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Abstract

Measures of cooccurrence computed from cross sectional data are used to rationalize connections among

economic activities. In this work we show the grounds for unifying a multiplicity of similarity techniques applied

in the literature and we precise the identification of cooccurrence to actual coexistence in space, when one

side of the cross section are small administrative areas. All the similarity techniques studied here are akin to

a correlation structure computed from spatial intensity, also known as locational correlation. We argue that

these correlations o↵er objective tools to detect spatial patterns. Indeed we show that when applied to data of

employment by industry and county in United States (from 2002-7) the communities of networks derived from

locational correlations detect spatial patterns long acknowledged in economic geography. By addressing critical

open issues on the interpretation of cooccurrence indices, this work o↵ers technical guides for their exploitation

in Economic Geography studies.

Keywords: Economic geography, co-location, spatial analysis, areal data, point data, correlation structures,

distribution of economic activities.
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1. Introduction

The study of a wide range of questions in Economic Geography is based on characterizing the spatial dis-

tribution of activities, their employment, facilities, suppliers or customers. These questions can be related to

agglomeration externalities, di↵usion of knowledge or regional development, to name some examples.

Researchers usually seek to condense the full spatial information related to some economic activity into indices5

that can express special features of interest. There are measures that aim to capture spatial concentration, for

instance those in Duranton and Overman (2005) and M. Porter (2003) (under the name ’locational correlations’).

The first ones compute all pairwise distances among establishments of an industry and compare their distribution

with expectations from a null model to determine if certain industries have their establishments more frequently

located at certain distances. The latter proposes to compute the correlation matrix from cross sectional data of10

employment by US state suggesting that high correlation across space signals ’locational linkages’ between a pair

of activities.

In other cases we have so called cooccurence measures, as in Hidalgo et al. (2007). They apply a proximity

measure on cross sectional data of exports by country to estimate a network of products (product space). This

method has inspired a very active strand of literature that studies inferred networks of economic activities,15

technologies or regions (Boschma et al., 2014; Delgado et al., 2015; Ne↵ke et al., 2011) and has put forward the

idea of relatedness as a central concept (Hidalgo et al., 2018).

The product space of Hidalgo et al. (2007) appears to be a technique unrelated to the ones mentioned before.

In fact, however, the proximity derived in Hidalgo et al. (2007) can be taken as a correlation structure like that

in M. Porter (2003).20

In this paper we suggest that technical e↵orts devoted to understanding correlation structures would solidify

the foundations of recent research papers in various strands within Economic Geography. We focus on correlation

structures computed on cross sections where one of the sides are geographical units. In that particular case

pairwise similarities must have spatial interpretations.

In our view, two issues are among the most critical. Firstly, there seems to be no unified criteria in the trans-25

formation of raw data, and the computation of similarity measures. Di↵erent works adopt slight variations of the

same processing steps rendering their results incomparable. In addition, some of the most popular methodological

decisions are approximately equivalent to comfortable mathematical tools but depart slightly from them. This

complicates the formal study of the indices used, even if possibly not changing the published results significantly.

A second clear open issue that applies to this type of studies has to do with the formal treatment of space.30

Physical distance plays key roles in almost any phenomena studied in Economic Geography. But (back to the

connection between Duranton and Overman (2005) and M. Porter (2003)) when computing locational correlations,

how do distances enter the picture? We aim to tackle and overcome this problem and reconcile correlations

computed from data of administrative areas to accounts in continuous space.

To address the first issue, exploiting data on number of employees and number of establishments by industry35

(4 digit North American Classification System, NAICS) and county in the United States (US). We first compare

similarities presented by all pairs of industries, testing alternative combinations of raw data processing (no

3



transformation, log transformation, binarized location quotient (LQ)) and similarity measures (cosine similarity,

Pearson correlation, proximity as in Hidalgo et al. (2007), covariance, and dot product of the cross sectional

matrix). These are the discrete similarity measures, so called because they are computed from areal data. We40

find that all these transformations and similarity measures lead to partially equivalent rankings of similar -

dissimilar industry pairs. 1

To address the second issue, we compare expressions of overlap in continuous space to these discrete measures.

Analytical developments suggest a close relation between cosine similarity measures and coexistence in continuous

space. Computational experiments confirm this connection inequivocally and help understanding the implications45

of certain characteristics of geographical areas. In a nutshell, computing cosine similarity of employment levels in

counties is equivalent to superposition in continuous space of exponential decay density around establishments.

As long as the decay width is about one third of the typical area size (diameter).

After addressing these open issues with similarity measures, we explore the co-occurrence inferred from data

of employment by industry and US county. Because one side of the cross section are small areas, communities50

detected from correlation structures are associated to a spatial pattern (neighboring activities in the network

have a similar distribution across counties). Indeed, correlation structures allow us to classify industries by their

spatial distribution, and the classes that we find point clearly to long theorized economic phenomena. More

precisely, we distinguish large cities, distribution of population, presence of natural resources (forests, coastal

regions, agriculture or minerals/fuels) and activities that predominate in each of them. A last group comprises55

most manufacturing activities. One can say this technique is a dimensionality reduction, as instead of more than

3000 counties we can describe spatial distribution of industries by means of few patterns. It is interesting to note

that this classification, while clearly pointing to concepts studied in Economic Geography, is achieved without

any informed intervention from the researcher. The information is encoded in the raw data and thus in the

correlation matrices.60

Overall, results of this work help to make the case for the use of correlation structures as an objective tool in

the study of spatial patterns.

The paper is organized as follows. Section 2 reviews works applying cooccurrence measures. Section 3

describes the data. Section 4 presents a overview of the methods used, clarifying notation and terminology.

Section 5 shows the grounds for unifying a variety of discrete coexistence measures. Section 6 shows how discrete65

similarity measures match a continuous model of space. Section 7 discusses the correlation structures observed

in US and we conclude in Section 8.

1In the literature the names proximity, co-occurrence or coexistence measures, correlation structures or locational correlations (M.

Porter, 2003) refer to similarity measures of this family. Sometimes referring to measures sharing a definition (formula) or di↵ering

in their definitions.
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2. Related works

2.1. The use of similarity measures

Inner products such as X
T
X are basic measures of joint cooccurrence and as such they have been featured70

often. The elements of this matrix are (XT
X)ii0 =

P
xij .xi0j . Antecedents of studies that applied this framework

may be found outside Economic Geography. Applications to counts of patents appear at least as early as in

Ja↵e (1986) where a cosine similarity between vectors of firms patents by technological categories is called

proximity and used to weight investments in related firms. Basic joint cooccurrence and cosine similarity is

also applied on patent data in Breschi et al. (2003), Engelsman and van Raan (1994). In fact, these and other75

types of similarity measures (co-authorship, joint thematic classification of published works) have been naturally

welcomed in scientometric research (cf van Eck and Waltman (2009) for a review). Much earlier appearance

of such similarity methods is likely, although the lack of good quality data and computational availability may

have discouraged this type of analysis. Counts of joint occurrences of products in the portfolio are used by

Teece et al. (1994) to evaluate the coherence of firms portfolios. Some more recent examples which prompted80

a revitalization of the approach are in Hausmann and Klinger (2007), Hidalgo et al. (2007), where they call a

minimum conditional probability as ’proximity’ (�). That is �ii0 =
P

xij .xi0j/max(⌃ xij ,⌃ xi0j), applied on a

transformed matrix of exports by country.

These contributions had strong influence in making clear that a network structure derived from similarity

measures o↵ers a quantitative tool to estimate how industry or technology categories relate to each other. Then, it85

became useful to branches of Economic Geography studying capabilities of labour (Ne↵ke et al., 2011), knowledge

di↵usion and technological evolution (Balland et al., 2015; Boschma et al., 2014). It helped mapping landscapes of

technological (Alstott et al., 2017) or productive capabilities (Hausmann & Ne↵ke, 2016), grouping regions based

on what happens inside them, among other applications interesting to other branches of economic geography. 2

Table 1 shows the similarity methods used in these and other contributions. The content of its columns90

highlight the specific features that make each work be di↵erent to the rest, but they also represent factors that

unite these works under a single framework.

Analogous rationales for relating entities appear often in works out of geography, as is natural to expect.

And they can be interpreted from the points of view of bipartite networks, correlation structures, dimensionality

reduction techniques, and other equivalents.95

Empirical data that fits rectangular matrices happens often across scientific fields. In financial analysis of time

series, the side is usually made of time intervals and the structure of so called cross-correlations have been widely

studied in a rich strand of literature mainly featured in the journal Physica A with a kick starter contribution in

Plerou et al. (1999), among others. This strand has thoroughly studied the spectra (i.e. eigenvalue distribution)

of correlation matrices from financial time series. It is clear by now that it is useful to express correlation100

matrices as the sum of a ’modal’ matrix, a groups structure matrix and a noise matrix, all obtained directly

2Further possibilities for applying similarity analysis with an interesting variety of configurations can be found in Nedelkoska

et al. (2018) and Farinha et al. (2019).
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Table 1: Non extensive list of works applying similarity analysis. (*) This paper
Variable (unit) Transform. Main cat Side cat Proximity mea-

sure

Jaffe (1986) Patents Firms Technological

fields

Cosine

Teece et al. (1994) ownership of plants in indus-

tries

Firms Industries

M. Porter (2003) Employment (#) Industries US states Pearson corr

Breschi et al. (2003), Engelsman and

van Raan (1994)

Patents (#) Patent Id Technological

fields

XT X, cosine

Zhang and Horvath (2005) Gene Expression Gene Locus Pearson corr

M. A. Porter et al. (2005) vote (nay = -1, yea = +1,

else = 0)

Roll-call votes Representatives XT X, XXT

Hausmann and Klinger (2007), Hi-

dalgo and Hausmann (2009), Hidalgo

et al. (2007), Tacchella et al. (2012)

Exports (USD) LQ >1 Product (HS /

SIC)

Country min cond. Prob.

(proximity)

J. Wang and Yang (2009) mean daily temperature Chinese cities Time periods

Coscia et al. (2013) joint appearance in online

documents (’hits’) (#)

Countries — orga-

nizations — Issues

(keywords)

(idem) LQ >1 of hits

Boschma et al. (2012) Exports (USD) LQ >1 Product (HS /

SIC)

Spanish region

(NUTS 3)

min cond. Prob.

(proximity)

Boschma et al. (2014), Santoalha and

Boschma (2020)

Patents (#) LQ >1 Firms Technological

fields

min cond. Prob.

