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Abstract — The use of co-occurrence data is common in various domains. Co-occurrence

data often needs to be normalised to correct for the size-e↵ect. To this end, van Eck and

Waltman (2009) recommend a probabilistic measure known as the association strength.

However, this formula is based on combinations with repetition, even though in most

uses self-co-occurrences are non-existent or irrelevant. A more accurate measure based

on combinations without repetition is introduced here and compared to the original

formula in mathematical derivations, simulations, and patent data, which shows that

the original formula overestimates the relation between a pair and that some pairs are

disproportionally more overestimated than others. The new measure is available in the

EconGeo package for R by Balland (2016).
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1 Introduction

The use co-occurrence data is popular in numerous scientific domains like scientometrics

(see for example van Eck and Waltman, 2009), computational linguistics (see for example

Schutze, 1998), community ecology (see for example Peres-Neto, 2004), development

economics (see for example Hidalgo et al., 2007), molecular biology (see for example Maslov

and Sneppen, 2002 and evolutionary economic geography (see for example Boschma et al.,

2015). Its use is widespread and in close relation with the popularity of network analysis

across disciplines.

Co-occurrence data is used to infer the relation, referred to as relatedness here following

Hidalgo et al. (2007), between entities, which can be species of fish, authors or technological

classes, by observing how each of these co-occur with others in places, like streams, articles

or patents. However, the total number of co-occurrences between a pair of entities cannot

be used straightforwardly to reflect the relatedness between them because entities with

more observations are more likely to co-occur than entities with fewer observations. To

correct for this size-e↵ect a normalisation measure is applied to the data.1 van Eck and

Waltman (2009) review the most popular normalisation measures and make a convincing

case for the use of a probability-based measure known as the association strength. This

measure is based on dividing the observed number of co-occurrences over the expected

numbers of co-occurrences when assuming observations are randomly distributed over

co-occurrences.2

In this paper, it is shown that the probability formula of the association strength, as

proposed by van Eck and Waltman (2009), is not optimized to calculate the expected

1Note that it depends on the goal of the research if it is necessary to correct for the size-e↵ect or
that absolute counts are more relevant. In this paper and the research cited here and in van Eck and
Waltman (2009) normalisation are assumed to be necessary.

2As such, a value of one indicates that exactly the same amount of co-occurrences are observed as
expected. While a value above one or below one indicates respectively a stronger relation or a weaker
relation between the two entities.
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number of co-occurrences. The formula of van Eck and Waltman (2009) is proportional to

probability calculations based on combinations with repetition, which means that when

estimating the probability that two entities co-occur an observation drawn in the first

draw is assumed to be available for drawing again when drawing the second observation.

However, in the use of co-occurrence data the co-occurrence of observations from the

same entity is disregarded.3 This makes the possibility of drawing the same observation

or any other observation from the same entity impossible in the second draw once an

observation from this entity has been drawn in the first draw.

Therefore, an improved formula for the association strength is introduced derived from, but

not equal to, probability measures based on combinations without repetition. Furthermore,

two refinements are made regarding the inputs to the formula, which in the current

definition do not properly take into account how the number of observed co-occurrences

are calculated.

The improved formula is compared to the original formula in a theoretical setting, a

number of simulations, and a real world application using patent data. It is shown that:

firstly, the original formula overestimates the relatedness between a pair, when these

co-occur at least once. This indicates that the original formula can wrongly identify

two entities as related whereas in fact they are not; and, secondly, the original formula

overestimates the relatedness between some pairs more than other. This indicates that

the overestimation is not proportional and that the di↵erences between the relatedness

values for each pair are also distorted.

In the theoretical analysis, the improved formula is subtracted from the original formula,

to obtain a formula for the di↵erence. By considering the domain of each variable, it is

shown that the original formula underestimates the number of expected occurrences in all

cases and therefore overestimates the relationship between two entities when there is at

3This holds for the work referred to in this paper and those by van Eck and Waltman (2009).
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least one observed co-occurrence. Continuing the theoretical exploration, the first order

partial derivatives of the di↵erence with respect to each variable is taken, which shows

that the overestimation is not equal across all possible types of co-occurrence matrices.

