. This evidence 

somehow supports this intuition, given that the link between a specialization in 3.0 technologies 

and 4.0 innovation in Core 4.0 technologies appears to be weaker when only the “old” 

specialization is considered, disregarding the subsequent evolution of the regional knowledge base. 
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Table 4 – Estimation results, 3.0 specialization variables calculated in period 1 (time-invariant) 
Dependent variable: Entry(r,i,t); Specialisation in period 1 

 B1 B2 C D 

relatedness 0.00482*** 0.00477*** 0.00380***  

 (0.000438) (0.000439) (0.000407)  

     

ht_a_p1 -0.00232 -0.00542 -0.00307 0.0183 

 (0.00972) (0.0139) (0.00924) (0.00964) 

     

ht_f_p1 0.0581*** 0.0471*** 0.0460*** 0.0740*** 

 (0.00919) (0.0124) (0.00834) (0.00920) 

     

ht_a_int_p1  0.00764   

  (0.0188)   

     

ht_f_int_p1  0.0265   

  (0.0183)   

     

f_other40   0.0335***  

   (0.00586)  

     

m_other40   0.0750***  

   (0.00918)  

     

Toprel    0.0554*** 

    (0.0105) 

     

Gdp -0.00000207*** -0.00000204*** -0.00000214*** -0.000000627 

 (0.000000391) (0.000000392) (0.000000371) (0.000000368) 

     

pop dens 0.00000193* 0.00000194* 0.00000175* 0.00000197* 

 (0.000000897) (0.000000898) (0.000000762) (0.000000895) 

N 17938 17938 17938 17938 

R2 0.030 0.030 0.034 0.023 

Standard errors in parentheses 

* p < 0.05, ** p < 0.01, *** p < 0.001 
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Second, we considered an alternative specification of the dependent variable by adding a further 

condition on the regional development of an RTA in 4.0 technologies. The entry variable, in this 

case, takes value 1 only when (a) the location quotient becomes greater than 1 and (b) the absolute 

increase of the share of 4.0 technologies is larger than the minimum threshold of 0.3. Tables 1 and 

Table 2 in the Appendix, Annex D show the results and confirm our previous findings. Third, the 

sample of the regions considered in the analysis was filtered in order to exclude those cases with 

less than 10 patents per period. Table 3 and Table 4 in the Appendix, Annex D present the results 

and show the validity of our previous findings. Fourth, we changed the measurement of the 3.0 

and 4.0 technologies (CPC). We excluded technologies that fitted both the 3.0 and the 4.0 

definitions from our analysis (which applied to 1,795 CPC’s, out of a total of 10,490 CPC’s 

identified as 4.0), in order to exclude potential bias due to the partial overlapping of the 3.0 and 

4.0 definitions. The results of the estimations are reported in Tables 5 and Table 6 in the Appendix, 

Annex D. They confirm earlier findings. Finally, we tested another specification of the dependent 

variable, namely an entry variable which takes value 1 when the new 4.0 technology has a RTA>2, 

instead of RTA>1. The findings are reported in Tables 7 and Table 8 in the Appendix, Annex D. 

They show the same results. 

 

8. Conclusion and discussion 

The paper aimed to shed light on the fundamental question what kinds of local knowledge bases 

have enabled the development of new Industry 4.0 technologies in Europe in the last 3 decades. 

First, we explored the extent to which local knowledge bases in 3.0 technologies laid the 

foundations of the development of 4.0 technologies in European regions at a very detailed level 

(the NUTS3 level). Second, we examined which other types of knowledge bases may have 

contributed to the development of new 4.0 technologies, applying recent insights from the 

empirical literature on regional diversification (Boschma 2017). Both questions are part of a much 

broader debate about possible links between Industry 3.0 and Industry 4.0 technologies 

(Brynjolfsson and Mcafee 2011; Schwab 2017). It centres around the key question whether 

Industry 4.0 stands for a major technological transformation that reflects a radical departure from 

existing technologies in general, and 3.0 technologies more in particular. Looking at this debate 

from a geographical lense, and adopting a relatedness framework, may provide new inputs to this. 
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First of all, we found that the knowledge space involving 4.0 technologies shows that the 

relationship between 4.0 technologies and 3.0 technologies is quite heterogeneous, with some 4.0 

technologies being technologically closer to the previous 3.0 technological paradigm than others. 