(proximity)

Hausmann and Neffke (2016) Labor flow (#) (LQ - 1) / (LQ

+ 1)

Industry Industry

Petralia et al. (2017) Patents (#) LQ >1 Country Technological

fields

Cosine

Iglesias (*) Employment, Firms (#) No transfor-

mation, log,

LQ > 1

Industries

(NAICS)

counties Pearson corr, co-

sine, cov, XT X,

min cond. Prob.

(proximity)

from the eigenvalues and eigenvectors of the empirical correlation matrix. A recent work dealing patiently with

the caveats of computing some clustering in a network derived from a correlation structure is MacMahon and

Garlaschelli (2015). Results from this strand of literature can be helpful for approaching the community detection

in correlation structures.105

Another discipline in which this data type is widespread is in genomics. In that context, gene expression

data is naturally displayed in a rectangular matrix where columns stand for di↵erent genes and rows indicate

expression levels under various conditions (Y. R. Wang & Huang, 2014). A squared similarity matrix is usually

built. Research in an interdiscipline involving genomics and computational statistics delves further into the

details, choices and implications of this type of analysis (eg. Zhang and Horvath (2005)).110

If the strands of Economic Geography working with similarity measures placed more importance on the

mathematical identity of the indices it wants to use (ie. discouraging continual creation of new independent

indices, and keeping track of the implications of each transformation of raw data and how di↵erent indices can

be formally related), it could benefit largely by borrowing from powerful technical developments arising in these

other disciplines. In addition, results within the field would be more easily comparable to each other.115

2.2. Focus of this paper: Areas are side categories

The focus of this paper is on the specificities derived from having geographical units as one side of the cross

section. In such a setting, cooccurrence techniques must be related to other techniques of spatial analysis. This

connection has however not been formally addressed to the best of our knowledge.
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In M. Porter (2003), ’locational linkages’ among industrial activities are inferred from Pearson correlations120

of employment disaggregated by (4 digit) SIC industry categories and US State. A more recent work that makes

use of such locational correlations is Diodato et al. (2018).

Another index of industry to industry coagglomeration is proposed in Ellison and Glaeser (1999). It is defined

as the covariance of employment shares (normalized by one minus a Herfindahl index). If we work at a single

level of disaggregation this last normalization does not play a role. On top of that, in practical cases it will be125

very close to one. A simplified version of the index would then be taking just the covariance of employment

shares. This index is ’similar in spirit’ to the Pearson correlations that Porter uses. The shares covariance of

Ellison and Glaeser (1999) are unfortunately hard to match analytically with the similarity measures computed

on absolute values. This is why they are excluded from the analysis of this paper, even if they would be worth

including in follow up studies.130

Many papers have countries as side categories, eg Hausmann and Klinger (2007), Hidalgo et al. (2007). Even

if these are geographical areas, one should acknowledge that they are relatively few units with disparate sizes of

about 4 orders of magnitude between extremes in terms of surface area, population or gross product. Instead,

if we take a single country or region, and split it into a large enough number of small areas of about the same

size we are closer to bridging point based pictures to small comparable areas arranged in a kind of lattice, to135

larger regions that contain a bunch of these areas. Indeed, we will first apply our analysis on the contiguous

United States of America split into (nearly 3200) counties of about (40km)2 average size. They o↵er some of

the few cases of a large region split into uniform small areas of comparable size (even with a few exceptions),

in addition to good quality data, strong and varied economic activities throughout the country and compiled

quite harmonically in central agencies. Successful tests on US counties would be a first step before applying the140

methods on evidence from other parts of the world. This analysis in thus a substantial improvement over the

very coarse picture one can get from the 50 states as in M. Porter (2003). Smaller geographical units allow finer

resolution of spatial patterns.

The issue of how to interpret a high correlation of spatial distribution is usually not addressed formally.

Multiple reasons can lead to such observation. This issue is of course not simple to approach, but it is nevertheless145

needed before outcomes of studies can be safely interpreted.

Finally, a promising alternative approach to pairwise similarities of industries based on their distribution over

areas has been put forward in van Dam et al. (2020), who introduce the use of pointwise mutual information.

This index has reasonable foundations and understanding its exact relation to the rest of correlation measures

may be a useful exercise. This however would demand a dedicated study that we have to leave for the future.150

Much of the information on regional economics have administrative areas as the basic unit of analysis. An

issue that has been discussed is the e↵ects of arbitrariness in administrative divisions’ size and shape. The fact

that firms can be in the border of an area and show no co-location with firms just across the border, while

they would co-locate with distant firms within the same district may influence the results. This issue has been

acknowledged for long, often as the Modifiable Unit Area Problem (MAUP). See for example Hennerdal and155

Nielsen (2017), Menon (2009) for review and further discussion.
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Even if the arbitrariness of administrative borders is a factor that will unavoidably alter results, if there is

only one version of the underlying facts, then continuous and discrete measures of it should not contradict each

other. That is, on average two points close to each other are likely to lie in the same area, and two points far

from each other are likely to lie in di↵erent areas. Irregularities of areas would introduce a certain distortion but160

it cannot mess up with this principle completely.

The idea of having solutions to the MAUP is for example discussed in Dark and Bram (2007). Some works

such as Duranton and Overman (2005), Scholl and Brenner (2016) present it as a reason for choosing point

based measures instead of areal measures. Instead, I would like us to see they can all be interpretations of a

single observation of a given spatial pattern. This will be developed in Section 6 where we will probe the formal165

connection between areal and point data, o↵ering a solution to the MAUP in studies of co-location.

3. Data and Methods

We test the methods on the contiguous United States, both due to their intrinsic weight as a major economy

where a wide variety of economic activities take place, and because it is known to present multiple known

geographies and spatial patterns in its vast territory. The source of information for this study are recent editions170

of the County Bussiness Patterns (CBP) datasets, produced by the Bureau of Labor and Statistics (BLS). Among

other possibilities, the CBP data o↵ers a dissagregation of the variables ’average annual employment’, ’number

of establishments’ and ’total annual wages’ into more than 3200 counties and 300 NAICS 4 digit industries.

We leave activities that show a dependency based on administrative decisions out of the analysis. These

includes mostly non productive activities registered more or less intensely depending on the conventions adopted175

within each US State. 3

4. Review of the formal framework

The arbitrariness in the design of any classification of activities and their interpretation at the stage of data

creation, as well as the researchers’ use of chains of transformations can altogether heavily influence the outcome

of any study. This constitutes the gap between actual phenomena and the data which is finally used (eg for a180

regression). The methodological stages that make up this gap however fall out of the focus of most papers, as the

attention is placed on an answer o↵ered to some question. Unfortunately, these answers may loose force if there

are open issues regarding the methods. For this reason we would like to review the steps where many studies

depart from each other partially undermining comparability of results.

3Namely: ’NAICS 2213 Water, sewage and other systems’, ’NAICS 4854 School and employee bus transportation’, ’NAICS 4911

Postal service’ ’NAICS 6111 Elementary and secondary schools’, ’NAICS 6113 Colleges and universities’, ’NAICS 6241 Individual

and family services’, ’NAICS 7132 Gambling industries’ ’NAICS 8131 Religious organizations’, ’NAICS 8141 Private households’,

’NAICS 9211 Executive, legislative and general government’, ’NAICS 9221 Justice, public order, and safety activities’, ’NAICS 9231

Administration of human resource programs’, ’NAICS 9241 Administration of environmental programs’, ’NAICS 9261 Administration

of economic programs’.
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Therefore, in these next sections we will briefly review the formalisms that let us view the methods in multiple185

papers as variants of a single ’similarity approach’ (cf. Table 1), and then review the choices at the stage of data

processing, and the particularities that may let datasets from di↵erent studies be inherently di↵erent from each

other.

4.1. The similarity measures

Given a matrix X(n⇥p) we may want to know whether its columns or rows have some relations among them.190

For this question, answers can come from multiple association coe�cients such as the matrix product X
T
X.

There are other measures that can fulfill this role, such as Pearson correlation, cosine similarity and covariance.

If we have a pair of columns Xj = (x1j , . . . , xij , . . . , xnj)
T and Xj0 , these similarity measures are defined as

follows:

Pearson correlation:195

Corr(j, j0) = rjj0 =

nP
i
(xij � X̄j)(xij0 � X̄j0)

||Xj � X̄j ||||Xj0 � X̄j0 ||
(1)

where j, j
0 represent a pair (e.g. a pair of industries) X̄j denotes the mean of column j and the square norm

is naturally defined as ||Xj � X̄j || =
qPn

i (xij � X̄j)2 and the same for column j
0 in place of j.

Cosine similarity:

CosSim(j, j0) = rii0 =

nP
i
xij xij0

||Xj ||||Xj0 ||
(2)

we can again see that Corr(Xj , Xj0) = CosSim(Xj � X̄j , Xj0 � X̄
0
j).

Sample covariance:200

Cov(j, j0) =
1

n

nX

i

(xij � X̄j)(xij0 � X̄j0) (3)

where n is the number of counties. These measures are partially related to each other as can be seen from their

formulas. In certain special cases, a X
T
X product, covariance matrix, cosine similarity or Pearson correlation

becomes identical to some of the other measures.

If the column variables are centered (their mean is zero) the covariance matrix is Cov(Y ) = Y
T
Y/(n � 1),

with Y = X � X̄. If we z-standardize the columns (demean and divide them by the standard deviation) Pearson205

correlation will match the covariance, i.e. Corr(Z) = Z
T
Z/(n � 1) with Z = (X � X̄)/std(X). If instead we

unit scale the columns of X, that is, we scale the columns so that their sum of squares is 1 (their norm is 1)

then we can have the cosine similarity matrix. Cossim(V ) = V
T
V with V = X/||X||. If we had centered

the matrix before unit scaling, i.e. with a matrix W = (X � X̄)/||X � X̄|| then we again obtain the Pearson

correlation matrix, this time equal to the cosine similarity matrix as is the case for centered matrices. This is210

Corr(W ) = W
T
W = Cos(W ).
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This discussion emphasises that if the matrix fulfills some properties the expressions for covariance, Pearson

correlation or cosine similarity can be compacted in an inner (i.e. matrix dot-) product. In general, however,

our empirical data (X) would not fulfill those special conditions on their rows or columns. Then, these measures

will partially di↵er from each other. If we are counting populations or total nominal values of output or one215

directional trade then the X matrix will not be centered. In general, empirical data will not be normalized

or standardized even if we could allow this transformation in some cases. We may however not have a strong

justification for applying these transformations, so that it is best to not transform the raw data and confirm

whether some of the similarity measures coincide or not when applied on our particular empirical case.

