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Abstract

Do capabilities reside in firms, in regions, or in both? Most models of related diversification,
building on the early work of Hidalgo et al. (2007), examine how the structure of economic
activity within a region conditions the trajectory of diversification. Inter-regional flows are
sometimes added to these models. The logic here is that capabilities are largely built-up within
regions and sometimes shared between them. We challenge that logic, exploring whether
capabilities are more likely to be built within the firm and to flow across spatial boundaries than
they are to be built within the region flowing across firm boundaries. Analysis focuses on
Chinese patent data spanning 286 cities over the period 1991 to 2015. We develop standard
models of related diversification before examining how the branches of multi-locational firms
diversify their knowledge portfolios. Evidence shows that the knowledge structure of firms is
more important than the knowledge structure of regions in shaping branch diversification. We
show that the influence of the firm and the region on diversification vary significantly between
headquarters (HQ) branches and non-HQ branches of firms, and between the non-HQ branches
of firms that are located in core and peripheral cities of China.
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1. Introduction

Since the pioneering work of Penrose (1959) and Cyert and March (1963), firm heterogeneity
has been a cornerstone of attempts to understand competitive advantage. According to the
resource-based view, the development and protection of firm-specific assets underpins the
heterogeneity that fuels competition (Wernerfelt, 1984; Rumelt, 1984; Barney, 1991). Prahalad
and Hamel (1990) build their resource-based model of firm performance around firm
competence and capabilities. Kogut and Zander (1992) and Grant (1996) extend this work into
the realm of technology. These arguments are put in motion by Teece et al. (1994; 1997) who
explore the dynamics of capabilities, extending the evolutionary claims of Nelson and Winter
(1982) in processes of search and creative destruction powered by competition. The path
dependent nature of learning and the gradual accumulation of capabilities places diversification
at the center of these dynamics.

Diversification may be understood as the entry of a firm into new types of activity (Ramanujam
and Varadarajan (1989). That activity might focus on new product lines, new markets, new
technologies or new forms of organization. Following Penrose (1959), as firms learn to use their
resources more efficiently, they build up excess capacity and exploit possibilities that are not too
distant from their core capabilities. In terms of technology, the local nature of search is well-
known (Atkinson and Stiglitz, 1969; Stuart and Podolny, 1996) and, for many, represents the
recombination of existing technological competence with new ideas that are sourced from a
technology landscape that is complex and not well-mapped (Fleming and Sorenson, 2001). Over
time, parts of the technology landscape become less of a terra incognita as knowledge
complementarities become more well-known supporting forms of technological “lock-in” and
related trajectories of technological diversification (Dosi, 1982; Breschi et al., 2003; Leten et al.,
2007). However, processes of creative destruction continually rewire links within knowledge
space such that related diversification might always be considered as emergent (see Kogler et al.,
2017).

Within economic geography and related fields, considerable attention has focused on the related
diversification of multi-locational firms and of the countries and regions in which they are active
(Pavitt et al., 1989; Cantwell and Piscitello, 2000; Cantwell and lammarino, 2001). The recent
interest in regional diversification may be traced to the product space research of Hidalgo et al.
(2007) and to the work of Boschma and Frenken on regional branching (2007). Key to these
works is the finding that regions do not diversify along random growth paths, rather they
accumulate capabilities that are related to their existing know how (Boschma and lammarino,
2009; Neffke et al., 2011; Boschma et al., 2013; Balland et al., 2015) and to the knowledge sets
of neighboring regions with whom they interact more intensively (Rigby, 2015). The focus on
the region in much of this literature suggests, at least implicitly, that capabilities are territorially
embedded and shared by the economic agents that comprise the regional economy. Yet, is this
the case? We know that technology is highly proprietary and closely guarded by the firm? Where
then do technological capabilities reside?

The primary research question that this paper engages is whether the capabilities that influence
related technological diversification within multi-locational firms are located within the regions



in which the firm’s branches are located, or whether they are located within the firm. In the
former case, the assumption is that capabilities are locked in regions and move across the
boundaries of firms within each region, while the latter case suggests that capabilities are held by
the firm and move across space within the boundaries of the multi-locational business unit. This
research adds value to the related diversification literature in a number of ways. First, it extends
the work of Lo Turco and Maggioni (2016) who examine firm and local relatedness in product
diversification in Turkey over a short time period by focusing on technological diversification in
Chinese cities over twenty-five years. Second, the paper contributes to the “agents of change”
claims of Neffke et al. (2018) and Elekes et al. (2019) within another developing country
context, using quite different data. Third, to the best of our knowledge, this is the first research to
examine related technological diversification across Chinese cities, and certainly the first to
separate the influence of different forms of relatedness density on diversification using patent
data.

The core of the research examines how related technological diversification in the city-level
branches of multi-locational Chinese firms is influenced by existing relatedness density within
the branch, within the firm of which the branch is a part, and within the city (outside the firm) in
which the branch is located. Our results show that the relatedness density of existing
technological assets within the firm is many times more important than the relatedness density of
the city’s assets in predicting the path of new technology creation at the branch level. We go on
to separate the headquarters (HQ) branches of multi-locational firms from non-HQ branches and
show that the relative influence of firm and city relatedness vary significantly between branch
types. Finally, we reveal significant differences in firm and local relatedness impacts on
diversification in non-HQ establishments separated into core and peripheral cities in China.
Overall, the results suggest that non-local, firm-specific capabilities play a much more important
role in technological diversification than do purely local capabilities.

The rest of the paper is organized in three sections. In Section 2, a short review of the literature
highlights the role of relatedness in recent thinking about diversification and discusses a number
of extensions to early models of related diversification. In Section 3, we present our data and
analysis. We move from an overview of sources, through some descriptive statistics by way of
scene setting, to analysis of the standard model of regional related diversification and then to
technological diversification within the branches of a sample of multi-locational firms. Section 4
provides a brief conclusion, summarizing the main findings and their implications for potential
future research.

