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Abstract

One the one hand, complex technologies o↵er substantial economic benefits, and on the
other, they are di�cult to invent and to imitate, and they refuse a fast dissemination. This
two-sidedness motivates the idea that regions’ competitive advantages and, in consequence, their
economic growth, originate in their ability to produce and utilize complex technologies. However,
the relationship between technological complexity and regional economic growth has rarely been
empirically investigated. Here, we address this pressing issue by assessing the complexity of
technological activities in 159 European NUTS 2 regions and relating it to their economic growth
from 2000 to 2014. Our empirical results suggest that technological complexity is an important
predictor of regional economic growth. A 10% increase in complexity is associated with a 0.45%
GDP per capita growth. By showing that technological complexity is important for regional
economic growth, our results fuel current policy debates about optimal regional policies such as
the Smart Specialization strategy.
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1 Introduction

”I remember thinking how comfortable it was, this division of labor which made it unnecessary for
me to study fogs, winds, tides, and navigation, in order to visit my friend who lived across an arm
of the sea. It was good that men should be specialists [. . . ]. The peculiar knowledge of the pilot and
captain su�ced for many thousands of people who knew no more of the sea and navigation than I
knew” (London, 1904).

Over a hundred years ago, Humphrey van Weyden praised the benefits of specialization and
division of labor aboard a small vessel in Jack London’s famous novel, ”The Sea Wolf.” They
allowed him to concentrate on those things that caught his interest and talents. Besides their
e↵ects on individual well-being, specialization and the division of labor increased productivity,
generated economic surpluses and allowed for sustaining larger population sizes (Smith, 1776). The
coordination and cooperation of specialists to utilize the large amounts of diverse knowledge is easier
in larger and more densely populated areas (Becker and Murphy, 1992). In turn, such larger and
more densely connected populations fuel further specialization and division of labor (Sveikauskas,
1975). This self-reinforcing process accelerated the richness and complexity of knowledge production
over time (Kremer, 1993; Henrich, 2004). Hence, one implicit consequence of specialization and
division of labor is the constantly increasing complexity of the world’s knowledge (Aunger, 2010).

Knowledge, in general, represents a critical resource in today’s knowledge economy (Lucas, 1988;
Romer, 1990). However, not all knowledge is alike and equally valuable. More complex knowledge is
argued to be a fundamental building block of competitive advantage and economic growth (Kogut
and Zander, 1992; Hidalgo and Hausmann, 2009). Its economic relevance rests on the idea that
complex knowledge is di�cult to imitate, and that only few economic actors have the capabilities to
produce it (Storper, 2010). Consequently, firms and economies with complex knowledge are likely
to earn rents in the form of higher growth and wealth (Kogut and Zander, 1992; Teece et al., 1997;
Hidalgo and Hausmann, 2009).

Until now, empirical evidence of the economic benefit of knowledge complexity is scarce and
restricted to economic complexity as measured by the product portfolio of an economy (Hidalgo
and Hausmann, 2009; Hausmann et al., 2013; Bahar et al., 2014). Production, however, is only
one dimension of complexity, in which knowledge represents a critical resource for building com-
petitive advantage. Technological know-how is complementary and similarly vital for economies’
competitiveness and growth (Nelson and Winter, 1982; Lucas, 1988; Romer, 1990). Yet, the relation
between technological complexity and economic growth is still unexplored.

In this article, we address this research gap by studying the relationship between technologi-
cal complexity and economic growth at the level of 159 European NUTS 2 regions between 2000
and 2014. We approximate technological activities by relying on patent documents (Fleming and
Sorenson, 2001), and assess technological complexity with the recently developed measure of Struc-
tural Diversity (Broekel, 2019). The results of dynamic panel regressions confirm that technological
complexity is a positive and robust predictor of economic growth in European regions.

Our study is structured as follows. Section 2 provides an overview of the theoretical and empirical
literature on technological complexity. Section 3 presents the empirical data and our estimation ap-
proach. The empirical results are presented in Section 4. Based on our findings, Section 5 concludes
that technological complexity can be considered an important dimension of regional knowledge pro-
duction capable of informing current policy programs such as the Smart Specialization strategy of
the European Union.
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2 Theoretical background and literature overview

Knowledge production is a fundamental source of long-term economic growth (Kuznets, 1962; Nelson
and Winter, 1982; Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt, 1998), which
helps in understanding the uneven growth patterns of regions (Glaeser et al., 1992; Fagerberg
et al., 1997; Henderson et al., 2001). Knowledge accumulates over time in - and adheres to -
certain locations, leading to a strong spatial concentration of knowledge in regions (Feldman, 1994).
One important reason for the spatial concentration of knowledge is the sensitivity of knowledge
spillovers to geographic distance, as this limits the spatial di↵usion of knowledge and contributes
to its geographic concentration (Ja↵e et al., 1993; Markusen, 1996). Crucially, the degree of spatial
concentration varies significantly between knowledge domains (Breschi and Malerba, 1997). While
researchers in the past have highlighted the role of tacit knowledge in this context (Lawson and
Lorenz, 1999; Gertler, 2003), the complexity of knowledge has increasingly been focused on as one
crucial dimension that explains the varying spatial concentration of knowledge domains (Hidalgo
and Hausmann, 2009).

In contrast to the intensity of the discussion on the complexity of knowledge and its economic
relevance in the literature, there is (still) no common definition of knowledge complexity. Yet,
there seems to be a consensus on a number of its basic features. To Winter (1987, p. 177),
the complexity of knowledge is ”the amount of information required to characterize the item of
knowledge in question.” Zander and Kogut (1995) rely on a similar understanding, which focuses
on the diversity of knowledge combination. Accordingly, knowledge ”is more complex when it draws
upon distinct and multiple kinds of components” (Zander and Kogut, 1995, p. 79). Kau↵man
(1993) defines complexity in a related manner, as the interaction between size and interdependence
of components. This builds on Simon’s (1962) description of complex systems. For him, complexity
is ”made up of a large number of parts that interact in a nonsimple way” (Simon, 1962, p. 468).
Interestingly, there is a similarity to Polanyi’s (1966) notion of tacitness, where the more information
- e.g., a diverse range of combinations, interdependencies, and competences - a system entails, the
more di�cult becomes communication and codification.

While knowledge complexity generally includes all types of knowledge, its fundamental features
also apply to technologies. Technologies are often described as compositions of multiple components
that are combined to fulfill a specific purpose (Usher, 1954; Hargadon, 2003; Arthur, 2009). The
number of components, their intensity of combination, and how they are combined are seen as
primary determinants of their complexity (Fleming and Sorenson, 2001; Broekel, 2019). While
these components include knowledge bits and matter (Fleming and Sorenson, 2004), we primarily
approach them from a knowledge perspective. Hence, we will use both terms, knowledge complexity
and technological complexity, interchangeably throughout the article1.

Knowledge complexity has crucial e↵ects on knowledge creation in an economy. Complexity is
one important qualitative dimension of knowledge that determines the cost and time of knowledge
imitation. Errors in imitation tend to become more frequent with growing complexity, suggesting
that imitation is not a promising strategy in complex knowledge domains (Rivkin, 2000). Hence,
complex knowledge is less likely to spillover to competitors. Yayavaram and Chen (2015) demon-
strate that the acquisition of new and complex knowledge in innovation processes impedes learning
and hurts innovation outcomes. Consequently, complex knowledge represents an entry barrier, as
it is more di�cult to learn and to copy.

