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Abstract: This article studies how new locations emerge as advantageous places for the 
creation of ideas. Analysis of a novel patent-based dataset that traces the flow of knowledge 
between inventions and across time reveals that inventors initiate knowledge production in 
new places through a three-stage process. In the first stage, about 50 years before knowledge 
production in a region reaches an appreciable volume, local inventors begin to experiment 
with a few promising ideas developed in other places. In the second stage, inventors use the 
promising ideas developed elsewhere to create a large number of highly impactful inventions 
locally. In the third stage, inventors source high-impact ideas from their local environs and 
produce an even larger number of inventions, albeit of lower quality. Overall knowledge 
production in regions peaks in this third stage, but novelty and the potential for future 
knowledge growth decline.  
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1) Introduction 
At the start of the 21st century the San Jose±Sunnyvale±Santa Clara Metropolitan Area, the 
ecRQRPLc cRUe RI CaOLIRUQLa¶V SLOLcRQ VaOOe\, UaQNed ILUVW RI WKe UQLWed SWaWeV¶ 983 
metropolitan and micropolitan areas in terms of the number of patents awarded to its 
inventors and second in terms of per-capita income. SaQ JRVe¶V economic prowess is 
particularly remarkable because it LV a ³\RXQJ´ cLW\, eYeQ b\ APeULcaQ VWaQdaUdV. The 
counties that now comprise the San Jose Metropolitan Area housed just 0.2% of the U.S. 
population in 1950 but expanded to 0.6% of the U.S. total by 2000. SaQ JRVe¶V SaWeQW 
production expanded even faster over this period, from OeVV WKaQ 1% RI WKe cRXQWU\¶V SaWeQWV 
to over 8% by 2000.  
 
While San Jose¶V ULVe is striking, nearly every innovative city in the United States started off 
in a similar position as a location that produced few patentable ideas. Table 1 shows the year 
that the top-15 patent-producing metropolitan areas in the U.S. emerged as centers for 
knowledge production, defined as the first five-year period that they produced 1% of the 
U.S.¶V count of utility patents. Of the 15 top-ranked metropolitan areas, 12 crossed the 1% 
threshold after 1835 when the data series begin. San Jose, San Diego, and Austin, TX, for 
example, all emerged as centers for innovation aIWeU WKe 1950V. AQd aOWKRXJK ³ROd´ cLWLeV OLNe 
Chicago and Detroit rose in the rankings much earlier, knowledge production in those cities 
too had a beginning. 
 

Table 1: The Rise of New Cities as Centers of Innovation 
Patenting Rank 

2001-2005 Metropolitan Area 
Year Metro First Produced 

1% of U.S. Patents 
1 San Jose 1965 

2 New York Before 1835 

3 San Francisco 1865 

4 Boston Before 1835 

5 Los Angeles 1905 

6 Seattle 1915 

7 Chicago 1855 

8 Minneapolis 1890 

9 San Diego 1980 

10 Austin, TX 1990 

11 Detroit 1865 

12 Philadelphia Before 1835 

13 Houston 1955 

14 Dallas 1970 

15 Portland, OR 1995 
Note: To reduce volatility patent counts and thresholds are aggregated by half-decades. 
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How do inventors commence knowledge production in new places? This question is difficult 
to resolve using the traditional explanations of agglomeration from the literature on the 
geography of innovation. According to that literature, innovative activities concentrate in 
space (Audrestch and Feldman, 1996; Balland et al., 2019) because inventors use existing 
ideas to create new ideas (Nelson and Winter, 1982; Romer, 1988), and because ideas tend to 
be transmitted between actors located in close physical proximity or in distant but well-
connected regions with established inventive milieus (Jaffe et al., 1993; Bathelt et al., 2004; 
Breschi and Lissoni, 2009; Kwon et al., 2020). While these arguments explain why 
knowledge production concentrates in space, they leave us to puzzle over how inventors 
begin to produce knowledge in places that lack existing knowledge stocks or inter-regional 
networks to begin with. 
 
One possible solution to this puzzle is provided by the theory of the Window of Locational 
Opportunity. The theory of the Window of Locational Opportunity argues that new 
innovative agglomerations are able to form when impactful and disruptive inventions erode 
the competitive advantages of incumbent regions (Storper and Walker, 1987; Boschma and 
Lambooy 1999; Boschma and Frenken, 2006). So long as the geography of knowledge flow 
is not mechanistically governed, idiosyncratic factors may transport impactful ideas WR ³QeZ´ 
regions where they are used to make yet more ideas, thereby inducing local knowledge 
production. 
 
In this paper, I find considerable support that knowledge production begins in new regions 
through a similar process as the one described by the theory of the Window of Locational 
Opportunity. In particular, I show that inventors initiate knowledge production in new places 
by sourcing ideas from impactful non-local inventions about 50 years before their home 
regions emerge as innovative centers, that inventors use the impactful ideas sourced from 
other regions to introduce a large number of impactful ideas of their own, and that inventors 
leverage their own impactful ideas to create even more ideas locally.  
 
I substantiate these claims through analysis of a novel dataset, created with U.S. patent 
records, that traces the flow of technological knowledge between patents and across time. 
The new data provide reliable records of knowledge flow back to 1850. By combining these 
records with historical information on inventors¶ SOace-of-residence (Petralia et al., 2016), I 
am able to study how knowledge production initiated in all but the oldest U.S. cities. To 
study how local knowledge production initiates, I decompose the sources of knowledge used 
by the inventors in regions based on WKeLU VRXUceV¶ JeRJUaSKLcaO RULJLQV aQd WKeLU VRXUceV¶ 
level of technological impact. To explore the causal effect that the composition of knowledge 
sources has on the emergence and growth of local knowledge production, I compare the 
composition used by inventors in regions that succeed in developing an appreciable volume 
of knowledge production with the composition used in places that fail to. 
 
The results of the study contribute to three literatures: the geography of knowledge flow, 
agglomeration theory and evolutionary economic geography, and the urban lifecycle. With 
respect to the first literature, the decomposition of knowledge sources conducted in this study 
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shows how local and non-local knowledge flows materialize in knowledge production growth 
in proximate and distant locations (Jaffe et al., 1993; Breschi and Lissoni, 2009; Kwon et al., 
2020). Through that exercise, the results also report how the overall propensity for 
knowledge to flow locally has changed dramatically between 1850 and 2010. With respect to 
agglomeration theory and evolutionary economic geography, the analysis reveals how spatial 
concentrations of knowledge production form in their earliest years, before they enter the 
purview of agglomeration theory and evolutionary economic geography as units of 
observation. Finally, the findings expand the concept of the urban lifecycle (Audrestch et al. 
2008) by revealing how new centers for innovation are conceived using ideas developed in 
other places, and that even after innovation in a places declines, its ideas can flock to and 
flourish in new regions. 
 
