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Abstract 

The paper explores knowledge recombination by analysing how knowledge networks in 

established technological fields influenced the formation of the emerging field of green 

shipping in the period 2007–2018. The authors build hypotheses to investigate whether 

important mechanisms for the evolution of single technology networks, embeddedness, 

proximity, and status apply across technological fields. By employing dynamic social network 

analysis models, they found that actors transferred knowledge across technological fields 

through (re)combination mechanisms, which affected the emergence of the new technological 

field, but in different ways. While embeddedness played an important role, status and 

geographical proximity were less important.  
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1. Introduction 

The idea of innovation as a process of tapping into and combining existing knowledge is central 

in the geography of innovation literature. In general, knowledge in emerging technological 

fields is generated to solve a specific ‘problem’ (Dosi and Nelson, 2013). Knowledge from 

related technological fields is (re)combined in the development of possible ‘solutions’, thereby 

creating the emerging technological field (Kalthaus, 2016, König et al., 2011, Wagner et al., 

2019). These ‘solutions’ are often supported by policy tools (e.g. subsidized R&D), motivated 

either by traditional market-failure arguments relating to underinvestment in R&D or by the 

need to stimulate knowledge creation in particular technological fields that may help to address 

grand societal challenges (Grillitsch et al., 2019, Laranja et al., 2008, Weber and Rohracher, 

2012).  

Knowledge creation in technological fields is shaped by networks and the geography of the 

existing technological knowledge. A wide range of theoretical and empirical research has 

underlined the crucial role of knowledge networks for the evolution of industries and 

technological fields (Balland, 2012, Glückler, 2007, Ter Wal, 2013, Ter Wal and Boschma, 

2011, Zaheer and Soda, 2009). Much of the recent literature on the subject incorporates the 

geographical dimension, and is confined to the evolution of knowledge networks in single 

technological fields (Balland et al., 2013, Bauer et al., 2018, Broekel and Boschma, 2012, Ter 

Wal, 2013). The evolution of knowledge networks within technological fields is formed by 

embeddedness, proximity and status (popularity) mechanisms (Balland et al., 2016, Tsouri, 

2019). However, there is scant evidence for whether and how these mechanisms apply across 

multiple technological fields, and particularly what role knowledge networks in established 

technological fields play in the formation of knowledge networks in new technological fields.  
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The purpose of this paper is to address this gap by exploring how actors in knowledge networks 

of established technological fields contribute to the recombination of knowledge and to the 

creation of a new technological field. Consequently, the aim of this study is twofold. Our first 

objective is to analyse how knowledge evolves and (re)combines across technological fields 

and over time to form the knowledge network of a new technological field. Second, we examine 

whether and how the mechanisms identified as central to knowledge network evolution within 

single fields (i.e. embeddedness, proximity, and status), also influence evolution across 

technological fields. Therefore, we develop a set of hypotheses to explore the dynamics that 

govern the evolution of knowledge networks in emerging technologies. 

Our main contribution is to draw on the dynamics already described for single technology 

knowledge networks in established technological fields (Balland et al., 2016) and to explore 

whether existing knowledge recombines to foster the emergence and evolution of a new 

technological field. To do this we examine the role of embeddedness, proximity and status in 

the aforementioned process, which we expect differ in cases of knowledge transfer across 

technologies. Therefore, by examining processes of knowledge transfer across knowledge 

networks of related technological fields this paper expands the existing literature on knowledge 

network evolution (Bauer et al., 2018, Giuliani, 2013, Ter Wal, 2014).  

Empirically, we explore the spatial and temporal dynamics of knowledge networks 

underpinning environmental innovation in the emerging technological field of ‘green 

shipping’. By ‘green shipping’, we refer to fuels and energy solutions that can reduce or replace 

the usage of fossil fuels in maritime transport or shipping. To examine knowledge network 

dynamics, we employ data from the European framework programmes. In order to capture the 

(re)combinatory knowledge development, we analyse projects that have supported the 

emerging field of ‘green shipping’, as well as established fields of alternative fuels that have 
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previously been developed and applied in other sectors and that are now used to reduce 

emissions from shipping. 

The remaining part of this paper is organized in four sections. In the following section we 

review the literature on the evolution of knowledge networks and their role in technological 

fields, and we develop our hypotheses. In section 3 we present our research design and data, 

and in section 4 we present and analyse our findings. Our conclusions and discussion of 

limitations and future research are presented in section 5. 

 

2. Literature review 

The generation and diffusion of knowledge is a key element of the evolution of technologies 

(Cantner and Pyka, 1998, Iammarino and McCann, 2006, Saviotti and Mani, 1998, Verspagen, 

2007). Emerging technologies require new knowledge, which is created from novel 

(re)combinations of existing knowledge elements (Asheim et al., 2007, Boschma et al., 2012, 

Grillitsch et al., 2018). Knowledge in emerging technological fields tends to be sparsely 

distributed, with no easily identifiable communities and with a variety of possible combinations 

and alternatives in knowledge resources (Etzkowitz and Klofsten, 2005, Tanner, 2016). 

Knowledge assets are not easily developed and whereas some forms of knowledge can easily 

be transferred across space, it is generally accepted that knowledge is a highly localized or 

‘sticky’ resource (Bathelt et al., 2004). 

Within evolutionary economic geography, the ways in which territorial economies evolve over 

time has been premised first and foremost on the argument that innovation and new knowledge 

tends to develop on the basis of the existing knowledge base (Boschma and Frenken, 2006). 

This argument of related variety and/or diversification has been underpinned by various studies 

in which different proxies or indicators have been used (e.g. patents, skills, industry 
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classification) for the knowledge structure of a given territory and how that has developed over 

time. Thus, this evolutionary characteristic of knowledge development also underpins the path-

dependent manner in which territorial economic trajectories unfold over time. However, and 

as argued by Martin and Sunley (2010), this does not by default imply path dependence in a 

constraining sense, in which territories become locked-in to industrial paths. Instead, the basis 

for new development paths (path creation) or the renewal or reorientation of established 

industries can be provided either by new knowledge that develops on the basis of established 

knowledge or by new combinations of already established knowledge (Isaksen, 2014, Steen 

and Hansen, 2018). However, not all changes in territorial economic structures occur through 

related diversification. The contrasting process of unrelated diversification, which refers to the 

emergence of industries that are new to a territory (and possibly to the world) is more rare than 

related diversification (Grillitsch et al., 2018, Neffke et al., 2011).  

Knowledge networks constitute channels and conduits for the knowledge transfer across 

organizations and geographical borders, enhancing knowledge diffusion and contributing to 

the evolution of technologies (Owen-Smith and Powell, 2004). The literature on knowledge 

networks focuses extensively on identifying mechanisms behind their evolution, taking into 

consideration different kinds of network properties, namely nodal, relational and structural 

properties (Phelps et al., 2012, Cassi and Plunket, 2015, Balland et al., 2019). As explained in 

detail in sections 2.1-2.3, the main mechanisms identified include the embeddedness of an 

actor, in either the social or structural context of the network, the proximity of two actors, and 

the actor’s status (popularity), which refers to the relative position of an actor inside the 

network (Balland et al., 2016, Giuliani, 2013). The most recent studies explore these 

mechanisms in a dynamic way (Balland et al., 2016, Bauer et al., 2018, Ter Wal, 2014) but 

they are limited to the evolution of the knowledge network of a single technological field, 

sector or industry. Therefore, the literature to date has not captured the important role of 
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knowledge (re)combination discussed above, although the specified mechanisms provide 

potentially relevant starting points for doing so.  

Therefore, do the same mechanisms – embeddedness, proximity, and status – apply to the 

creation of new knowledge networks and thereby underpin the emergence and evolution of 

technological fields? We aim to test the mechanisms of knowledge networks in established 

technological fields, specifically on the evolution of the knowledge network of an emerging 

technology. In the following sections we disentangle each mechanism and discuss how it has 

been used in previous studies. On this basis we develop three sets of hypotheses to investigate 

the mechanisms’ function in the (re)combination of knowledge for the emergence of new 

technological fields. 