The ability to learn and acquire complex knowledge is therefore argued to be more valuable
and to translate into higher economic rents than knowledge that can be easily acquired (Winter,

1Note that economic complexity is a another term used in the literature (Hidalgo and Hausmann, 2009), and
primarily refers to the empirical assessment of the complexity of economic activities using data on export products.
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1987; Kogut and Zander, 1992; Zander and Kogut, 1995; Teece et al., 1997; Storper, 2010). As
complex knowledge represents a critical resource, economic actors can build a competitive advan-
tage based on complex knowledge, providing them with profound growth potentials and access to
quasi-monopolistic rents (Teece, 1977; Kogut and Zander, 1992; Zander and Kogut, 1995; Teece
et al., 1997; Rivkin, 2000; McEvily and Chakravarthy, 2002; Sorenson et al., 2006). Indeed, em-
pirical insights back this argument. For instance, Fleming and Sorenson (2001) show that more
complex inventions receive more citations, indicating that complex inventions are technologically
more valuable than simpler inventions. Their benefits are also shown to be better appropriated by
their inventors (Sorenson et al., 2006).

Crucially, geographic proximity plays an important role in the creation and di↵usion of complex
knowledge. It is widely accepted and empirically confirmed that geographic proximity facilitates
interactions and engagement in networks (Becker et al., 1999; Boschma, 2005; Breschi and Lissoni,
2009). Thereby, geographic proximity stimulates the interactive learning required for the creation of
complex knowledge. In addition, it eases its exchange by allowing for easier and quicker feedback,
spontaneous interactions of heterogeneous actors, and more e�cient communication (Malmberg
and Power, 2005). Empirical confirmation for these arguments are provided by Balland and Rigby
(2017). These authors find that complex technologies di↵use slower in space than simple ones.
Broekel (2019) adds to this by notion, finding competences in complex technologies as being con-
centrated in space. Importantly, such concentrations are not randomly distributed in space, but
rather seem to be increasingly be found in urban agglomerations (Balland et al., 2020).

The geographic concentration of complex knowledge suggests that not every region has the capa-
bilities to produce it. This observation paired with the argument that highly complex knowledge is
economically more valuable than less complex knowledge raises the crucial question: do regions ben-
efit from activities in complex technologies? Asked di↵erently, do complex technological activities
facilitate the economic growth of regions?

Most existing studies have focused on economic complexity and the country level. In their
seminal paper, Hidalgo and Hausmann (2009) introduce the Economic Complexity Index (ECI) to
approximate the complexity of countries’ economic activities based on their production capabilities.
The ECI builds on the spatial distribution of export products across countries. In this framework,
products (and the knowledge underlying their production) exported by few and most diversified
economies are assumed to be more complex. On this basis, the authors show empirically that
countries with greater economic complexity are characterized by higher levels of GDP per capita
and experience higher short-term GDP growth. Subsequent studies have supported the findings of
Hidalgo and Hausmann (2009) that economic complexity matters for countries’ economic growth
(Ferrarini and Scaramozzino, 2016; Stojkoski et al., 2016). The production of goods and services
is only one dimension in which countries and regions compete; another important one is techno-
logical know-how. However, technological complexity is distinct from economic complexity, as the
latter also considers (countries’) capabilities in terms of institutions, infrastructure, and labor skills
(Hidalgo and Hausmann, 2009). Accordingly, insights based on economic complexity cannot be
applied directly to the context of technological capabilities. Moreover, existing empirical evidence
focuses on the national level, ignoring the substantial variations of (technological) capabilities at the
sub-national level (Balland and Rigby, 2017; Balland et al., 2020). A notable exception is the recent
study by Antonelli et al. (2020), wherein the authors focus on the regional level and link (knowl-
edge) complexity to productivity. However, their empirical results suggest that while complexity
positively relates to the growth of technological knowledge in regions, it appears to have a negative
e↵ect on regional productivity growth. This somewhat contrasts with the theoretical expectations
outlined above. Consequently, there is a need to shed further light on this issue. Such need mo-
tivates the present paper, which aims to empirically test the relationship between technological
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complexity and regional economic growth.

3 Materials and methods

Our unit of analysis are NUTS 2 regions in Europe, for which we collected a rich set of variables for
all years between 2000 and 2014. We chose NUTS 2 regions primarily for reasons of data availabil-
ity. Clearly, labor market regions would be more appropriate to capture the regional dimension of
innovation processes. However, there is no common definition across Europe, and many empirical
variables are not available at other levels. The final sample is composed of 166 unique regions
observed over 15 years. In a common manner, we approximated economic growth by the annual
change in GDP per capita, which we obtained from Eurostat. On this basis, we defined our de-
pendent variable as GDP per capita growth (Power Purchasing Standards) in region r and year
t.

3.1 Technological complexity

3.1.1 Measuring technological complexity

We used patent data of the OECD REGPAT Database (March 2018 version), which covers patent
applications to the European Patent O�ce (EPO), as an indicator of technologies. Although patents
come with several disadvantages, they are nevertheless widely used in empirical research on tech-
nological knowledge production (Griliches, 1990). This is mainly because patents are the only
large-scale data source providing such detailed information about technological knowledge.

Calculating technological complexity is not a straightforward task, as there is no established
method thus far. The ECI by Hidalgo and Hausmann (2009) seems to be the most prominent
approach in today’s literature. However, it was developed to assess the economic complexity of
countries based on their export portfolios. While the ECI has been used to approximate technolog-
ical complexity using information on patent activities of countries and regions (Balland and Rigby,
2017; Petralia et al., 2017; Antonelli et al., 2020), such applications face a number of issues. For
instance, the obtained knowledge complexity index (KCI) is based on the spatial distribution of
technologies, which may create endogeneity issues in spatial research. The spatial distribution of
technologies is shaped by many factors (e.g., natural conditions, institutions, infrastructure), of
which complexity is but one. Most importantly, many of the KCI’s empirical characteristics do not
reflect what is generally expected of technological complexity (Tacchella et al., 2012; Broekel, 2019).

We therefore relied on the measure of Structural Diversity that was recently developed by Broekel
(2019). Besides its empirical advantages, the measure also resembles more closely the theoretical
foundations of technological complexity, as presented in the previous section2. Structural Diversity
relies on information theory and assesses the diversity of how knowledge components of a technology
are combined. It rests on the idea that new knowledge and technologies are developed through (re-
)combinatorial processes (Hargadon, 2003; Arthur, 2009). Consequently, they can be described
as so-called combinatorial networks. These networks consist of nodes, representing the di↵erent
knowledge components, and links, indicating their combinations. For instance, a chair can be seen
as a combination of four chair legs, one seat, and one backrest. The four legs are identical from a
knowledge perspective and hence represent just one distinct knowledge component implying that
the chair consists of three distinct (knowledge) components.

2We also used the KCI approach (Hidalgo and Hausmann, 2009; Balland and Rigby, 2017) to estimate technological
complexity (see Section 4.2 for more details).
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The idea of Structural Diversity is to measure the diversity of how these components are com-
bined with each other. In case of the chair, all four legs are directly ”combined” with the seat:
they are not connected to each other nor to the backrest, and the backrest is also directly ”com-
bined” with the seat. Accordingly, the combinatorial network of the chair corresponds to a star-like
network composed of one central component (the seat) and two peripheral components (legs and
backrest). Crucially, this network has just one topology (a star), which implies that little informa-
tion is required for its complete description, and it can thereby be regarded as a relatively simple
(ordered) network.