In the text that follows, I discuss how inventors create and transmit technological knowledge 
and the geographical implications thereof, I introduce the methods used to infer historical 
flows of knowledge between patents and to identify high-impact inventions, and I present the 
results of the analysis, beginning with a birds-eye-view of knowledge production growth and 
decline in regions and continuing on to a decomposition of the sources used by inventors as 
their regions initiate, expand, and decline in patent production. In addition to outlining areas 
that require additional research, in the final section I discuss the relationship between 
incremental and disruptive innovation, and I elaborate on the respective repercussions for the 
emergence, evolution, and resilience of knowledge production in cities.   
 
2) The Production and Transmission of Technological Knowledge 
 
Technological knowledge, defined as the ability to assemble tangible and intangible elements 
into functioning systems, is exceedingly difficult to generate. Each element in a technology 
operates by interacting with other elements in the same system. Because of the high degree of 
interdependence between the constitutive components, inventors struggle to anticipate how 
their technologies will function before they assemble them (Fleming and Sorenson, 2001). 
Models and prototypes help inventors to simulate the interactions between components, but 
they are costly to create and time-consuming to administer (Usher, 1929; Arrow, 1962; Adler 
and Clark, 1991; Von Hippel and Tyre, 1995). These costs multiply when inventors design 
complex technologies with many elements arranged in irregular ways (Broekel, 2019).  
 
To ease the process of designing complex technologies, inventors rely on prior knowledge 
(Fleming, 2001). Inventors that already know how an assembly of components functions can 
focus on integrating it into other known assemblies rather than developing it anew (Foster 
and Evans, 2019). The ability for inventors to build on prior knowledge is limited by the 
breadth of their individual accumulated knowledge assets. Because inventors have highly 
specialized areas of expertise, they often need to source ideas from other inventors and 
scientists (Wuchty et al., 2007). 
 
Sourcing knowledge has its own challenges. In its native format, technical knowledge is a list 
of the experiences an inventor accumulates while developing a technology (Arrow, 1962). 
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For all but the simplest devices, that list is too detailed for an inventor to recollect let alone 
communicate (Polanyi, 1966), so inventors compress knowledge by recoding it into diagrams 
and metaphors (Nonaka and Takeuchi, 1995). These project-oriented coding schemas, 
however, can only be transmitted using supportive communication technologies. For most of 
the UQLWed SWaWeV¶ LQdXVWULaO KLVWRU\, face-to-face communication has held an absolute 
advantage in communicating messages encoded in such schemas. Face-to-face 
communication allows for the use of visual clues such as body language and hand gestures to 
convey complex points, as well as the manipulation of vocal tone to stress key aspects of a 
message (Storper and Venables, 2004). The interactive nature of face-to-face communication 
allows speakers to notice misunderstandings and to correct their presentations to improve 
comprehensibility (Nohria and Eccles 1992), and to create norms, routines, and rhetorical 
devices that are specifically designed for the technical issues at hand (Powell et al., 1996; 
Kogut and Zander 1992; Gertler 2003).  
 
Because close spatial proximity is a necessary condition for face-to-face communication, the 
ability for inventors to source knowledge is influenced by their socio-spatial environments. 
While inventors that are co-located with many other inventors are able to source a wide range 
of ideas face-to-face, inventors in isolated regions are at a severe competitive disadvantage. 
Empirical research shows that the frequency of technical knowledge transmission (Jaffe et al. 
1993; Kwon et al., 2020) and the frequency of collaboration (Balland 2012; Van der Wouden 
2020) between inventors decline as spatial distance increases. The disadvantage of isolation 
can be momentarily relieved through travel, but the logistical and economic costs of travel 
also pose constraints (Torre 2008). Inventors are unlikely to travel for work unless they or 
their organizations have strong incentives to undertake travel (Morrison et al. 2013). This 
incentive is a function of the quantity and quality of the knowledge they expect to gather 
through travel, or the expected value of a resulting product or invention (Cowan and Jonard 
2004). The incentive to travel to places with few knowledgeable inventors is therefore small 
and most non-local flows of knowledge span between regions that already have dynamic 
inventive milieus (Bathelt et al. 2004, Wolfe and Gertler 2004). Travel to temporary face-to-
face meetings is not an exception to this rule because the returns to attending tradeshows and 
conferences are greatest for inventors and firms based in regions with robust local inventive 
milieus (Bathelt and Henn; 2014; Esposito and Rigby 2018). 
  
Yet early in the history of every innovative region, there is a moment when local inventors 
overcome the constraints to sourcing knowledge and begin to produce patentable ideas. 
Given that the creation of technical knowledge is difficult and competitive, how do inventors 
in isolated regions accomplish this? A plausible answer is rooted in the interaction of two 
factors that are loosely conceptualized under the theory of the Window of Locational 
Opportunity: first, some ideas move to regions with underdeveloped knowledge bases for 
idiosyncratic reasons; second, there is immense heterogeneity in usefulness of ideas for the 
creation of new ones (Storper and Walker, 1988; Boschma and Lambooy, 1999). With regard 
to that heterogeneity, the count of the forward citations of patents, a record of the number of 
subsequent inventions that build on each patent as prior art, follow an extremely skewed 
distribution where the majority do not receive a single citation and a small fraction receive 
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more than 100 citations (Hall et al., 2005). Over time, the skew in forward citations grows 
exponentially as high-impact ideas have more knowledge-based descendants after one 
generation of endogenous knowledge production, even more descendants after two 
generations, and so on (Martineli and Nomaler, 2014). Inventors in underdeveloped regions 
are not able to source many ideas face-to-face, but they nonetheless may be capable of 
commencing knowledge production if they manage to source a small number of highly-
impactful ideas through idiosyncratic means. 
 
The example of the semiconductor-based transistor shows how the transportation of a single 
promising idea WR a ³QeZ´ ORcaWLRQ ZLWK a minimal history of innovation can revolutionize the 
geography of knowledge production. The first two transistors, the point-touch transistor and 
the junction transistor, were invented at Bell Labs in the suburbs of New York City in 1947 
and 1948. However, their development into useful tools took place primarily in Silicon 
Valley, the region of California centered on the San Jose Metropolitan Area. Today, transistor 
design is the main driver of knowledge production in Silicon Valley: the San Jose 
Metropolitan Area accounted for 27% of all U.S. semiconductor patents granted between 
2001 and 2005.1 While the design of new transistors is now a complex art around which large 
teams, firms, and agglomerations have organized (Balland et al., 2019), their design has not 
always been equally knowledge-intensive. When Bell Labs¶ star engineer William Shockley, 
the inventor of the junction transistor, relocated from the New York City area to Silicon 
Valley in 1956, he brought just one colleague from Bell Labs with him (Gertner, 2012 p. 
181). Evidently, the knowledge base needed to design new transistors was simple enough for 
two people to collectively master at that time (cf. Wuchty et al., 2007). Because early 
inventions in semiconductors drew from a relatively small body of existing knowledge and 
could be made by small teams of experts, idiosyncratic factors VXcK aV SKRcNOe\¶V SUeIeUeQce 
to be near his ailing mother were able to overcome the structural forces that tend to keep 
knowledge flows within established milieus. 
 