 

2.1 Embeddedness 

According to Granovetter (1985) embeddedness can be defined as the mechanism whereby the 

behaviour of economic agents is regulated by their ongoing social relations. Embeddedness has 

positive effects on the parties in these relationships, fostering knowledge creation and diffusion 

(Uzzi, 1997). Gulati (1998) differentiates between two types of embeddedness: relational 

(social) and structural. Social embeddedness concerns the characteristics of the relationships 

on which the agents base their behaviour. In early literature, social embeddedness is expressed 

through the notion of strong ties (Granovetter, 1973, Krackhardt et al., 2003, Rost, 2011). 

Strong ties refer to repeated collaborations and interactions on the basis of interorganizational 

trust, thus enabling knowledge transfer (Ahuja et al., 2012, Broekel, 2019, Tsouri, 2019). The 

long-term creation of strong ties, apart from the benefits of enhancing trust and therefore 

knowledge transfer, may result in a densely connected network, which does not allow new 

external knowledge to be introduced (Fritsch and Kauffeld-Monz, 2010). To avoid this type of 
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knowledge lock-in, actors obtain new knowledge through relationships with actors outside the 

densely connected part of the network. The characteristics of this relational network structure 

are referred to as structural embeddedness. Structural embeddedness formalizes the notions of 

weak ties (Granovetter, 1973) and structural holes (Burt, 2009); whereas weak ties are a 

relational element of actors loosely connected to the dense network core, structural holes refer 

to network ties as means of linking actors of separate network parts (Burt, 2009, Fritsch and 

Kauffeld-Monz, 2010). Therefore, the value of structural embeddedness stems from the ability 

of actors to have access to novel information and to enjoy efficiency and brokerage advantages, 

especially when exchanging knowledge.  

The two types of embeddedness, social and structural, do not contradict each other. Instead, 

they are seen as playing different roles and are thus useful to agents for different purposes 

(Burt, 2000). Recent literature quantifies both types of embeddedness in order to describe 

knowledge diffusion and how it affects the evolution of knowledge networks of technological 

fields or sectors (Balland et al., 2016, Bauer et al., 2018, Broekel and Boschma, 2012, Cantner 

and Graf, 2006, Rost, 2011, Ter Wal, 2014, Tsouri, 2019). It is widely accepted that both types 

of embeddedness affect the formation of new ties or the strength of the ties in the knowledge 

network, thus suggesting path-dependent evolutionary trajectories of technological fields.  

Based on the above-mentioned arguments we examine the effect of both social and structural 

embeddedness for the creation of new paths in the evolution of technological fields. In the case 

of social embeddedness, we assume that existing relationships of actors in established 

technological fields are transferred to emerging technological fields, due to scarcity of 

resources and the trust created by the previous collaborations. For structural embeddedness we 

assume that two actors collaborating with a third party in an established technological field 

might collaborate with each other in the emerging technological field, tapping into and 

recombining existing knowledge. These assumptions lead to the following set of hypotheses: 
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H1a: Social embeddedness in the established technological fields positively affects the 

formation of ties in the emerging technological field. 

H1b: Structural embeddedness in the established technological fields positively affects the 

formation of ties in the emerging technological field. 

 

2.2 Proximity 

Proximity refers to the relational property of connected actors as being close in terms of having 

similar characteristics. Actors that are proximate (having similar characteristics) tend to 

connect (McPherson et al., 2001). Proximity of actors constitutes a mechanism for reducing 

uncertainty and therefore for enabling knowledge transfer and network formation, as well as 

innovation (Boschma, 2005). Empirical evidence suggests that to great extent proximity in all 

its forms is important for knowledge production and diffusion (Balland et al., 2016, Boschma 

and Ter Wal, 2007, Broekel and Boschma, 2012, Cantner and Graf, 2006, Hansen, 2015, 

Tsouri, 2019).  

To date, the literature has mainly highlighted the persisting important role of geographical 

proximity for knowledge network formation and for knowledge creation and diffusion (Torre, 

2008). Proximity, although usually referring to geographical proximity, may also refer to 

different dimensions of similarity between the actors in a knowledge network (Boschma, 

2005). According to Boschma (2005) actors can be proximate in five different ways: 

geographically, cognitively, socially, institutionally, and organizationally. Geographical 

proximity refers to the collocation of actors that can create spontaneous exchange of knowledge 

(Bathelt et al., 2004). Cognitive proximity is the overlapping of two actors in terms of their 

knowledge bases, whereas social proximity describes the micro-level embeddedness of actors 

(e.g. friendship, kinship, experience) (Boschma, 2005). Institutional proximity refers to cases 

when actors share common institutional and cultural contexts, thus providing stable conditions 
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for knowledge transfer (Boschma and Frenken, 2009, Ponds et al., 2007). Finally, 

organizational proximity refers to the extent of sharing of organizational arrangements, 

involving the degree of autonomy and control of the organizational arrangements (Boschma 

and Frenken, 2009). 

In the process of developing emerging technological fields, which are still characterized by 

considerable uncertainty regarding future development paths, actors may in particular use their 

networks to learn from other organizations and to access complementary skills. This involves 

collaboration in order to assess the relevance of (and potentially acquire) knowledge held by 

actors from other technological fields, or to engage directly in joint projects that provide 

complementary knowledge. Previous research suggests that geographical proximity is 

particularly conducive to the establishment of interorganizational collaborations motivated by 

the aforementioned purposes (Lorentzen, 2008), as they often involve interaction between 

partners characterized by low cognitive proximity (Hansen, 2014). Thus, geographical 

proximity may compensate for low cognitive proximity (Garcia et al., 2018). Consequently, 

the development of an emerging technological field may be affected by the location of the 

actors involved in the knowledge transfer process. Therefore, we expect geographical 

proximity to play a significant role in the formation of the new technological field.  

While the proximity literature focuses on the possibility for substitution between spatial and 

non-spatial forms of proximity (Broekel and Mueller, 2018, Fitjar et al., 2016, Hansen, 2015, 

Kuttim, 2016), it gives little attention to the possibilities for substitution between different types 

of non-spatial proximity. However, research results indicate that other non-spatial forms of 

proximity may facilitate collaboration between cognitively distant partners (Werker et al., 

2019). Janssen et al. (2019) find that shared organizational membership facilitates collaboration 

between firms with large cognitive distances. Hence, alongside geographical proximity, we 
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expect institutional and organizational types of proximity will affect the formation of the 

emerging technological field. Accordingly, we have formulated the following hypotheses: 

H2a: Geographical proximity of actors positively affects the formation of ties in the emerging 

technological field. 

H2b: Institutional proximity of actors positively affects the formation of ties in the emerging 

technological field. 

H2c: Organizational proximity of actors positively affects the formation of ties in the 

emerging technological field. 

 

2.3 Status (Popularity) 

Similarly to embeddedness and proximity, the status (popularity) of an actor is an important 

driver for knowledge transfer and evolution of technological fields (Luo et al., 2009, Stuart, 

1998). The popularity of an actor in social networks constitutes an attractive attribute driving 

preferential attachment (Barabási and Albert, 1999, Papadopoulos et al., 2012). Preferential 

attachment is a dynamic process, during which new actors entering the network prefer to 

connect with already well-connected actors (Barabási and Albert, 1999). This process results 

in the strengthening of the relative position of certain actors compared with the rest of the 

actors, augmenting their network status and making them more central (Autant-Bernard et al., 

2014). 