As a contrasting example, consider the combinatorial network of a car. This network has more
components and consequently consists of more nodes and links. However, this is not the primary
reason that makes it more complex than the network of the chair. According to Broekel (2019),
the network becomes more complex because it features a greater number of distinct topologies.
Some of its components will be ”combined” in a star-like manner (front, back, and side windows
with the car body), while others may rather be connected in form of a ”line”: steering wheel to
steering column to steering gear3. From an information theoretical perspective, a greater diversity of
topologies (distinct combinatorial structures) implies that more information is required to describe
the combinatorial network of a car than that of a chair. Due to its greater information content, the
combinatorial network of the car qualifies as being more complex than that of the chair (Emmert-
Streib and Dehmer, 2012). On this basis, Broekel (2019) argues that an index reflecting the diversity
of distinct topologies in such networks is able to di↵erentiate between simple and complex networks,
or, as in the case of technologies’ combinatorial networks, between simple and complex technologies.
The information-theoretical argument underlying Structural Diversity nicely matches a primary
motivation for looking at technological complexity from an economic perspective: since complex
technologies entail more information, they are more di�cult to learn, and to copy limiting their
di↵usion (Kogut and Zander, 1992). This makes these technologies more exclusive (or at least raises
entry barriers), which in turn implies that actors that engage in complex technologies are more likely
to extract (higher) rents from their application.

Unfortunately, there does not yet exist a direct quantification of the diversity of distinct topolo-
gies characterizing networks. However, the Network Diversity Score (NDS) measure developed by
Emmert-Streib and Dehmer (2012) approximates this diversity in empirical settings. The NDS
distinguishes between networks with ordered, complex, or with rather random structures. Ordered
networks (e.g., a star) are characterized by few or even just one dominant topology. ”Complex” net-
work structures (e.g., a small-world network) involve multiple (and potentially overlaying) topolo-
gies. Lastly, at least theoretically, networks with near random structures are likely to have the
greatest number of topologies4. Figure 1 provides visual impressions of a simple and a complex
network structure.

Notably, the NDS measure has been developed to guarantee maximal di↵erentiation between
ordered, complex, and random networks by means of numerical optimization. It captures and
quantifies these di↵erences on a continuous scale, with small values indicating networks having high
degrees of randomness, and larger values signaling the extent to which fewer distinct topologies
shape these networks’ structures. Crucially, it is this feature that resembles the idea of Structural
Diversity and not the actual construction of the NDS index (Broekel, 2019).

In practice, the measure of Structural Diversity is calculated in multiple steps for each of the 655
4-digit technology classes of the Cooperative Patent Classification (CPC). Firstly, for each technol-
ogy class c, we defined a set of nodes V , which represents all V 10-digit technology classes appearing

3This is a very simplified illustration to highlight the central idea and not an actually representation of a car.
4This is not to say that there are actually fully random combinatorial networks. Rather, networks with less-ordered

structures tend to have higher levels of topological diversity.
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(a) (b)

Figure 1: (a) A simple and (b) a complex network structure

on patents associated to technology c. Secondly, on the basis of these 10-digit classes’ co-occurrences
E on patents, the network Gc,e = (V,E) is constructed for technology c. This combinatorial net-
work Gc,e entails all components that constitute technology c as well as all components that are
combined with c (Broekel, 2019).

Next, the network is made binary with all positive links obtaining a value of one, and all
non-existing links a value of zero. According to Emmert-Streib and Dehmer (2012), the network
Gc,e can be seen as one out of many realizations of an underlying (and unknown) network model
Gc (i.e., it represents one individual network from a population of networks based on the same
network model). It is this network model Gc that is actually of interest because it represents the
mechanisms that create the (diversity of) topologies. Following Emmert-Streib and Dehmer (2012),
the properties of Gc are captured by using the empirically observed network Gc,e and calculating
individual Network Diversity (iNDS) scores for a series of GS

c,e subnetworks extracted from Gc,e.

In practice, we generated GS
c,e by using a random Walktrap algorithm with w = 200 steps based on

a random sample of S = 125 nodes as a start5. The iNDS for each subnetwork GS
c,e sampled from

Gc,e was calculated using equation 1, expressed as

iNDS(GS
c,e) =

↵module ⇤ rgraphlet
vmodule ⇤ v�

, (1)

where ↵module = M
n represents the share of modules in the network, M is the number of modules,

and V is the number of nodes. Modules are identified with the short random Walk approach by Pons
and Latapy (2006). It is multiplied with the ratio of graphlets of sizes three and four, expressed as

rgraphlet =
Ngraphlet(3)

Ngraphlet(4)
. The result is set into relation to the product of the variability of the network’s

Laplacian (L) matrix (v� = var(⇤(L))
mean(⇤(L))) and the variance of the module sizes m (vmodule =

var(m)

mean(m)
)

in the network.
The NDS as quantification of the diversity of topologies in Gc is obtained by averaging across

the obtained iNDS(GS
c,e), expressed as

NDS({GS
c,e|Gc,e}) =

1

S

X

GS
c,e✏Gc,e

iNDS(GS
c,e). (2)

5In the case of a network with fewer than 125 nodes, S is equal to its number of nodes.
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The measure of Structural Diversity cpxc is calculated using equation 3, which is a simple transfor-
mation of the NDS, ensuring that large values correspond to higher levels of complexity and that
the empirical values remain in an application-friendly range (Emmert-Streib and Dehmer, 2012):

cpxc = log(
1

NDS({GS
c,e|Gc,e})

). (3)

Note, in order to make the networks more stable, we used a three-year moving window approach,
i.e., the combinatorial networks used to calculate cpxc in year t are based on all patents in c in the
years t to t � 2. For each year, we obtained one individual complexity score for each of the 655
technologies (4-digit CPC classes). Table A.1 in Section A lists the most and least complex CPC
classes in 2014.

3.1.2 Aggregating technological complexity at the regional level

Our central independent variable regional complexity (rcpx) represents the aggregation of techno-
logical complexity to the regional NUTS 2 level indicating regions’ capabilities to create and utilize
complex technologies. The literature does not provide a common approach of how to aggregate
technology-specific measures (such as complexity) to the regional level. One straightforward ap-
proach is to calculate the average technological complexity of regional patents. However, the raw
average might lead to sub-optimal outcomes. For instance, imagine a certain region that produces
the most complex technologies. At the same time, a substantial share of its activities involve
simple technologies. In this case, calculating the average complexity discriminates against com-
plex technologies by considering simple ones. In fact, the information that this region is active in
simple technologies does not provide any information about its capability to develop and manage
complex technologies. We therefore refrain from using the raw average and calculate the average
technological complexity in di↵erent percentiles of the regional complexity distribution.

Precisely, to calculate rcpx, we first assigned to each 4-digit CPC class c the corresponding
complexity value cpxc, as measured with Structural Diversity. Second, we assigned patents to
European NUTS 2 regions using the residential information of inventors to avoid a potential bias
of headquarters. Large corporations with various subsidiaries in multiple locations tend to file
their patents through their headquarters even though the invention was developed in a subsidiary’s
location. Therefore, a “headquarters e↵ect” can lead to systematic over- and underestimations of
regional patenting activities. Using inventors’ residences minimizes the statistical bias caused by
headquarters. Third, for each region r and time t, we created an activity vector Ar,t containing the
set of CPC classes c that occur on patents of inventors from this region in that year. Crucially, if CPC
classes appear on multiple patents (but not multiple times on the same patent), they are recorded
as individual activities and are consequently kept as individual elements in the activity vector.
Fourth, we sorted all CPC classes in the activity vector based on cpxc in descending order, which
yields the ranked complexity distribution of technological activities in regions beginning with the
most complex CPC classes and ending with the least. Lastly, we calculated the aggregated regional
complexity value rcpxr,t for each region by averaging across the subset of activities X (X ⇢ A),
with X containing all complexity values cpxc,r,t (c = 1, . . . , n) that belong to the percentile x of the
regional complexity distribution, whereby n defines the size of the subset X (see equation 4):

rcpxr,t =
1

n

nX

c2X
cpxc,r,t (4)

For example, if x is 10, rcpxr,t is the average complexity of the top 10% most complex techno-
logical activities in region r and year t. Figure 2 visualizes our approach.
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Figure 2: Aggregation of technological complexity at the regional level.