Thus, there exists a certain degree of cumulativeness between the two paradigms, at least with 

respect to some 4.0 technologies. This cumulative dimension has some important implications for 

the resulting geography of Industry 4.0 innovation in Europe. In fact, the analysis showed that the 

probability of developing 4.0 technologies is higher in those regions that are specialised in the 

production of 3.0 technologies. This link is even stronger for the development of those 4.0 

technologies that are closer to the 3.0 technological paradigm. At the same time, it is shown that 

the development of 4.0 technologies is a self-reinforcing process: when a region develops a 

specialisation in some 4.0 technologies, the probability of diversification in new 4.0 technologies 

increases, and this increase is larger when the number of 4.0 specialisations is higher. 

 

The present study provides contributions but also opens the way for future research. First, it is 

important to take into consideration other local conditions that could enhance 4.0 technologies, 

going beyond the knowledge base approach adopted here. Although present technological trends 

influence future regional development paths, other regional variables could play a role and push 

regions in certain technological trajectories. The presence of local universities and other 

knowledge infrastructure (Tanner 2014, 2016) but also university-industry linkages might be 

crucial here (D’Este et al. 2013; Reischauer 2018). Institutional settings may also be considered 

important (Boschma and Capone 2015). Second, it could be interesting to include in the analysis 

some degree of spatial heterogeneity: regions are not all alike and different territories might present 

different modes of 4.0 knowledge creation. This point needs to be addressed in future research. 

Third, we only looked at regional knowledge bases, but we did not account for knowledge links 

with other regions. Inter-regional knowledge linkages can provide access to complementary 

capabilities (Miguelez and Moreno 2018; Balland and Boschma 2021a) and might enhance the 

ability of regions to contribute to the development of new 4.0 technologies, a topic that is still 

relatively unexplored. Fourth, there is a need to look more closely at the fields of application of 

Industry 4.0 technologies in regions. What needs to be explored whether there is overlap between 

the geographies of 4.0 technology production and the geographies of 4.0 industrial application in 
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Europe (De Propris and Bailey 2020). Fifth, there is need to focus on the consequences of Industry 

4.0 technologies for spatial inequalities in Europe. This may be due to the fact that 4.0 technologies 

are likely to be highly complex, and therefore may have a tendency to concentrate in space, 

creating new spatial inequalities (Balland and Rigby 2017; Balland et al. 2019). But also the role 

of big and powerful companies need to be investigated and assessed in this respect, as they 

dominate the development of some 4.0 technologies (Ménière et al. 2017). This is part of a much 

broader debate that revolves around the quasi-monopolistic power of giant companies that are 

heavily engaged in Industry 4.0, and the types of reponses against the negative downsides of 

Industry 4.0 that come from citizens and the political system in different countries and regions 

(Feldman et al. 2019). No doubt this will impact the extent to which, and what types of Industry 

4.0 technologies will be produced and implemented. It remains to be seen what consequences that 

will have for the future geography of Industry 4.0.  
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Annex A 
 
Table 1 – 4.0 technologies classes proposed by Valdes (2017) 

Technological fields Examples 
Core technologies  
Hardware Sensors, advanced memories, processors, adaptive displays 
Software Intelligent cloud storage and computing structures, adaptive databases, mobile 

operating systems, virtualization 
Connectivity Network protocols for massively connected devices, adaptive wireless data 

systems 
Enabling technologies  
Analytics Diagnostic systems for massive data 
User interfaces User interfaces, virtual reality, information display in eyewear 
Three-dimensional support 
systems 

Additive manufacturing, 3D printers and scanners for parts manufacture, 
automated 3D design and simulation 

Artificial intelligence Artificial intelligence, machine learning, neural networks 
Position determination Enhanced GPS, device to device relative and absolute positioning 
Power supply Situation-aware charging systems, shared power transmission objectives 
Security Adaptive security systems, intelligent safety systems 
Application domains  
Personal Personal health monitoring devices, smart wearables, entertainment devices 
Home Smart homes, alarm systems, intelligent lighting and heating, consumer robotics 
Vehicles Autonomous driving, vehicle fleet navigation devices 
Enterprise Intelligent retail and healthcare systems, autonomous office systems, smart 

offices, agriculture 
Manufacture Smart factories, intelligent robotics, energy saving 
Infrastructure Intelligent energy distribution networks, intelligent transport networks, intelligent 

lighting and heating systems 
Source: Valdes (2017) 
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Annex B 
 
Table 1 – List of the 2 top-4.0 related technologies  
 

4.0 class Top-rel. tech 1 Top-rel tech 2 

Epo_1 H04R (LOUDSPEAKERS, 
MICROPHONES, GRAMOPHONE 
PICK-UPS OR LIKE ACOUSTIC 
ELECTROMECHANICAL 
TRANSDUCERS; DEAF-AID SETS; 
PUBLIC ADDRESS SYSTEMS) 