Popular actors are important for knowledge transfer and the evolution of technologies because 

they can act as intermediaries (Martin, 2013, Tsouri and Pegoretti, 2020). They accumulate 

knowledge over time due to their privileged position in the knowledge network and 

consequently their role becomes central to the evolution of a technology (Autant-Bernard et 

al., 2014, Wanzenboeck et al., 2014). Actors with high network status benefit from direct or 
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indirect collaboration with a variety of actors and thus they provide a range of opportunities to 

foster knowledge creation and diffusion processes. Their actions impact the structure and 

dynamics of the knowledge network, ultimately shaping the dynamics and pace of evolution 

of the particular technological fields (Balland et al., 2016, Ter Wal, 2014). 

Empirical studies addressing actors’ status within the knowledge network have typically been 

limited to the evolution of a technological field and/or a specific network type (Balland et al., 

2016, Bauer et al., 2018, Broekel and Graf, 2012, Graf, 2011). However, as popular actors 

inside knowledge networks have the propensity to tap into and diffuse knowledge, they may 

play a crucial role in the creation of novel knowledge combinations, the application of those 

knowledge combinations, and the generation of new technological fields, thereby creating 

bridges between different knowledge networks (Bathelt and Zeng, 2012, Cassi et al., 2008, 

Kauffeld-Monz and Fritsch, 2013). Taking into consideration the latter attribute of actors with 

high network status, we examine whether such actors in established fields play an important 

role in the development of the emerging technological field. This leads us to the following 

hypothesis: 

H3: The status (popularity) of actors in established technological fields affects positively the 

knowledge network of the emerging technological field.  

 

3. Case, data and methods 

3.1 The case of green shipping 

International shipping is a large and rapidly growing source of greenhouse gas emissions, and 

these emissions are expected to increase in the years ahead (i.e. due to increasing global trade) 

unless new energy solutions are successfully developed and implemented. However, it is 

reasonable to say that the alternatives to fossil fuels are in early phases of development and 
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therefore green shipping can be considered an emerging technological field. There are multiple 

obstacles to more sustainable shipping (Steen et al., 2019), which is generally considered a 

hard-to-abate sector, similar to heavy onshore transport and aviation (Sims et al., 2014, Pettit 

et al., 2018). However, promising developments are occurring in terms of new technology 

adoption, notably in shipping segments such as coastal ferry services (Bergek et al., 2018).  

Among the proposed technological solutions that can contribute to the greening of shipping is 

the use of biofuels, hydrogen, and battery electric storage systems (DNV GL, n.d.).1 These 

alternatives and/or supplements to fossil fuels were under development in other sectors (e.g. 

road transport) prior to their application in the maritime sector. The same technological fields 

offer complementary knowledge components to the emerging technological field of green 

shipping. The European Commission is currently supporting the aforementioned main types of 

alternative fuels and propulsion technologies, for example by subsidizing R&D projects in 

order to improve their efficiency and remove market entry barriers (EC, n.d.). For this reason, 

green shipping is a suitable example for studying how different knowledge components of 

established technological fields recombine to develop the knowledge network of the emerging 

technological field. 

Figure 1 is a schematic representation of the emergence of the new technological field of green 

shipping within the traditional field of shipping. The established technological fields of 

biofuels, electricity storage and battery, and hydrogen constitute related technological fields, 

as they interact and have applications in shipping, thus contributing to the development of the 

green shipping technological field. These interdependencies result in different technological 

trajectories, either complementary or competing, within the emerging technological field 

(green shipping). With regard to the actor level, section 4 examines the effect of the knowledge 

 
1 See also http://www.emsa.europa.eu/main/air-pollution/alternative-fuels.html 
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transfer between actors in the established technological fields of green energy solutions on the 

knowledge transfer in the entire field of green shipping.  

 

Figure 1 Schematic representation of the emerging technological field of green shipping 
with the contribution of the established technological fields of biofuels, electricity 
storage, and battery, fuel cells and hydrogen. 

 

3.2 Data  

To test our hypotheses and explore the mechanisms that govern the evolution of the knowledge 

network of emerging technological fields, we used data on R&D projects funded by the 

European Commission (CORDIS dataset). We used the R&D projects under the last two EU 

research framework programs – FP7 and Horizon2020 – and that spanned the twelve-year 

period from 2007 to 2018. The framework programs followed a scheme based on thematic 

areas. However, the relevant technological fields spanned several of these categories, so we 

started by identifying relevant projects through keyword searches. We identified all projects 

on shipping with alternative (green) fuels and/or energy carriers (hereafter referred to as green 

fuels) and labelled the category ‘green shipping’. We also identified all R&D projects related 

to the established technological fields of biodiesel, bioethanol, biogas, synthetic natural gas 



14 
 

(SNG), electricity storage and battery, hydrogen fuel, and fuel cell. We include projects in these 

fields irrespective of application sector, also outside shipping, the application sector of our 

study. To isolate all projects that covered one of the above-mentioned technological categories, 

we performed a keyword filter in the project abstracts. Then we performed content analysis of 

the selected abstracts.  

We identified 1136 EU-funded R&D projects (i.e. in the period 2007–2018) with a total of 

3719 participating actors in the project categories. Based on the information on project 

participants, we created eight knowledge networks, each corresponding to one of the 

categories. The actors are considered connected if they participated in a project together 

(Autant‐Bernard et al., 2007, Cantner and Graf, 2006). In terms of partner selection, the 

European framework programmes had a rather simple and basic constraint, namely the partners 

had to be located in at least two different EEA countries. This could possibly have biased the 

results in the selection of geographically distant or proximate partners. However, for the 

thematic areas of the projects included in our categories our stipulated requirement was at least 

four collaboration partners. With regard to project selection, the collaborative partners were 

numerous, which enabled us to draw unbiased conclusions from our knowledge networks 

(Autant‐Bernard et al., 2007). 

The sizes of the knowledge networks of the project categories, as well as the overlapping of 

projects and actors with regard to each green fuel with the actors of the green shipping 

knowledge network are presented in Table 1. The networks of the different green fuels varied 

in size and the extent to which they overlapped with the green shipping knowledge network. 

The biodiesel, bioethanol and SNG networks were smaller than the rest of the networks. Few 

actors were participating in both biodiesel and green shipping networks, while there were no 

overlapping projects during the period 2007–2018. Therefore, we excluded projects on 

biodiesel from the dataset.  



15 
 

Table 1 Network size and overlaps between networks in terms of projects and actors. 

Knowledge 
networks 

No. 
projects 
2007–2018 

Overlapping projects with 
green shipping (2007–
2018) 

No. actors 
2007-2018 

Overlapping actors with 
green shipping (2007–
2018) 

Green fuels 
(2007–
2018) 

Green fuels 
(2007–
2013) 

Green fuels 
(2007–
2018) 

Green fuels 
(2007–
2013) 

Green 
Shipping 

82 – – 586 (209) – – 

Biodiesel 
(excluded) 

52 0 0 308 29 15 

Bioethanol 
(excluded) 

46 1 0 277 (127) 49 (37) 28 (17) 

Biogas 
(excluded) 

111 1 0 591 (213) 55 (51) 42 (25) 

Electricity 
storage and 
battery 

409 16 8 1771 (617) 148 (114) 109 (95) 

Fuel cells 343 11 7 967 (470) 92 (85) 76 (75) 
Hydrogen 343 11 7 965 (480) 100 (94) 78 (76) 
SNG 53 3 2 300 (153) 53 (46) 37 (35) 

 

For the analysis we included only the actors that participated in more than one project during 

the entire period (2007–2018). We made this choice to ensure that we included actors that 

repeat a collaboration by participating in a later project. The dataset included the entire 

population of actors participating in EU-funded R&D projects on green shipping, biofuels 

(except biodiesel), hydrogen fuel, fuel cells, and electricity storage and battery, based in 

countries of the European Economic Area (EEA, comprised the EU member states plus 

Norway, Switzerland and Iceland) in the years 2007 to 2018 inclusive. To allow for dynamic 

analysis of the data, we divided the data into two periods according to the year in which the 

projects started. The first period covered 2007–2013 (corresponding to FP7), while the second 

period spanned 2014–2018 (corresponding to Horizon2020). During FP7 bioethanol and 

biogas projects proved to have few common actors, and did not overlap with the green shipping 

network for the entire period (2007–2018). Moreover, the analysis showed that there were no 
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overlapping ties between the bioethanol and biogas networks (2007–2013) and the green 

shipping network (2007–2018). Accordingly, we excluded these two categories. 