There is no obvious choice as to what percentile to choose in the empirical calculations. We
therefore tested the robustness of our results with respect to a range of percentiles, from 1% to 25%.

3.2 Control variables

In addition to complexity, the literature has identified other determinants of regional growth and
potential confounders of complexity, for which it is important to control. We distinguish between
two sets of control variables: those that approximate regional technological capabilities, and those
providing information on the local economic structure of regions.

Technological Capabilities
Innovation activities are an important source of regions’ economic growth (Lucas, 1988; Romer,

1990). We consider the number of regional patents per capita to control for regional innovation
capabilities. The long discussion about specialization and diversity indicates that not only size
e↵ects, but also the local technology structure, play a fundamental role in regional growth. This
debate has not yet reached a final conclusion, and it rather seems that both specialization and
diversity can be beneficial for the economic development of regions (Beaudry and Schi↵auerova,
2009). We use the distribution of patents across technologies at the four-digit CPC level to indicate
the degree of regional specialization and diversity, respectively. We follow the common approach in
the literature and measure specialization as the average location quotient (Boschma et al., 2015).
To approximate regional diversity, we relied on the Shannon entropy. The exponential of the
individual entropy scores gives a diversity score, which is comparable across regions (Jost, 2006).
Last, complexity is sometimes associated with high-tech activities (Eurostat, 2016). For example,
Eurostat defines high-tech as a predetermined set of patent classes. To test complexity against
this exogenous definition of high-tech activities, we included the regional share of patents in high-
technologies (as defined by Eurostat (2016)) as an explanatory variable in the analysis.

Regional Economic Structure
We complemented our patent-based indicators with economic variables at the regional level,

which were all collected from Eurostat. The literature on urban scaling has shown that populated
places are more productive with respect to socio-economic outcomes such as GDP and innovation
(Bettencourt et al., 2007). To control for these urbanization e↵ects, we included population density
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as an explanatory variable. The availability of human capital in the form of highly educated people
is also beneficial for regional growth (Lucas, 1988). Additionally, the increasing complexity of
technologies requires better skilled labor. In line with previous studies, we used the share of people
with a tertiary education as a proxy for human capital (Broekel, 2012). We also controlled for
local unemployment rates, as higher rates are negatively associated with economic growth. Last,
we included the share of employees in manufacturing, as patenting activities are biased towards
manufacturing sectors. Table 1 summarizes all variables, their empirical definition, and their data
sources. Basic descriptive statistics and correlations between these variables are reported in Table
2.

Table 1: List of variables with their definitions and data sources
Variable Definition Data Source

rcpx Average regional complexity (in ln): [Average
of the top % most complex activities (as mea-
sured with Structural Diversity) of the regional
complexity distribution]

OECD REGPAT
Database, own calcula-
tion

lgdp Gross domestic product per inhabitant (in
ln): [Total gross domestic product (purchasing
power standards) divided by total population]

Eurostat

lpat Total number of regional patents per capita (in
ln): [Total number of patents / economically ac-
tive working population aged 15 to 64 * 10,000]

OECD REGPAT
Database, own calcula-
tion

lq Average regional location quotient at the four-
digit CPC level

OECD REGPAT
Database, own calcula-
tion

div Regional diversity measured as the exponential
of the Shannon entropy of the regional patent
distribution at the four-digit CPC level (Jost,
2006).

OECD REGPAT
Database, own calcula-
tion

htec-pat Share of patents in high-tech (in %): [Total re-
gional patents in high-tech classes divided by to-
tal number of regional patents * 100]

OECD REGPAT
Database, own cal-
culation. Note: the
classification is based
on predefined technol-
ogy classes considered
as high-tech by Euro-
stat (2016)

lpopdens Population density (in ln): [Economically active
population aged 15-64 / Land area in square km]

Eurostat

hc Human capital (in %) defined as: [Persons with
tertiary education aged 25-64 divided by total
population aged 25-64]

Eurostat

unemp Regional unemployment rate (in %) defined as:
[Unemployed persons divided by economically
active population * 100]

Eurostat

share man-
ufac

Employees in manufacturing (in %) defined as:
[Employees in manufacturing divided by total
number of employees * 100]

Eurostat

3.3 Estimation approach

We estimated a dynamic panel regression with region and time fixed e↵ects to identify the relation-
ship between regional complexity and economic growth in the following form:

lgdpr,t = �1lgdpr,t�1 + �2rcpxr,t�l + �Xr,t�l + �r + vt + µr,t. (5)
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where the dependent variable (lgdpr,t) is the regional GDP of region r in year t. Following the
literature (Mohl and Hagen, 2010), the growth rate is expected to depend on the value of GDP
per capita in the previous year lgdpr,t�1. rcpxr,t�l represents the level of regional technological
complexity in period t � l. Xr,t�l is an N ⇥ K matrix of control variables. The corresponding
K ⇥ 1 vector � contains the response parameters of our control variables. As mentioned above,
we included regional and time fixed e↵ects as denoted by �r and vt, respectively, to account for
unobserved time-invariant heterogeneity. µr,t denotes the error term.

When including a lagged version of the dependent variable as an explanatory variable in addi-
tion to region and time fixed e↵ects, the OLS estimator su↵ers from the Nickell bias (Nickell, 1981).
Frequently, an instrumental variable approach using GMM estimators are employed as a solution.
However, applying GMM estimators requires strong assumptions about the appropriateness of past
values of the dependent variable to function as valid instruments (Pickup et al., 2017). Moreover,
these types of estimators are generally perceived as being relatively ine�cient (Behr, 2003). Lan-
caster (2002) proposed an orthogonal reparameterization approach to obtain unbiased estimates
from dynamic panel models, which is also known as the orthogonalized panel model (OPM). This
approach has been shown to outperform the more common GMM estimators (Hsiao et al., 2002). In
light of this, we employed the OPM regression as implemented by (Pickup et al., 2017) to estimate
the parameters of our dynamic panel model.

4 Results

4.1 Complexity and regional growth

All results presented in this section are based on complexity being estimated with respect to the
10th percentile. That is, a region’s technological complexity corresponds to the mean Structural
Diversity of its technological activities with the 10% highest values. Notably, our results are very
robust with respect to the choice of this parameter (see Section 4.2). We also restricted our analysis
to regions with at least 75 patents per year. This threshold is necessary to provide reliable results
for all variables that are based on patent data6. Another important set of parameters to be specified
are the time lags between GDP growth and the explanatory variables. For regional characteristics
that are not based on patent data (lpopdens, share manufac, hc, unemp), we follow the literature
and consider their values in year t� 1 (Mohl and Hagen, 2010). In contrast, for variables that are
based on patent information greater time lags, have been considered. First, patent data is known to
represent innovation activities several years into the past (Acs et al., 2002). Second, it takes some
time before innovations translate into economic growth. In the following, we present the results
for a time lag of four years for the patent-based variables (rcpx, lpat � pc, lq, div, htec � pat).
Alternative specifications of three and five years are discussed in Section 4.2.

Before we turn to our estimation outcomes, we present descriptive results regarding regional
capabilities in complex technologies. Figure 3 shows the distribution of technological complexity
across our sample of regions for the time period 2000-2014 (panels A and B). In panel A, values are
grouped from low to high complexity using percentiles of the cross-regional complexity distribution.
In general, high complexities are relatively scattered across the continent. Almost every country has
at least one region in the highest complexity group, and, in many cases, this is the capital city or the
region with the largest population. The south of Germany and large parts of Scandinavia, generally
considered as highly R&D intensive with many technological leaders, represent agglomerations of
highly complex technological capabilities.