The possible sets of categories220

Even if mathematically it would not make di↵erence to transpose our rectangular data and exchange the

role of rows for that of columns and vice versa, we will adopt the convention to call the columns the main

categorization, and call the rows the side one. This means that the covariance and other similarities will be

defined for pairs of the main variables based on the values they take on the side variables.

When dealing with empirical data we may rely on classifications, e.g. for political entities, time periods,225

industries, occupations of workers, technological categories of patents, traded products or services, research fields

and disciplines, etc. These classifications have multiple possible levels of aggregations, often hierarchical but not

necessarily. Higher levels of disagreggation can allow detection of more specific phenomena but at the same time

increase noisy values from little populated categories, possibly exacerbating distortions from arbitrariness at the

step of data collection.230

In this work we use counts of formal employment classified by administrative regions (US counties) and

industry (NAICS).

Transformations of the observed data

Transformations of the original data are very frequent. They influence the outcomes of any study in a sensible

way but often not enough attention is placed on them. The most frequent transformations are logarithmic235

transformation, and the Location quotient (LQ) usually followed by a binarization. Expressing raw data in

logarithmic scale can help arrive at a more natural distribution of the matrix values. For example, nominal

monetary values or counts of people are often better expressed after a log transformation that can let matrix

entries’ values follow a bell shaped distribution afterwards. The so called ’Location Quotient’ (often called

’Revealed Comparative Advantage’ (RCA) in the context of international trade as in Balassa (1965) or Hidalgo240

et al. (2007)) involves dividing entries of the rectangular matrix by the partial margins and implies comparing

the observed values to those expected if marginal distributions were independent. 4 ’Binarization’ (often applied

after computing LQ) transforms the original matrix elements into a boolean (0, 1) telling where the variable was

higher than a threshold. Depending on the application, it is possible that we want to know just where something

happens and not to which extent it happens, which is what a binarization achieves.245

4If the raw data is well distributed in logs it is advisable to use the log of the location quotient.
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Units of measurement

Depending on the specific application, the observations may refer to numbers of people, nominal value in

some currency, number of patents, among multiple other possibilities.

Naturally, when all the data are consistent in the choice of unit of measurement (for example values in USD)

mathematical tools can be applied more powerfully. When we mix di↵erent kinds of variables into a single250

rectangular matrix we may have problems at the transformation stage. Eg. if one column has values in [0, 1]

and the rest are population numbers in the thousands, an LQ or a row-wise z-score will be ’broken’ for the first

column. This needs to be contemplated in each particular application.

5. Unifying a whole family of discrete coexistence measures

As we have discussed, similarity measures given by di↵erent definitions may match each other in special255

cases. In the cross sections of employment or number of establishments by county and industry the conditions

of centered, normalized data are not fulfilled. Still, it is worth exploring to which extent these discrete similarity

measures can still match each other in our setting.

After plotting all values of pairwise similarity according to the multiple discrete similarity measures we detect

a clear correspondence only in the following cases:260

• cos(X) ⇡ corr(X)

• X
T
X / cov(X)

For the first item (cos(X) ⇡ corr(X)), the correspondence is an identity. For the second one (XT
X / cov(X))

it is a proportionality. These relations are also observed if the raw data X was transformed to log(X), both for

measures of employment by county and industry, and number of establishments by county and industry. These265

are illustrated in the plots of Figure 1 applied on employment level data. Analogous results are observed for

number of establishments data.

If we widen the choices of possible measures of similarities and transformations of the original data (X) we

can uncover a whole family of similarity measures that agree on which are the most and least similar pairs of

activities. In that sense, we can argue they are all imperfect measures of a single property of industry pairs270

that we should call their ’similarity by US counties’. This family includes at least all measures that apply a log

transformation, or a binarized location quotient, or possibly do not transform the original data at all, followed by

applying a similarity among: cosine, Pearson correlation, covariance, dot product (XT
X) or Hausmann Hidalgo

proximity. All 15 possible combinations thereof are partially equivalent, at least in our setting of employment

and number of establishments by US county and 4 digit NAICS industry. The specific correspondence between275

each pair of these measures can be appreciated in the plots of Figure 2 which compares ranks directly. The

closest the points are to the diagonal, the closest the ranking of similar pairs of activities according to a pair of

measures match each other.

Among all the explored similarity measures there are two which we will use further in the remaining of the

paper. We take them as references for the whole family of US county based similarity measures. These are:280
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Figure 1: Scatterplots with direct comparison of selected industry pair similarity measures from US employment by county data.

The notation is (top plots): corr(): Pearson correlation (eq. 1), cos(): cosine similarity (eq. 2) cov(); (bottom plots): covariance

(eq. 3), XT
X(): simple joint coocurrence. The arguments can be raw data (X) or log transformed data (log(X)). Top plots are

depicting a near identity. Bottom plots (log log scale) show a proportionality. The proportionality factor is related to the number of

counties (denominator in eq. 3). These clear connections between similarity indices suggest paths for unification of methodologies

applied in di↵erent studies.

• Pearson correlation of log(X)

• cosine similarity of X

with X being the observed employment levels or alternatively the number of establishments, by US county

and 4 digit NAICS activity.

The first measure is justified in that the distribution of values in rows and columns of X acquire near gaussian or285

other well defined distributions when transformed by log(X). It makes sense to compute Pearson correlation once

the matrix values show a distribution closer to a normal. In our case, where does a high correlation of log variables

lead to? To see this assume two industries X, Y such that their employment levels fulfill Corr(logEx, logEy) ⇡ 1.

Then logEy ⇠ a log(Ex) + b, with a, b real coeficients of a line. From there Ey ⇠ e
b
E

a
x . In the cases of high

correlation (all pairs with correlation higher than 0.85), we are able to fit this linear regressions and find that290

a ⇡ 1 in all cases, and b ⇡ 0 with a standard deviation of 0.35. All in all this tells us that in our case, a high

correlation of log variables indicates that the employment levels of the pair of industries are roughly proportional

to each other.

The focus on the second measure (cosine similarity) comes from a first principles approach to the problem of

coexistence of industry facilities. We will show in Section 6 how cosine similarity can be used as a measure of295

actual coexistence (within a typical distance) of the locations that belong to a pair of industries.
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Figure 2: Comparison of rankings for multiple measures combining 5 similarity measures (cosine similarity, Pearson correlation,

covariance, Hausmann Hidalgo proximity and dot product) applied on the cross section of employment by NAICS 4 digit industry

and US county and two transformations thereof (logarithm and binarization of location quotient). Results applied to data of number

of establishments are analogous. In some cases it is hard to asses their exact relationship analytically. Nevertheless these rank

plots show that in most cases there is not a sharp contradiction on which pairs of activities are (dis-) similar to each other. The

accumulation on diagonal corners, together with empty (0, 1) and (1, 0) corners show that they all agree in the extreme cases,

suggesting that we can take them as alternative measures capturing a single underlying similarity. Notation: see caption of Figure

1. Also, HHprox() stands for proximity as in Hidalgo et al. (2007) (minimum conditional probability). The argument binLQ(X)

stands for binarized location quotients.
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Now, we have two indicators of similarity that can be linked to models involving employment levels or to

spatial micro foundations. Furthermore, even if we do not explore a direct link between Pearson coe�cient of the

log variables and cosine similarity, we do see that these measures do not contradict each other. They generally

agree on which pairs of industries show high similarity and they also agree with a larger family of measures that300

capture the same underlying characteristic of a pair of industries: their similarity by spatial distribution.

In the rest of the analysis we will use both these measures, computed for the variables ’employment level’

and ’number of facilities’. The four outcomes thereof are not exactly equivalent but we will see they depict a

coherent account of spatial patterns by which economic activities are distributed across the US. Results change

when changing the similarity measure relatively more than they do when changing the observed variable.305

6. Matching discrete to continuous coexistence measures

In this section we look for conditions under which measures of coexistence in continuous space match the

outcomes of cooccurrence in administrative areas. Here we are also o↵ering tools to evaluate caveats in the use

of discrete areal data for cooccurrence, often framed under the title of ’Modifiable Area Unit Problem’ (MAUP).

The MAUP argument is brought by Duranton and Overman (2005) to motivate avoiding using an index like that310

of Ellison and Glaeser (1997). Instead, we choose to find out the conditions under which continuous and discrete

coexistence indices should agree on their outcomes. In particular, we find a connection between continuous

accounts of coexistence and cosine similarity on county based levels.

Works in spatial analysis have repeatedly pointed to issues when using administrative districts as the basic

unit of analysis. These type of areas can have di↵erent surface areas, population or economic relevance, they315

can have irregular shapes and the distance that separates each pair of districts may be unacknowledged in some

analyses.

To study these potential issues methodically, let us introduce a model of continuous space. Assume any

establishments has an influence around it that is a function of distance to the establishment location. This

influence is formalised as a probability density function.5 An industry will be described by the collection of320

facilities that belong to it. And so, the influence of an industry in continuous space is the sum of probability

density functions describing all plant locations:

Fx(x) =
NxX

i

fx,i(x)

where the subscript x refers to industry x, the vector x refers to position in a 2D plane, the subscript i is for

each plant belonging to industry x, and Nx is the total number of plants that make up industry x.

If taken as probability distributions, the joint probability that two industries are influencing a place x is given325

by the product of probabilities: Fx(x) Fy(x).

5This probability density function can have a shape designed to proxy transport costs, probability of interaction with workers

of the establishment, potential demand, fits of gravity models, etc. It can typically be an exponential radial decay (Laplace), a 2D

Gaussian decay, or any other reasonable bounded PDF.
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Figure 3: Demonstration of setup for continuous space (left) versus areal data (right) comparison. Top plots relate to locations of

natural gas extraction fields (industry x). Middle plots relate to locations of oil refineries. Lower plots are the result of multiplying

the upper plots. Grid lines depict artificial square areas of 100km width (map coordinates are UTM 14S). In these particular plots

the probability function of the point locations has width b = 100km. Lower left are products of density functions and the lower right

are coocurrence measures.
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For a graphical representation of such Fx(x), Fy(x) and Fx(x) Fy(x) see the left side of figure Figure 3. If we

wanted to add up all places across the country influenced by both industries x and y, we compute the integral:

ZZ

R

FxFydR (4)

where R represents the whole area of integration (the whole country).330

A cosine similarity between a pair of industries is a normalized dot product. The dot product of the vector

of areal employment for industry x and industry y is the x-th, y-th element of the matrix M = E
T ·E where E

is the matrix of employment by area. This is:

Mx,y =
X

a

Ex,a.Ey,a =
X

a

0

@
Nx,aX

i=1

Exi

Ny,aX

j=1

Eyj

1

A =
X

a

X

i2x,a
j2y,a

ExiEyj (5)

For a graphical representation of Ex,a, Ey,a and their product, see the right side of figure Figure 3. The lower

plots is for the product of employment levels. The grid demarcates the modelled areas a. The exercise in this335

section is simply to compare a normalized volume under the R2 ! R function in the lower left plot to the

normalized area based product in the lower right plot.