 

3.3 Methods 

Social Network Analysis (SNA) is the method for analysing social structures by using network 

and graph theory. It represents the social structures in terms of nodes (individuals, firms, 

events) and ties between them (relationships, interactions). We depicted the data in a network 

form, in which actors were represented as nodes, whereas collaborations, which indicated 

knowledge transfer, were represented as ties. In that way, the data could be summarized in nine 

one-mode square sociomatrices (actor × actor): the ‘green shipping’ sociomatrix depicted the 

network of green shipping for the entire period (2007–2018), and two sociomatrices for each 

green fuel (SNG, electricity storage, fuel cells, and hydrogen) respectively covered the periods 

2007–2013 and 2014–2018.  

Longitudinal and dynamic analysis of network data, notably in terms of explaining how 

knowledge network structures change over time, presents certain difficulties. Due to their 

nature, network data violate basic assumptions in most standard econometric techniques. As 

all actors are members of the same network, the observations are not independent and the 

models suffer from structural autocorrelation and excess of zeros (Snijders et al., 2010). To 

overcome this problem, we used stochastic actor-oriented models (SAOMs), implemented in 

the RSiena software treated network data as ‘snapshots’ repeated in continuous time, similarly 

to panel data. SAOMs are based on Markov’s process in continuous time, estimated with the 

method of moments through Monte Carlo simulations. The Monte Carlo algorithm produces a 

number of simulated networks, estimating the parameters that minimize the deviation between 

the original network and the simulated networks (Balland et al., 2016, Snijders et al., 2010). 
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When the simulations converge to the original network, the parameters are kept constant for 

calculating the standard errors. We used SAOMs because they perform dynamic network 

analysis in actor, dyad, and structural levels. Due to these characteristics we were able to use 

entire networks as variables and examine how one network affected the evolution of another 

network.  

 

3.4 Networks as variables 

Following the methodology proposed by Balland et al. (2016), we used actor, dyadic and 

structural effects as variables. The most significant difference was that we examined how other 

knowledge networks, such as green fuels and/or energy carriers (their evolution and elements), 

affected the evolution of a new technological field (green shipping). Given that we analysed 

multiple networks, we defined green shipping (2007–2018) as the dependent variable, while 

the remaining eight knowledge networks constituted explanatory variables. To express 

multiple network effects (when the structure of one network affected the evolution of another 

network), we represented the dependent variable with the tie variables denoted as !!", while 

the tie variables denoted by "!" represented the network of an explanatory variable (Ripley et 

al., 2018).  

Our aim was to explain the evolution of the green shipping knowledge network during the 

entire period under consideration (2007–2018). We wanted to understand how collaborations 

between actors in green shipping (dependent variable) evolve and therefore changed between 

FP7 (2007–2013) and Horizon2020 (2014–2018). This was expressed by the rate of change 

(non-existing ↔ existing ties) for the network, from FP7 to Horizon2020. Our explanatory 

variables and effects were derived from the evolution of the established fields (SNG, electricity 

storage, fuel cells and hydrogen) during FP7 (2007–2013). In that way we detected how the 
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early evolution of established knowledge networks shaped the knowledge network of green 

shipping during a later period (2014–2018).  

Social embeddedness. This variable was used to estimate how established knowledge networks 

shaped the knowledge network in the emerging field (H1a). To express this property, we 

employed the rate of change (non-existing ↔ existing ties) of the established knowledge 

networks (SNG, electricity storage, fuel cells, hydrogen) during FP7. It is portrayed by the 

change of a tie between nodes i and j of one network W (that is # #→ %), leading to a change of 

a tie between nodes i and j of another network X (that is # $→ %).  

Structural embeddedness. This variable showed the probability that two actors, which were 

connected with a third actor in the established networks, were connected in the new network 

(H1b). In single network evolution structural embeddedness is usually represented by triadic 

closure, whereas in multiple network setting structural embeddedness can be operationalized 

with the effect of closure of shared ties: ∑ !!""%!"%""&% . This refers to the shared W ties of the 

established knowledge network (explanatory variable) contributing to the tie # $→%, of the green 

shipping knowledge network (dependent variable).  

Proximity. We examined the effects of geographical (H2a), institutional (H2b), and 

organizational (H2c) dimensions of proximity. These variables were dyadic explanatory 

variables, added as constant dyadic dummy covariates. Geographical proximity takes the value 

one when two actors were located in the same region (NUTS2), otherwise it takes the value 

zero. Institutional proximity takes the value one if two agents were located in the same country, 

as they are acting under the same institutional context, otherwise it takes the value zero. Finally, 

organizational proximity takes the value one when two actors were of the same organizational 

type (universities, research centres, private firms, public agencies, other types of 

organizations), and zero otherwise. The three dyadic covariates were treated as constant. The 
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geographical location, institutional setting, and organizational kind of an actor can change over 

time. However, such change does not happen easily and is considerably slower than the change 

in the collaborations between the actors (Broekel, 2015). 

Status. We examined the effect of the actors’ status in the established knowledge networks on 

the ties of the green shipping network (H3). This refers to a preferential attachment mechanism 

(Barabási and Albert, 1999) whereby new actors in a network connect with already central 

actors, which augments the central actors’ popularity. In studies of single network evolution 

conducted to date this concept has been operationalized by endogenous degree centrality 

(popularity effect) (Balland et al., 2016). However, this was problematic in our case, for two 

reasons: (1) in a multiple network context, actor popularity is not endogenous to the dependent 

network, but refers to the popularity of actors in the explanatory networks, and (2) the R&D 

project data we used would give a false indication of the degree of actor centrality, as this 

measurement depends heavily on the size and numbers of partners in projects. Therefore, a 

more global centrality measurement is needed, the eigenvector centrality (Bonacich, 2007). 

Eigenvector centrality measures the influence of a node in the network and is an enhanced 

measure of degree centrality, based on the assumption that connections to more centrally 

positioned actors contribute more to the popularity of the actor under consideration compared 

with connections to peripheral nodes. We operationalized eigenvector centrality of actors, 

adding the eigenvector centrality score as a covariate variable. We measured the eigenvector 

centrality of actors for the knowledge networks of green fuels during the period 2007–2013 

and examined its effect on the green shipping knowledge network for 2014–2018.  

Control variables. As we were dealing with undirected networks, we did not differentiate 

between in- and out- degree. Therefore, we could not use these types of controls. We examined 

the effect that the density of the established networks had on the evolution of the new network. 

This effect measures the overall tendency of actors to create ties. We also used another type of 
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control, namely the basic rate parameter of the green fuel networks, representing the amount 

of network change through time for each established knowledge network.  

 

4. Empirical analysis 

The descriptive statistics of the dyadic variables and the correlation between them are shown 

in Table 2. All variables were dummy variables, taking only the values 0 and 1. Neither the 

explanatory variables, nor the proximity variables were highly correlated. Most of the dyadic 

variables positively affected each other, but the magnitude of the effect does not appear to have 

been large.  

Table 2 Descriptive statistics and correlations of the dyadic variables used in the analysis. 

 Min Max Mean SD Gr. Ship El. Stor F. Cell Hydrogen SNG 
Geo. 
Prox. 

Inst. 
Prox. 