6Due to the threshold of 75, 66 regions are removed from the sample. Our results, however, are not sensitive to
the chosen patent threshold; see the robustness checks in Section 4.2
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Investigating the regional distribution of technological complexity reveals interesting patterns
of knowledge creation in regions that are hidden if only raw patent numbers are analyzed. For
example, actors in Sicily (NUTS Code: ITG1) produced 1,078 patents in 2000-2014, which is below
the European average of 3,059 patents (SD = 10,292, Median = 170). However, Sicily scores
relatively high on technological complexity compared to other regions in Italy and Europe. The
comparatively high complexity values are due to inventions related to semiconductors (CPC class
H01L), which account for 14% of all patents in Sicily. With 12.34, the CPC class H01L has an
above-average complexity score compared to the average of 10.56. The city of Catania, Sicily,
hosts a nano-electronic cluster called ”Etna Valley,” with STMicroelectronics, a leading company
in the semiconductor industry, having R&D facilities in the region. The history of the cluster dates
back to the 1960s, when STMicroelectronics decided to locate in Catania. As an anchor company,
STMicroelectronics, together with a high-quality regional research system that includes universities
(e.g., University of Messina and University of Palermo) and research institutions (e.g., Institute of
Microelectronics and Microsensors [IMM]), attracted additional organizations and highly qualified
employees (Baglieri et al., 2012), contributing to innovations in this complex technological field.

In sum, Sicily reaches high values in terms of technological complexity due to the presence of
highly complex activities and consequently, it can be expected to show above-average economic
growth. However, Sicily’s economic growth between 2000 and 2014 (i.e., 0.8%) has been below
the European average (i.e., 2.8%). This underlines the fact that technological complexity is one of
many factors shaping regions’ economic development. As the case of Sicily shows, depending on a
region’s specific situation, it may also not always be able to compensate for the lack of other growth
determinants.

The panels C-E in Figure 3 visualize intra-regional complexity distributions in three selected
regions in relation to the average across all regions. The city of Hamburg represents an urban
area in Europe (panel C, ”Urban”), East Anglia (including Oxfordshire) is a well-known R&D
intensive region (panel D, ”Tech”), and the economy of Agder og Rogaland in South-West Norway
is specialized on extracting technologies in the oil and gas industry (panel E, ”Resource”). Although
Hamburg’s complexity distribution shows a trend towards more complex activities, it also includes
a wide spectrum of less complex activities representing the European average. East Anglia is
characterized by a rather narrow range concentrated at the top end of the complexity distribution,
supporting the region’s image as an R&D hub. In contrast, the distribution of Agder og Rogaland
has a wide range and is centered at relatively low complexity values compared with East Anglia
and the European average. Accordingly, the regional complexity distribution illustrates structural
di↵erences in regions’ technology profiles that correspond to their general technological and economic
capabilities.

Figure 4 displays cross-regional dynamics of complexity over time. Panel A compares the com-
plexity of regions in two consecutive time periods. Both values are highly correlated, as indicated
by the correlation coe�cient of 0.78, suggesting that regional complexity is relatively persistent over
time. Panel B in Figure 4 further supports this observation by showing the correlation coe�cient
of consecutive annual complexity values, i.e., rcpxt and rcpxt+1. Over a 15-year time period, the
coe�cient lies in the range of 0.90 and 0.96, indicating that regional complexity changed relatively
slowly between 2000 and 2014. Nevertheless, regional technological complexity is not time-invariant;
this is illustrated by panel A in Figure 4, which displays the top 10 regions with the highest positive
and highest negative growth of complexity. Some regions managed to substantially increase their
ability to produce complex technologies. For example, the German region Bremen (NUTS Code:
DE50) experienced a 4% increase in complexity, although its patent output decreased in the same
time period by 3%. This positive change primarily corresponds to increasing patenting activities in
technologies with an above average technological complexity such as B64C (airoplanes, helicopters),

13



Figure 3: Technological complexity in Europe between 2000 and 2014. A Map and B distribution of
regional complexity scores across all regions. Patents’ complexity distribution in all regions (red line)
compared with three selected regions C urban region (Hamburg, Germany), D technology-intensive
region (Oxfordshire, United Kingdom), and E resource-intensive region (Agder og Rogaland, Nor-
way).
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Figure 4: Cross-regional dynamics of complexity over time. A Regional complexity in two con-
secutive time periods. The corresponding correlation coe�cient is 0.78. B Annual correlation of
regional complexity between 2001 and 2014.

C08G (macromolecular compounds), and Y02T (climate change mitigation technologies).
To answer our main research question, we explain annual GDP growth with lagged values of

regional technological complexity and additional covariates. Table 3 summarizes the results of our
regression analyses. In our main estimation approach using the OPM dynamic panel regression,
the coe�cient of complexity (rcpx) is significantly positive. Accordingly, complexity is a positive
and robust predictor of economic growth in NUTS 2 regions. The coe�cient estimate takes val-
ues between 0.016 and 0.072, and is significant at the 99% level. This finding is supported by a
conventional fixed e↵ects regression using standard OLS.

Economic activities are not constrained by administrative boundaries such as NUTS 2 regions.
Potential spatial spillovers between neighboring regions might lead to spatial autocorrelation in
the errors. To address this, we applied spatial econometric regression techniques. The Lagrange
Multiplier test suggested to use a spatial lag model with spatially correlated errors (Elhorst, 2014).
In the definition of spatial weights, we followed existing approaches in the literature (Mohl and
Hagen, 2010) and defined the weights matrix W based on a k-nearest neighbors approach, with
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k = 37. The results obtained with a GM estimator (Kapoor et al., 2007) are reported in column 3
of Table 3. The spatial lag variable ⇢ is significantly positive, suggesting that regions benefit from
being located near regions with higher GDP per capita levels. The estimate of regional technological
complexity rcpx, although smaller in magnitude, remains significantly positive at the 99% level.

Regional technological complexity and the dependent variable are measured on a logarithmic
scale. Therefore, we can interpret the obtained coe�cients as elasticities. Taking the coe�cient of
regional complexity in the OPMModel as a benchmark, a 1% increase in average regional complexity
is associated with a 0.045% GDP per capita growth four years later. To put this into perspective,
the average growth rate of complexity between 2000-2014 was 1.8%. Accordingly, a one percent
increase in regional complexity represents a change that is close to the average growth of complexity
over 15 years.

Table 3: Panel regression results for GDP growth
OPM FE OLS FE Spatial FE

lgdp 0.843 0.696 0.667
[0.712; 0.995] [0.553; 0.839] [0.618; 0.717]

rcpx 0.045 0.022 0.014
[0.016; 0.072] [0.012; 0.031] [0.000; 0.027]

lpat 0.016 0.005 0.005
[�0.015; 0.044] [�0.017; 0.028] [�0.007; 0.017]

htec-pat �0.002 �0.001 �0.000
[�0.005; 0.002] [�0.003; 0.001] [�0.002; 0.001]

lq �0.000 �0.000 �0.001
[�0.002; 0.002] [�0.002; 0.001] [�0.002; 0.000]

div 0.000 �0.000 �0.000
[�0.000; 0.001] [�0.000; 0.000] [�0.000; 0.000]

lpopdens �0.341 �0.038 �0.015
[�0.480; �0.210] [�0.129; 0.053] [�0.075; 0.045]

share-manufac 0.003 0.000 0.000
[0.002; 0.004] [�0.002; 0.002] [�0.001; 0.001]

hc 0.006 0.001 0.001
[0.004; 0.008] [�0.001; 0.003] [�0.000; 0.002]

unemp 0.002 �0.004 �0.003
[�0.001; 0.004] [�0.006; �0.002] [�0.004; �0.002]

⇢ 0.099
[0.002; 0.197]

Region FE Yes Yes Yes
Time FE Yes Yes Yes
Observations 1,649 1,649 1,518
99% confidence intervals in parentheses.