Can the dot product between two industries expressed in their areal values be compared to the overlap of

their density functions? In the continuous case, in principle the density function of each firm has an overlap with

all others.340

Expressed from the density functions of individual plants:

ZZ

R

FxFydR =

ZZ

R

0

@
NxX

i

fx,i(x)

NyX

j

fy,j(x)

1

A dR

This sum will potentially consist of Nx. Ny terms, as the density function around each location can have a

non negative overlap to all other locations. Distributing the product of these sums and because of the additivity

of integrals:

X

i2x
j2y

0

@
ZZ

R

fx,i(x)fy,j(x)dR

1

A =
X

a

X

i2x,a
j2y

0

@
ZZ

R

fx,i(x)fy,j(x)dR

1

A

which can be separated into sums for each area, where the terms involving a firm xi in area a are assigned to345

such area.

Now let us compare the contribution of the areal terms, both in the discrete and in the continuous case. That

is, how we can draw a relation of the type:

X

i2x,a
j2y

0

@
ZZ

R

fx,i(x)fy,j(x)dR

1

A ⇠
X

i2x,a
j2y,a

ExiEyj
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Figure 4: Micro accounting of coexistence between facilities belonging to a pair of industries (left) or a single industry (right). All

links belong to 4 sets we named A,B,C,D, depending on whether they share the same administrative area and whether they actually

are close to each other in the continuous space.

For managing this, we will distinguish four possible situations that apply to each of these pairs of x, y

locations. To make this description easier we will say that two locations i, j overlap or that they are close to each350

other if
RR

R

fifjdR is significantly larger than zero, or non negligible. There are two conditions here, firms may

overlap or not in the continuous space, and firms location may lie within a single area, or not. The combination

of these two conditions gives us four situations to consider. We will call these:

A The pair overlaps and shares the area.

B The pair overlaps while belonging to di↵erent areas355

C The pair does not overlap, but they belong to the same area.

D The pair does not overlap and they belong to di↵erent areas.

This is illustrated schematically in Figure 4.

Splitting the pairwise relations like this will allow relating the individual terms of pairs, for pairs falling into

the condition A letting us move further. The cases in B and C will introduce di↵erences between the continuous360

and discrete accounts. These are the situations sometimes raised in a criticism to the use of areal data and in

the discussion of the MAUP problem. Namely, points can be close to each other and lie in di↵erent areas, and

points can lie in the same area while in practice being far from each other. Separating these terms allows us to

find out in which cases they will become small enough for the terms in A to dominate the relation. The pairs

in D contribute to the agreement between the continuous and discrete accounts 6. Expressing the relation split365

according to these cases we have:

LHS =
X

i,j2A

ZZ

R

fx,i(x)fy,j(x)dR+
X

i,j2B

ZZ

R

fx,i(x)fy,j(x)dR

RHS =
X

i,j2A

ExiEyj +
X

i,j2C

ExiEyj

6Mostly, these terms will describe the pair which are definitely far from each other. In the continuous case, depending on the

shape of the density functions we will have a non negative term for any pair, however they will be negligible, as it happens for the

area below two gaussians separated by several standard deviations from each other
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these expression will match each other if the terms in the first sum match for each i, j and the sums over

cases B and C are relatively small.

For reducing the terms from pairs in C we need that areas are not much larger than the radius of influence

of a location. For the pairs in B, we need that locations from a given area do not overlap with locations from370

neighboring areas, which will be the case if the radius of influence is not much larger than the area itself.

Therefore these di↵erences between the diuscrete and the continuous account will be relatively smaller if the

area of influence we model around the locations is about the size of the typical administrastive area, not much

smaller, not much larger.

As for the terms in A, the sums will be equal if each of the terms in them are equal. That is we ask that:375

ExiEyj =

ZZ

R

fx,i(x)fy,j(x)dR; 8i, j 2 A

6.1. Normalizations

It is useful in practice to let the coexistence of an industry wit itself be equal to 1. For this a normalization

needs to be introduced in the definition of the dot product and the joint probability (equations 4 and 5). We

rescale the joint probability, so that when computed for a function on itself the result is 1 and we let the

normalized joint probability to be independent of a proportional scaling of the density function of some of the380

industries (for example by changing Fy for 2Fy). 7 The expression for the normalized joint probability would

read:

RR

R

FxFydR

rRR

R

F 2
xdR

rRR

R

F 2
y dR

(6)

An analogous requirement, but applied in the dot product of areal vectors from the last section actually leads

us to an expression of cosine similarity, that is:

P
a
Ex,a.Ey,a

qP
a
E2

x,a

qP
a
E2

y,a

(7)

The separations into terms of the previous paragraphs can be kept unaltered, so that we will still want the385

summations B and C to be small, and we will have an expression where the amplitudes in the continuous and

discrete cases are link to each other. That is:

ExiEyjqP
a
E2

x,a

qP
a
E2

y,a

=

RR

R

fx,i(x)fy,j(x)dR

rRR

R

F 2
xdR

rRR

R

F 2
y dR

; 8i, j 2 A (8)

7This will also let it fulfill the condition that an arbitrary splitting of an industry category does not alter results significantly
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6.2. Solution for industry self-overlap

Applied to some industry x on itself this will be:

E
2
xiP

a
E2

x,a

=

RR

R

f
2
x,i(x)dR

RR

R

F 2
xdR

; 8i, j 2 A (9)

We could now introduce some possible expressions for f(x) in order to have a specific relation between these390

density functions and the magnitude of employment.

We can consider the following cases:

• Gaussian

gx,i(x) =
ti

2⇡�2
e
�(x�µi)

2/(2�2)

• or Laplace (exponential decay)

fx,i(x) =
ti

2b2
e
�|x�µi|/b

These two functions are characterized by three parameters. An amplitude, here represented in t (the density395

functions for an individual plant are not normalized (the volume under them is not 1) unless t=1). There is a

width parameter, given by � and b respectively, and a position parameter given by the 2D vector µ.

The area integral of the product of two 2D Gaussian bells separated by a distance � is:

ZZ

R

gx,i(x)gy,j(x)dR =
titj

2⇡
�
�
2
i + �

2
j

� exp
 
� �2

2
�
�
2
i + �

2
j

�
!

(10)

and we are asking that this is comparable to ExiEyj (Eq. 8). Note that in Eq. 10 there is a dependence with

the distance �. While this is natural to expect, it means that the integral joint density depends not just on the400

magnitude of the points but also on their relative position, captured in the term ExiEyj only in a binary fashion,

either they share the same district or they do not. To deal with this di�culty we will proceed as follows: in the

remaining of this section I consider the case of self cooccurrence, where � ! 0, and in the following section I

study the general case of any � through computational simulations.

In the limit that � ! 0 ZZ

R

gx,i(x)gy,j(x)dR ! titj

2⇡
�
�
2
i + �

2
j

� (11)

Density functions of exponential decay may not have an easy expression for the volume under their product.405

But when � = 0 we have:

ZZ

R

fx,i(x)fy,j(x)dR =
titj

2⇡ (bi + bj)
2 (12)
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To summarize these two results, consider self overlap of an industry (then � = 0, and i = j) and let eqs 11

and 12 be expressed as: ZZ

R

h
2
x,i(x)dR =

t
2
i

2⇡s2i
(13)

where si ⌘ 2�2
i if assuming Gaussian influence around point locations, and si = 4b2i id assuming an exponential

decay influence (Laplace).

In the case of similarity of an industry with itself Eq. 9 links overlaps in continuous space with the observed

counts of employees by establishment. Replacing 13 into 9 we can find out the intensity of the density function410

of an establishment in terms of the observed employment of the establishment. This tells us how to normalize

the density functions for the discrete to continuous equivalence in 9 to hold. Taking square root of 9:

Ex,i

||Ex,a||
=

tip
2⇡si

1qR
A F 2

xdR

Where ||Ex,a|| is simply the euclidean norm of the employment by area vector. From there we find we need:

ti =
p
2⇡si

0

@

qR
A F 2

xdR

||Ex,a||

1

AEx,i (14)

for the discrete and continuous accounts to match each other.

This last equation is telling us that the framework we devised is consistent as long as the intensity of the415

probability density function of an establishment is proportional to its number of employees. The proportionality

factor is given by two factors: the ratio of the norms in discrete and in continuous space, and a normalization

by the width of the influence (wider si would be met by by a smaller ti that balances out the width e↵ect). 8

6.3. Solution for cross industry overlap

The generalization of the results of last section to spatial coexistence between a pair of industries (i.e. contin-420

uous and discrete accounts described by Eq. 8 instead of Eq. 9) requires that instead of the simplified equation

13 (valid when � = 0) we use an expression such as Eq. 10 valid for any establishments distance �.

There are, however, important obstacles when trying to express the coexistence of establishemnts from a pair

of industries in continuous space. First, the volume under the product of two (bell shaped) density functions may

not have closed form expressions. This happens already when considering radial the exponential decay. Even425

the expression for the area of the intersection between two circles is non trivial. We sort this out by integrating

numerically.

In the computational experiments that will be described next, we use square, equal size areas. Then, results

are clean from irregularity of area shapes, although we do test the role played by area sizes. 9

8The norm in continuous space does itself depend on ti. To sort out this conundrum think that (once si are fixed) the condition

of proportionality to Ex,i implies the relative magnitudes among all ti are fixed, and so a change in ti implies a change of equal

proportion in all tj , 8j 6= .i. This means a change in equal proportion in Fx and then the relation in 14 would be preserved.
9The vast majority of US counties in the contiguous US states are of similar size, making this procedure reasonable. Results

might not apply if administrative areas are of extremely di↵erent sizes.
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Even if we could have an approximate expression for joint probabilities at any � and even if we assumed430

square, fixed size areas, there are further di�culties that cannot be easily treated analytically. On the one hand,

each pair of ’overlapping’ establishments (i, j 2 A,B) in general need that we consider their own separating

distance �ij . In the computational experiments all separations � are the same, and I sweep across a wide

range of �. Then, I am estimating the dependence with � if these were all the same. In an actual empirical

setting, there would be an e↵ective � that is representative of the distance between an average overlapping pair435

of establishments.