2. Literature Review

Territorial economies comprise assemblages of economic agents, institutions and resources of
various kinds that are interconnected with such assemblages elsewhere. Capitalist competition,
worker struggle and political pressures emanating from environmental and other concerns drive
continuous change in these assemblages in terms of the mix of products supplied and the
technologies used to produce them, in firm organization, inter-firm linkages and institutional



forms that operate across multiple spatial scales (Schumpeter, 1939; Tushman and Anderson,
1986). Many of these changes are non-random, they evolve out of existing sets of capabilities,
some local and some not, that reflect longer-running trajectories of competition and past choices
by boundedly rational economic agents (Rigby and Essletzbichler, 1997). Sets of capabilities
typically evolve relative slowly, though in times of crisis economic adjustment can be abrupt and
painful as firms and regions are forced to reinvent themselves, raising important questions about
resilience (Freeman and Perez, 1988; Christensen, 1997; Geels, 2002; Simmie and Martin,
2010). For the most part, market forces select the products that are favored and so direct more
aggregate patterns of technological change, firm and regional fortunes (Nelson and Winter,
1982).

The diversification of regional economies is examined as a branching process by Frenken and
Boschma (2007), in which new activities draw on and recombine related local assets. Klepper
(2007) privileges the role of the firm in providing such assets, while Saxenian (1996) and Storper
(1995) look to particular constellations of local institutions. The broad literature on
agglomeration, clusters and learning regions places more weight on the importance of place-
based factors, including the mix of economic agents and their interaction along with local social
capital, in driving the pattern of regional economic development (Camagni, 1991; Glaeser et al.,
1992; Lundvall, 1992; Maillat, 1995; Giuliani and Bell, 2005; Morgan, 2007). Others question
the significance of the local asset base altogether (Bathelt et al., 2004; Fitjar and Rodriguez-Pose,
2017).

Quantitative analysis of regional diversification may be traced to Hidalgo et al. (2007) and their
use of the concept of relatedness to explain how the export baskets of countries evolve as part of
the process of development. Boschma et al. (2013) build on product-based measures of
relatedness from export data to trace the emergence of new industries across Spanish regions.
Neftke and Henning (2013) utilize a measure of industry relatedness based on overlapping
product portfolios to explore the creation of new growth paths within Swedish regions. They
show that growth paths linked to the existing industrial base of the region have a higher
probability of occurring. Balland et al. (2015) build measures of relatedness between patent
classes to explain patterns of technological diversification across US cities, to which Rigby
(2015) adds geographical spillovers. Colombelli et al. (2014) follow a similar proximity-based
approach to explain the emergence of nanotechnology in EU regions. Muneepeerakul et al.
(2013) look at the dynamics of regional labor markets by building an occupational measure of
relatedness, while Farinha et al. (2019) use a similar measure to examine the changing geography
of jobs. Tanner (2016) provides some important correctives to the broader claims of much of this
empirical work.

Regardless of the measure of relatedness used, most of the work just examined looks at
capabilities as being embedded within regions. This gives rise to models of diversification where
existing regional capabilities are the primary drivers of the direction of economic change. For
Beugelsdijk (2007), such thinking raises concerns of an ecological fallacy. To be sure, the focus
on regional aggregates reflects the difficulty of accessing firm-level data over space, yet much
existing work on relatedness and diversification raises old questions about the relative



importance of firm and regional characteristics in understanding the economic dynamics of
regions (Markusen,1996; Sternberg and Arndt, 2001; Boschma, 2004).

In evolutionary economic geography, a number of papers have begun the process of unpacking
regional economic diversification seeking to identify the “agents of change” (Neffke et al.,
2018). Thus, Lo Turco and Maggioni (2016) investigate whether the addition of new products to
a firm’s product basket is influenced by local capabilities as well as by the firm’s internal
capabilities. They show, in the case of Turkey, that both local and firm capabilities play a
significant, positive role in shaping product diversification after controlling for a number of firm
characteristics. They go on to reveal that firm capabilities are much more important than local
capabilities in directing new product development, especially in more peripheral eastern
provinces of the country. In subsequent papers, Lo Turco and Maggioni (2019) and Elekes et al.
(2019) look at the role of foreign multi-national enterprises (MNEs) versus local firms in shaping
the path of regional economic diversification in emerging economies. They find that extra-
regional flows of knowledge, transmitted via foreign MNEs, play the dominant role in local
economic discovery. This extends the earlier work of Cantwell and Piscitello (2000) and
Boschma and ITammarino (2009) on the significance of MNEs in transmitting knowledge over
space.

Within the context of China, a number of authors have begun to outline patterns of
diversification across firms and regions. In an early study, Zhao and Luo (2002) explore product
diversification, the ownership structure and performance of foreign manufacturing subsidiaries
operating in China. They report that related product diversification improves subsidiary
performance over unrelated diversification. Lin and Wang (2008) show that regional industrial
diversification is linked to latent patterns of comparative advantage. Using firm-level export data
for the period 2000-06, Poncet and Waldemar (2013) use the measure of product relatedness
from Hidalgo et al. (2007) to explore the relationship between the export performance of firms
and patterns of comparative advantage at the city level. They reveal that firm-level exports grow
faster for products that have higher relatedness density to the product spaces of cities from which
exports originate. Wang et al. (2015) use Chinese patent data to study how the relationship
between the volume of invention and technological diversification in China has evolved, after
Archibugi and Pianta (1992) and Cantwell and Vertova (2004). This work is extended by Wang
et al. (2016) who link technological diversification to the innovation capability of Chinese
provinces. Using annual firm survey data, Guo and He (2017) report how industry relatedness
has changed rapidly across different regions in China. They show that related diversification
characterizes the evolution of industry space in coastal regions, while more unrelated forms of
diversification are found elsewhere. Using city-level export data, Zhu et al. (2017) push this
work a little further, revealing that extra-regional linkages, internal innovation and state policy
have allowed some Chinese regions to engage in new path creation and evolve more rapidly than
others. Zhou et al. (2019) use the same export data in an attempt to separate region and firm
effects on related diversification. However, they assume that each establishment in their data
represents a unique firm and thus they do not capture a firm effect that links diversification
within plants that are part of a multi-locational firm.



There is considerable work left to do on related diversification at the sub-national level,
especially in China. To date, there has been no analysis of technological diversification across
Chinese cities using patent data. Patent data are useful insofar as they offer the researcher
relatedness measures that are much easier to understand in terms of knowledge-based or
cognitive proximity than the co-occurrence measures of Hidalgo et al. (2007). Indeed, it remains
unclear to many, precisely what co-occurrence is actually measuring (Essletzbichler, 2015).
Furthermore, we still do not know whether diversification in individual business establishments
is driven more by region effects or by firm effects. In this regard, it is important to separate
relatedness at the branch, firm and region levels. This is the direction we take in the analysis
below. The other advantage of the patent data over exports and industry data is the availability of
a much longer time-series.