In fact, in the decades after Shockley invented the junction transistor, the Window of 
Locational Opportunity in the design and manufacture of amplifiers was opened wide enough 
for the industry to disperse across the United States. By 1972, only 8.8% of U.S. employment 
in the SIC code 3674 (the code for semiconductors and related devices) remained in the states 
of New York and New Jersey, the vicinity of the initial transistor inventions. By that year, 
18.3% of U.S. employment in SIC 3674 was in Texas, 5.8% was in Arizona, and 21% was in 
California (Scott and Storper, 1987). Although these data record employment counts and not 
technological knowledge per se, they suggest that the knowledge required to design and 
manufacture semiconductors was not particularly complex and thus was not spatially-sticky 
in WKe LQdXVWU\¶V eaUO\ \eaUV. 
 
Semiconductor design eventually consolidated in Silicon Valley, California in the early 1980s 
as CaOLIRUQLa¶V share of U.S. employment in SIC 3674 reached 28.7% in 1982 while the 
                                                 
1 Semiconductor patents defined as those with USPC 257, 438, or 716 listed as their primary 
class. 
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employment share in each of the leading competing states of Texas, Arizona, New Jersey, 
New York, and Pennsylvania declined (Scott and Storper, 1987). The reason Silicon Valley 
became the center of semiconductor design is an open debate. Saxenian (1994) and Storper 
(2016) aUJXe WKaW SLOLcRQ VaOOe\¶V LQIRUPaO LQVWLWXWLRQV eQcRXUaJed the transmission of ideas 
and the superior generation of new knowledge. Along those lines, Fleming and Frenken 
(2007) analyze collaborations between inventors in Silicon Valley and find that principal 
firms helped WKe UeJLRQ¶V inventors to network. Other researchers have emphasized 
government defense spending as the stimulus for demand for transistors in California 
(Heinrich, 2002), though US Department of Defense contracts were awarded to several states 
during that time, including Texas and Arizona where semiconductor production and design 
ultimately faltered (Scott and Storper, 1987).  
 
Another cause of the concentration of semiconductor design in Silicon Valley in the 1980s is 
that SLOLcRQ VaOOe\¶V inventors made more impactful inventions than those in the competing 
regions. The first microprocessor (the Intel 4004), for example, was introduced in Silicon 
Valley in 1971, which made personal computers and hand-held computer devices possible. 
Other groundbreaking inventions, such as the first dynamic RAM chip (the Intel 1003, 
invented in 1970) were also made in Silicon Valley, as were hardware innovations such as the 
computer mouse in 1964 and the first commercialized computer monitor in 1973. The 
common aspect of these inventions is that they either used or extended the capabilities of the 
semiconductor introduced by William Shockley in 1948. In so doing, they increased the 
number of inventions that the semiconductor made possible. 
 
The geographical history of the semiconductor transistor thus suggests two conditions that 
must be met for inventors to commence knowledge production in new places. The first is that 
a promising invention needs to be created. This invention does not need to be made in the 
same place where it ultimately produces growth, so long as it is simple enough to be 
transported across space, either through the movement of people or messages (cf. Kerr 2010). 
The second condition is that the inventors in an emerging innovative center need to out-
invent their competitors in other regions. This second condition is critical because if inventors 
in one city receive a promising idea from afar, it is likely that inventors in other places will 
receive that idea as well.  
 
3.1) Methods Overview 
 
The study of how inventors initiate local knowledge production has been held back by a 
dearth of reliable, harmonized, and long-running records of the sources of knowledge that 
inventors use to make new ideas. Patent citation records have been used by researchers to 
study knowledge sourcing, but citations carry two limitations. First, because many citations 
are added by examiners and the attorneys of patent applicants, the extent to which citations 
represent knowledge spillovers is debated (Arora et al., 2019). Second, because the United 
States Patent and Trademark Office (USPTO) did not require patents to cite prior art before 
1975, patent citation records are unreliable before this date.  
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There are, however, implicit historical records of knowledge flow between patents hidden in 
the classification codes that the USPTO assigns to patents. The USPTO classifies all utility 
patents using a highly detailed classification scheme. At the highest level of granularity, the 
USPC classification scheme contains over 160,000 unique class codes, at which level the 
codes describe the individual components that are contained in the patented invention 
(Fleming and Sorenson, 2001). Because technological knowledge is the ability to assemble 
components into functioning systems (Fleming, 2001; Arthur, 2009), the detailed 
classification codes listed on a patent indicate the technical know-how embedded in a 
technology. An illustrative example is the patent granted to Thomas Edison for the 
incandescent light bulb (USPTO patent number 223898). EdLVRQ¶V bright idea was that a 
vacuum chamber slows the combustion of a carbon filament. The physical components 
Edison used to build his bulb ± vacuum-tight joints to seal the bulb and a carbon filament ± 
appear on his patent with the classification codes H01J5/24 and H01K1/14. The USPTO 
defines these codes as ³Yacuum-tight joints betweeQ LQVXOaWLQJ SaUWV RI YeVVeO´ and 
³Lncandescent bodies characterized b\ VKaSe´. 
 
Because the classification codes listed on a patent indicate the knowledge embedded in the 
technology, when two patents share many of the same classification codes, it is reasonable to 
infer that they draw from the same body of knowledge. Therefore, the flow of knowledge 
between patents can be predicted by tracing the shared classification codes on patents across 
time.  
 
3.2) Data Construction 
 
More specifically, I generate predicted flows of technological knowledge between patents by 
exploiting the information provided by USPC classification codes on all USPTO utility 
patents granted between 1836 and 2014. The resulting ³tree of technology´ is a directed a-
cyclical graph that links each patent to its knowledge-based antecedents. To create the tree, I 
begin with the raw public files of granted patents and USPC classifications available on 
PatentsView. The USPTO reclassifies patents using the USPC coding schema as new classes 
are added over time, creating a harmonized, current system. I omit design patents but keep 
patents assigned to non-U.S. inventors, which leaves me with 8.7 million patents.  
 