On the other hand, whether a pair of establishments is in the same area or not depends on the relative

location of the i establishment within its area, and the magnitude and angle of distance to the j establishment.

An analytic treatment is possible only on probabilistic grounds.

In short, the best path for comparing discrete area vs. continuous accounts in general is by computational440

experiments. The experiment I present here is intuitive and consists of the following procedure. Define hypothet-

ical administrative areas by a square grid. Load the actual spatial distribution of establishments of an industry.

Generate copies of this distribution, but let all establishment positions of a copy be shifted a distance � in ran-

dom angles. Then, compute discrete cooccurrence (cosine similarity) and integrate numerically the product of

continuous density functions between the original data and each of the copies. From there we will have estimates445

of expected discrete and continuous cooccurence, as a function of � and for various administrative area sizes. In

this way, we will first be able to study the continuous/discrete correspondence suggested in the preceding sections

as a function of the parameters of the problem.

The outcome of this experiment is first illustrated on Figure 5, applied on the location of oil refineries, with

100km2 square areas. Generalizations of the experiment applied to natural gas extraction locations and repeating450

the exercise for 10km2 areas are shown in Figure 6. These generalizations allow us to abstract results from the

distribution each specific industry studied, and probing the role played by area sizes.

This exercise tests the decay of coexistence when we move slowly from a full coexistence situation (co location

of establishments with themselves, left) to a zero coexistence situation (right). We see that the parameter

describing the influence of establishments (b) governs the onset of the decay of coexistence measured in continuous455

space. This is to be expected. Additionally, we observe that the discrete account (where we have computed cosine

similarity of total employment by areas as a measure of similarity) also presents a decay of similar shape. Given

that the decay of coexistence in continuous space is shifted when increasing b, there has to be an intermediate b

for which the continuous and discrete accounts match each other. In the preceding discussions, we said that for

having few pairs of establishments matching conditions B ad C the width b has to be not much larger than areas,460

and not much smaller than areas respectively (cf 4). From the computational exercises we see that continuous

and discrete accounts match each other best if b ⇡ 0.3d (denoting area size as d).

US counties are ⇠ 160km2 size on average. A square county of this area is 40km wide. The result of

simulations are telling us that if we use cosine similarity as cooccurrence measure for employment by county we

are testing coexistence assuming influence of establishments decaying radially with a parameter b ⇡ 13km.465

In the previous section we have seen that a whole family of discrete coexistence measures are partially
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Figure 5: (Top) Decay of coexistence measures with distance �. Cosine similarity on admin. areas (black) and overlap of density

functions in continuous space (colors). Density functions are radial exponential decay, computed for various width parameters

(see legend). On the left end (� ! 0) there is full overlap and coexistence is near 1. On the other end (� � 1) there is no

overlap and coexistence is near zero. The interesting feature is the transition between these extremes. We can see that discrete

coexistence matches the continuous account of coexistence only when the width b of establishments density functions is slightly less

than b̂ = 30km. The dashed vertical line shows the area size.

(Bottom) Maps with circles around establishment locations (blue) and � shifted locations, for three values � = 10km, 50km, 200km,

denoted as A,B,C on the upper plot.

equivalent. So that with all these developments we are finding the concrete meaning of coexistence measures

when applied on US county data.

In Figure 6 I replicate the decay test for two area sizes and two di↵erent industries. From here we can see

that results just discussed are largely equivalent on both industries tested. Also, we confirm that the decay of470

area based measures is directly related to the size of areas. Larger areas mean considering coexistence at a larger

distance (the relative location of the black curve and the vertical gray line is preserved when changing area size).

7. Application: what correlation structure tells about industries and regions of the United States.

So far we have seen that many similarity techniques are partially equivalent to each other and can be inter-

preted as coexistence in continuous space. We have also seen that area size determines the distance at which475

coexistence is detected. In the remaining sections of the paper I show the actual correlation structure we observe

in our data and discuss it briefly.
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Figure 6: Decay of coexistence measures with distance �. Cosine similarity on admin. areas (black) and overlap of density functions

in continuous space (colors, see legend). Results for two industries (left - right) and for two area sizes (10 km, top - 100 km, bottom).

The decay of discrete area coexistence (black) appears linked to area size (gray vertical line), as they both shift by the same amounts.

The square matrix encoding the correlation structure can be translated into an adjacency matrix, i.e. a

matrix that defines a network. In such networks each industry is a node, it can be taken as an industry space.

Each node has a spatial distribution across counties. Nodes within a community, or cluster of tightly connected480

nodes, approximately share a common distribution across space. Then, because of having geographical units on

one side of the cross section, the correlation structures will also lead to geographical patterns.

In the next subsection 7.1 we introduce the methods applied to arrive at an industry space and geographical

patterns and in subsections 7.2 and 7.3 I show and discuss the results.

7.1. Methods for analyzing correlation matrices485

There are techniques particularly adapted to processing similarity matrices. The eigenvalues of random

matrices are studied theoretically and have known distributions. Correlation matrices however, tend to have a

single large eigenvalue linked to the main mode of the matrix. Subsequent eigenvalues are much smaller but can

still be larger than the largest expected eigenvalue of the random matrix, therefore suggesting they are linked to

non-random structure of the correlation matrix. The remaining majority of eigenvalues match the eigenvalues of490

the random matrix.

It turns out, that a correlation matrix can be expressed as a sum of components related to each eigenvalue

and their eigenvectors. Indeed, because of being a real symmetric matrix, C(p⇥p) fulfills C = U ⇤ U
�1 with U

an orthogonal matrix (i.e. U
�1 = U

T ) so that C = U ⇤ U
T . The similarity (real symmetric) matrices can be
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decomposed as:495

C =
X

k

�kuku
T
k =

X

k

�kVk (15)

where �k, uk denote the k � th eigenvalue and eigenvector, and so that Vk 2 Rp⇥p.

This connection is useful for ’cleaning out’ the correlated background (main eigenvalue) and letting us capture

(slightly) far from average values of the correlation matrix that suggest (positive, null or negative) association

between industries.

The decomposition in Eq. 15 works similarly for cosine similarity and correlation of logs matrices. We500

illustrate it graphically in Figure 7 where we can grasp the conceptual idea of what we achieve with this decom-

position: removing the main component leaves us with an underlying structure which we call groups structure.

Further components only contain small fluctuations.10

Figure 7: Decomposition of similarity by eigenvalue components (eq. 15)

Even if it would seem natural to take a correlation matrix, or cosine similarity matrix directly as adjacency

matrix of a network, it is better to do this extra processing first. It is not uncommon that the majority of505

industries follow a common trend (e.g. they are nearly proportional to all-industries totals), which is reflected

by a degree of correlation among most industry pairs, and therefore a ’complete’ network structure with a single

community.

At this point, we are close to the framework of a principal component analysis (PCA). For applying this

technique we need to first center the dataset by subtracting industry means. Use X to denote the centered data.510

The covariance matrix is C = X
T
X/(n� 1) and we have to diagonalize it to arrive at the principal components.

10One can take 20 or 30 components without much di↵erence in outcomes.
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This diagonalization leads to V
�1

CV = D, where D is the diagonal matrix with eigenvalues of C, and U has the

eigenvectors of C in columns. Then, for concluding the PCA decomposition, we would look at the eigenvectors

of the first few largest eigenvalues.

On the one hand, PCA can relate to the processing of correlation matrices I am proposing, because in515

both cases we are diagonalizing the similarity matrices. Nevertheless, what I am proposing is to express the

similarity matrix itself as a sum of a first eigenvector (modal) component plus subsequent few eigenvector groups

components (Eq. 15) as in Plerou et al. (1999) and later plotting communities of this network on the map. As

opposed to taking principal components that can be plotted on the map.

The two techniques can be seen as complementary analyses. Studying their connections fully can be certainly520

interesting. Some of the di�culties though, have to do with the data centering. We may take logs as a pre-

processing step, still there are key di↵erence between Pearson correlation and covariance that would need to be

addressed. If we did the analysis as in Plerou et al. (1999) but using the covariance matrix, the gap between this

technique and PCA would be: what is the di↵erence between spatial patterns from the principal eigenvectors,

and spatial patterns shown by communities of the ’groups’ contribution to the covariance matrix. This is an525

open question for future research.

We apply Scikit Learn (Python module) spectral clustering algorithm with all its options in default values11.

We repeat the fitting with 10 (or 15) di↵erent random seeds and obtain groups of industries that are grouped

together in all these optimizations. This way we find ’cores’ of comunitites that are strongly similar among each

other and weed out activities that can jump in between communities because they link weakly to more than one530

core.

As we explained in the previous section, we explore the outcome of applying Pearson correlation of logs and

cosine similarity to both employment levels and number of establishments. These constitute four criteria that we

label: A - corr(log(establishments)), B - cos(establishments), C - corr(log(employment)), D - cos(employment).

We apply the discussed community detection process on each of these four situations and see that communities535

from these four outcomes partially overlap. For this specific step, the algorithm we apply is to see in which clusters

(computed in one of the four combinations) more then 50% of the activities of any given cluster are contained.

Reciprocally, we ask that it cluster represents at least 10% of the cluster it is potentially contained in. In that

way, if for instance the activities of two clusters computed by D - cos(employment) and B - cos(establishments)

are 10 in each and there is an intersection of 6, we associate these two into a single component. We study these540

components. As another example, if a cluster of 5 activities from C - corr(log(employment)) is contained into a

very large cluster of 60 activities from D - cos(employment) we keep it separate. The idea is to not merge all

small, possibly interesting clusters of activities into very large overarching components.

The goal of this process is to reassure that outcomes are robust enough to not fade away when changing

choices of similarity matrix or the specific measure of economic activity.545

To sum up, the processing steps for results in Section 7 are the following:

11Documentation for sklearn.cluster.SpectralClustering
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- Averaging yearly values in 2002-2007. This can be stored as a rectangular table X of shape (3272, 320),

with counties as rows and industries as columns.

- Computing cosine similarity and Pearson correlation of the log values between industries from this cross-

section.550

- Decompose the similarity matrices by their eigenvalues and study the structure of groups, which is non

random and independent from the general trend.