Green shipping  
2007–2018 0 1 0.005 0.073 – – – – – – – 
Electricity storage  
2007–2013 0 1 0.01 0.101 0.011 – – – – – – 
Fuel cells  
2007–2013 0 1 0.007 0.085 0.015 0.13 – – – – – 
Hydrogen  
2007–2013 0 1 0.007 0.084 0.016 0.088 0.585 – – – – 
SNG  
2007–2013 0 1 0.002 0.04 0.014 0.054 0.072 0.178 – – – 
Geographical 
proximity 0 1 0.01 0.101 0.015 0.026 0.019 0.02 0.007 – – 
Institutional 
proximity 0 1 0.085 0.279 0.007 0.016 0.021 0.017 0.004 0.335 – 
Organizational 
proximity 0 1 0.372 0.483 0.002 -0.011 -0.006 -0.005 -0.006 0.013 0.018 

 

To explain the evolution of green shipping network over time and to test our hypotheses, we 

employed the model described in the preceding section. The results of the analysis are 

presented in Table 3. All estimations of the parameters were based on 1000 simulations, an 

amount that is considered reliable (Balland et al., 2016, Snijders et al., 2010). The overall 

convergence rate of the model is 0.1742 < 0.8, while the convergence ratios of each variable 

are less than 0.1, making the algorithm approximation excellent. As the underlying idea behind 
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the model is the effect of the rate of change (non-existing ↔ existing ties) of the established 

networks on the rate of change in the dependent network, the coefficients are interpreted as 

log-odds ratios of the time formation. In other words, they represent how the log-odds ratio of 

the dependent network will change with the change of one unit in the explanatory variables.  

Table 3 Analysis of the evolution of green shipping technological field (2007–2018) 

Dependent variable: Green shipping 2007–2018 
 Coefficients Standard Errors p-values 
Social embeddedness: 
Electricity storage 2007–2013 0.5992* 0.2786 0.0842 
Fuel cells 2007–2013 0.4180 0.4387 0.3844 
Hydrogen 2007–2013 -0.0678 0.4218 0.8771 
SNG 2007–2013 1.1401** 0.3992 0.0356 
Structural embeddedness (X: mixed from W): 
Electricity storage 2007–2013 (str.emb) 0.4332*** 0.0682 0.0014 
Fuel cell 2007–2013 (str.emb) 0.3321* 0.1430 0.0679 
Hydrogen 2007–2013 (str.emb) -0.0369 0.1295 0.7871 
SNG 2007–2013 (str.emb) 0.4952*** 0.0741 0.0011 
Proximities: 
Geographical proximity 0.0454 0.2356 0.8549 
Institutional proximity 0.2879* 0.1162 0.0560 
Organizational proximity 0.3555** 0.103 0.0182 
Status (eigenvector centrality): 
Electricity storage 2007–2013 -0.3608 0.4006 0.4091 
Fuel cells 2007–2013 -0.3695 0.7951 0.6617 
Hydrogen 2007–2013 0.1526 0.9976 0.8845 
SNG 2007–2013 1.768*** 0.2333 0.0006 
Controls: 
Degree (density) green shipping 2007–2018 -4.0707*** 0.1186 < 0.0001 
Rate green shipping 2007–2018 22.2581*** 1.172 < 0.0001 
Rate electricity storage 2007–2013 4.8573*** 0.0848 < 0.0001 
Rate fuel cell 2007–2013 3.3765*** 0.0707 < 0.0001 
Rate hydrogen 2007–2013 3.4175*** 0.0664 < 0.0001 
Rate SNG 20072013 0.7627*** 0.0305 < 0.0001 
Significance: *p<0.1, **p<0.05, ***p<0.01 

 

Hypothesis H1a refers to the social embeddedness of green fuels’ knowledge networks on the 

knowledge network of green shipping. This is shown by the effect on the change in ties of the 

green shipping network (2007–2018) by the change in ties of the green fuels’ knowledge 

networks. This effect represents the shaping of the knowledge network of the new field. 

Interpreting the significance of the p-values for every knowledge network (2007–2013) of 

every green fuel, it appears that the change of ties in all of them did not significantly affect the 

change of knowledge ties in the new technological field, although all of the coefficients were 
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positive. The change in the knowledge ties of the established fields of SNG and electricity 

storage and battery had a significant positive effect on the evolution of the green shipping 

network. The two coefficients were both significant but of different intensity (electricity 

storage and battery = 0.5992 and SNG = 1.1401). Both the SNG and the electricity storage and 

battery networks constituted strong drivers for the evolution of green shipping network, 

suggesting that ties in early electricity storage and battery and SNG networks (2007–2013) 

mattered for the evolution of the ties in the green shipping knowledge network. Hypothesis 

H1a is only confirmed for the electricity storage and battery and SNG networks, as we did not 

observe any standard pattern. 

Similarly, hypothesis H1b refers to the structural embeddedness of the change of ties in the 

green shipping knowledge network (2007–2018) on the weak ties and structural holes of the 

established green fuels knowledge networks (2007–2013). Overall, structural embeddedness 

was a strong driver towards the shaping of the green shipping knowledge network, confirming 

hypothesis H1b, with the exception of the hydrogen fuel network. More specifically, when one 

actor was connected with two other actors in the knowledge networks of electricity storage and 

battery (= 0.4332), fuel cells (= 0.3321), and SNG (= 0.4952), this significantly affected the 

connection of those two actors in the green shipping knowledge network. The SNG network 

had the strongest effect on structural embeddedness in terms of significance and intensity.  

Further, the geographical proximity of the actors did not seem to affect the evolution of green 

shipping knowledge network. We used collocation of actors at NUTS2 level, assuming that 

two actors that are located in the same region were geographically proximate, thereby rejecting 

hypothesis H2a. However, institutional proximity significantly affected the evolution of the 

green shipping knowledge network (= 0.2879), confirming hypothesis H2b. We defined 

institutional proximity as occurring when two actors were located in the same country, acting 

in the same institutional setting (e.g. laws, norms, language). Finally, an important determinant 
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for the evolution of the green shipping knowledge network was when actors shared the same 

organizational structure (= 0.3555). When two actors were of the same organizational type, 

they were more likely to create a tie in the green shipping knowledge network, thus confirming 

hypothesis H2c.  

In terms of the actors’ status in the established knowledge networks of green fuels, their 

eigenvector centrality did not seem to affect the evolution of the green shipping network, thus 

in general leading to our rejection of hypothesis H3.2 The only exception was the eigenvector 

centrality of actors in the SNG knowledge network (= 1.768), which had a significant positive 

effect on the change of ties in the green shipping knowledge network, in this case confirming 

hypothesis H3. As an enhanced measure of degree centrality, eigenvector centrality shows the 

connectivity of an actor with other central actors in the network. In other words, the status of 

an actor in the SNG knowledge network, positioned in such a way that it is connected with 

central actors, affects the evolution of the green shipping network.  

All control variables in the model are significant. The density of the green shipping network 

had a negative effect on the evolution of the network. The value of the density parameter was 

not very important, as it correlated with all other statistics, which made it difficult to interpret. 

The basic rates of all of the networks were positive and significant, but the basic rate referred 

to the effect they had on the evolution of their own networks. For example, the basic rate of 

green shipping (rate green shipping 2007–2018) referred to the rate of change of ties 

(evolution) of the green shipping knowledge network. This specific rate was positive and 

 
2 We controlled the robustness of the results of status repeating the model with degree centrality, and the results 

were similar in significance. However, degree centrality with data on R&D projects does not reflect the real 

status of an actor, as it can be affected by the size of project.  
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significant, and therefore important, showing a significant amount of endogenous evolution in 

the green shipping network and in turn signifying strong path dependency.  

 

5. Conclusions 

The evolution of knowledge networks has received considerable attention in the geography of 

innovation literature in the last decade (Balland et al., 2016, Bauer et al., 2018, Ter Wal, 2014). 

Research has focused on the evolution of single technological fields and their knowledge 

networks (Ahuja et al., 2012, Balland et al., 2019, Broekel and Boschma, 2012, Giuliani et al., 

2019), while there has been no evidence for how knowledge is transferred across technological 

fields. However, the latter is important for the generation of new knowledge and the emergence 

of new technological fields (Wagner et al., 2019).  