H04S (STEREOPHONIC SYSTEMS ) 

Epo_2 G03G (ELECTROGRAPHY; 
ELECTROPHOTOGRAPHY; 
MAGNETOGRAPHY ) 

H04H (BROADCAST 
COMMUNICATION) 

Epo_3 H04L (TRANSMISSION OF DIGITAL 
INFORMATION, e.g. TELEGRAPHIC 
COMMUNICATION ) 

G09C (CODING OR CIPHERING 
APPARATUS FOR CRYPTOGRAPHIC 
OR OTHER PURPOSES INVOLVING 
THE NEED FOR SECRECY) 

Epo_4 G01S (RADIO DIRECTION-FINDING; 
RADIO NAVIGATION; 
DETERMINING DISTANCE OR 
VELOCITY BY USE OF RADIO 
WAVES; LOCATING OR PRESENCE-
DETECTING BY USE OF THE 
REFLECTION OR RERADIATION OF 
RADIO WAVES; ANALOGOUS 
ARRANGEMENTS USING OTHER 
WAVES) 

G06T (IMAGE DATA PROCESSING 
OR GENERATION, IN GENERAL) 

Epo_5 G01S (Se above) E05B (LOCKS; ACCESSORIES 
THEREFOR; HANDCUFFS) 

Epo_6 B61L (GUIDING RAILWAY TRAFFIC; 
ENSURING THE SAFETY OF 
RAILWAY TRAFFIC) 

F02D (CONTROLLING COMBUSTION 
ENGINES) 

Epo_7 G06Q (DATA PROCESSING 
SYSTEMS OR METHODS, 
SPECIALLY ADAPTED FOR 
ADMINISTRATIVE, COMMERCIAL, 
FINANCIAL, MANAGERIAL, 
SUPERVISORY OR FORECASTING 
PURPOSES) 

G10H (ELECTROPHONIC MUSICAL 
INSTRUMENTS) 
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Annex C1 
 
Figure 1 – Regional specialisation in 3.0 technologies, Computer and Automated business equipment (ht_a, 
period 1)  
 

 
 
Figure 2 – Regional specialisation in 3.0 technologies, Communication technologies (ht_f, period 1)  
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Annex C2 
 
Figure 1 – Regional specialisation in 4.0 technologies (number of classes in which a region has a 
specialisation, period 4) 
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Annex D 
 
Table 1 – Robustness checks: at least 0.3 increase in the share of technological specialization for the 
dependent variable 
 
Dependent variable: Entry(r,i,t) 

 A B1 B2 C D 
relatedness 0.00401*** 0.00341*** 0.00328*** 0.00251***  

 (0.000410) (0.000421) (0.000423) (0.000397)  
      

ht_a  -0.00545 -0.00686 -0.00604 0.00720 
  (0.00794) (0.0115) (0.00776) (0.00786) 
      

ht_f  0.0681*** 0.0497*** 0.0530*** 0.0809*** 
  (0.00911) (0.0117) (0.00821) (0.00904) 
      

ht_a_int   0.00446   
   (0.0153)   
      

ht_f_int   0.0476**   
   (0.0184)   
      

f_other40    0.0376***  
    (0.00572)  
      

m_other40    0.0675***  
    (0.00916)  
      

Toprel     0.0422*** 
     (0.0101) 
      

Gdp -0.00000182*** -0.00000174*** -0.00000167*** -0.00000185*** -0.000000714* 
 (0.000000380) (0.000000380) (0.000000381) (0.000000363) (0.000000355) 
      

pop dens 0.00000133 0.00000126 0.00000127 0.00000108 0.00000129 
 (0.000000832) (0.000000825) (0.000000827) (0.000000746) (0.000000824) 

N 18084 18084 18084 18084 18084 
R2 0.020 0.024 0.024 0.027 0.020 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 2 – Robustness checks: at least 0.3 increase in the share of technological specialization for the 
dependent variable 

 
Dependent variable: Entry(r,i,t); Specialisation in period 1 

 B1 B2 C D 
relatedness 0.00356*** 0.00351*** 0.00251***  
 (0.000422) (0.000423) (0.000398)  
     
ht_a_p1 0.000703 -0.00460 -0.000522 0.0160 
 (0.00951) (0.0136) (0.00905) (0.00939) 
     
ht_f_p1 0.0513*** 0.0392** 0.0396*** 0.0631*** 
 (0.00895) (0.0121) (0.00814) (0.00891) 
     
ht_a_int_p1  0.0126   
  (0.0184)   
     
ht_f_int_p1  0.0293   
  (0.0178)   
     