- Apply spectral clustering to detect cores of activities that link strongly to each other, see what is the

geographic pattern that they depict and discuss these outcomes.

7.2. Results: Network of industries555

Let us begin by presenting the network structure of industries. To begin understanding the outcome, we can

look at Figure 8. Here each node corresponds to a NAICS 4-digit industry. The plot on the left is derived from

correlation of log levels and the one on the right from cosine similarity. Given that the results are largely analogous

when changing between number of establishments or employment level, we extract the groups component of the

similarity matrices and average the similarity computed from each of these variables to arrive at a single network560

plot.

Following the community detection methods described in detail in Section 7.1 I detect 11 components. These

are represented in colors in the networks of Figure 8. They are listed in Table 2.

Figure 8: Networks of industries. Left: from groups component of correlation of log levels. Right: from groups component of cosine

similarity. Edge weights computed from employment levels and number of establishments are averaged for each plot. The colors

depict the components we built from clustering in each of the four variable - similarity combinations (cf Section 7.1). LINK TO

INTERACTIVE PLOT
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An online version of this plot (link in figure caption) allows exploring the network interactively. To gain further

intuition into the regions of the plotted network, the plots of Figure 9 successively highlight some of the most565

common words in industry titles: manufacturing, services, transport, wholesalers, stores. We use the coexistence

network, although the outcome of this exercise is largely analogous if one used the correlation structure.

Figure 9: Network of industries. Highlight of frequent words in industry titles. The aim of this plot is to help understand the regions

of the networks plotted in Figure 8.

Finally on Figure 10 we paint nodes according to wage levels. Even if it is not clearly distinguishable in the

plot, certain components of the network are characterized by a higher than average wage level. These are the

components related to urban activities, including in NAICS categories: 51 Information, 52 Finance and insurance,570

53 Real estate and rental and leasing, 54 Professional and technical services.

Figure 10: Network of industries. Clusters by community detection (left) and wage levels (right). Only clusters of urban activities

are characterized by a (higher) average wage level. The rest of the clusters have mixed wage levels.

7.3. Results: Geographical patterns

The so called components we just discovered are neighborhoods of the network of industries. Neighbors in

this network show a high locational correlation, they share a common distribution over space. Neighborhoods

of the correlation structure can thus be identified to spatial patterns. In this section we explore the patterns575

coming out of this analysis.

I group the components into four themes, or types of spatial distribution (cf table 2). These are population,

cities, land uses and manufacturing. There is a di↵erent factor dominating the location of industries in each

of these themes. Respectively these are consumer demand, urban agglomeration externalities, availability of a

natural resource, and manufacturing externalities.580

27



Theme Component

Population Non tradables: stores and personal services

Cities

Large city economies I

Large city economies II

Other high wage activities

Land Uses

Agriculture and Food I: Ranching

Agriculture and Food II: Corn Belt

Water Economy

Fuels and Mining

Forests and Timber

Manufacturing
Manufacturing I: Steel Belt

Other manufacturing and other activities

Table 2: Summary of detected Themes and Components

The following table summarizes the components we could detect:

Next we review them in further detail.

Population

The activities in this theme are those that most closely match the distribution of population. Even if these

activities may not follow it exactly, the distribution of population is a reference to many accounting considerations585

and as such its acknowledgement is useful and justified.

In practice, the activities that fall in this category are mostly retail shops and personal services (such as

restaurants), in other words, consumer goods. Two factors combine for the location of shops to show this pattern.

These businesses have people as customers, and proximity to customers is central in their strategy (Berman,

2010; Runyan & Droge, 2008). In these industries, demand appears as a decisive factor for location. References590

discussing these facts are multiple. For example, referring to Los Angeles, Fujita et al. (1999) distinguish ”on

one side of film studios, arms manufacturers, and so on who produce for the U.S. or world market, on the other

side of restaurants, supermarkets, dentists, and so on who sell only locally.” (p 27). These latter are precisely

the types of activities that fall under our ’population’ theme. M. Porter (1980) also draws a connection between

dependence on demand, and intensity proportional to population: ”In consumer goods, demographic changes595

are one key determinant of the size of the buyer pool for a product and thereby the rate of growth in demand.

The potential customer group for a product may be as broad as all households, but it usually consists of buyers

characterized by particular age groups, income levels, educational levels, or geographic locations.”.

Cities

Cities are of course a notorious singular feature of our society. There is an abundance of discussions about600

what is the magic of cities, with questions approached from a variety of literature strands. When it comes
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Figure 11: Population-linear scaling of activities in the ’population’ theme. Right: scatterplots of data (NAICS 4451 Grocery stores,

NAICS 6211 O�ces of physicians, NAICS07 7221 Full-service restaurants, NAICS07 7222 Limited-service eating places). Left:

qualitative scaling pattern.

Non tradables: stores and personal services.

Distribution Activities

NAICS 238 Construction contractors

NAICS 44-45 Retail trade

NAICS 53 Real estate and rental and leasing

NAICS 54 Professional and technical services

NAICS 62 Health care and social assistance

NAICS 72 Accommodation and food services

NAICS 81 Other services, except public administration

Table 3: Non tradables. LINK TO INTERACTIVE MAP

to quantification, a tool that appears promising and convenient is that of scaling, given it quantifies apparent

externalities related to city size.

The cities theme comprises activities such as NAICS 5112 software publishers, NAICS 5418 advertising,

NAICS02 5161 Internet publishing and broadcasting, NAICS 5416 management and technical consulting services,605

NAICS 4251 electronic markets and agents and brokers, NAICS 5415 computer systems design, NAICS 5616

investigation and security services, NAICS 5614 business support services, NAICS 5414 specialized design services,

NAICS 5511 management of companies and enterprises.

Let us first show that these activities present particular features of scaling, which distinguish them from

activities in the ’population’ theme. In this way we also o↵er a possible path for connecting our results with610

some formal accounts. Then we will briefly mention strands of literature studying the phenomena of cities.

Discussing in depth these formal and conceptual approaches to cities is however out of the scope of this paper.
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Figure 12: Delayed onset and superlinear scaling of activities in the ’cities’ theme. Right: scatterplots of data (NAICS 5241 Insurance

carriers, NAICS 5416 Management and technical consulting services, NAICS 5418 Advertising, PR, and related services, NAICS

5614 Business support services). Left: qualitative scaling pattern.

On figures 11 and 12 we show the scaling patterns of industries in the ’population’ and ’cities’ themes

respectively. The schemes on the left show our interpretation of such scaling patterns, exaggerated for clarity.

The horizontal axes stand for county population, and the vertical ones stand for population in each of the615

industries. There is a point for each county with non zero employment in the industry. Activities which abound

proportionally to population would show all points on the diagonal line. Instead, we find that activities in the

’cities’ theme are less than proportionally represented in small town and cities, but catch up to be more than

proportionally represented in larger cities. Actually, the distinction between these two groups is somewhat blurry.

All activities have a mixture of the two patterns, although it is clear that activities in each of the themes lean620

clearly closer to one of the two limiting cases.

The activities in the ’cities’ theme would typically be deemed as complex in the sense that they did not exist

decades ago and even today they are missing in poorer, less developed regions. They can then be conceived as

activities near a technological frontier. It is expectable that this type of activities arise in large cities (as opposed

to small towns or rural areas) although formalizing this intuition is challenging. The framework of scaling625

(Bettencourt et al., 2007) may be helpful for a goal of eventually quantifying correctly. The superlinear scaling

(Bettencourt et al., 2007; Gomez-Lievano et al., 2012) would suggest that largest cities have scale advantages

over mid size cities. A superlinear scaling of a complex (knowledge or technology demanding) activities would

be consistent with most of this activity appearing in large cities and most of the activity of a large city being

complex, but the details of this relation need to be worked out carefully.630

When it comes to the singularity of cities conceptually there are of course studies in many strands of literature

which would be hard to review comprehensively. Cities are relatively more productive and show higher average

educational attainment. Marshall (op cit) dedicates lines to externalities involving skilled labor, although he

typically refers to towns or certain industrial districts, more than to large agglomerations as we know them

today. Instead, Jacobs (1970) centers her thesis on the fact that innovations near a technological frontier tend to635

be engendered in large cities before possibly finding ordinary longer term adoption in other types of geographies.
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Indeed the activities we classify in the ’cities’ theme are near the technological frontier and are clearly knowledge

intensive. There is a richness of recent works studying learning and di↵usion of specialized knowledge (Puga,

2010) and the development of knowledge intensive, complex activities (Balland et al., 2015; Balland et al., 2020;

Boschma et al., 2014) to name only a few of these.640

Large city economies I

Distribution Activities

NAICS 5112 Software publishers

NAICS02 5181 Isps and web search portals

NAICS 5182 Data processing, hosting and related services

NAICS 5415 Computer systems design and related services

NAICS 5417 Scientific research and development services

NAICS 5612 Facilities support services

NAICS 5619 Other support services

NAICS 6114 Business, computer and management training

Table 4: Large city economies I. LINK TO INTERACTIVE MAP

Large city economies II

Distribution Activities

NAICS 51 Information

NAICS 52 Finance and insurance

NAICS 53 Real estate and rental and leasing

NAICS 54 Professional and technical services

Table 5: Large city economies II. LINK TO INTERACTIVE MAP
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Other high wage activities

Distribution Activities

NAICS 51 Information

NAICS 52 Finance and insurance

NAICS 53 Real estate and rental and leasing

NAICS 54 Professional and technical services

Table 6: Other high wage activities. LINK TO INTERACTIVE MAP
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Land Uses

In words of Ellison et al. (2010) ”Natural advantages, such as the presence of natural inputs, di↵er spatially,

and firms may choose locations to gain access to those inputs.”. This third theme includes activities that have

a natural resource as important input. Or else, those that are near the upstream end of the supply chain and

choose to locate their operations near the primary establishments to save on transport costs. In these theme we645

find five components each characterized by spatial patterns that point inequivocally to a type of natural resource.

Two components are related to agriculture, one including the grazing lands of Texas’ west and other fertile

areas for the production of crops and fruits in Washington state and in the Central Valley of California, and the

other one centered on the Midwest corn belt region and Mississippi Valley.