3. Data and Analysis

This section of the paper comprises three sub-sections. The first sub-section outlines our primary
data source and presents some basic descriptive statistics. The second sub-section examines a
standard model of related diversification, after Hidalgo et al. (2007), that links the development
of new technology classes within Chinese cities to the relatedness density of their existing patent
stocks. This simple model is extended by incorporating technology spillovers of different kinds
from neighboring cities. The third sub-section extends the literature on place-based capabilities
to consider the influence of relatedness density at the branch-, firm- and city-level on
diversification within the (city-based) branches of multi-locational firms.

3.1 Sources of Data and Descriptive Statistics

Exploration of the structure of knowledge in Chinese cities makes use of domestic “invention”
patents filed with the Chinese Intellectual Patent Office (SIPO). To the best of our knowledge,
this is the first paper to examine technological diversification in Chinese cities using patent data.
Patents have become the standard means of tracking knowledge production and the pattern of
technological diversification at the sub-national level, largely because of their availability and
the wealth of information they contain (Feldman and Kogler 2010). However, it should be
remembered that not all new knowledge is patented and that patent statistics themselves are
somewhat biased indicators of invention, as pointed out by Pavitt (1985) and Griliches (1990).

We use the filing (application) date on SIPO patents to mark the timing of invention. The nature
of the knowledge produced is characterized by the International Patent Classification (IPC) codes
that are listed on each patent. The geography of Chinese patents is indicated by the location of
the patent assignee(s). Patents with multiple assignees are fractionally split between the cities
where those assignees are located. Note that multi-locational firms do not register all their
patents at a single headquarters location. We exploit this fact in our analysis. The period of
investigation runs from 1991 to 2015 and focuses on 5-year time steps. The patents examined are
all granted. We stop analysis in 2015 because of right censoring in the data that occurs because
of the time-lag between filing a patent and its grant date.



Table 1 reports the growth of knowledge production in China since 1991, disaggregated into
seven major classes after Schmoch (1999). The IPC itself distributes patents across eight main
classes, but that classification is not as useful in terms of separating key intellectual claims by
broad sector of application. Taking the 20 years between the mid-point of our first time period
(1991-95) and the mid-point of our last time period (2011-15), the number of inventor patents in
China expanded at an annual average compound growth rate of 23.9%. That is an astonishing
rate of increase. Most gains have occurred since 2000, so the recent growth in knowledge
production within China is remarkable. That growth is relatively evenly balanced across the
seven main classes reported in Table 1, with drugs and pharma recording the lowest annual
average compound rate of growth at 19.6% and the electronics sector experiencing the most
rapid growth at close to 30% per year on average between the early 1990s and 2015.

Table 1: Aggregate patent numbers over three time periods

Annual Rate

Aggregate Patent Class 1991-95 2001-15 2011-15 of Growth
Electronics 3723.6 53056.8 685869.2 0.298
Computers & 4304.7 22738.4 367063.5 0.249

Communications

Chemicals 8935.6 40033.7 4255442 0.213
Drugs & Pharma 9775.2 47591.6 351120.3 0.196
Industrial Process 4396.7 24751.7 417003.6 0.256
Machinery & Transport 6226.3 34064.9 506056.0 0.246
Miscellaneous 2142.4 9286.1 141820.9 0.233
Total 39504.5 231523.2 | 2894477.7 0.239

Although different classes of patents have grown relatively evenly in the past 30 years, the
spatial structure of invention changed a great deal. Table 2 and Figure 1 reveal the changing
geography of Chinese invention since 1991 (see also Sun, 2000). The geography of knowledge
production in China, at least as measured by patents, has remained relatively concentrated,
though it has moved southwards. In 1991 to 1995, guided by the national economic development
strategy, resource-based cities, such as the old industrial bases in the Northeast and the Bohai
Rim registered relatively high numbers of patents. Some provincial capitals or regional central
cities, such as Chengdu, Chongqing, Zhengzhou, Xi'an, Wuhan, Changsha, and Lanzhou, also
captured a high share of patent production. In the most recent period (2011-2015), invention in
China is mainly distributed in the eastern coastal areas, reflecting their diversified industrial
structure and abundant human capital. The Beijing-Tianjin area with Beijing as the center, the
Yangtze River Delta with Shanghai as the center, and the Pearl River Delta with Shenzhen as the
center have become key nodes of invention.



Table 2: Top 10 sites of invention in China

Rank 1991-1995 2001-2005 2011-2015

1 Beijing | 6,028 | Beijing | 36,153 Beijing 291,512
2 Shanghai | 1,681 | Shanghai | 29,077 Shanghai 187,058
3 Shenyang | 1,296 | Shenzhen | 21,082 Shenzhen 156,914
4 Tianjin 1,190 | Tianjin 14,041 | Suzhou(Jiangsu) | 118,091
5 Chengdu | 1,050 | Hangzhou | 7,708 Qingdao 90,026
6 Nanjing 960 | Changsha | 6,599 Nanjing 84,071
7 Xian 893 | Guangzhou | 6,155 Tianjin 83,523
8 Wuhan 879 Nanjing 5,770 Chengdu 74,821
9 Guangzhou | 798 Wuhan 4,909 Changzhou 72,974
10 Dalian 755 Chengdu | 4,895 Wuxi 70,255

Figure 1: Patent distribution in Chinese cities, 1991-95 and 2011-15

Figure 2 highlights patterns of collaboration in knowledge production between assignees located
in different Chinese cities in 1991-95 and 2011-15. The ties between each pair of cities reflect
the overall number of patent collaborations that link them. The darker the color of the ties, the
more cooperation between economic agents within each pair of cities. It is clear from Figure 2
that the Chinese city collaboration network has changed markedly since the early-1990s. In the
early period, the inventor collaboration network was dominated by a single central city, Beijing.
Today, the collaboration network is polycentric, focused on Beijing, Shanghai, Shenzhen and
Chengdu. While inter-city collaborations are dominated by these four cities, it is interesting to
note that economic actors in Shanghai and Shenzhen engage in considerable collaboration with
regional partners, much more so in fact than agents in Beijing and Chengdu. This may reflect

regional policy and industrial structure.