The USPTO assigns each patent to one or more USPC classes. Most patents are assigned 
between 2 and 6 classification codes; however, a very small number of patents are assigned 
more than 100 codes. To make the dataset less cumbersome, I discard excess classification 
codes on patents by selecting only the first 8 codes from each patent. Selection of the first 8 
codes on each patent ensures that I use the primary classification code for each patent which 
indicates its dominant class. 
 
The tree-building algorithm begins by selecting the most recently granted patent and 
recording its components based on its USPC classification codes. I define technological 
knowledge as knowledge of components and the interactions of those components, so I 
generate all combinations of degree n of its components, where n is the number of 
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components in a patent.2 For example, if a focal patent (FP) contains the USPC 
subclassification codes A, B, C, the knowledge vector is generated as follows: 
 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒ி௉ ൌ ሾ 𝐴 | 𝐵 | 𝐶 | 𝐴𝐵 | 𝐵𝐶 | 𝐴𝐶 | 𝐴𝐵𝐶 ሿ     (1) 
 
Each element in 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒ி௉ denotes a single unit of knowledge; the length of 
𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒ி௉ indicates the total quantity of knowledge embedded in the focal patent. The 
knowledge units in 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒ி௉ are used to link the FP to its parent patents based on the 
number of knowledge units that are found in both the focal patent and a possible parent 
patent. To identify the possible parents of a focal patent, I search for overlapping knowledge 
units in all patents that were granted before the focal patent was, based on the sequence of 
patent ID numbers ZKLcK aUe RUdeUed b\ SaWeQWV¶ JUaQW daWe. For each possible parent that fits 
this temporal criterion, I generate a shared knowledge vector (SKnowledge) to record the 
knowledge units that appear in both the focal patent and in the parent. For example, if a 
SRVVLbOe SaUeQWV¶ NQRZOedJe YecWRU, 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒௉௉, is given by: 
 

𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒௉௉ ൌ ሾ 𝐵 | 𝐶 | 𝐷 | 𝐵𝐶 | 𝐶𝐷 | 𝐵𝐷 | 𝐵𝐶𝐷 ሿ    (2) 
 
and the knowledge of the FP, 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒ி௉, is given by Equation 1, the shared knowledge 
vector is taken as the union of the 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒ி௉ vector and the 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒௉௉ vector:  
 

𝑆𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒ி௉,௉௉ ൌ ሾ 𝐵 |𝐶 | 𝐵𝐶 ሿ      (3) 
 
The length of the above 𝑆𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒ி௉,௉௉ vector indicates that the focal patent 𝐹𝑃sourced 3 
units of knowledge from the potential parent.  
 
When an FP has multiple potential parents for an individual unit of knowledge, I assign a 
fractional weight to the edge based on the number of possible parents for that knowledge unit. 
For example, if two possible parents contain the component [ B ], I assume that the FP 
sources 0.5 units of knowledge from the [ B ] in the first possible parent and 0.5 units from 
the second.  
 
Finally, I identify high-impact patents based on the number of subsequent patents that draw 
knowledge from a focal patent. I define high-impact patents as those in the top decile of their 
half-decade cohort in terms of the count of subsequent patents that draw knowledge from 
them. I then aggregate patents to the metropolitan area level based on the home address of the 
inventors of that patent. When patents have inventors living in two or more metropolitan 
areas, I fractionally assign those patents to each metropolitan area. 

                                                 
2 The knowledge in a technology is embedded in the individual components in that 
technology and WKe Za\ WKRVe cRPSRQeQWV aUe LQWeUcRQQecWed. FRU e[aPSOe, EdLVRQ¶V OLJKW 
bXOb ZaV cUeaWed WKURXJK EdLVRQ¶V NQRZOedJe RI WKe e[LVWeQce RI WKe baPbRR ILOaPeQW aQd 
the vacuum-tight joints as independent components, and through his understanding that these 
components work synergistically when assembled together. 
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4.1) Results Overview 
 
The growth of knowledge production in U.S. metropolitan and micropolitan areas tends to 
follow a general pattern in which regions begin knowledge production by producing a small 
number of ideas, expand their production of ideas over time, reach a peak in knowledge 
production, and thereafter tend to enter a period of decline. Using black dots in Figure 1, I 
plot the production of patents by half-decade for four representative U.S. metropolitan areas 
centered on Detroit, Cleveland OH, San Jose CA, and Austin TX. I selected these cities 
because they are or have been major centers for innovation and because they initiated patent 
production growth during the time period for which I have reliable data, starting in 1850. To 
improve the comparison of patent production across years, I express the patents produced by 
a city in a given half-decade as a percentage of the U.S. total for that half-decade. I also plot 
the number of high-impact patents produced by that city using plus-signs, with high-impact 
patents defined as those in the top-decile in terms of the number of their number of 
knowledge-based progeny, as described in Section 3.2  
 

Figure 1: High-Impact and Total Patents Produced in Four Representative Cities 
Detroit 

 

Cleveland, OH 

 
San Jose

 

Austin, TX 
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Figure 1 shows the years of 1865 in Detroit, 1855 in Cleveland, 1965 in San Jose, and 1990 
in Austin all bear resemblance in terms of patent production growth: during these years, 
knowledge production in each city started to climb. Additionally, as those cities begin to 
increase their overall production of patents, they also increased their production of high-
impact patents. Generally, their production of high-impact patents grew faster than their 
production of overall patents; when the plus-signs rise in Figure 1, the black dots rise even 
faster. 
  
The examples of Detroit, Cleveland, San Jose and Austin in Figure 1 thus suggest two 
general patterns. First, overall patent production in cities experiences both a rise and a 
decline; second, the rise and decline of patenting in cities is preceded by the rise and decline 
of the production of high-impact patents. To test if these patterns are found generally across 
U.S. metropolitan and micropolitan areas, I compute the average percentage of U.S. total and 
high-impact patents that each city produces at each stage in its patenting growth. To compare 
cities that underwent knowledge growth during different periods of time (such as San Jose 
and Detroit), I align the time dimension of their patenting based on WKeLU cLW\ ³aJe´, defined 
as the first five-year period a city produces 1% or more of the U.S. total stock of patents. For 
example, I assume that San Jose in 1965 (when it first produced 1% of U.S. patents) was at 
the same stage of its growth trajectory as Detroit was in 1865. Extending that reasoning, 35 
years later in 2000, San Jose was at the same stage of its growth process as Detroit was in 
1900. Formally, I calculate the 𝐴𝑔𝑒௖,௧ of a city c in half-decade t by subtracting the 
observation year from the year it first crosses the 1% patenting threshold: 
 

𝐴𝑔𝑒௖,௧ ൌ 𝑌𝑒𝑎𝑟௖,௧ െ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑌𝑒𝑎𝑟௖    (4) 
 
For all subsequent analyses, I show that the results are robust when 𝐴𝑔𝑒௖,௧ is recomputed 
using a 0.5%, 1%, 2.5%, or 5% threshold value. After aligning the curves of each city based 
on 𝐴𝑔𝑒௖,௧, I compute aggregate patent production curves by averaging the percent of U.S. 
overall and high-impact patents in a given half-decade that are produced in cities with a given 
𝐴𝑔𝑒௖,௧ value, as in Figure 2.  
 