f_other40   0.0391***  
   (0.00572)  
     
m_other40   0.0752***  
   (0.00898)  
     
toprel    0.0421*** 
    (0.0102) 
     
pop dens 0.00000132 0.00000133 0.00000112 0.00000135 
 (0.000000829) (0.000000830) (0.000000746) (0.000000828) 
     
gdp -0.00000185*** -0.00000182*** -0.00000194*** -0.000000776* 
 (0.000000380) (0.000000381) (0.000000362) (0.000000356) 
N 18084 18084 18084 18084 
R2 0.022 0.022 0.026 0.018 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 3 - Robustness check: at least 0.3 increase in the share of technological specialization for the 
dependent variable, only regions with more than 10 technologies 
 
Dependent variable: Entry(r,i,t) 

 A B1 B2 C D 
relatedness 0.00340*** 0.00281*** 0.00265*** 0.00207***  
 (0.000430) (0.000440) (0.000442) (0.000413)  
      
ht_a  -0.00609 -0.00896 -0.00644 0.00342 
  (0.00799) (0.0116) (0.00794) (0.00793) 
      
ht_f  0.0687*** 0.0472*** 0.0539*** 0.0788*** 
  (0.00934) (0.0120) (0.00852) (0.00926) 
      
ht_a_int   0.00786   
   (0.0155)   
      
ht_f_int   0.0553**   
   (0.0189)   
      
f_other40    0.0312***  
    (0.00608)  
      
m_other40    0.0632***  
    (0.00943)  
      
toprel     0.0388*** 
     (0.0102) 
      
gdp -0.00000233*** -0.00000223*** -0.00000216*** -0.00000225*** -0.00000151*** 
 (0.000000404) (0.000000404) (0.000000405) (0.000000382) (0.000000387) 
      
pop dens 0.00000119 0.00000112 0.00000112 0.000000974 0.00000112 
 (0.000000837) (0.000000830) (0.000000833) (0.000000763) (0.000000828) 
N 16776 16776 16776 16776 16776 
R2 0.019 0.023 0.024 0.026 0.021 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 4 - Robustness check: at least 0.3 increase in the share of technological specialization for the 
dependent variable, only regions with more than 10 technologies 
 
Dependent variable: Entry(r,i,t); Specialisation in period 1 

 B1 B2 C D 
relatedness 0.00298*** 0.00292*** 0.00208***  
 (0.000441) (0.000442) (0.000414)  
     
ht_a_p1 0.000740 -0.00530 -0.0000588 0.0127 
 (0.00962) (0.0137) (0.00928) (0.00949) 
     
ht_f_p1 0.0496*** 0.0350** 0.0383*** 0.0587*** 
 (0.00904) (0.0122) (0.00836) (0.00902) 
     
ht_a_int_p1  0.0144   
  (0.0186)   
     
ht_f_int_p1  0.0353   
  (0.0180)   
     
f_other40   0.0329***  
   (0.00607)  
     
m_other40   0.0716***  
   (0.00924)  
     
toprel    0.0388*** 
    (0.0102) 
     
pop dens 0.00000118 0.00000119 0.00000102 0.00000118 
 (0.000000834) (0.000000836) (0.000000763) (0.000000832) 
     
gdp -0.00000234*** -0.00000230*** -0.00000234*** -0.00000157*** 
 (0.000000404) (0.000000405) (0.000000382) (0.000000388) 
N 16776 16776 16776 16776 
R2 0.021 0.021 0.025 0.019 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 5 - Robustness check: at least 0.3 increase in the share of technological specialization for the 
dependent variable, only regions with more than 10 technologies, and stricter definition of 3.0 and 4.0 
technologies (CPC) 
 
Dependent variable: Entry(r,i,t) 

 A B1 B2 C D 
relatedness 0.00486*** 0.00438*** 0.00416*** 0.00390***  
 (0.000423) (0.000435) (0.000437) (0.000414)  
      
ht_a  0.00145 -0.00382 0.000601 0.0168* 
  (0.00861) (0.0121) (0.00831) (0.00850) 
      
ht_f  0.0487*** 0.0222 0.0443*** 0.0604*** 
  (0.00916) (0.0117) (0.00838) (0.00917) 
      
ht_a_int   0.0140   
   (0.0167)   
      
ht_f_int   0.0675***   
   (0.0186)   
      
f_other40    0.0217**  
    (0.00663)  
      
m_other40    0.0359***  
    (0.00963)  
      
toprel     0.0602*** 
     (0.00960) 
      
gdp -0.00000265*** -0.00000262*** -0.00000251*** -0.00000264*** -0.00000148*** 
 (0.000000410) (0.000000410) (0.000000410) (0.000000392) (0.000000389) 
      
pop dens 0.00000156 0.00000149 0.00000149 0.00000144 0.00000150 
 (0.000000912) (0.000000908) (0.000000910) (0.000000812) (0.000000909) 
N 16501 16501 16501 16501 16501 
R2 0.037 0.039 0.040 0.040 0.034 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 6 - Robustness check: at least 0.3 increase in the share of technological specialization for the 
dependent variable, only regions with more than 10 technologies, and a stricter definition of 3.0 and 4.0 
technologies (CPC) 
 