Figure 2: Collaborative structure of Chinese urban invention, 1991-95 and 2011-15
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Investigation of technological diversification within Chinese cities requires construction of a
Chinese knowledge space that represents the distance between IPC technology classes as
recorded on domestic Chinese patent records. Co-class data gathered from individual patents are
used to measure the proximity between all pairs of the 629 IPC classes listed on the SIPO data
since 1991. This technique follows the earlier work of Jaffe (1986), Engelsman and van Raan
(1994) and Kogler et al. (2013). To measure the proximity, or knowledge relatedness, between
patent technology classes we employ the following method. Let P indicate the total number of
patent applications in the given sub-period. Then, let F;;, = 1 if patent record p lists the
classification code i, otherwise F;;, = 0. Note that i represents one of the 629 primary
technology classes into which the knowledge contained in patents is classified. In a sub-period,
the total number of patents that list technology class i is given by N; = Y., F;,. In similar fashion,
the number of individual patents that list the pair of co-classes i and j is identified by the count
N;j = ¥, FipFjp,. Repeating this co-class count for all pairs of IPC classes yields a symmetric
technology class co-occurrence matrix C the elements of which are the co-class counts N;;. The
co-class counts are converted into measures of proximity through division by the square root of
the product of the number of patents in each of the two classes, or

N :
Sy=""Y /
A/ Ni * IV]
where S;; is an element of the standardized co-occurrence matrix (S) that indicates the
technological proximity, or knowledge relatedness, between all pairs of patent classes in a given

period. The elements on the principal diagonal of S are set to 1. An S;; value of zero would
indicate that there are no patents in a given period that contain class codes i and ;.

The network of technological relatedness across the 629 IPC patent class nodes is mapped with
the aid of UCINET (Borgatti et al., 2002). The visualizations of the Chinese knowledge space in
Figure 3 are generated with the Gower-scaling metric (Gower, 1971). The node colors in the
figure represent the seven aggregate technology groups identified earlier within the IPC. Node
size indicates the number of patents granted within a class. In 1991-95 the largest node is (A61K
= preparations for medical, dental or toilet purposes) with 5,289 patents. In 2011-15, the largest
node (GO6F = electric digital data processing) contains 133,275 patents. Figure 3 shows that



technology classes cluster within their more aggregate (color) groupings. The clustering or
proximity of technology nodes indicates that they share a common knowledge base. The closer
the nodes, the higher the relatedness between them and the greater the cognitive overlap. The
electronics cluster is clear in Figure 3 for the period 2011-15. The links between the chemicals
classes (black) and the drugs and pharma (yellow) technologies is also apparent. Figure 3 also
make clear the relatively rapid shift in the nature of Chinese invention.

Figure 3: Chinese knowledge space, 1991-95 and 2011-15

Notes: Red = Electronics (1), Green = Computers & Communications (2), Chemicals = Black
(3), Yellow=Drugs & Pharma (4), Blue = Industrial Process (5), Purple = Machinery &
Transport (6), Grey = Miscellaneous (7)

Table 3 reports the average relatedness density for the seven aggregate technology classes of the
IPC. The relatedness density values are averaged (unweighted) across the 286 Chinese cities that
we investigate. The relatedness density of technology class i in city c at time ¢ is calculated as

. Yj=iSijt*RTAcj
Relatedness Density;,, = ===~ =

Xj=iSijt

where RTA_; is a binary (0/1) variable representing regional technological advantage. RTA takes
the value 1 when the city share of patents in class j exceeds the share of a reference region,
typically the sum of geographical units examined. In this case, the reference region comprises the
286 Chinese cities examined. These cities accounted for 99.8% of all Chinese patents granted
over the period 2011-15. The relatedness density values range from 0 to 1, with 0 indicating that
a city does not have RTA in any of the technology classes j that are related to class i. As the
relatedness density index approaches 1, then cities have RTA in knowledge stocks j that are
increasingly strongly related to technology in class i. In other words, relatedness density reflects
the potential of a region to develop new technologies based on existing capabilities (Balland et
al., 2019).



Table 3 indicates that the relatedness density in each aggregate technology class has increased on
average within Chinese cities over the last thirty years or so. This means that Chinese cities are
increasingly specializing in terms of invention (see also Honggang et al., 2019). Among the
seven aggregate patent categories, the relatedness density of Drugs and Pharma is the highest in
2011-15, indicating that invention within this technology grouping is the most likely to occur in
cities with a strong knowledge core in the same category. Relatedness density is lowest in China
in the electronics sector in 2011-15. Inventive specialization across Chinese cities has grown
fastest in the Machinery and Transport classes of the IPC and the least rapidly in Drugs and
Pharma classes.

Table 3: Average relatedness density by technology type across cities

Annual

Aggregate Patent Class 1991-95 2001-15 2011-15 Rate of

Growth
Electronics 0.0891 0.1246 0.1844 0.037
Computers & 0.1018 0.1376 0.2075 0.036

Communications

Chemicals 0.1639 0.2104 0.3304 0.036
Drugs & Pharma 0.2106 0.3523 0.3947 0.032
Industrial Process 0.1106 0.1789 0.2905 0.049
Machinery & Transport 0.0922 0.1544 0.2891 0.059
Miscellaneous 0.1139 0.1686 0.2617 0.042

3.2 A Model of Related Diversification

The standard model of related diversification imagines that cities (or regions and countries) will
diversify into those technology classes that are related to their existing technological base. The
logic underpinning this model is that the economic agents that comprise an urban economy build
sets of capabilities over time that allow them to produce distinct types of technological
knowledge. The path dependent nature of capability development means that cities and regions
develop industrial and technological repertoires that are not rapidly changed (Grabher, 1993;
Rigby and Essletzbichler, 1997). Thus, over time, they tend to accumulate new sets of
capabilities that are closely connected to their existing knowledge cores.