Just taking the partial derivatives is not su�cient to show the size of the di↵erence for

each case, as the values of the variables are interconnected in ways that do not allow for

analytical solving. Therefore, simulations are ran in which four di↵erent exemplary cases

are taken to the extreme to demonstrate the e↵ect on the di↵erence. The simulations

show that the overestimation by the original formula can be close to 0% but also close to

100% of the relatedness value given by the improved formula depending on the specificities

of the co-occurrence matrix.

To measure to what extent these theoretical simulations are representative of real world

applications of research on co-occurrence data, a number of patent samples, containing

data on the technology classes per document, is treated to compare the results of both

formulas. In these samples the overestimation of relatedness values for individual pairs

varies between close to 0% to up to 3.234% of the value given by the improved formula and

therefore does not attain the most extreme values obtained in the simulation. Nonetheless,

it clearly confirms that some pairs are more overestimated than others. The results also

show that some pairs are misidentified as being related by the original formula but that

this is only the case for a rather small share of the pairs up to about 0.29% of the number

of pairs identified by the original formula.

All in all, it is advisable to use the improved formula when working with co-occurrence

data, where self co-occurrences are non-existent or irrelevant. The reformulation of the

probability measure does not in any way alter the conclusion by van Eck and Waltman

(2009) that probability based measures outperform so-called set-theoretic measures in

normalising co-occurrence data. The improved measure, including the recommended

method of implementation, is available in the EconGeo package for R by Balland (2016).
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This paper is organised as follows: Section 2 gives a short overview of the use of co-

occurrence data and the association strength; Section 3 discusses the refinements; Sections

4 to 6 explore the overestimation by the original formula respectively in a theoretical

setting, simulations, and in a real world example using patent data; and Section 7

concludes.

2 Normalising co-occurrence data through probabilistic sim-

ilarity measures

Co-occurrence data is generally derived from a binary occurrence matrix O of some order

m ⇥ n. The rows of O correspond to the places in which the observations occur and

the columns to the entities to which they belong. There is a large variety of what these

places and entities can be.4 The example in Matrix 1 shows three patents that contain a

reference to, respectively, only class c; class c & class d; and all classes a to d.

Matrix 1 0

BBBBBBB@

Class a Class b Class c Class d

Patent 1 0 0 1 0

Patent 2 0 0 1 1

Patent 3 1 1 1 1

1

CCCCCCCA

By multiplying the transpose of O by O itself the co-occurrence matrix C is obtained5.

In which both the rows and the columns represent the entities and the matrix gives how

often they co-occur with the other.

In the case of our example, this would yield the co-occurrence matrix C given in Matrix

2. Where class a co-occurs once with b, c, and d; class b co-occurs once with a, c and

4There are for example occurrence matrices of: scientific publications by research institutions (e.g.
Hoekman et al., 2010); countries by industries (e.g. Hidalgo et al., 2007); streams by fish species (e.g.
Peres-Neto, 2004); and patent documents by technology classes (e.g. Boschma et al., 2015).

5If the rows of O indicate the entities and the columns indicate the places where they co-occur then
it is the other way around and O should be multiplied by its transpose.
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d; class c co-occurs once with a and b, and twice with d; and class d co-occurs once

with a and b, and twice with c. The diagonal is set to zero as the reference to a certain

class does not entail a co-occurrence between that class and itself. This has important

implications down the line.

Matrix 2 0

BBBBBBBBBB@

Class a Class b Class c Class d

Class a 0 1 1 1

Class b 1 0 1 1

Class c 1 1 0 2

Class d 1 1 2 0

1

CCCCCCCCCCA

In many applications of co-occurrence data, such as the concept of relatedness, the raw

numbers of co-occurrences between entities cannot straightforwardly be interpreted as

giving the strength of the relation between each pair of entities. There is a so-called

size-e↵ect, as some classes co-occur more often with others for the simple reason that

these classes have more occurrences in the first place. Like in our example, where d has

more co-occurrences with c than with a or b but c also has more occurrences in total and

therefore is more likely to co-occur with any class.