The purpose of our paper is to address this gap. We have identified different mechanisms that 

influence the evolution of the knowledge networks of technologies – embeddedness, proximity 

and status – that represent actor relations and the structural characteristics of the knowledge 

networks (Ahuja et al., 2012, Balland et al., 2016). We have explored how these mechanisms 

work across technological fields, recombining existing knowledge and creating diversified 

knowledge networks, and thus how they contribute to foster the development of knowledge 

networks in emerging technological fields. In this paper we have presented evidence of how 

these mechanisms play different roles in the formation of the emerging technological field, by 

(re)combining the knowledge existing in established related technological fields.  

Empirically, we have explored the emerging field of green shipping, and the different green 

fuels (electricity storage and battery, hydrogen, fuel cells, and SNG) as established fields, 

which through their application in shipping contribute to the development of the new field. We 

have demonstrated that some mechanisms in green fuel networks, such as structural 
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embeddedness and different dimensions of proximity, are strong drivers for the evolution of 

the emerging green shipping field.  

In order to form ties in the network of the new technological field or to repeat ties created in 

the established technological fields, actors invest effort, trust and resources. The actors 

involved in green shipping were to different degrees embedded in the knowledge network of 

the analysed green fuel networks. The actors in the green shipping network were both 

structurally and socially embedded in the established technological fields of electricity storage 

and battery and SNG. This shows that the social ties and the structure of the knowledge network 

of established technological fields affect the creation of the new field. The actors exploited 

both strong and weak ties in the electricity storage and battery and SNG knowledge networks 

to form or reinforce relationships in the green shipping network. Additionally, structural 

embeddedness in the fuel cell R&D network influenced network formation in green shipping. 

In other words, actors in the green shipping network tended to connect with friends of friends 

from the fuel cells network. However, they did not consider any type of embeddedness in the 

hydrogen fuel field in the creation of the green shipping field. These findings are in line with 

the literature suggesting that embeddedness is a key driver for the formation of 

interorganizational networks (Balland et al., 2016). In our case, looking at knowledge 

recombination across technological fields, we found variance in the degree of actor 

embeddedness in the different established technological fields and how it affected the 

formation of the emerging technological field network. However, in general we found that 

structural embeddedness had a more intense effect than social embeddedness. The strong effect 

of structural embeddedness, expressed by triadic closure in the emerging knowledge network, 

highlights the importance of the weak ties in the established networks (Ter Wal, 2014). Weak 

ties constitute important knowledge sources for the early stage of the emerging network. 
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The literature on the evolution of knowledge networks in single technological fields suggests 

that status is an important driver, as knowledge is concentrated in few actors (Balland et al., 

2016, Giuliani, 2013). However, this is not the case across technological fields. The only green 

fuel for which the status of an actor is important for the emergence of the green shipping field 

is SNG. Thus, in general, network formation in an emerging technological field is not driven 

by the status of actors in existing technological fields. In other words, we have shown 

empirically that preferential attachment does not appear to work as a driver across fields, thus 

suggesting that reputation and information about who is reportedly knowledgeable does not 

travel across technological fields. Although the status of the actors in certain established 

networks (e.g. SNG) may affect the evolution of the new network, in general actors venturing 

into a new technological field rely more on other drivers than their own popularity in 

established fields.  

The effects of the different dimensions of proximity vary for the formation of the knowledge 

network of the emerging technological field. In contrast to the positive effect that geographical 

proximity has been shown to have on the evolution of established technological fields (Ter 

Wal, 2014), the geographical proximity of the actors did not affect the evolution of the 

emerging field in our study. Ter Wal (2014) suggests that geographical proximity plays an 

important role in the formation of knowledge networks at early stages, but this happens in the 

case of a single technology. In this setting, actors are more likely to know each other when they 

are geographically close, and the localization element is reduced in importance when 

knowledge starts to become widely diffused in the field. However, our focus was on the role 

of knowledge recombination across technological fields for the emergence of a new field, since 

(re)combination of existing knowledge from established fields has been shown to be important 

(König et al., 2011, Wagner et al., 2019). Taking this into consideration, our findings reveal 

that geographical proximity does not seem to play an important role in knowledge network 
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formation under such circumstance. These new knowledge components can be very 

geographically dispersed, rare and difficult to acquire, which might explain why geographical 

proximity of actors does not play an important role in the formation of relationships between 

actors in the emerging technological field.  

Instead of geographical proximity, we found that institutional proximity played an important 

role in the formation of the ties in the emerging field. In some cases, geographical and 

institutional proximity appear to substitute each other (Autant‐Bernard et al., 2007, Ponds et 

al., 2007). Undoubtedly, a set of common laws, norms or culture facilitates the transfer of 

knowledge between actors. Being under the same institutional context enhances the necessary 

trust between actors for the emergence and evolution of the new technological field, 

compensating for the lack of geographical proximity. Similarly, organizational proximity of 

actors enables the formation of ties in the emerging technological field. Organizational 

proximity can substitute for geographical proximity (Broekel and Mueller, 2018, Cassi and 

Plunket, 2015, Lorentzen, 2008), as interacting with similar types of organizations provides 

agents with the necessary trust and reliability for collaborating in an emerging technological 

field.  

Overall, we did not find an identifiable pattern in the effect of all the established networks on 

green fuels. In other words, the evolution of each network of green fuels affected the evolution 

of the green shipping knowledge network in different ways. The factors behind this 

differentiation remain still to be examined in future research. Potentially influential factors 

include the different levels of maturity of the related technologies, and thus the degree of 

applications to other sectors, their relatedness and compatibility with the emerging 

technological field, or whether the knowledge networks of the established technological fields 

include specific actors in privileged positions that are capable of transferring their properties 

to the new technological field.  
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In general, our findings are in line with the existing literature on knowledge network evolution 

and the way that the mechanisms of embeddedness, status and proximity function (Ahuja et 

al., 2012, Balland et al., 2016). However, with regard to the interaction across technological 

fields, their effect and importance is varied. All three mechanisms in the established 

technological fields have positive effects on the emergence and evolution of the new field. 

However, the significance and intensity of this effect depends heavily on the particular 

characteristics of the established field (Balland et al., 2016).  

Furthermore, the interactions between established and emerging technologies, which we have 

studied from a knowledge network perspective, is an important theme in sustainability 

transitions studies. Hence, future research could connect these studies more strongly, for 

instance by investigating how network dynamics evolve across technological fields with 

differing interactions modes (e.g. complementary interactions, whereby technologies 

positively influence each other, as opposed to competitive interactions whereby technologies 

can influence each other negatively). This could contribute to a better understanding of why 

certain technologies gain momentum and develop successfully whereas other technologies do 

not. Moreover, in the context of technology and knowledge related to sustainability (as in the 

case of green shipping), the factors enabling or constraining the generation of novelty may be 

highly influenced, for example by strong opposition from actors with vested interests in 

existing industries and technologies (e.g. in fossil fuels). How this form of opposition 

potentially influences the development of knowledge networks for emerging environmental 

innovation both across sectors and space is an interesting topic for future research.  

 

References 

Ahuja, G., Soda, G. & Zaheer, A. 2012. The genesis and dynamics of organizational networks. 
Organization science, 23, 434-448. 



29 
 

Asheim, B., Coenen, L. & Vang, J. 2007. Face-to-face, buzz, and knowledge bases: sociospatial 
implications for learning, innovation, and innovation policy. Environment and planning 

C: Government and Policy, 25, 655-670. 
Autant-Bernard, C., Massard, N. & Cowan, R. 2014. Editors’ introduction to spatial knowledge 

networks: structure, driving forces and innovative performances. The Annals of 

Regional Science, 53, 315-323. 
Autant‐Bernard, C., Billand, P., Frachisse, D. & Massard, N. 2007. Social distance versus 

spatial distance in R&D cooperation: Empirical evidence from European collaboration 
choices in micro and nanotechnologies. Papers in regional Science, 86, 495-519. 