We track technological diversification by tracing measures of revealed technological advantage
(RTA) for all technology classes within cities from one time-period to the next. RTA is typically
expressed as a (0/1) binary variable that takes the value one when the city share of patents in a
class exceeds the share of a reference region, typically the sum of geographical units examined.
In this case, the reference region comprises the 286 Chinese cities in our data frame. When an
RTA value switches from zero to one, then a city has successfully diversified into a new
technology. Cities can lose capabilities over time, though the focus here is on technological




entry. We test the impact of relatedness density on technological diversification with a fixed
effects regression model that takes the following form

RTAjet = Bo + B1Densityice—1 + BiXkcit-1 Ve + Ve + Eict (1)

In equation (1), the dependent variable indicates RTA in city ¢, technology class i at time ¢.
Equation (1) models the probability of a city developing RTA as a function of the relatedness
density of a technology class to the existing knowledge base of the city recorded at time #-/. The
relatedness density of technology class i in city ¢ at time ¢ is calculated as

. Xj#iSijt*RTAcjt
Relatedness Density;.; = s =l

Xj#iSijt

The relatedness density values range from 0 to 1, with 0 indicating that a city does not have RTA
in any of the technology classes j that are related to class i. As the relatedness density index
approaches 1, then cities have RTA in knowledge stocks j that are increasingly strongly related
to technology in class i. In other words, relatedness density reflects the potential of a region to
develop new technologies based on existing capabilities (Balland et al., 2019).

Theory suggests that the density variable should be positively related to the change in RTA. The
term BX in equation (1) represents a series of city control variables. We include city-size as
measured by the number of patents produced, a measure of technological specialization in the
city captured in a technology class Herfindahl, and a measure of competition over technological
rents proxied by the number of firms and other organizations that patent in a city divided by the
number of patents. Note that the correlation between the city’s patent sum and the competition
measure is r = -0.12. We would expect competition to increase the probability of RTA as
diversification is a key competitive strategy. In similar fashion, we would hypothesize that the
Herfindahl exhibit a negative relationship with RTA, as more specialized cities would tend to
have RTA in fewer classes than less specialized cities. Larger cities tend to be more diverse and
so city-size might be expected to raise the probability of entry.

Results from estimating slightly different variants of the model in equation (1) are reported in
Table 4. The logit model is used because of the binary dependent variable. Model 1 is surely
mis-specified as it includes only relatedness density as an independent variable. This model is
incorporated as a baseline in order to explore changes in the relatedness density coefficient with
the addition of various controls. As hypothesized, the lagged value of relatedness density is a
positive and significant predictor of technological diversification at the city level. The coefficient
in the model represents the impact of a unit-change in relatedness density on the log odds of the
probability of RTA being established in a technological class. Further interpretation of the logit
is given below.

Model 2 incorporates city level covariates. The Herfindahl operates as expected, with increases
in the technological specialization of cities dampening the probability of diversification. The sign
on the competition variable is also positive, as expected, though this variable is not significant.
Note that if we do not cluster standard errors at the city-level, the competition variable is
significant at the 0.01 level. The city-size variable (patent sum) has a coefficient that is negative



and significant, counter to expectations. Thus, diversification appears to slow down as cities
expand in terms of the number of overall patents they generate. Model 3 adds spatial lags to the
analysis. Coordinates for our 286 Chinese cities were used to generate an inverse distance spatial
weights matrix. The product of this matrix and the entire city-technology density matrix provides
a measure of the impact of relatedness density in neighboring cities on diversification within a
target city. A positive coefficient would suggest that neighbors with knowledge stocks that are
closely related to a particular technology class would not inhibit a specific city from diversifying
into that same class. A positive coefficient might indicate some degree of knowledge-sharing
between neighboring cities rather than competition. The coefficient on the geographical spillover
variable in Model 3 is positive and significant. Model 4 offers a more refined variant of the
spatial lag, incorporating direct evidence from patent data on inter-city collaboration. For each 5-
year period examined, we find the total number of inter-city collaborations by technology class
reported in the patent records. The product of this collaboration matrix and the city-technology
density matrix yields the geography of collaboration variable. The coefficient on this variable is
also positive and significant, though not quite as strong as the spillover effect. Across all these
models, relatedness density has a similar and large influence on the probability of technological
diversification within the city. This result matches those typically reported for technological
diversification across industrialized economies (Boschma, 2015; Rigby, 2015).

Table 4: Logit regressions of related diversification

Dependent Variable: City RTA (1991-2015)

Model 1 Model 2 Model 3 Model 4
Lag relatedness density 1.5841%** 1.5428%** 1.0648%** 1.5388%**
(0.0308) (0.0297) (0.1152) (0.0296)
Lag city patent sum -0.0000%*** -0.0000%*** -0.0000%***
(0.0000) (0.0000) (0.0000)
. -2.0268*** -2.2126%** -2.0037%**
Lag city Herfindahl (0.6226) (0.6564) (0.6204)
Lag technology competition 0.0672 0.0449 0.0653
(0.0442) (0.0460) (0.0439)
Lag geography spillover 0.061 1+
(0.153)
k&
Lag geography collaboration (()690000053)
Constant -2.2703%** -2.1410%** -2.6526%** S2.1417%**
(0.0206) (0.0296) (0.1362) (0.0294)
Time fixed effects Yes Yes Yes Yes
City fixed effects Yes Yes Yes Yes
Observations 628,685 627,427 627,427 627,427

Notes: All models were run with robust standard errors clustered at the city level. * significant at
the 0.1 level, ** significant at the 0.05 level, *** significant at the 0.01 level.



All the models discussed in Table 4 include time and city fixed effects and they incorporate
robust standard errors clustered at the city level. This is the appropriate form of the related
diversification model. By including city fixed effects, we are averaging the impacts of
relatedness density on diversification across Chinese cities, while controlling for city-specific
factors that may influence levels of diversification. The coefficients in the model are log odds
ratios that report how a one-unit change in an independent variable influences the logarithm of
the probability of technological diversification divided by the probability of no technological
diversification. The log odds ratios for the relatedness density variables are mostly around the
value 1.5. This value implies that a unit change in relatedness density would increase the
probability of technological diversification by about 82%. Of course a one unit change in
relatedness density is unlikely with such values constrained to the range of 0 to 1. Using the
margins command in STATA, evaluated with independent variables at their means, a change of
one standard deviation in relatedness density would increase the average probability of
diversification by about 5%.