To correct the absolute number of co-occurrences for the size-e↵ect data is normalised

(van Eck and Waltman, 2009).6 Correcting co-occurrence data for the size-e↵ect to

derive relationships between entities is done through direct similarity measures.7 van

Eck and Waltman (2009) wrote an extensive review on the most popular direct similarity

measures, being: the cosine, the Jaccard index, the inclusion index and the association

strength. Of these the last is a probabilistic measure, while the others are set-theoretic

6In some cases, more normalisation measures are deemed necessary. For example, Ne↵ke et al. (2011)
who look at the co-occurrence of products in the production process of the same plant also correct for
the profitability of the respective products.

7Another option to derive similarities or relationships between entities is by comparing co-occurrence
profiles of the entities, which are known as indirect similarity measures (see van Eck and Waltman, 2009).
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measures. The authors show that set-theoretic measures do not properly correct for the

size e↵ect and argue in favour of the association strength.

The usability of their formula exceeds the domain of scientometrics. Hidalgo et al. (2007)

developed an influential network analysis tool to derive the what they call relatedness

between entities on the basis of co-occurrences. Although they use a di↵erent probabilistic

direct similarity measure than the ones covered by van Eck and Waltman (2009), other

authors (e.g. Balland et al., 2015) building on the framework of Hidalgo et al. (2007) do

opt for the association strength.

Albeit influential, refinements to the work of van Eck and Waltman (2009) are in place.

The probabilistic formula should be based on combinations without repetition instead of

with repetition. Furthermore, the definitions of the inputs for the formula are imprecise.

These points will be treated in the following section. It should be noted that the

refinements to the measure do not undermine in anyway the statement of van Eck

and Waltman (2009) that probabilistic measures outperform set-theoretic measures in

normalising co-occurrence data to control for the size-e↵ect.

3 Refinement to the association strength

The objective of the association strength is to estimate the number of expected co-

occurrences for each pair assuming that these are randomly distributed and compare this

to the number of observed co-occurrences to give an indication of the relation between a

pair of entities when corrected for the size-e↵ect. The challenge therefore is to correctly

estimate the number of expected co-occurrences per combination.

As an intuitive example Matrix 3 gives a co-occurrence matrix C in which three classes

(a, b, and c) exist and co-occur exactly once with each other:8

8This C would result from our example O in Matrix 1 if one would remove class d and its observations.
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Matrix 3 0

BBBBBBB@

Class a Class b Class c

Class a 0 1 1

Class b 1 0 1

Class c 1 1 0

1

CCCCCCCA

As each class has two observations and two possible other classes to co-occur with the

expected number of co-occurrences is logically 2
2 = 1 for each combination (a & b, a & c,

and b & c).

In this case, the matrix of expected co-occurrences is exactly the same as the matrix of

observed co-occurrences given in Matrix 3. Therefore, we observe as many co-occurrences

as expected and Observed

Expected
should be equal to one for each combination.

For the association strength, van Eck and Waltman (2009) use a simplified formula in

the main text but describe formula 1 on p.1636:9,10

SOriginal(Cij , Si, Sj , T,m) =
Cij

(Si
T

Sj

T
+ Sj

T

Si
T
)m

, i 6= j, (1)

In which Si and Sj are the number of occurrences of entity i respectively j involved in

co-occurrences where i 6= j. To calculate Si one can use the row sum or the column sum

of row i, respectively, column i of the C when the diagonal is set to zero. This slightly

9I argue that it is more advantageous to use the full formula, which entails exactly dividing the number
of observed co-occurrences over the number of expected co-occurrences as it gives a clear threshold of one
when Observed = Expected. As such, values below one indicate that less co-occurrences are observed
than could be expected given a random distribution, whereas values above indicate the opposite. This
threshold holds in all cases, even when matrices with di↵erent numbers of occurrences are compared.
In contrast, the simplified formula would have a di↵erent value indicating that the number of observed
co-occurrences equals expected depending on the matrices, even though it is proportional to the more
detailed formula by a factor of 2m.