Figure 2 generates three observations. First, patenting growth in cities appears to be a 
function of city age as defined in Equation 4. Second, the production of high-impact patents 
in cities generally increases before the production of overall patenting starts to climb; 
similarly, the production of high-impact patents starts to decline before overall patenting goes 
down. Third, the temporal order of the growth of high-impact and overall patent production 
documented in Figure 2 suggests that a causal relationship runs from the local production of 
high-impact patents to the increased local overall patenting in subsequent time periods. 
Moreover, when inventors make high-impact inventions locally, they expand the local 
knowledge base and enable more local inventions in the future. We will analyze this potential 
causational relationship in greater detail in Sections 4.4 and 4.5. 
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Figure 2: Average Production of Total and High-Impact Patents in U.S. Cities by City 
Age 

0.5% Threshold 

 

1% Threshold 

 
2.5% Threshold

 

5% Threshold 

 
Note: Only cities that exceed the threshold value at one point in their history are included in the analysis. There 
are 33 cities using the 0.5% threshold, 19 cities using 1%, 10 cities using 2.5% and 4 cities using 5%. Hence, 

higher thresholds have more noise. 
 
Before addressing causality, it is necessary to address the open question of how inventors 
access the ideas they use to develop theLU cLWLeV¶ initial high-impact inventions. Because 
inventors in cities with nascent knowledge production (when Age < 0) can access few 
technological ideas locally, the knowledge used to produce local high-impact inventions must 
come from other places. Section 4.2 explores whether inventors initiate local knowledge 
production by sourcing non-local ideas. 
 
4.2: The Viability of using Non-Local Inventions to Initiate Local Knowledge 
Production  
 
While it is difficult for inventors to source big or complex ideas non-locally, inventors in 
distant places may be able to source promising ideas before those ideas are elaborated or 
made complex. Figure 3 shows that there is significant heterogeneity in the usefulness of 
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ideas for the creation of new ideas. Until 1930, high-impact patents had on average 4 first-
generation descendants, while the average patent had on average one first-generation 
descendant. After 1930, the average number of first-generation descendants of high-impact 
patents began to climb rapidly, reaching nearly 15 descendants per patent by the start of the 
21st century, while the increase for overall patents was smaller. The heterogeneity in the 
impact of ideas is even greater across multiple generations of endogenous knowledge 
production; in a sample of patents from the 1950s, my data show that high-impact patents had 
on average 6.5 first-generation descendants, each of which had on average 5 descendants of 
their own. By comparison, low-impact patents had 2.2 first-generation descendants, each of 
which had 2.3 descendants of their own. 
 

Figure 3: Average Impact of High-Impact Patents and All Patents by Year 

 
 

While high-impact inventions eventually are used to create complex technological systems, 
before their potential is fully realized high-impact ideas are not any more difficult to transport 
across space than low-impact ones. Figure 4 shows the average percentage of SaWeQWV¶ 
descendants that are produced in the same city as their parent patents, broken out by impact 
level. If a larger share of a patent¶s descendants is produced locally, its knowledge travels 
between regions with greater difficulty. Figure 4 shows that the difficulty to transport 
knowledge across regional boundaries was highest during three time periods: before 1900, 
between 1920 and1950, and after 1980. These periods of low knowledge mobility correspond 
to periods of spatial economic concentration induced by the second and third industrial 
revolutions (Balland et al., 2019; Kemeny and Storper, 2020). The historical records of the 
geography of knowledge flow in Figure 4 also show that the recent increase in the importance 
of spatial proximity for knowledge transmission documented by Sonn and Storper (2005) and 
Kwon et al. (2019) is a recent phenomenon. More pertinent for our analysis, however, is the 
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postive relationship between the impact of a patent and the percentage of its descendants that 
that are made in other regions: a larger share of the descendants of high-impact inventions are 
made by non-local inventors. 
 

Figure 4: Localization of Knowledge Flow by Parent Patent Impact Level and Year 

 
The higher propensity of high-impact inventions to stimulate knowledge production in other 
cities does not necessarily mean that high-impact inventions cause knowledge to diffuse. 
Inventors in the city where a high-impact invention is made are still likely to invent a greater 
share of its descendent inventions than inventors in any other city will. For example, if an 
inventor in Los Angeles introduces a high-impact invention, we expect from Figure 4 that 
about 10% of its descendants to be produced in Los Angeles. In the scenario of extreme 
dispersion, 90% of the focal LQYeQWLRQV¶ deVceQdaQWV will be made in locations scattered 
across the nearly 1,000 metropolitan and micropolitan areas in the United States, yielding 
about 0.09% of its descendants in each location. Of course, dispersion is never this extreme; 
nonetheless, this example makes two related points: high-impact inventions do not cause 
knowledge production to mechanically diffuse across space; yet at the same time, inventors in 
far-away regions are not categorically excluded from accessing these promising ideas.  
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4.4) The Sources of Knowledge Production Growth in Cities 
 
While the results in the previous section indicate that non-local high-impact ideas can be used 
to commence knowledge production in new places, the more important question is whether 
inventors actually use those ideas for that purpose. In this section, I empirically examine 
whether inventors source knowledge from impactful local and non-local sources as their 
cities initiate, expand, and decline knowledge production. To undertake this analysis, I 
develop a knowledge-source accounting framework that reveals the relative importance of 
various types of knowledge flows for instigating knowledge production. Most research on the 
geography of knowledge flow, such as Jaffe et al. (1993), Breschi and Lissoni (2007), and 
Arora et al. (2019) infer the geographical consequences of local and non-local knowledge 
flows based on the friction posed by distance. For reasons discussed in Section 4.3, even if 
geographical distance exerts strong frictions on the spreading of ideas across distances, non-
local ideas can nonetheless be used to initiate knowledge production in new places. The 
source-accounting framework developed here overcome this analytical challenge by directly 
calculates the relative importance of local, non-local, high-impact, and low-impact 
knowledge sources for inventors to initiate local knowledge production. 
 