Agriculture and Food I: Ranching

Distribution Activities

NAICS 111 Crop production

NAICS 112 Animal production and aquaculture

NAICS 311 Food manufacturing

Table 7: Ranching. LINK TO INTERACTIVE MAP

Agriculture and Food II: Corn Belt

Distribution Activities

NAICS 1111 Oilseed and grain farming

NAICS 1122 Hog and pig farming

NAICS 311 Food manufacturing

NAICS 4245 Farm product raw material merch. wholesalers

Table 8: Corn Belt. LINK TO INTERACTIVE MAP

One component comprises all fishing activities and touristic and transportation activities that take place650

in rivers, lakes and coasts. Ellison and Glaeser (1997) and Ellison et al. (2010) discuss repeatedly about the
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importance of natural resource endowments for this type of activities. In a more formal passage ”the e↵ects

of natural advantages on profits are captured by the random variables {⇡i}, which are chosen by nature at the

start of the process when it assigns resource endowments to each area [...] these variances might be high in the

shipbuilding industry because the profitability of a state will depend greatly on whether nature has put that state655

on the coast.” (actually the level of such ⇡i would be high in coastal states, not just their variance).

Indeed we are detecting patterns that seem to point at natural resources and determining what are the

industries in them. With this exercise we are able to detect those activities to which Ellison and Glaeser are

referring. In the case of coastal activities, the counties endowed with access to water form one of these spatial

patterns. From that point of view, the components we are showing would be telling the counties endowed with660

a specific natural resourse (fertile lands, forests, water access or minerals).

Water Economy

Distribution Activities

NAICS 1141 Fishing

NAICS 3117 Seafood product preparation and packaging

NAICS 3366 Ship and boat building

NAICS 4831 Sea, coastal, and great lakes transportation

NAICS 4832 Inland water transportation

NAICS 4872 Scenic and sightseeing transportation, water

NAICS 4883 Support activities for water transportation

Table 9: Water economy.

The next component in the natural resource theme includes activities of oil and gas extraction, as well as

extraction of other minerals. In addition, some of their first downstream activities, such as manufacturing of

petroleum and coal products (NAICS 324) fall into this component.

Ellison and Glaeser (1997) notes ”plants in the cane sugar refining and shipbuilding industries might be665

coagglomerated because coastal locations provide higher profits both for shipyards and for importers of bulky

commodities”. An additional quote on the same idea: (Ellison et al., 2010) ”Agglomeration and coagglomeration

can also appear empirically even if there are no gains from locational proximity. [...] For example, the ship

building and oil refining industries might be coagglomerated simply because both prefer coastal locations.”.

As a way to rationalize these ideas, consider first that if two activities overlap fully then they essentially670

share a single distribution. Otherwise it can happen that a pair of activities of a di↵erent kind coincide in some

context. Indeed it is true that many oil refineries lie on the coast (Texas, Louisiana) and then share space with

coastal activities. The volume under their joint density functions as in Section 6 will be non null along this coast

and will contribute to certain overlap in continuous space. Also, counties on this coast will have employment in

both industries and so they will add to measures of co-occurrence. The technique we are applying, however, is675
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made for distinguishing these two factors and classifying industries accordingly.

Fuels and Mining

Distribution Activities

NAICS 21 Mining, quarrying, and oil and gas extraction

NAICS 324 Petroleum and coal products manufacturing

NAICS 3251 Basic chemical manufacturing

NAICS 486 Pipeline transportation

Table 10: Oil and gas. LINK TO INTERACTIVE MAP

The last component we find in the natural resource theme are forest products industries. The pattern

presented by this component matches closely the distribution of natural forests. The large majority of forest area

in the US is non industrial privately owned. If the fraction of industrial timberland is approximately uniformly

distributed it is expected that the primary stages of wood processing industries will follow the overall distribution680

of natural forests. At the upstream there is supply of raw materials including fuelwood and industrial roundwood

which depend directly on the forest area and forest stock. This needs to be supplied to processing facilities (eg.

mills) and it is convenient for these industries to be near the resource. In between is the transformation of wood

into products, and at the other end is the demand for end products (sawnwood, wood-based panels, paper and

paperboard) (Alig et al., 2003). The industries in this other end are grouped among the manufacturing activities685

and the logistics of their value chain may play a more important role to explain their spatial distribution.

Forests and Timber

Distribution Activities

NAICS 1131 Timber tract operations

NAICS 1132 Forest nursery and gathering forest products

NAICS 1133 Logging

NAICS 1153 Support activities for forestry

NAICS 3211 Sawmills and wood preservation

NAICS 3212 Plywood and engineered wood product mfg.

NAICS 3371 Household and institutional furniture mfg.

Table 11: Forests. LINK TO INTERACTIVE MAP
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Manufacturing

The fourth and last theme is manufacturing. It comprises activities in the NAICS categories 31 to 33. The

distribution of these activities does not point clearly to population, natural resources or cities. The factors then

left to explain the location decisions of industrial establishments are externalities of di↵erent kinds, built on690

historical paths of arbitrary or reasonable origin. Such externalities have been the focus of extensive research. As

an early antecedent there is the proposed organizing criteria of Marshall (1890), who directed attention to a few

mechanisms simplified as transport cost externalities (mainly the availability of intermediate goods), availability of

labor (labor market pooling being the typical example) and ’ideas’, meaning specialised and technical knowledge.

These have been joined over time by other mechanisms such as proximity to a natural resource, pooling of695

demand, costs of distribution, competition forces, among others (Beaudry & Schi↵auerova, 2009; de Groot et al.,

2016; McCann & Folta, 2008). All these might influence firms decision to base their plants. However, each of

these mechanisms is qualitatively di↵erent and may combine in special ways to determine each of the specific

plant location choices that happened over time. Heterogeneities are expectable and have been the subject of

recent studies (Diodato et al., 2018; Ellison et al., 2010).700

The main industry sectors I identify are linked to the steel value chain, including the automotive and autoparts

industry and their suppliers. This single example presents most, if not all of the mentioned externality channels

across a network of thousands of heterogeneous businesses located throughout the US (with higher density in the

Midwest region south of the Great Lakes). Other sectors in this theme, such as the textile industry are examples

of activities that have developed in regional clusters. North Carolina has the largest textile mill industry and705

is the leading US state in textile exports. This industry existed for more than a century in the region. It is an

example of path dependency in economic development and it also suggests an important role played by industry

related tacit knowledge and possibly the existence of externalities leading to the formation of the cluster. All

this would help explain why the industry did not continue to grow in regions other than North Carolina.

Manufacturing I: Steel Belt

Distribution Activities

NAICS 325 Chemical manufacturing

NAICS 326 Plastics and rubber products manufacturing

NAICS 327 Nonmetallic mineral product manufacturing

NAICS 331 Primary metal manufacturing

NAICS 332 Fabricated metal product manufacturing

NAICS 333 Machinery manufacturing

NAICS 335 Electrical equipment and appliance mfg.

NAICS 336 Transportation equipment manufacturing

Table 12: Manufacturing. LINK TO INTERACTIVE MAP
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Other manufacturing and other activities

Distribution Activities

NAICS 31-33 Manufacturing

NAICS 48 Transportation

NAICS 51 Information

NAICS 52 Finance and insurance

Table 13: Other than steel belt manufacturing and other activities. LINK TO INTERACTIVE MAP

8. Conclusion710

This paper is centered on understanding the correlation structures derived from cross sectional data of intensity

of economic activities by (a large number of small) geographical units. First I show how a variety of techniques

for detecting coexistence from this type of data are partially equivalent among themselves (Section 5). I then

explore the connection to coexistence accounts computed from continuous space (i.e. based on establishments’

point locations and employment levels) (Section 6). Finally from these similarity measures I compute a network715

of industries (industry space) and I show that communities in this network stand for clear geographical patterns

linked to specific drivers of estabishments’ location.

More specifically I show that, both on employment and in number of establishment data, both using data in

linear levels and in log levels, cosine similarity tends to match Pearson correlation, and covariance is proportional

to simple joint cooccurrence X
T
X. These are the clearest relations among similarity measures in our data,720

but in fact I show that among all techniques that apply cosine similarity, Pearson correlation, covariance, joint

cooccurrence, or Hidalgo et al. (2007) proximity as similarity measure on raw data, log transformed data, or

binarized location quotient data, there is a rank correlation. In other words, any of these fifteen slightly di↵erent

techniques lead to partially equivalent rankings of industry pairs by similarity. In the remaining sections we use

Pearson correlation of log levels and cosine similarity of linear levels as proxy for the whole family of similarity725

measures. These two are chosen because they are closest to having theoretical and practical interpretations,

unlike some of the other similarity measures.

We also see that cosine similarity of the vectors of intensity by area can be linked to actual overlap of point

locations. The basis of this continuous-discrete identity is deduced by using calculus. The conclusion though

is reached thanks to computational simulations that acknowledge the arbitrariness of actual distributions of730

point locations of establishments, a task that is quite challenging to complete analytically. We find that for

square shaped administrative areas, assuming an exponential decay (of typical distance b) of the influence of a

point location with distance, cosine similarity matches actual coexistence of facilities within a radius b about
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30% as large as the area width. In this way we o↵er a way out of the conundrum of the modifiable area unit

problem, at least when it comes to the computation of correlation structures. At the same time we discover735

that cosine similarity of employment levels by area has a relevant micro interpretation. Co-location from areal

data (cosine similarity) is tuned to measure interactions acting at a distance proportional to the average size

of areas. Correlation structures can then be a lens focusable at di↵erent distances. This may allow studying

heterogeneities across industries by sensing at which distances a pair of industries coexist with each other.

Once the interpretation of these similarity measures is clear, I look at the ’industry spaces’ they imply and740

I map the neighborhoods of these networks. The goal of this last exercise is to validating the techniques by

analyzing the outcomes. We determine several distinct patterns that explain the spatial distribution of most

activities. The data driven approach of looking at the correlation structures leads directly to concepts often

theorised in Economic Geography. The detected patterns (and drivers) for the location of most industries are

among the following: population (consumer demand); agriculture, fuels and minerals, forest and timber, coastal745

and water economies (presence of natural resource); manufacturing (agglomeration forces) and large cities (urban

externalities). These themes and components of the correlation structure are illustrated and discussed briefly.

With this exercise, we have used empirical data and objective mathematical tools (correlation matrices,

its eigenvalue decomposition and spectral clustering to detect communities) and arrived at a classification of

activities. This analysis was prohibitive only some decades ago due to its computational and data demands. And750

yet, it is quite remarkable that its outcome aligns clearly with reflections by Marshall (1890), (ch. XI) where he

states: The characteristic of manufacturing industries which makes them o↵er generally the best illustrations of

the advantages of production on a large scale, is their power of choosing freely the locality in which they will do

their work. They are thus contrasted on the one hand with agriculture and other extractive industries (mining,

quarrying, fishing, etc.), the geographical distribution of which is determined by nature; and on the other hand755

with industries that make or repair things to suit the special needs of individual consumers, from whom they

cannot be far removed, at all events without great loss..