OPM = Orthogonalized Panel Model.

Spatial panel model includes ⇢ as spatial autoregressive component.

7Alternative specifications with k = 1, k = 5, k = 8, and k = 10 yield similar results.
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4.2 Robustness analysis

We conducted a number of additional analyses to evaluate the robustness of our findings with respect
to three major parameters. First, we used the average technological complexity of the 10% most
complex patents in a region to calculate regional technological complexity. Second, we restricted our
sample to regions with more than 75 patents per year to increase the robustness of all patent-based
variables (rcpx, lpat, lq, div, htec � pat). Third, we assumed a four-year time lag between GDP
growth and the patent-based variables. To test the sensitivity of our findings with respect to these
three parameters, we re-estimated the OPM regressions and varied all three parameters (complexity
percentiles, patent thresholds, time lags) successively8. More precisely, we altered the aggregation
of regional complexity and explored the averages of all percentiles between 1% and 25% of the most
complex activities. We also varied the threshold for the minimum number of patents per year,
testing all whole-integer values between 1 and 200. We repeated these to steps for three alternative
time lag scenarios of three, four, and five years for all patent-based variables. Figure 5 visualizes
the distribution of the lower bound of the 95% confidence intervals across these specifications. In
the case of the three-year time lag (Panel A of Figure 5), complexity remains insignificant in all
specifications. For the five-year time lag (Panel C of Figure 5), the range of significantly positive
coe�cients is reduced to specifications with complexity approximated by percentiles between one
and ten percent. Nevertheless, our main results are confirmed for the time lag of five years as well.
The four-year time lag (Panel B of Figure 5) is found to be the most robust, which motivated its use
in the previous presentation of the results. A significantly positive coe�cient of rcpx is obtained
for almost all patent-number thresholds up to 200. For larger values, the number of observations
decreases too strongly to estimate reliable regressions. The significance of the coe�cient is most
pronounced within the range of two to fifteen percent percentiles. Notably, the coe�cient does not
become significantly negative in any of these specifications.

Last, we compared our results to those obtained with applied complexity measures. We also ap-
proximated regional technological complexity using (a) the Knowledge Complexity Indicator (KCI)
as introduced by Balland and Rigby (2017) and used by Antonelli et al. (2020), which is an adapta-
tion of the economic complexity index of Hidalgo and Hausmann (2009); and (b) the NK measure
proposed and employed by Fleming and Sorenson (2001). The corresponding results are reported in
Table 4 and paint an ambivalent picture. The point estimate of KCI is significantly positive at the
99% confidence level (first column), which supports our findings that complexity is beneficial for
regional economic growth. However, the result is not robust when considering spatial dependencies
(second column) or when using an alternative time lag specification.9. The estimated coe�cients for
NK complexity are insignificant in the OPM and in the spatial panel regression. Consequently, the
choice of complexity measure matters in this context, which may explain the discrepancy between
our results and those of Antonelli et al. (2020).

In summary, our dynamic panel regressions include a rich set of time-variant covariates and re-
main robust in many alternative specifications. They feature time and region fixed e↵ects, capturing
potential time-invariant variations. The findings also remain robust to the consideration of spatial
dependencies and the inclusion of regional technological complexity in di↵erent time lags. We are
therefore confident that our results support a causal interpretation of technological complexity being
a driver of regional economic growth.

8In total, we calculated 1,000 (25 distinct percentiles and 40 alternative patent thresholds) regressions for each of
the three time lags scenarios.

9When using a time lag of five years, the coe�cient of KCI becomes significantly negative. The results can be
obtained from the authors upon request.
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Table 4: Robustness analysis using KCI and NK as alternative complexity measures
KCI OPM KCI Spatial NK OPM NK Spatial

lgdp 0.987 0.969 0.672 0.671
[0.916; 0.995] [0.622; 0.722] [0.753; 0.995] [0.622; 0.721]

kci 0.001 0.001
[0.001; 0.001] [�0.001; 0.001]

nk 0.000 �0.003
[�0.015; 0.016] [�0.010; 0.003]

lpat pc �0.004 0.006 0.004 0.005
[�0.027; 0.020] [�0.008; 0.016] [�0.021; 0.036] [�0.007; 0.017]

htec pat 0.001 0.001 0.000 0.000
[�0.002; 0.004] [�0.001; 0.002] [�0.002; 0.004] [�0.001; 0.002]

lq �0.001 �0.001 �0.001 �0.001
[�0.003; 0.001] [�0.002; 0.000] [�0.003; 0.001] [�0.002; 0.000]

div 0.000 0.000 �0.000 �0.000
[�0.000; 0.000] [�0.000; 0.000] [�0.000; 0.001] [�0.000; 0.000]

lpopdens �0.358 �0.367 �0.018 �0.018
[�0.475; �0.243] [�0.078; 0.042] [�0.496; �0.239] [�0.078; 0.041]

share manufac 0.001 0.003 0.000 0.000
[0.000; 0.002] [�0.001; 0.001] [0.002; 0.004] [�0.001; 0.001]

hc 0.005 0.005 0.001 0.001
[0.003; 0.006] [�0.000; 0.002] [0.004; 0.007] [�0.000; 0.002]

unemp 0.002 0.003 �0.003 �0.003
[0.001; 0.003] [�0.004; �0.002] [�0.000; 0.004] [�0.004; �0.002]

⇢ 0.098 0.095
[�0.000; 0.196] [�0.004; 0.193]

Region FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Observations 1,649 1,518 1,649 1,518

99% confidence intervals in parentheses.

OPM = Orthogonalized Panel Model.

Spatial panel model includes ⇢ as spatial autoregressive component.
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Figure 5: Robustness analysis with alternative complexity percentiles (ranging between top 1% and
top 25% complex activities) and minimum patent numbers (ranging between 0 and 200 patents).
Lower 95% confidence intervals are based on OPM estimations. Pink colors indicate that the lower
boundary of the confidence intervals excludes values equal to and smaller than zero. rcpx is lagged
by A 3 years, B 4 years and C 5 years.

5 Conclusion

In this article, we analyzed the contribution of technological complexity to regions’ economic growth.
Using data on European regions and a range of empirical specifications, we showed that di↵erences
in the capability to produce and exploit complex technologies explain variations in regions’ economic
growth. These findings underpin the argument that complexity is an important building block of
competitive advantage (Kogut and Zander, 1992; Hidalgo and Hausmann, 2009).

However, there are a number of limitations that need to be taken into consideration when
interpreting the results. Due to data limitations, our analysis was restricted to a specific time
horizon of 15 years. Considering the longevity of economic development, 15 years might be too
short a time frame to capture all aspects of the relationship between economic development and
technological complexity. It is likely that technological complexity unfolds its e↵ects on economic
growth over even longer time periods (Fink et al., 2017), or that both economic development and
the evolution of complexity interact in a co-evolutionary process spanning decades.

Another limitation is that our analysis was based on NUTS 2 regions in Europe. Although
NUTS 2 regions are important entities for regional policy decisions, they represent administrative
rather than functional spatial units. Functional regions in terms of metropolitan areas or labor
market regions are often used in empirical analyses to limit spatial biases, for instance, due to
commuting patterns. Future research should replicate our study using functional regions to ensure
the robustness of our findings for di↵erent spatial units and scales.