Dependent variable: Entry(r,i,t); Specialisation in period 1 

 B1 B2 C D 
relatedness 0.00460*** 0.00452*** 0.00406***  
 (0.000433) (0.000434) (0.000413)  
     
ht_a_p1 -0.00562 -0.0141 -0.00672 0.0127 
 (0.0101) (0.0141) (0.00969) (0.00998) 
     
ht_f_p1 0.0378*** 0.0211 0.0338*** 0.0494*** 
 (0.00909) (0.0122) (0.00851) (0.00913) 
     
ht_a_int_p1  0.0200   
  (0.0196)   
     
ht_f_int_p1  0.0401*   
  (0.0182)   
     
f_other40   0.0227***  
   (0.00663)  
     
m_other40   0.0393***  
   (0.00959)  
     
toprel    0.0640*** 
    (0.00957) 
     
pop dens 0.00000154 0.00000154 0.00000149 0.00000153 
 (0.000000910) (0.000000911) (0.000000812) (0.000000910) 
     
gdp -0.00000269*** -0.00000264*** -0.00000271*** -0.00000151*** 
 (0.000000410) (0.000000411) (0.000000392) (0.000000391) 
N 16501 16501 16501 16501 
R2 0.038 0.038 0.039 0.033 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 7 - Robustness check: RTA for the entry variable calculated with a threshold of 2 
 
Dependent variable: Entry(r,i,t) 

 A B1 B2 C D 
relatedness 0.000874*** 0.000532* 0.000408 0.000285  
 (0.000229) (0.000235) (0.000233) (0.000213)  
      
ht_a  -0.0104* -0.00863 -0.0106* -0.00883* 
  (0.00437) (0.00610) (0.00452) (0.00426) 
      
ht_f  0.0350*** 0.0201** 0.0297*** 0.0373*** 
  (0.00512) (0.00656) (0.00471) (0.00511) 
      
ht_a_int   -0.00276   
   (0.00833)   
      
ht_f_int   0.0379***   
   (0.0105)   
      
f_other40    0.00475  
    (0.00355)  
      
m_other40    0.0206***  
    (0.00535)  
      
toprel     0.0170** 
     (0.00527) 
      
gdp -0.000000994*** -0.000000971*** -0.000000919*** -0.00000100*** -0.000000867*** 
 (0.000000220) (0.000000220) (0.000000220) (0.000000209) (0.000000211) 
      
pop dens 0.000000709 0.000000623 0.000000628 0.000000588 0.000000620 
 (0.000000500) (0.000000495) (0.000000497) (0.000000464) (0.000000498) 
N 21056 21056 21056 21056 21056 
R2 0.004 0.007 0.008 0.008 0.008 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 8 - Robustness check: RTA for the entry variable calculated with a threshold of 2 
 
Dependent variable: Entry(r,i,t); Specialisation in period 1 

 B1 B2 C D 
relatedness 0.000554* 0.000521* 0.000242  
 (0.000234) (0.000235) (0.000214)  
     
ht_a_p1 -0.00498 -0.00943 -0.00495 -0.00319 
 (0.00514) (0.00699) (0.00521) (0.00509) 
     
ht_f_p1 0.0323*** 0.0263*** 0.0277*** 0.0344*** 
 (0.00520) (0.00692) (0.00471) (0.00516) 
     
ht_a_int_p1  0.0108   
  (0.0101)   
     
ht_f_int_p1  0.0146   
  (0.0104)   
     
few_other40   0.00548  
   (0.00355)  
     
many_other40   0.0236***  
   (0.00525)  
     
toprel    0.0170** 
    (0.00529) 
     
pop dens 0.000000688 0.000000691 0.000000640 0.000000684 
 (0.000000498) (0.000000499) (0.000000464) (0.000000500) 
     
gdp -0.00000103*** -0.00000101*** -0.00000106*** -0.000000915*** 
 (0.000000220) (0.000000221) (0.000000209) (0.000000212) 
N 21056 21056 21056 21056 
R2 0.007 0.007 0.008 0.007 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 