Time fixed effects, that are common across cities, control for temporal shocks to the
diversification process. Note that we get broadly similar results on key variables using the linear
probability model. We also get a positive and significant coefficient on relatedness density if we
set the model up in panel form where the units of observation are technology classes within
cities. However, in panel form the focus of the model is on how changes in relatedness density
within a city-technology class pair influences entry. This model does not capture as well how
individual cities diversify across technology classes.

3.3 Related Diversification within Multi-Locational Firms: Do Capabilities Reside in Firms
or Regions?

The standard model of related diversification is typically operationalized with units of
observation that are spatial - countries, cities or regions. In large part, this reflects the availability
of geographical information and the difficulty of assembling firm-level data. Development of the
model over spatial units pushes the researcher to assume, at least implicitly, that the capabilities
that really count are located within regions, though they may sometimes flow between them as
the analysis above indicates. For the most part, then, capabilities are seen as residing in locations
rather than in firms, moving across firm boundaries within regions more readily than they move
within firms across space. However, there are strong reasons to doubt this assumption,
especially when dealing with technologies that tend to be highly proprietary. In this sub-section
of the paper, we explore whether evidence supports the notion that capabilities are located within
firms or within regions.

Of course, if capabilities reside in firms, then it might be said that certain capabilities are also
located in the regions where specific firms operate. Still, we must be careful on this issue
because a great deal of analysis within economic geography assumes that the co-location of
economic agents implies some sharing of capabilities and the emergence of place-specific assets
and relationships that fuel regional performance. While it is undoubtedly the case that place-



specific assets of tangible and intangible kinds do emerge within economic clusters (Storper,
1995; Baldwin et al. 2008), the impacts of these assets are heterogeneous (Neftke, 2009; Potter
and Watts, 2011; Rigby and Brown, 2015) and not broadly quantified. In the analysis below, we
separate the influence of firm-specific and city-specific forms of relatedness density on
technological diversification.

Investigation focuses upon a sub-sample of Chinese patents that are connected to multi-
locational firms. These are firms that have branches in different Chinese cities and that patent in
each of those cities. The multi-locational firms were identified with firm data from Bureau van
Dijk (BVD). Because of the time-intensive nature of identification, our analysis focuses only on
the largest 200 multi-locational firms operating across Chinese cities. These firms are
responsible for generating around 700,000 patents between 1991 and 2015, some 20% of the
Chinese total. On average, each of these multi-locational firms has a branch in five different
Chinese cities. The largest firm, State Grid Corporation of China, had 67 branches that generated
patents across Chinese cities in the most recent period examined.

In order to explore the location of capabilities, we set up another related diversification model,
this one focused on the activities of the branches of multi-locational firms. For each branch we
note those technologies (IPC classes) in which the branch attained RTA across our five-year time
windows. Measures of relatedness density are then built for all observations at the branch, firm
and city level. Note that we start with a reference dataset that includes only the patent data within
the multi-locational firms that we examine. This reference set provides the denominator in the
RTA calculations. We use different data for robustness checks on our analysis as discussed later.
The multi-locational firm data includes patent information from all the branches that belong to
the firm (through ownership). Subsidiaries and joint ventures are not included with these data.

Somewhat more formally, our dependent variable, RTA, is now defined at the level of a branch
as

- Patents;s./ Y.c Patents;y,
branch L% r Patentsis./ Y o S Patents;f,

where i refers to the technology (IPC patent) class, fto the firm and c to the city. Note again that
the overall denominator here is the class share in the reference region (the sum of all branches
across cities in China that are owned by the 200 firms that we examined). RTA at the firm level
(part of the relatedness density variable defined at the firm level) is defined as

Y. Patentsisc [ X Y. Patents;s,

RTA¢;.,; =
firmi = s Y s Patents;sc/ X Xr Yo Patents;p,

where the overall denominator is the same as in the RTA for the branch. Finally, RTA at the city
level is defined as

Y Patentsi¢. / ¥.; X5 Patents;y,
Y X Patents;¢c/ X X5 X.c Patents;¢,

RTAcityi =

These different measures of RTA allow us to define three relatedness density terms in our model,
one for the branch, firm and city:



Densitypranch, i = (Uj=iSij * RTAprancn)/X j=i Sij
Densityirm, i = (Uj=iSij * RTApirm)/ 2 j=i Sij
Densitycity i = (Xj=iSij * RTAcity)/ i Sij

where §;; is the relatedness between classes i and j built from multi-locational firm data alone,
and where RTA = 0/1. The new model to be estimated is

RTAbranch, it = .BbranchDenSitybranch, it—1 + ﬂfirmDenSityfirm, it—1 +
.BcityDenSitycity, it—-1 + FEtime + FEfirm + & (2)

and where the terms should all be familiar at this time.

Results from estimating the relatedness density model at the branch level are shown in Table 5.
Once again, we estimate a logit model of technological diversification with firm and time fixed
effects. We add city fixed effects in Model 6. With only one HQ plant per firm in Model 7, city-
level fixed effects are correlated with firm effects and thus dropped. To aid comparison between
Model 7 and Model 8 we do not incorporate city fixed effects in the latter. Robust standard errors
were clustered at the firm level throughout. As a robustness check we also constructed measures
of relatedness using data generated from all Chinese patents rather than just those associated with
our sample of multi-locational firms. The results reported here did not change.

Model 5 is the logit for all branches in our sample of multi-locational firms. The three
coefficients on the different lagged measures of relatedness density, those observed within the
branch, within the firm and within the city are positive and significant implying that existing
knowledge assets at these three levels influence technological diversification within and across
the branches of multi-locational firms. The coefficients represent the influence of a one-unit
increase in the independent variables upon the log odds of RTA being developed within a
technological sector in the branches of a multi-locational firm. Note that the coefficient on the
relatedness density of the firm has the largest influence on technological diversification within a
branch, that coefficient being 1.1 times greater than the coefficient on relatedness density within
the branch and 2.0 times greater than the coefficient on relatedness density within the city. This
result suggests that technological know-how is much more likely to flow across regions within
the boundaries of the firm than it is to flow across firm boundaries within the city. Adding city
fixed effects in Model 6 indicates that the firm density coefficient is almost 1.5 times larger than
the branch coefficient and 3.5 times larger than the city density coefficient.