Although our robustness checks underline the importance of technological complexity for regional
economic growth, they are restricted to technological complexity being measured with Structural
Diversity. Using two alternative complexity indicators yielded ambivalent results, highlighting a
crucial challenge in the contemporary literature. Existing empirical investigations employ a vari-
ety of complexity measures, impeding the comparison of empirical results across studies. While
the ECI/KCI approach has recently gained popularity, previous works have criticized its method-
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ological basis: the method of reflection (Tacchella et al., 2012). As underlined by our study as
well as by the works of Antonelli et al. (2020) and Broekel (2019), the ECI/KCI does not seem
to be straightforwardly applied to European (regional) patent data. Clearly, more methodological
research is necessary to improve our understanding about how to empirically capture and quantify
technological complexity.

Nevertheless, our results fuel a number of important discussions. By providing empirical evidence
of technological complexity impacting regional economic growth, our findings support the idea of
building competitive advantages in complex activities. Technological complexity grows over time,
demanding higher qualified individuals and more intensive collaboration (Powell et al., 1996; Pintea
and Thompson, 2007; Wuchty et al., 2007; Broekel, 2019). Consequently, places that attract qualified
individuals and that are embedded in interregional knowledge networks are better positioned to
follow this strategy. As put forward by Balland et al. (2020), this is likely to amplify the geographic
concentration of complex innovation activities even more, and it might be one of the reasons why
urban agglomerations are increasingly becoming the centers of innovation. Our results add to
this and confirm some of the empirical evidence of Balland et al. (2020). Specifically, our study
confirms that complex technologies have a tendency to concentrate in large metropolitan areas
(e.g., Paris, Madrid, Berlin, Stockholm, Munich). Complex knowledge requires, on average, more
complementary factors than simpler knowledge. Large cities provide access to such factors at a
relatively small spatial scale, which explains the spatial concentration of complex knowledge in
urban areas (Gomez-Lievano et al., 2017).

However, we also showed that complexity is not restricted to urban agglomerations. There are
many non-metropolitan regions that are able to develop complex technologies. At this point, it is
unclear if this discrepancy is due to di↵erences between the USA, on which the study of Balland
et al. (2020) is based, and Europe, which is the focus of the present study. Alternatively, it can
also be related to the application of di↵erent measures of complexity in the two studies. Clearly,
this calls for more research investigating the evolution and drivers of complexity at the level of
technologies and regions in future research.

Despite these unresolved (empirical) issues, technological complexity has already entered con-
temporary policy debates (Balland et al., 2019). In this vein, the complexity of sectors and tech-
nologies represents an ambivalent concept for policy makers. Nowadays, policy requires regions
to invest in promising diversification strategies as evident in the smart specialization strategy of
the EU facilitating regional development (Foray et al., 2011). Balland et al. (2019) argue that the
combination of complexity and relatedness provides a promising concept to derive such smart di-
versification strategies. Accordingly, building a regional competitive advantage into new activities
is argued to be beneficial (i.e., complex activities) and feasible (i.e., related activities) for regions.
Besides its positive impact on developing technological strengths (Balland et al., 2019), our study
provides empirical evidence that such a policy is likely to directly facilitate economic growth.

Yet, it is still unclear how regions can exactly build competitive advantage in complex activities
and if this strategy is suited to, and desirable for every region. Of similar relevance is the ques-
tion as to whether - and if so, how - policy can support the upgrading of regional capabilities to
higher levels of complexity. As the increasing complexity of knowledge production demands better
qualified individuals and more collaboration, programs targeting these are promising candidates in
this regard. For instance, the EU Framework Programme (FP) appears to be a good tool in this
context, as it is explicitly designed to facilitate knowledge and expertise exchange between regions.
Their monetary incentives may help in overcoming barriers of knowledge di↵usion that are partic-
ularly pronounced in the case of complex knowledge (Balland and Rigby, 2017). However, so far,
evaluations of innovation policies largely neglect the dimension of technological complexity. The
results of our study demonstrate that such neglect implies ignoring an important determinant of
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regional economic growth.
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Fagerberg, J., Verspagen, B., and Caniëls, M. (1997). Technology, Growth and Unemployment
across European Regions. Regional Studies, 31(5):457–466.

Feldman, M. P. (1994). The Geography of Innovation, volume 2 of Economics of Science, Technology
and Innovation. Springer Netherlands, Dordrecht.

Ferrarini, B. and Scaramozzino, P. (2016). Production complexity, adaptability and economic
growth. Structural Change and Economic Dynamics, 37:52–61.

Fink, T. M. A., Reeves, M., Palma, R., and Farr, R. S. (2017). Serendipity and strategy in rapid
innovation. Nature Communications, 8(1).

Fleming, L. and Sorenson, O. (2001). Technology as a complex adaptive system: evidence from
patent data. Research Policy, 30(7):1019–1039.

Fleming, L. and Sorenson, O. (2004). Science as a map in technological search. Strategic Manage-
ment Journal, 25(8-9):909–928.

Foray, D., David, P. A., and Hall, B. H. (2011). Smart specialization. From academic idea to political
instrument , the surprising career of a concept and the di�culties involved in its implementation.
Technical Report 001, Management of Technology and Entrepreneurship Institute.

Gertler, M. S. (2003). Tacit knowledge and the economic geography of context, or The undefinable
tacitness of being (there). Journal of Economic Geography, 3(1):75–99.

Glaeser, E. L., Kallal, H. D., and Scheinkman, J. A. (1992). Growth in Cities. Journal of Political
Economy, 100(6):1126–1152.

Gomez-Lievano, A., Patterson-Lomba, O., and Hausmann, R. (2017). Explaining the prevalence,
scaling and variance of urban phenomena. Nature Human Behaviour, 1(1).

Griliches, Z. (1990). Patent Statistics as Economic Indicators: A Survey. Technical Report 3301,
National Bureau of Economic Research, Cambridge, MA.

23



Grossman, G. M. and Helpman, E. (1991). Quality Ladders in the Theory of Growth. The Review
of Economic Studies, 58(1):43.

Hargadon, A. (2003). How breakthroughs happen: the surprising truth about how companies innovate.
Harvard Business School Press, Boston, Mass.

Hausmann, R., Hidalgo, C. A., Bustos, S., Coscia, M., Chung, S., Jiminez, J., Simoes, A., and
Yildirim, M. A. (2013). The Atlas of economic complexity: mapping paths to prosperity. Center
for International Development, Harvard University, Cambridge. OCLC: 961922687.

Henderson, J. V., Shalizi, Z., and Venables, A. J. (2001). Geography and development. Journal of
Economic Geography, 1(1):81–105.

Henrich, J. (2004). Demography and Cultural Evolution: How Adaptive Cultural Processes Can
Produce Maladaptive Losses - The Tasmanian Case. American Antiquity, 69(02):197–214.

Hidalgo, C. A. and Hausmann, R. (2009). The building blocks of economic complexity. Proceedings
of the National Academy of Sciences, 106(26):10570–10575.

Hsiao, C., Hashem Pesaran, M., and Kamil Tahmiscioglu, A. (2002). Maximum likelihood estimation
of fixed e↵ects dynamic panel data models covering short time periods. Journal of Econometrics,
109(1):107–150.

Ja↵e, A. B., Trajtenberg, M., and Henderson, R. (1993). Geographic Localization of Knowledge
Spillovers as Evidenced by Patent Citations. The Quarterly Journal of Economics, 108(3):577–
598.

Jost, L. (2006). Entropy and Diversity. Oikos, 113(2):363–375.