In our interpretation this a sign of the validity of Marshall’s analyses, as much as a suggestion that correlation

structures computed from areal data are a relevant objective tool of analysis in Economic Geography. In this

paper we have explored part of the technical context surrounding the computation of correlation structures, with760

the hope that future studies can safely and robustly use them to approach a variety of interesting questions.

References

Alig, R. J., Plantinga, A. J., Ahn, S., & Kline, J. D. (2003). Land use changes involving forestry in the united

states: 1952 to 1997, with projections to 2050. (tech. rep.). U.S. Department of Agriculture, Forest

Service, Pacific Northwest Research Station.765

Alstott, J., Triulzi, G., Yan, B., & Luo, J. (2017). Mapping technology space by normalizing patent networks.

Scientometrics, 110 (1), 443–479.

Balassa, B. (1965). Trade liberalisation and “revealed” comparative advantage1. The Manchester School, 33 (2),

99–123.

38



Balland, P.-A., Boschma, R., & Rigby, D. (2015). The technological resilience of US cities. Cambridge Journal of770

Regions, Economy and Society, 8 (2), 167–184.

Balland, P.-A., Jara-Figueroa, C., Petralia, S. G., Steijn, M. P. A., Rigby, D. L., & Hidalgo, C. A. (2020). Complex

economic activities concentrate in large cities. Nature Human Behaviour, 4 (3), 248–254.

Beaudry, C., & Schi↵auerova, A. (2009). Who’s right, marshall or jacobs? the localization versus urbanization

debate. Research Policy, 38 (2), 318–337.775

Berman, B. (2010). Retail management : A strategic approach. Upper Saddle River, N.J, Prentice Hall.

Bettencourt, L. M. A., Lobo, J., Helbing, D., Kuhnert, C., & West, G. B. (2007). Growth, innovation, scaling,

and the pace of life in cities. Proceedings of the National Academy of Sciences, 104 (17), 7301–7306.

Boschma, R., Balland, P.-A., & Kogler, D. F. (2014). Relatedness and technological change in cities: The rise and

fall of technological knowledge in US metropolitan areas from 1981 to 2010. Industrial and Corporate780

Change, 24 (1), 223–250.

Boschma, R., Minondo, A., & Navarro, M. (2012). The emergence of new industries at the regional level in spain:

A proximity approach based on product relatedness. Economic Geography, 89 (1), 29–51.

Breschi, S., Lissoni, F., & Malerba, F. (2003). Knowledge-relatedness in firm technological diversification. Research

Policy, 32 (1), 69–87.785

Coscia, Hausmann, & Hidalgo. (2013). The Structure and Dynamics of International Development Assistance.

Journal of Globalization and Development, 3 (2), 1–42.

Dark, S. J., & Bram, D. (2007). The modifiable areal unit problem (MAUP) in physical geography. Progress in

Physical Geography: Earth and Environment, 31 (5), 471–479.

de Groot, H. L., Poot, J., & Smit, M. J. (2016). Which agglomeration externalities matter most and why? Journal790

of Economic Surveys, 30 (4), 756–782.

Delgado, M., Porter, M. E., & Stern, S. (2015). Defining clusters of related industries. Journal of Economic

Geography, 16 (1), 1–38.

Diodato, D., Ne↵ke, F., & O’Clery, N. (2018). Why do industries coagglomerate? how marshallian externalities

di↵er by industry and have evolved over time. Journal of Urban Economics, 106, 1–26.795

Duranton, G., & Overman, H. G. (2005). Testing for localization using micro-geographic data. The Review of

Economic Studies, 72 (4), 1077–1106.

Ellison, G., & Glaeser, E. (1997). Geographic concentration in u.s. manufacturing industries: A dartboard ap-

proach. Journal of Political Economy, 105 (5), 889–927.

Ellison, G., & Glaeser, E. L. (1999). The geographic concentration of industry: Does natural advantage explain800

agglomeration? American Economic Review, 89 (2), 311–316.

Ellison, G., Glaeser, E. L., & Kerr, W. R. (2010). What causes industry agglomeration? evidence from coagglom-

eration patterns. American Economic Review, 100 (3), 1195–1213.

Engelsman, E., & van Raan, A. (1994). A patent-based cartography of technology. Research Policy, 23 (1), 1–26.

Farinha, T., Balland, P.-A., Morrison, A., & Boschma, R. (2019). What drives the geography of jobs in the US?805

unpacking relatedness. Industry and Innovation, 26 (9), 988–1022.

39



Fujita, M., Krugman, P., & Venables, A. (1999). The spatial economy : Cities, regions and international trade.

Cambridge, Mass, MIT Press.

Gomez-Lievano, A., Youn, H., & Bettencourt, L. M. A. (2012). The statistics of urban scaling and their connection

to zipf’s law. PLOS ONE, 7 (7), 1–11.810

Hausmann, R., & Klinger, B. (2007). The structure of the product space and the evolution of comparative advantage

(tech. rep.). Cambridge, Mass., Center for International Development, Harvard University.

Hausmann, R., & Ne↵ke, F. (2016). The workforce of pioneer plants. SSRN Electronic Journal.

Hennerdal, P., & Nielsen, M. M. (2017). A multiscalar approach for identifying clusters and segregation patterns

that avoids the modifiable areal unit problem. Annals of the American Association of Geographers,815

107 (3), 555–574.

Hidalgo, C. A., Balland, P.-A., Boschma, R., Delgado, M., Feldman, M., Frenken, K., Glaeser, E., He, C., Kogler,

D. F., Morrison, A., Ne↵ke, F., Rigby, D., Stern, S., Zheng, S., & Zhu, S. (2018). The principle of

relatedness, In Unifying themes in complex systems IX. Springer International Publishing.

Hidalgo, C. A., & Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National820

Academy of Sciences, 106 (26), 10570–10575.

Hidalgo, C. A., Klinger, B., Barabasi, A.-L., & Hausmann, R. (2007). The product space conditions the devel-

opment of nations. Science, 317 (5837), 482–487.

Jacobs, J. (1970). The economy of cities. New York, Vintage Books.

Ja↵e, A. B. (1986). Technological Opportunity and Spillovers of R&D: Evidence from Firms’ Patents, Profits,825

and Market Value. American Economic Review, 76 (5), 984–1001.

MacMahon, M., & Garlaschelli, D. (2015). Community detection for correlation matrices. Physical Review X,

5 (2).

Marshall, A. (1890). The principles of economics. McMaster University Archive for the History of Economic

Thought.830

McCann, B. T., & Folta, T. B. (2008). Location matters: Where we have been and where we might go in

agglomeration research. Journal of Management, 34 (3), 532–565.

Menon, C. (2009). The bright side of maup: Defining new measures of industrial agglomeration*. Papers in

Regional Science, 91 (1), 3–28.

Nedelkoska, L., Diodato, D., & Ne↵ke, F. (2018). Is Our Human Capital General Enough to Withstand the Current835

Wave of Technological Change? (CID Working Papers 93a). Center for International Development at

Harvard University.

Ne↵ke, F., Henning, M., & Boschma, R. (2011). How do regions diversify over time? industry relatedness and

the development of new growth paths in regions. Economic Geography, 87 (3), 237–265.

Petralia, S., Balland, P.-A., & Morrison, A. (2017). Climbing the ladder of technological development. Research840

Policy, 46 (5), 956–969.

Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N., & Stanley, H. E. (1999). Universal and nonuniversal

properties of cross correlations in financial time series. Physical Review Letters, 83 (7), 1471–1474.

40



Porter, M. A., Mucha, P. J., Newman, M. E. J., & Warmbrand, C. M. (2005). A network analysis of committees in

the u.s. house of representatives. Proceedings of the National Academy of Sciences, 102 (20), 7057–7062.845

Porter, M. (1980). Competitive strategy : Techniques for analyzing industries and competitors. New York, Free

Press.

Porter, M. (2003). The economic performance of regions. Regional Studies, 37 (6-7), 549–578.

Puga, D. (2010). The magnitude and causes of agglomeration economies. Journal of Regional Science, 50 (1),

203–219.850

Runyan, R., & Droge, C. (2008). A categorization of small retailer research streams: What does it portend for

future research? Journal of Retailing, 84 (1), 77–94.

Santoalha, A., & Boschma, R. (2020). Diversifying in green technologies in european regions: Does political

support matter? Regional Studies, 1–14.

Scholl, T., & Brenner, T. (2016). Detecting spatial clustering using a firm-level cluster index. Regional Studies,855

50 (6), 1054–1068.

Tacchella, A., Cristelli, M., Caldarelli, G., Gabrielli, A., & Pietronero, L. (2012). A new metrics for countries’

fitness and products’ complexity. Scientific Reports, 2 (1).

Teece, D. J., Rumelt, R., Dosi, G., & Winter, S. (1994). Understanding corporate coherence: Theory and evidence.

Journal of Economic Behavior & Organization, 23 (1), 1–30.860

van Dam, A., Gomez-Lievano, A., Ne↵ke, F., & Frenken, K. (2020). An information-theoretic approach to the

analysis of location and co-location patterns (Papers in Evolutionary Economic Geography (PEEG)

No. 2036). Utrecht University, Department of Human Geography and Spatial Planning, Group Economic

Geography.

van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? an analysis of some well-known865

similarity measures. Journal of the American Society for Information Science and Technology, 60 (8),

1635–1651.

Wang, J., & Yang, H. (2009). Complex network-based analysis of air temperature data in china, 23, 1781–1789.

Wang, Y. R., & Huang, H. (2014). Review on statistical methods for gene network reconstruction using expression

data. Journal of Theoretical Biology, 362, 53–61.870

Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical

Applications in Genetics and Molecular Biology, 4 (1).

41


	Introduction
	Related works
	The use of similarity measures
	Focus of this paper: Areas are side categories

	Data and Methods
	Review of the formal framework
	The similarity measures

	Unifying a whole family of discrete coexistence measures
	Matching discrete to continuous coexistence measures
	Normalizations
	Solution for industry self-overlap
	Solution for cross industry overlap

	Application: what correlation structure tells about industries and regions of the United States.
	Methods for analyzing correlation matrices
	Results: Network of industries
	Results: Geographical patterns

	Conclusion