While Models 5 and 6 suggest that capabilities reside largely within the firm and its branch
plants, they do not separate headquarters branches from non-HQ branches. The broader literature
on multi-locational firms makes clear that the flows of information among their branches is
asymmetric (Gupta and Govindarajan, 2000; Hansen, 2002). Audia et al. (2001) and Singh
(2008) discuss the costs and potential gains from distributed innovation. If non-HQ branches are
strategically located to tap into local knowledge resources, then city relatedness density should
be relatively more important in these branches than in the HQ branches of firms. Firm
relatedness density should be relatively more important in HQ branches as they are developing



technologies that may originate in R&D activities across a series of non-HQ establishments. This

is indeed what we see in Model 7. Here the model specification changes to include a dummy
variable indicating whether the branch observations refer to non-HQ branches (0) or to HQ
branches (1), and three interaction terms that are the product of the HQ dummy and each of our
relatedness density measures. Thus, when the HQ dummy takes the value 0 we are examining
non-HQ branches and the interaction terms drop out of the model. The constant term now
represents the average log odds of related diversification with all density variables taking the
value zero. For non-HQ establishments, the relatedness density log odds coefficients for the
branch, the firm and the city all have quite similar magnitudes. However, note that the relative
sizes of the density coefficients, especially those connected to the city effect, are much higher
than in Models 5 and 6. As we shift to HQ branches, related density at the firm level is
significantly greater than it is for non-HQ branches, and city relatedness density has a

significantly smaller impact on diversification in HQ plants than in non-HQ plants. These results

suggest that HQ branches are gathering and using more firm-level information in their own
diversification process, while non-HQ branches look more toward local non-firm knowledge

sharing than HQ branches, perhaps fulfilling a role as “local listening posts™.

Table 5: Related diversification in branch level data (firm fixed effects)

Dependent Variable: Branch RTA (1991-2015)

Model 5 Model 6 Model 7 Model 8
Lag Branch Density 1.6940%** 1.4024%** 1.8800%* 0.9376%*
(0.1099) (0.1099) (0.7370) (0.6206)
Lag Firm Density 1.8806%** 2.0426%** 1.6671%** 2.206 1 ***
(0.1118) (0.1145) (0.1906) (0.1932)
Lag City Density 0.9256%** 0.5648*** 1.4856%** 1.6351%**
(0.0674) (0.0504) (0.3423) (0.4354)
Lag Interact- 0.0861 0.6862
branch (0.3941) (0.5079)
Lag Interact-firm 0.5607*** -0.0142
(0.1803) (0.1646)
Lag Interact-city -0.7499** -0.9667**
(0.3538) (0.4326)
Lag HQ Branch 1.4954%**
dummy (0.1069)
Lag Core-Periphery 0.4920%**
dummy (0.1172)
Constant -5.3318*** -5.1966%*** -6.7827#** -4.2213%%*
(0.0513) (0.5886) (0.1190) (0.0972)
Time fixed effects Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
City fixed effects No Yes No No
Observations 3,095,127 3,095,127 2,292,620 1,864,340




Notes: All models were run with robust standard errors clustered at the firm level. * significant at
the 0.1 level, ** significant at the 0.05 level, *** significant at the 0.01 level.

Model 8 focuses exclusively on non-HQ branches, exploring whether non-HQ establishments in
core cities diversify in different ways than non-HQ establishments in peripheral cities. Core and
peripheral cities were identified from networks of inter-city collaboration on individual patents,
illustrated in Figure 2, using the “coreness” network algorithm of Borgatti and Everett (2000).
Interaction effects are used again to reveal the significance of differences in relatedness density
measures on diversification between non-HQ branches in core cities and in peripheral cities. In
peripheral cities, diversification in non-HQ establishments is positively and significantly
impacted by branch, firm and city relatedness density, though the relative size of the branch
coefficient is much smaller than in the other models we have considered. So it looks like
diversification in non-HQ branches in peripheral cities depends more on firm and city
relatedness density. The coefficient on the city density variable is relatively large in Model 8,
indicating that patterns of diversification in these non-HQ branches depend quite heavily on local
knowledge assets outside the firm. This finding is consistent with Model 7. As we shift to non-
HQ firms in core cities, the only relatedness density coefficient that changes significantly is that
on city density. In core cities local knowledge assets play a significantly smaller role in
diversification than they do in non-core cities. This is a surprising result that we did not expect.

The models in Table 5 are estimated with firm-level fixed effects. Because those fixed effects do
not apply at the individual branch level, the results in Table 5 are based on both the within and
between establishment variance within the individual firm. This model specification captures the
way in which the firm might employ its different establishments to specialize in the production
of distinct knowledge subsets. Of course, this note also raises the question of how the results
change if we employ branch-level fixed effects. With branch fixed effects, the analysis shifts
toward examination of the within branch variance only and a vision of the establishment as
largely independent. It is unclear whether firm or branch fixed effects are most appropriate. The
most disaggregate fixed effects are often preferred in the literature, but inefficiencies in
estimating the within effects model at the branch level should not be ignored. For completeness,
we report branch-level fixed effects models corresponding to Table 5 in the Appendix. Note that
the results obtained from those models are somewhat different to those reported above. The
dominance of firm relatedness density over city relatedness density remains, but plant
relatedness density seems to work quite differently. The Appendix also reports results for the
models of Table 5 generated from the linear probability model using firm fixed effects. In all
estimation standard errors are clustered at the firm level.

4. Conclusion

In this paper we explored patterns of technological diversification within cities and within the
branches of multi-locational firms in China. Our purpose was to better understand the process of
knowledge sourcing. Much of the related diversification literature in evolutionary economic



geography has focused on the region as a unit of analysis. Implicit within much of that work is
the claim that the technological structure of the region is a key driver of the direction of
diversification. While this argument might raise old questions about the spatial ecological fallacy
and the reification of the region, the issue is surely more complex today as we recognize the co-
evolution of firms and the regional economies of which they are a part. The mobility of workers
between firms, the formal and informal relationships between firms and the institutional
structures that are so much a part of the regional economy make it difficult at times to separate
that which is created within the firm from that which is learned in the broader environments
within which firms operate. Another way of saying this is that the knowledge structure of the
region and that of the firms that comprise the region are endogenous. Matters are complicated
further by the flow of knowledge between firms located in different regions and by the flow of
knowledge within the multi-locational firm.