Balland, P.-A. 2012. Proximity and the evolution of collaboration networks: evidence from 
research and development projects within the global navigation satellite system (GNSS) 
industry. Regional Studies, 46, 741-756. 

Balland, P.-A., Belso-Martínez, J. A. & Morrison, A. 2016. The Dynamics of Technical and 
Business Knowledge Networks in Industrial Clusters: Embeddedness, Status, or 
Proximity? Economic Geography, 92, 35-60. 

Balland, P.-A., De Vaan, M. & Boschma, R. 2013. The dynamics of interfirm networks along 
the industry life cycle: The case of the global video game industry, 1987–2007. Journal 

of Economic Geography, 13, 741-765. 
Balland, P. A., Boschma, R. & Ravet, J. 2019. Network dynamics in collaborative research in 

the EU, 2003-2017. European Planning Studies, 27, 1811-1837. 
Barabási, A.-L. & Albert, R. 1999. Emergence of scaling in random networks. science, 286, 

509-512. 
Bathelt, H., Malmberg, A. & Maskell, P. 2004. Clusters and knowledge: local buzz, global 

pipelines and the process of knowledge creation. Progress in Human Geography, 28, 
31-56. 

Bathelt, H. & Zeng, G. 2012. Strong growth in weakly-developed networks: Producer–user 
interaction and knowledge brokers in the Greater Shanghai chemical industry. Applied 

Geography, 32, 158-170. 
Bauer, F., Hansen, T. & Hellsmark, H. 2018. Innovation in the bioeconomy–dynamics of 

biorefinery innovation networks. Technology Analysis & Strategic Management, 30, 
935-947. 

Bergek, A., Bjørgum, Ø., Hansen, T., Hanson, J. & Steen, M. 2018. Towards a sustainability 
transition in the maritime shipping sector: the role of market segment characteristics. 
International Sustainability Transitions Conference. Manchester, UK. 

Bonacich, P. 2007. Some unique properties of eigenvector centrality. Social networks, 29, 555-
564. 

Boschma, R. 2005. Proximity and Innovation: A Critical Assessment. Regional Studies, 39, 
61-74. 

Boschma, R. & Frenken, K. 2006. Why is economic geography not an evolutionary science? 
Towards an evolutionary economic geography. Journal of Economic Geography, 6, 
273-302. 

Boschma, R. & Frenken, K. 2009. The spatial evolution of innovation networks: a proximity 
perspective. Utrecht University, Department of Human Geography and Spatial 
Planning …. 

Boschma, R., Frenken, K., Bathelt, H., Feldman, M. & Kogler, D. 2012. Technological 
relatedness and regional branching. Beyond territory. Dynamic geographies of 

knowledge creation, diffusion and innovation, 64-68. 
Boschma, R. A. & Ter Wal, A. L. 2007. Knowledge networks and innovative performance in 

an industrial district: the case of a footwear district in the South of Italy. Industry and 

Innovation, 14, 177-199. 



30 
 

Broekel, T. 2015. The co-evolution of proximities–A network level study. Regional Studies, 
49, 921-935. 

Broekel, T. 2019. Using structural diversity to measure the complexity of technologies. Plos 

One, 14. 
Broekel, T. & Boschma, R. 2012. Knowledge networks in the Dutch aviation industry: the 

proximity paradox. Journal of Economic Geography, 12, 409-433. 
Broekel, T. & Graf, H. 2012. Public research intensity and the structure of German R&D 

networks: a comparison of 10 technologies. Economics of Innovation and New 

Technology, 21, 345-372. 
Broekel, T. & Mueller, W. 2018. Critical links in knowledge networks–What about proximities 

and gatekeeper organisations? Industry and Innovation, 25, 919-939. 
Burt, R. S. 2000. The network structure of social capital. Research in organizational behavior, 

22, 345-423. 
Burt, R. S. 2009. Structural holes: The social structure of competition, Harvard university 

press. 
Cantner, U. & Graf, H. 2006. The network of innovators in Jena: An application of social 

network analysis. Research Policy, 35, 463-480. 
Cantner, U. & Pyka, A. 1998. Technological evolution—an analysis within the knowledge-

based approach. Structural Change and Economic Dynamics, 9, 85-107. 
Cassi, L., Corrocher, N., Malerba, F. & Vonortas, N. 2008. Research networks as infrastructure 

for knowledge diffusion in European regions. Econ. Innov. New Techn., 17, 663-676. 
Cassi, L. & Plunket, A. 2015. Research collaboration in co-inventor networks: combining 

closure, bridging and proximities. Regional Studies, 49, 936-954. 
Dnv Gl. n.d. Alternative Fuels Insight platform (AFI) [Online]. DNV GL. Available: 

https://store.veracity.com/da10a663-a409-4764-be66-e7a55401275a [Accessed]. 
Dosi, G. & Nelson, R. R. 2013. The evolution of technologies: an assessment of the state-of-

the-art. Eurasian business review, 3, 3-46. 
Ec. n.d. Smart, Green and Integrated Transport [Online]. European Commission. Available: 

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/smart-green-and-
integrated-transport [Accessed 10.09.2020]. 

Etzkowitz, H. & Klofsten, M. 2005. The innovating region: toward a theory of knowledge‐
based regional development. R&D Management, 35, 243-255. 

Fitjar, R. D., Huber, F. & Rodríguez-Pose, A. 2016. Not too close, not too far: testing the 
Goldilocks principle of ‘optimal’distance in innovation networks. Industry and 

Innovation, 23, 465-487. 
Fritsch, M. & Kauffeld-Monz, M. 2010. The impact of network structure on knowledge 

transfer: an application of social network analysis in the context of regional innovation 
networks. The Annals of Regional Science, 44, 21. 

Garcia, R., Araujo, V., Mascarini, S., Gomes Dos Santos, E. & Costa, A. 2018. Is cognitive 
proximity a driver of geographical distance of university–industry collaboration? Area 

Development and Policy, 3, 349-367. 
Giuliani, E. 2013. Network dynamics in regional clusters: Evidence from Chile. Research 

Policy, 42, 1406-1419. 
Giuliani, E., Balland, P.-A. & Matta, A. 2019. Straining but not thriving: understanding 

network dynamics in underperforming industrial clusters. Journal of Economic 

Geography, 19, 147-172. 
Glückler, J. 2007. Economic geography and the evolution of networks. Journal of Economic 

Geography, 7, 619-634. 
Graf, H. 2011. Gatekeepers in regional networks of innovators. Cambridge Journal of 

Economics, 35, 173-198. 



31 
 

Granovetter, M. 1973. The Strength of Weak Ties. American Journal of Sociology, 78, 1360-
1380. 

Granovetter, M. 1985. Economic action and social structure: The problem of embeddedness. 
American journal of sociology, 91, 481-510. 

Grillitsch, M., Asheim, B. & Trippl, M. 2018. Unrelated knowledge combinations: the 
unexplored potential for regional industrial path development. Cambridge Journal of 

Regions, Economy and Society, 11, 257-274. 
Grillitsch, M., Hansen, T., Coenen, L., Miörner, J. & Moodysson, J. 2019. Innovation policy 

for system-wide transformation: The case of strategic innovation programmes (SIPs) in 
Sweden. Research Policy, 48, 1048-1061. 

Gulati, R. 1998. Alliances and networks. Strategic management journal, 19, 293-317. 
Hansen, T. 2014. Juggling with proximity and distance: collaborative innovation projects in 

the Danish cleantech industry. Economic Geography, 90, 375-402. 
Hansen, T. 2015. Substitution or overlap? The relations between geographical and non-spatial 

proximity dimensions in collaborative innovation projects. Regional Studies, 49, 1672-
1684. 

Iammarino, S. & Mccann, P. 2006. The structure and evolution of industrial clusters: 
Transactions, technology and knowledge spillovers. Research policy, 35, 1018-1036. 