Specifically, for each city and in each half-decade, I calculate the extent to which a 
PeWURSROLWaQ aUea¶V inventors source knowledge from local high-impact inventions 
(L.HIGH), local low-impact inventions (L.LOW), non-local high-impact inventions 
(NL.HIGH), and non-local low-impact inventions (NL.LOW) as knowledge production in the 
region begins, expands, and declines. I begin by defining the patent stock produced in city c 
in a half-decade t as 𝑃௖,௧. Next, using records of knowledge flow between patents (see Section 
3.2), I trace the patents in 𝑃௖,௧ one generation back in time to identify their parent patents, 
defined as 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠௖,௧. Finally, I calculate the percentage of 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠 that were 
invented in the same city as 𝑃௖,௧, and the percentage of 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠௖,௧ that are high-impact 
inventions. I also calculate the cross-tabulations, yielding the measures L.HIGH, L.LOW, 
NL.HIGH, and NL.LOW. To illustrate these calculations, in Figure 5 I plot the composition 
of knowledge sources used by inventors in Detroit and San Jose by half-decade periods. To 
visualize how their knowledge sources evolve as their cities expand their patent production, I 
overlay the number of patents produced in the city (as a percentage of U.S. patent production 
in the same half-decade) using lines. 
 
Figure 5 illustrates three important relationships. First, inventors in both Detroit and San Jose 
sourced a large percentage of knowledge from non-local high-impact (NL.HIGH) patents 
when their cities started to produce an appreciable amount of technological knowledge, at the 
turn of the 20th century in Detroit and during the second half of the 20th century in San Jose. 
The percentage of knowledge sourced from NL.HIGH patents, however, declined as their 
regional patent production grew: iQ 1905, DeWURLW¶V LQYeQWRUV VRXUced abRXW 75% RI WKe 
knowledge used to create their new inventions from NL.HIGH patents, but by the time 
DeWURLW¶V SaWeQW SURdXcWLRQ SeaNed LQ 1940, that figure declined to about 60%. A similar 
albeit less sharp decline in knowledge sourcing from NL.HIGH patents occurred in San Jose 
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1950-2000. Second, as knowledge production grew in both cities, the inventors started to 
source knowledge more frequently from L.HIGH patents. In Detroit, L.HIGH patents 
accounted for about 1% of all knowledge sourced in 1905 but rose to about 10% by the 
1920s. The increase was even larger in San Jose. Third, in both cities the sourcing of 
knowledge from L.LOW patents grew less quickly than the sourcing of knowledge from 
L.HIGH patents. Between 1905-1940 in Detroit and 1970 through the end of the data series 
in San Jose, inventors in each city sourced more knowledge from L.HIGH patents than from 
L.LOW patents. 
 
Figure 5: Composition of Knowledge Sources Used for Patent Production in Detroit and 

San Jose 
Detroit 

 

San Jose 

 
Note: Patent production (black squares) is not plotted to scale. 

 
To test whether the relationships identified in Figure 5 are found more generally across cities 
in the U.S., I plot the averages of the decomposition of the sources of knowledge used by 
inventors across U.S. cities b\ WKeLU cLW\ ³aJe´ in Figure 6. As in Figure 2, I compute the age 
of a city as the number of years elapsed since each city first produces a threshold percentage 
of all U.S. patents. As before, I omit all cities that exceeded the threshold level of patent 
production before the start of my data series in 1850 and all cities that never break the 
patenting threshold.  
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Figure 6: Sources of Knowledge for Knowledge Production in Cities by City Age 
0.5% Threshold 

 

1% Threshold 

 
2.5% Threshold 

 

5% Threshold 

 
Note: Patent production (black squares) are not plotted to scale. 

 
Figure 6 shows that the relationships identified in Detroit and San Jose are found more 
generally across U.S. cities. Inventors source knowledge from NL.HIGH inventions most 
frequently when their cities first commence patent production; they source an increasing 
share of knowledge from L.HIGH inventions as local patent production grows; and they 
source a larger share of their knowledge from L.LOW and NL.LOW inventions when local 
patent production reaches its peak and declines. As shown in Figure 6, these results are robust 
across the 4 different threshold values used to benchmark the age of the city. To provide a 
simpler presentation, Table 2 calculates the composition of sources used by inventors in three 
discrete ranges of city age. For brevity, Table 2 only reports values using the 1% threshold 
definition.  
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Table 2: Composition of Knowledge Sources by Source Type and by City Age  
 Source Type 

Age Range NL.HIGH NL.Low L.High L.Low 

-100 to 0 67% 28% 3% 2% 

0 to 50 60% 26% 9% 5% 

50 to 150 56% 31% 7% 6% 
Note: Table 2 uses the 1% patenting threshold 

 
4.5) Results: Why Does Knowledge Production Consolidate in Certain Locations? 
 
While Figure 6 and Table 2 show that knowledge production growth expands in cities as their 
inventors source ideas from NL.HIGH and L.HIGH sources, it remains unestablished whether 
these sources cause local knowledge production to expand. A full causal inference is beyond 
the scope of this paper; however, a meaningful counterfactual can be generated by comparing 
the knowledge sources used by inventors in cities that break the patenting threshold with the 
sources used by inventors in cities that fail to break that threshold.  
 
To compare the types of knowledge sources LQ ³VXcceVVIXO cLWLeV´ (SC; those that break the 
threshold) aQd ³XQVXcceVVIXO cLWLeV´ (USC; those that fail to), I compute the frequency their 
inventors use each type of source at each age value. USCs do not have explicit age values 
because they never break the patenting threshold, so direct comparison is impossible. 
However, a robust comparison can still be generated by comparing the composition of 
knowledge sources used in SCs with the composition used in USCs in the same 5-year period 
of observation. To generate this within-time comparison, let the vector 𝑌𝑒𝑎𝑟𝑠஺௚௘ record the 
all 5-year periods in which SCs are observed at a given age value. For example, if a total of 
three SCs in reach age 10, the first in 1900 and the second and third in 1995, then  
 

𝑌𝑒𝑎𝑟𝑠஺௚௘ୀ10 ൌ ሾ1900, 1995,1995ሿ    (5) 
 
The composition of knowledge types used by inventors in USCs at a given age value are 
calculated by averaging the composition used in unsuccessful cities over the 𝑌𝑒𝑎𝑟𝑠஺௚௘ 
vector. Let the count of patent parents used by inventors in USCs in a given 5-year period and 
of a given source type be defined as 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠௒௘௔௥௦,௎ௌ஼,்௬௣௘. The average propensity for 
inventors in USCs of a given city age to source knowledge of a given type is: 
 