Kapoor, M., Kelejian, H. H., and Prucha, I. R. (2007). Panel data models with spatially correlated
error components. Journal of Econometrics, 140(1):97–130.

Kau↵man, S. A. (1993). The Origins of Order - Self-Organization and Selection in Evolution.
Oxford University Press, New York.

Kogut, B. and Zander, U. (1992). Knowledge of the Firm, Combinative Capabilities, and the
Replication of Technology. Organization Science, 3(3):383–397.

Kremer, M. (1993). Population Growth and Technological Change: One Million B.C. to 1990. The
Quarterly Journal of Economics, 108(3):681–716.

Kuznets, S. (1962). Inventive Activity: Problems of Definition and Measurement. In National
Bureau of Economic Research, editor, The Rate and Direction of Inventive Activity: Economic
and Social Factors, pages 19–52. Princeton University Press.

Lancaster, T. (2002). Orthogonal Parameters and Panel Data. Review of Economic Studies,
69(3):647–666.

Lawson, C. and Lorenz, E. (1999). Collective Learning, Tacit Knowledge and Regional Innovative
Capacity. Regional Studies, 33(4):305–317.

London, J. (1904). The Sea Wolf. Macmillan.

24



Lucas, R. E. (1988). On the mechanics of economic development. Journal of Monetary Economics,
22(1):3–42.

Malmberg, A. and Power, D. (2005). (How) Do (Firms in) Clusters Create Knowledge? Industry
& Innovation, 12(4):409–431.

Markusen, A. (1996). Sticky Places in Slippery Space: A Typology of Industrial Districts. Economic
Geography, 72(3):293.

McEvily, S. K. and Chakravarthy, B. (2002). The persistence of knowledge-based advantage: an em-
pirical test for product performance and technological knowledge. Strategic Management Journal,
23(4):285–305.

Mohl, P. and Hagen, T. (2010). Do EU structural funds promote regional growth? New evidence
from various panel data approaches. Regional Science and Urban Economics, 40(5):353–365.

Nelson, R. R. and Winter, S. G. (1982). An evolutionary theory of economic change. The Belknap
Press of Harvard Univ. Press, Cambridge, Mass. OCLC: 255191816.

Nickell, S. (1981). Biases in Dynamic Models with Fixed E↵ects. Econometrica, 49(6):1417.

Petralia, S., Balland, P.-A., and Morrison, A. (2017). Climbing the ladder of technological develop-
ment. Research Policy, 46(5):956–969.

Pickup, M., Gustafson, P., Cubranic, D., and Evans, G. (2017). OrthoPanels: An R Package for
Estimating a Dynamic Panel Model with Fixed E↵ects Using the Orthogonal Reparameterization
Approach. The R Journal, 9(1):60.

Pintea, M. and Thompson, P. (2007). Technological complexity and economic growth. Review of
Economic Dynamics, 10(2):276–293.

Polanyi, M. (1966). The Tacit Dimension. Anchor Day Books, New York.

Pons, P. and Latapy, M. (2006). Computing communities in large networks using random walks.
Journal of Graph Algorithms and Applications, 10(2):191–218.

Powell, W. W., Koput, K. W., and Smith-Doerr, L. (1996). Interorganizational Collaboration
and the Locus of Innovation: Networks of Learning in Biotechnology. Administrative Science
Quarterly, 41(1):116.

Rivkin, J. W. (2000). Imitation of Complex Strategies. Management Science, 46(6):824–844.

Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy, 98(5, Part
2):S71–S102.

Simon, H. A. (1962). The Architecture of Complexity. Proceedings of the American Philosophical
Society, 106(6):467–482.

Smith, A. (1776). An Inquiry into the Nature and Causes of the Wealth of Nations. W. Strahan
and T. Cadell, London.

Sorenson, O., Rivkin, J. W., and Fleming, L. (2006). Complexity, networks and knowledge flow.
Research Policy, 35(7):994–1017.

25



Stojkoski, V., Utkovski, Z., and Kocarev, L. (2016). The Impact of Services on Economic Complex-
ity: Service Sophistication as Route for Economic Growth. PLOS ONE, 11(8):1–29.

Storper, M. (2010). Why Does a City Grow? Specialisation, Human Capital or Institutions? Urban
Studies, 47(10):2027–2050.

Sveikauskas, L. (1975). The Productivity of Cities. The Quarterly Journal of Economics, 89(3):393.

Tacchella, A., Cristelli, M., Caldarelli, G., Gabrielli, A., and Pietronero, L. (2012). A New Metrics
for Countries’ Fitness and Products’ Complexity. Scientific Reports, 2(1).

Teece, D. J. (1977). Technology Transfer by Multinational Corporations: The Resource Cost of
Transferring Technological Know-How. The Economic Journal, 87(346):242–261.

Teece, D. J., Pisano, G., and Shuen, A. (1997). Dynamic capabilities and strategic management.
Strategic Management Journal, 18(7):509–533.

Usher, A. P. (1954). A history of mechanical inventions. Dover, New York.

Winter, S. G. (1987). Knowledge and Competence as Strategic Assets. In The Competitive Chal-
lenge: Strategies for Industrial Innovation and Renewal, pages 165–187. Harper & Row, Ballinger
Division, New York.

Wuchty, S., Jones, B. F., and Uzzi, B. (2007). The Increasing Dominance of Teams in Production
of Knowledge. Science, 316(5827):1036–1039.

Yayavaram, S. and Chen, W.-R. (2015). Changes in firm knowledge couplings and firm innovation
performance: The moderating role of technological complexity: Changes in Knowledge Couplings
and Innovation Performance. Strategic Management Journal, 36(3):377–396.

Zander, U. and Kogut, B. (1995). Knowledge and the Speed of the Transfer and Imitation of
Organizational Capabilities: An Empirical Test. Organization Science, 6(1):76–92.

A Most and least complex CPC classes

26



Table A.1: Ranking of the most and least complex CPC classes 2014

Rank CPC
Class

Description

1 B60L propulsion of electrically-propelled vehicles
2 H04W wireless communication networks
3 Y04S systems integrating technologies related to power net-

work operation, communication or information tech-
nologies for improving the electrical power generation,
transmission, distribution, management or usage, i.e.
smart grids

4 B33Y additive manufacturing, i.e. manufacturing of three-
dimensional [3-d] objects by additive deposition, ad-
ditive agglomeration or additive layering, e.g. by 3-d
printing, stereolithography or selective laser sintering

5 A61H physical therapy apparatus, e.g. devices for locating or
stimulating reflex points in the body; artificial respira-
tion; massage; bathing devices for special therapeutic
or hygienic purposes or specific parts of the body

6 B60W conjoint control of vehicle sub-units of di↵erent type
or di↵erent function; control systems specially adapted
for hybrid vehicles; road vehicle drive control systems
for purposes not related to the control of a particular
sub-unit

7 F05D indexing scheme for aspects relating to non-positive-
displacement machines or engines, gas-turbines or jet-
propulsion plants

8 F01D non-positive displacement machines or engines, e.g.
steam turbines

9 H03F amplifiers
10 C10N indexing scheme to lubricating compositions
...

...
...

614 F22G superheating of steam
615 F15C fluid-circuit elements predominantly used for comput-

ing or control purposes
616 G10F automatic musical instruments
617 B27F dovetailed work; tenons; slotting machines for wood

or similar material; nailing or stapling machines
618 D02H warping, beaming or leasing
619 A42C manufacturing or trimming hats or other head cover-

ings
620 B68B harness; devices used in connection therewith; whips

or the like
621 C12J vinegar; its preparation
622 B68C saddles; stirrups
623 B61J shifting or shunting of rail vehicles
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