Still, it may be possible to disentangle the influence of the firm from the influence of the region
in the process of technological diversification. At least, this was the task that we set for
ourselves. To date, there has been relatively little analysis of the Chinese knowledge space and
the evolution of technological relatedness between patent classes within China, an emerging
economy that is now generating patents at a faster pace than the United States. We mapped the
Chinese knowledge space in the periods 1991-95 and 2011-15, reporting how the relative
distances between different technologies has shifted and showing those technology groupings
that have experienced the fastest growth between the two periods just noted. Measures of
technological relatedness, a key input to models of diversification, were generated for all 629
distinct technology classes of the IPC across 286 Chinese cities for five time-intervals since
1991. At the city-level, consistent with previous work on technological diversification, the
knowledge stocks of cities are shown to be a reliable predictor of the pattern of future
technological diversification. Inter-city flows of a generic spatial form and flows that capture
inventor collaboration are also shown to exert a positive and significant influence on related
diversification.

To separate the impacts of firms from regions on diversification, a sample of 200 multi-
locational firms was produced. These firms were responsible for approximately 20% of all
Chinese patents. The multi-locational firms have on average five branches located in different
cities across China. Patents were recorded for each of these branches independently of the HQ
branch of the firm. We examined patterns of technological diversification within these branches,
generating separate measures of the effects of relatedness density to the lagged knowledge assets
of the branch, to the parent firm and to the city in which the branch was located. Using fixed
effects logit models, the influence of related density within the firm was always larger than the
relatedness density of the city on diversification at the branch level. The logit coefficients on the
firm and city density measures varied as much as a factor of 4 in some models. Interpreted
somewhat differently, a one-unit increase in relatedness density at the firm-level increases the
average probability of branch diversification by about 25 percentage points more than a one-unit
increase in relatedness density at the city-level.



Building on the management literature that details asymmetries of information flow between the
plants of multi-unit firms, the HQ and non-HQ branches of the firms in our sample were
separated. There is significantly more diversification in HQ plants than non-HQ plants. The
influence of relatedness density at the branch, the firm and the city levels on diversification
within non-HQ branches were much closer to one another than in the overall model just
discussed. Interactions reveal that these relatedness density measures change significantly as
attention switches to HQ branches. Diversification in HQ units is significantly more impacted by
relatedness density within the firm as a whole and significantly much less impacted by
relatedness density in the city where they are located. These results suggest that non-HQ plants
might be playing the role of “listening posts”, gathering technological knowledge from outside
the firm, while HQ plants are assimilating that knowledge to a greater degree than they are
tapping local sources of non-firm technological intelligence.

Finally, separating non-HQ plants into core and peripheral cities in China, results reveal that
branches in core cities have higher overall levels of diversification than those in peripheral
locations. Perhaps as expected, branch diversification is much more dependent on firm and city
effects in these non-HQ plants than on the knowledge assets of the branches themselves. Rather
surprisingly, diversification in the non-HQ plants of core cities is significantly less impacted by
city-related density than in peripheral cities.

In sum, we have added value to the “agents of change” literature that has focused on mining
firm-level data to help understand the dynamics of diversification that occur within regions. We
push that literature into the patent realm focusing on technological diversification at the level of
the plant, the firm and the city within China. Our results suggest that there is a lot more
heterogeneity in the diversification data than we have recognized to this point. Much more work
is required to see if these patterns hold up in other settings and to unpack their meaning for our
understanding of the evolution of relatedness and of firm and region dynamics. Understanding
the process of diversification in single-plant firms also demands more attention.



Appendix

Table Al: Table S re-estimated using the linear probability model (firm-level fixed effects)

Dependent Variable: Branch RTA (1991-2015)

Model 5 Model 6 Model 7 Model 8
Lag Branch Density 0.2406%*** 0.2357*** 0.2229%** 0.1902%***
(0.0098) (0.0097) (0.0147) (0.0531)
Lag Firm Density 0.0528*** 0.0539%** 0.0526%*** 0.0384***
(0.0064) (0.0063) (0.0062) (0.0070)
Lag City Density 0.0179%** 0.0145%** 0.0118*** 0.0182%**
(0.0019) (0.0015) (0.0020) (0.0081)
Lag Interact- L0.1138%%* 0.0289
branch (0.0375) (0.0495)
Lag Interact-firm 0.1298*#* 0.0286***
(0.0311) (0.0069)
Lag Interact-city 0.0142%* -0.0082
(0.0040) (0.0081)
Lag HQ Branch 0.0146%**
dummy (0.0015)
Lag Core-Periphery 0.0017%**
dummy (0.0005)
Constant 0.0003 0.0127 0.0002%*** -0.0011
(0.0005) (0.0108) (0.0005) (0.0008)
Time fixed effects Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
City fixed effects No Yes No No
Observations 3,095,127 3,095,127 3,095,127 2,301,426

Notes: All models were run with robust standard errors clustered at the firm level. * significant at
the 0.1 level, ** significant at the 0.05 level, *** significant at the 0.01 level.



Table A2: Table 5 re-estimated using branch-level fixed effects (logit specification)

Dependent Variable: Branch RTA (1991-2015)

Model 5 Model 6 Model 7 Model 8
. -0.5730%*** -0.2140%* -0.4338
Lag Branch Density ;1547 (0.1112) (0.5061)
Lag Firm Density 2.6858%** 2.7109%** 2.7266%**
(0.1206) (0.1232) (0.1324)
. . 0.7705%** 0.7994 % 0.9363***
Lag City Density (0.0521) (0.0573) (0.1987)
Lag Interact- -0.4303* 0.4620
branch (0.2597) (0.4940)
Lag Interact-firm -0.2738 -0.0789
(0.2283) (0.1049)
Lag Interact-city -0.0894 -0.2457
(0.1081) (0.2101)
Lag HQ Branch -1.0433%**
dummy (0.0532)
Lag Core-Periphery -0.0518
dummy (0.3060)
Constant -6.7806%*** -6.8519#** -11.2250%**
(0.2712) (0.0005) (0.3420)
Time fixed effects Yes Yes Yes
Branch fixed effects Yes Yes Yes
Observations 3,095,127 3,095,127 1,668,203

Notes: All models were run with robust standard errors clustered at the firm level. * significant at
the 0.1 level, ** significant at the 0.05 level, *** significant at the 0.01 level. Model 6 is not
estimated as city fixed effects are collinear with branch fixed effects.
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