10This formula is also presented in rewritten form in equation 1 in Waltman et al. (2010).
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diverges from the explanation of van Eck and Waltman (2009).11 T is the total number

of occurrences and equal to
P

n

i=1 Si with n being the total number of entities, and m is

the total number of co-occurrences and therefore equal to
Pn

i=1 Si

2 , which is half of T as

each co-occurrence involves 2 occurrences. This definition also diverges from van Eck

and Waltman (2009).12 Cij is the number of observed co-occurrences between i and j.

In essence, the denominator gives that the chance of encountering a co-occurrence between

an observation of class i and an observation of class j is equal to the probability of first

drawing one of the observations of class i out of the total number of occurrences times

the chance of drawing an observation belonging to class j out of the total number of

occurrences plus the probability of first drawing j and then i times the total number of

co-occurrences.

Calculating this formula for our example C in Matrix 3 would yield Relatedness Matrix

R given in Matrix 4 below:

Matrix 4 0

BBBBBBB@

Class a Class b Class c

Class a 0 1.5 1.5

Class b 1.5 0 1.5

Class c 1.5 1.5 0

1

CCCCCCCA

11van Eck and Waltman (2009, p. 1636) state that for Si both the number of occurrences of entity i

can be used or the number of co-occurrences in which i is involved. However, it is important to emphasize
that single occurrences, as in Patent 1 of the example O in Matrix 1, should be ignored as these do not
lead to co-occurrences. This also holds for self co-occurrences of i with i as both of these cannot be part
of Cij where i 6= j. Setting the diagonal to zero resolves both these issues.

12van Eck and Waltman (2009, p. 1648) state that m should be equal to “the number of documents”.
However, this only holds when the number of documents is equal to the number of co-occurrences. In the
example O in Matrix 1 patent 1 is one document but only refers to one class so it does not involve any
co-occurrences and is therefore not equal to one co-occurrence. Patent 3, on the other hand, refers to
all classes a to d and therefore leads to 6 unique co-occurrences (a&b, a&c, a&d, b&c, b&d, c&d). All
together the example consists of three documents and seven unique co-occurrences. As a result, in this
case using the number of documents would underestimate the expected number of co-occurrences as the
probability of encountering a co-occurrence is multiplied by a too small number of co-occurrences than
are actually possible. This explanation is the same as in Waltman et al. (2010).
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It is clear that the formula does not provide the intuitive answer of 1 but actually

overestimates the relationship by returning that each pair co-occurs more often than

could be expected given a random distribution.

The flaw cannot lie in the numerator, which is equal to the number of observed co-

occurrences. Therefore the problem lies in the denominator. The formula to calculate the

expected number of co-occurrences includes the possibility that when an occurrence of a

certain entity is drawn the same occurrence or another occurrence of the same entity (if

present) can be drawn in the next draw to complete the co-occurrence. This is known as

combinations with repetition. However, as self co-occurrences are non-existent one knows

that one cannot redraw the same occurrence, but also none of the other occurrences of

that class.

In the case of our example, the denominator of formula 1 yields an expected number of 2
3

co-occurrences. This is because the formula observes 2 occurrences for each class and 3

possible partners to co-occur with even though there are only 2 possible partners. Class

a can co-occur with class b and class c but not with itself.13

In the case of co-occurrence data in which none of the observations belonging to the

previously drawn entity can be drawn in the second draw the correct probabilistic measure

would be formula 2:

SImproved(Cij , Si, Sj , T,m) =
Cij

(Si
T

Sj

T�Si
+ Sj

T

Si
T�Sj

)m
, i 6= j, (2)

Here, the denominator gives that the chance of encountering a co-occurrence between

an observation of class i and an observation of class j is equal to the probability of first

drawing one of the observations of class i times the chance of drawing an observation

13To be exact the denominator of formula 1 would be equal to ( 26
2
6 + 2

6
2
6 )3 for each pair outside of the

diagonal in the matrix of this example.
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belonging to class j knowing that none of the observations of class i can be drawn plus

the chance of first drawing one of the observations of class j times the chance of drawing

an observation belonging to class i knowing that any other observations of class j cannot

be drawn.