%𝑃𝑎𝑟𝑒𝑛𝑡𝑠௎ௌ஼,்௬௣௘,஺௚௘ ൌ
∑ ∑ ௉௔௧௉௔௥௘௡௧௦ೊ೐ೌೝೞ,ೆೄ಴,೅೤೛೐ೆೄ಴ೊ೐ೌೝೞ

∑ ∑ ௉௔௧௉௔௥௘௡௧௦ೊ೐ೌೝೞ,ೆೄ಴ೆೄ಴ೊ೐ೌೝೞ
   (6) 
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In Equation 6, the Years subscript is an index of the 𝑌𝑒𝑎𝑟𝑠஺௚௘ vector.3 To provide an 
example of how Equation 6 is computed, let us make three assumptions:  
 

(1) 𝑌𝑒𝑎𝑟𝑠஺௚௘ୀ10 ൌ ሾ1900, 1995,1995ሿ, as in Equation 5 
(2) 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠௒௘௔௥௦,௎ௌ஼ ൌ ሾ50,100,100ሿ, denoting that patents in in unsuccessful cities 

sourced knowledge from 50 parent patents in 1900 and 100 parents in 1995 
(3) 𝑃𝑎𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠௒௘௔௥௦,௎ௌ஼,்௬௣௘ୀே௅.ுூீு ൌ ሾ5,8,8ሿ, denoting that patents in in unsuccessful 

cities sourced knowledge from 5 high-impact parents in 1900 and 8 in 1995 
 
In this example, percentage of parents unsuccessful cities sourced from NL.HIGH parent 
patents at Age=10 is computed as: 
 

%𝑃𝑎𝑟𝑒𝑛𝑡𝑠௎ௌ஼,்௬௣௘ୀே௅.ுூீு,஺௚௘ୀ10 ൌ ହା଼ା଼
ହ0ା100ା100

ൌ 8.4%   (7) 
 
Finally, to compare the composition of knowledge sources used by inventors in SCs with the 
composition used in USCs, the SC composition premium is taken as the difference between 
the compositions used in SCs and USCs: 
 
𝑆𝐶𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑟𝑒𝑚𝑖𝑢𝑚்௬௣௘,஺௚௘ ൌ %𝑃𝑎𝑟𝑒𝑛𝑡𝑠ௌ஼,்௬௣௘,஺௚௘ െ %𝑃𝑎𝑟𝑒𝑛𝑡𝑠௎ௌ஼,்௬௣௘,஺௚௘ (8) 
 
In Figure 7, I create scatterplots of 𝑆𝐶𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑟𝑒𝑚𝑖𝑢𝑚்௬௣௘,஺௚௘ by plotting it against 
city age. I overlay Loess regression fit lines (search distance = 100%) to identify general 
trends in the data across age values.  
 

Figure 7: Knowledge Sources used by Cities that Break the Patenting Threshold in 
Excess of Knowledge Sources used by Cities that Never Break the Patenting Threshold 

0.5% Threshold 

 

1% Threshold 

 
                                                 
3 The 1995 value is double-counted because it appears twice in the 𝑌𝑒𝑎𝑟𝑠஺௚௘ୀ10 vector, 
which amounts to taking weighted means. 
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2.5% Threshold 

 

5% Threshold 

 
 
 
Figure 7 shows that inventors in SCs use a different composition of knowledge sources than 
inventors in USCs. These differences occur during and after SCs cities cross the patenting 
threshold. Early in their growth, when age is between -100 and 0, inventors in SCs source a 
larger share of knowledge from NL.HIGH patents, as indicated by the high dotted red lines 
using the 0.5%, 1%, and 5% threshold value definitions. The 2.5% definition did not yield 
this result, which may be due to the small number of SCs (10 cities) under that threshold 
definition. As SCs start to age, their inventors increasingly source knowledge from L.HIGH 
patents, as indicated by the solid red lines which peak when Age = 0. As SCs age further, 
their inventors increasingly source knowledge from local low-impact inventions, as indicated 
by the solid blue lines that rise over time. The percentage of knowledge that inventors in SCs 
source from L.LOW patents peaks after the percentage that sourced from NL.LOW does, 
indicating that L.LOW are the primary knowledge sources used by inventors as knowledge 
production in their home regions matures and declines. 
 
From Figure 7 it is difficult to discern whether the differences in the composition of 
knowledge sources used by inventors in SCs and USCs are statistically significant. I thus 
develop two regression models. First, I develop a logit model of the probability that a city 
reaches the 1% patenting threshold in a regression framework as a function of the types of 
knowledge that its inventors used over the previous 50 year: 
 

𝑃𝑟𝑜𝑏൫𝐵𝑟𝑒𝑎𝑘𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௖,௧ ൌ 1൯ ൌ 
𝐵1 ∗ %𝑁𝐿. 𝐻𝐼𝐺𝐻௖,௧௉௥௘௩ ൅ 𝐵ଶ ∗ %𝐿. 𝐻𝐼𝐺𝐻௖,௧௉௥௘௩ ൅ 𝐵ଷ ∗ %𝑁𝐿௖,௧௉௥௘௩ ൅ 𝐹𝐸௧ ൅ 𝐸௖ 

(9) 

  
where the probability that a city breaks the threshold in the half-decade t is a function of the 
percentage of the knowledge its inventors source from NL.HIGH and L.HIGH sources during 
the previous 50 years. Moreover, the tPrev time index sums over the range of t values [t-50, t-
45, . . . t-5]. To account for the small growth in the local knowledge stock that precedes the 
breaking of the 1% threshold, I include the percentage of parents that are non-local (NL) as a 
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control variable in some model variants. Time fixed effects control for changes in the 
relationship between the various knowledge sources and the propensity for cities to break the 
threshold across time. Cities that break the patenting threshold in a prior time period are 
excluded from the model so that the model includes all observations of USCs but only the 
observations of SCs up to and including the 5-year period they break the threshold. Results 
are given in Table 3.  
 

Table 3: Model of Prob(BreakThreshold =1) 
 Breakthrough Threshold 
 1% 0.5% 2.5% 

% NL.HIGH 
1.01*** 
(0.272) 

1.33*** 
(0.318) 

1.10*** 
(0.215) 

1.28*** 
(0.255) 

0.797** 
(0.384) 

1.27** 
(0.567) 

% L.HIGH 
5.64*** 
(0.796) 

1.43 
(0.961) 

6.47*** 
(0.919) 

3.18*** 
(1.16) 

7.79*** 
(1.29) 

3.17** 
(1.45) 

% NL  
-4.41*** 
(0.561) 

 
-3.27*** 
(0.827) 

 
-4.91*** 

(.847) 

𝐹𝐸௧ Y Y Y Y Y Y 

NOBS City*Time 14130 14404 13300 13738 14681 14854 
NOBS where 

𝐵𝑟𝑒𝑎𝑘𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑௖,௧ ൌ
1 

19 19 33 33 10 10 

Standard errors clustered at the CBSA level 
 
The logit estimates in Table 3 indicate that cities are more likely to break the patenting 
threshold if their inventors source a larger share of their total knowledge from NL.HIGH or 
L.HIGH inventions over the previous 50 years. These results are robust to the threshold 
definition used, although the 2.5% threshold only leaves 10 cities that break the threshold in 
the dataset.  
 