Isaksen, A. 2014. Industrial development in thin regions: trapped in path extension? Journal of 

Economic Geography, 15, 585-600. 
Janssen, M. J., Bogers, M. & Wanzenböck, I. 2019. Do systemic innovation intermediaries 

broaden horizons? A proximity perspective on R&D partnership formation. Industry 

and Innovation, 1-25. 
Kalthaus, M. 2016. Knowledge recombination along the technology life cycle. Jena Economic 

Research Papers. 
Kauffeld-Monz, M. & Fritsch, M. 2013. Who Are the Knowledge Brokers in Regional Systems 

of Innovation? A Multi-Actor Network Analysis. Regional Studies, 47, 669-685. 
Krackhardt, D., Nohria, N. & Eccles, B. 2003. The strength of strong ties. Networks in the 

knowledge economy, 82. 
Kuttim, M. 2016. The role of spatial and non-spatial forms of proximity in knowledge transfer. 

European Journal of Innovation Management. 
König, M. D., Battiston, S., Napoletano, M. & Schweitzer, F. 2011. Recombinant knowledge 

and the evolution of innovation networks. Journal of Economic Behavior & 

Organization, 79, 145-164. 
Laranja, M., Uyarra, E. & Flanagan, K. 2008. Policies for science, technology and innovation: 

Translating rationales into regional policies in a multi-level setting. Research Policy, 
37, 823-835. 

Lorentzen, A. 2008. Knowledge networks in local and global space. Entrepreneurship and 

Regional Development, 20, 533-545. 
Luo, X. R., Koput, K. W. & Powell, W. W. 2009. Intellectual capital or signal? The effects of 

scientists on alliance formation in knowledge-intensive industries. Research Policy, 38, 
1313-1325. 

Martin, R. 2013. Differentiated knowledge bases and the nature of innovation networks. 
European Planning Studies, 21, 1418-1436. 

Martin, R. & Sunley, P. 2010. The place of path dependence in an evolutionary perspective on 
the economic landscape. In: Boschma, R. & Martin, R. (eds.) The Handbook of 

Evolutionary Economic Geography. Cheltenham: Edward Elgar. 
Mcpherson, M., Smith-Lovin, L. & Cook, J. M. 2001. Birds of a feather: Homophily in social 

networks. Annual review of sociology, 27, 415-444. 



32 
 

Neffke, F., Henning, M. & Boschma, R. 2011. How do regions diversify over time? Industry 
relatedness and the development of new growth paths in regions. Economic geography, 
87, 237-265. 

Owen-Smith, J. & Powell, W. W. 2004. Knowledge networks as channels and conduits: The 
effects of spillovers in the Boston biotechnology community. Organization science, 15, 
5-21. 

Papadopoulos, F., Kitsak, M., Serrano, M. Á., Boguná, M. & Krioukov, D. 2012. Popularity 
versus similarity in growing networks. Nature, 489, 537-540. 

Pettit, S., Wells, P., Haider, J. & Abouarghoub, W. 2018. Revisiting history: Can shipping 
achieve a second socio-technical transition for carbon emissions reduction? 
Transportation Research Part D: Transport and Environment, 58, 292-307. 

Phelps, C., Heidl, R. & Wadhwa, A. 2012. Knowledge, networks, and knowledge networks: A 
review and research agenda. Journal of management, 38, 1115-1166. 

Ponds, R., Van Oort, F. & Frenken, K. 2007. The geographical and institutional proximity of 
research collaboration. Papers in regional science, 86, 423-443. 

Ripley, R., Snijders, T., Boda, Z., Vörös, A. & Preciado, P. 2018. Manual for RSiena (version 
May 2018)[Computer software manual]. Oxford: University of Oxford, Department of 
Statistics, Nuffield College. 

Rost, K. 2011. The strength of strong ties in the creation of innovation. Research Policy, 40, 
588-604. 

Saviotti, P. P. & Mani, G. 1998. Technological evolution, self-organization and knowledge. 
The Journal of High Technology Management Research, 9, 255-270. 

Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D’agosto, M., Dimitriu, D., Figueroa 
Meza, M. J., Fulton, L., Kobayashi, S., Lah, O., Mckinnon, A., Newman, P., Ouyang, 
M., Schauer, J. J., Sperling, D. & Tiwari, G. 2014. Transport. In: Edenhofer, O., Pichs-
Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., 
Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., Von Stechow, 
C., Zwickel, T. & Minx, J. C. (eds.) Climate Change 2014: Mitigation of Climate 

Change. Contribution of Working Group III to the Fifth Assessment Report of the 

Intergovern-mental Panel on Climate Change. Cambridge UK: Cambridge University 
Press. 

Snijders, T. A., Van De Bunt, G. G. & Steglich, C. E. 2010. Introduction to stochastic actor-
based models for network dynamics. Social networks, 32, 44-60. 

Steen, M., Bach, H., Bjørgum, Ø., Hansen, T. & Kenzhegaliyeva, A. 2019. Greening the fleet: 
A technological innovation system (TIS) analysis of hydrogen, battery electric, 
liquefied biogas, and biodiesel in the maritime sector. SINTEF rapport. Trondheim: 
SINTEF. 

Steen, M. & Hansen, G. 2018. Barriers to path creation: the case of offshore wind power in 
Norway. Economic Geography, 94, 188-210. 

Stuart, T. E. 1998. Network positions and propensities to collaborate: An investigation of 
strategic alliance formation in a high-technology industry. Administrative science 

quarterly, 668-698. 
Tanner, A. N. 2016. The emergence of new technology-based industries: the case of fuel cells 

and its technological relatedness to regional knowledge bases. Journal of Economic 

Geography, 16, 611-635. 
Ter Wal, A. L. 2013. Cluster emergence and network evolution: a longitudinal analysis of the 

inventor network in Sophia-Antipolis. Regional Studies, 47, 651-668. 
Ter Wal, A. L. 2014. The dynamics of the inventor network in German biotechnology: 

geographic proximity versus triadic closure. Journal of Economic Geography, 14, 589-
620. 



33 
 

Ter Wal, A. L. & Boschma, R. 2011. Co-evolution of firms, industries and networks in space. 
Regional studies, 45, 919-933. 

Torre, A. 2008. On the role played by temporary geographical proximity in knowledge 
transmission. Regional studies, 42, 869-889. 

Tsouri, M. 2019. Knowledge transfer in time of crisis: evidence from the Trentino region. 
Industry and Innovation, 26, 820-842. 

Tsouri, M. & Pegoretti, G. 2020. Structure and resilience of local knowledge networks: the 
case of the ICT network in Trentino. Industry and Innovation, 1-20. 

Uzzi, B. 1997. Social structure and competition in interfirm networks: The paradox of 
embeddedness. Administrative science quarterly, 35-67. 

Verspagen, B. 2007. Mapping technological trajectories as patent citation networks: A study 
on the history of fuel cell research. Advances in Complex Systems, 10, 93-115. 

Wagner, C. S., Whetsell, T. A. & Mukherjee, S. 2019. International research collaboration: 
Novelty, conventionality, and atypicality in knowledge recombination. Research 

Policy, 48, 1260-1270. 
Wanzenboeck, I., Scherngell, T. & Brenner, T. 2014. Embeddedness of regions in European 

knowledge networks: a comparative analysis of inter-regional R&D collaborations, co-
patents and co-publications. The Annals of Regional Science, 53, 337-368. 

Weber, K. M. & Rohracher, H. 2012. Legitimizing research, technology and innovation 
policies for transformative change: Combining insights from innovation systems and 
multi-level perspective in a comprehensive ‘failures’ framework. Research Policy, 41, 
1037-1047. 

Werker, C., Korzinov, V. & Cunningham, S. 2019. Formation and output of collaborations: the 
role of proximity in German nanotechnology. Journal of Evolutionary Economics, 29, 
697-719. 

Zaheer, A. & Soda, G. 2009. Network evolution: The origins of structural holes. Administrative 

Science Quarterly, 54, 1-31. 

 