In addition to enabling cities to break the patenting threshold, sourcing knowledge from 
NL.HIGH and L.HIGH sources may also help inventors in those cities expand local 
production of patents in the following years. To test this proposition, I develop a similar 
regression where the dependent variable is replaced by 𝑃𝑎𝑡𝑒𝑛𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛௖,௧௙௨௧௨௥௘ which 
calculates the percentage of all U.S. patents that a city produces over the next 50 years. The 
model tests whether cities that source a large share of their knowledge from NL.HIGH and 
L.HIGH patents over the previous 50 years produce more patents over the following 50 years. 
The OLS model is given by: 
 

𝑃𝑎𝑡𝑒𝑛𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛௖,௧ி௨௧௨௥௘ ൌ 
𝐵1 ∗ %𝑁𝐿. 𝐻𝐼𝐺𝐻௖,௧௉௥௘௩ ൅ 𝐵ଶ ∗ %𝐿. 𝐻𝐼𝐺𝐻௖,௧௉௥௘௩ ൅ 𝐵ଷ ∗ %𝑁𝐿௖,௧௣௥௘௩ ൅ 𝐹𝐸௧ ൅ 𝐸௖ 

(10) 



22 
 

 
Equation 10¶V eVWLPaWeV aUe JLYeQ LQ TabOe 4. Again, cities that break the patenting threshold 
are only included in the model for the first time period during which they break that 
threshold. 
 

Table 4: Model of 𝑷𝒂𝒕𝒆𝒏𝒕𝑷𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏𝒄,𝒕𝑭𝒖𝒕𝒖𝒓𝒆 

 Breakthrough Threshold 

 1% 0.5% 2.5% 

% NL.HIGH 
0.0120*** 

(0.0000247) 
0.0240*** 

(0.0000262) 
0.0130*** 
(0.00157) 

0.0157*** 
(0.00162) 

0.0354*** 
(0.00507) 

0.0446*** 
(0.00581) 

% L.HIGH 
0.412*** 

(0.000541) 
0.208*** 

(0.000469) 
0.228*** 
(0.0277) 

0.0990*** 
(0.0262) 

1.04*** 
(0.173) 

0.581*** 
(0.128) 

% NL  
-0.191*** 
(0.0236) 

 
-0.121*** 

(0.013) 
 

-0.427*** 
(0.0692) 

𝐹𝐸௧ Y Y Y Y Y Y 

R-Squared 0.094 0.104 0.108 0.116 0.0822 0.0902 

NOBS 
City*Time 

14130 14130 13738 13738 14854 14854 

NB: Standard errors clustered at CBSA level. 
 
Table 4 indicates that sourcing knowledge from NL.HIGH and L.HIGH inventions is 
positively associated with future patenting growth above and beyond the patent threshold 
level. 
 
5) Discussion 
 
This paper has used data on knowledge production and its sourcing to study how inventors 
initiate and expand knowledge production in new places. The creation of technological 
knowledge is a complex art that is aided by building on existing ideas. In regions without a 
history of knowledge production, the number of existing ideas that inventors can access 
through face-to-face communication is limited and so inventors tend to create new 
technologies in established milieus. Occasionally, new and impactful ideas are generated that 
are less reliant on existing stocks of knowledge (Kuhn, 1962; Dosi, 1982). Certainly, many of 
the subsequent inventions enabled by these breakthroughs are realized within immediate 
environs where the breakthroughs are initially made. However, as the example of the 
semiconductor transistor showed, it is possible for inventors to commence knowledge 
production in new places if they manage to source impactful ideas created far away before 
the impact of those ideas is realized. Ideas as promising as the junction transistor arise 
infrequently, but regions rarely emerge as innovative centers without seizing at least one such 
opportunity. 
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While a wealth of research examines how geographical proximity enhances the generation, 
transmission, and retention of technological knowledge, the environments in which these 
geographically-proximate interactions take place are created through the actions of economic 
actors over the course of time. The formation of these environments is an under-researched 
subject and there is significant room for further analysis. To begin, this study inferred the 
effect of high-impact knowledge sources on the creation of innovative environments through 
the temporal coincidence of sourcing high-impact knowledge and local patenting growth. A 
more rigorous identification would quantify the number of new local ideas that each previous 
local and non-local idea helped ferment. Secondly, as the examples of semiconductor 
employment in Phoenix, AZ and Dallas, TX show (see Section 2), inventors in some 
locations manage to source high-impact non-local ideas and yet fail to sustain long-run local 
innovation. The results of this study indicate that inventors also need to introduce high-
impact ideas locally in order to capture and sustain knowledge production in the long run. 
This finding nonetheless begs an additional question: why do inventors in some regions 
introduce more high-impact inventions than in others? For Saxenian (1996) and Storper et al. 
(2015), competitive advantage in the creation of impactful new technologies is derived from 
malleable local institutions that allow regional actors to develop new methods for 
organization and coordination. Accordingly, the variation in the fluidity of inventor networks 
across regions and its association with the local creation and capture of high-impact 
inventions is a promising area of for further research. 
 
Finally, while the study indicated that high-impact ideas provide opportunities for inventors 
to commence knowledge production in new places, too little is still known about what makes 
high-impact ideas impactful. In addition, further research is needed to reveal why some high-
impact ideas stimulate knowledge production in far-away places while other impactful ideas 
stimulate knowledge production in their immediate environs. Both of these issues may be 
addressed by generating more accurate models how new ideas influence the usefulness of 
existing ones. Sometimes, inventors integrate new and impactful ideas into existing 
technological systems while in other cases they develop technologies that drive existing 
technological systems into obsolescence. These technological relationships have regional 
consequences as certain inventions promote regional diversification and resilience (Neffke et 
al., 2013; Rigby, 2015; Boschma 2015) while other inventions render regional knowledge 
bases obsolete and establish new outposts for innovation (Scott and Storper, 1987; Storper 
and Walker, 1989; Boschma and Lambooy 1999). Ecological models of symbiotic and 
adversarial relationships between inventions such as Foster et al. (2014) are encouraging 
starting points to unpack these conflicting sources of evolution and revolution in the 
geography of innovation. 
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