The implications of using formula 1 instead of formula 2 are that the relatedness between

a pair is overestimated when at least one co-occurrence is observed and that the over-

estimation is larger for certain pairs than others. These implications are demonstrated

and further explored in the following parts. First in a theoretic setting, then by running

simulations and concluding with the analysis of a real world example using patent data.

4 Theoretical exploration of the overestimation.

An obvious first notion from observing formula 1 and formula 2 is that there is no di↵erence

in outcome when the number of observed co-occurrences is zero, as the numerator Cij

will then be zero.

Furthermore, it can be assumed that formula 1 overestimates the relation between two

entities when there is at least one co-occurrence. The assumption in the probabilistic

measure of formula 1 is that the same observation and other observations from the same

entity can be drawn again while this is not possible. This enlarges the total pool from

which observations can be drawn and therefore decreases the likelihood that a certain

co-occurrence can be drawn. This leads to the denominator, which contains the expected

number of co-occurrences, in formula 1 being smaller than the one in formula 2 in all

cases. As was the case for the example Matrix 3, where the denominator indicated a

co-occurrence probability of 2
3 for each pair where actually only two options instead of

three existed and therefore 2
2 should have been the answer.

Due to the smaller expected probability, formula 1 divides the number of observed

co-occurrences over a too small number of expected co-occurrences and therefore the
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relatedness between these two entities is overestimated, when at least one co-occurrence

is observed.

That the denominator of formula 1 underestimates the expected number of co-occurrences

can also be proven analytically. The original probabilistic measure of van Eck and

Waltman (2009) in the denominator of formula 1 is rewritten and given in formula

3, while the improved probabilistic measure used in the denominator of formula 2 is

rewritten and given in formula 4:

E(Cij)Original(Si, Sj , T ) =
SiSj

T
, i 6= j, (3)

E(Cij)Improved(Si, Sj , T ) =
SiSj(2T � Si � Sj)

2(T � Si)(T � Sj)
, i 6= j, (4)

Let Dprobability be equal to E(Cij)Improved � E(Cij)Original. It can be shown that this

di↵erence Dprobability is equal to formula 5.

Dprobability(Si, Sj , T ) =
SiSj(SiT + SjT � SiSj)

2T (T � Si)(T � Sj)
, i 6= j, (5)

For E(Cij)Improved to be larger than E(Cij)Original formula 5 gives that SiT + SjT must

be larger than SiSj . As Si � 1, Sj � 1, and T = Si + Sj + Sk + ...+ Sn it is clear that

T > Si and T > Sj and therefore SiT + SjT > SiSj must hold.14

This means that Dprobability is positive in all circumstances, which indicates that the

improved formula predicts in all cases that more co-occurrences can be expected between

i and j. Which makes sense as the improved formula excludes the possibility of drawing

a combination of i and i making it more likely to draw a combination with j.

14If entities can partially occur in a place then the values for Si and Sj can be below one but in any
case not below or equal to zero and the same statements hold.
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Because the number of observed co-occurrences, Cij , is divided over the number of

expected co-occurrences, the original formula 1 leads to larger results than the improved

formula 2 in all possible cases, when Cij > 0. This can also be shown mathematically:

Let DFormula be equal to SOriginal(Cij , Si, Sj , T )� SImproved(Cij , Si, Sj , T ).15 It can be

shown that the di↵erence DFormula is equal to formula 8 after rewriting formula 1 to

formula 6 and formula 2 to formula 7.

SOriginal(Cij , Si, Sj , T ) =
TCij

SiSj

, i 6= j, (6)

SImproved(Cij , Si, Sj , T ) =
2(T � Si)(T � Sj)Cij

SiSj(2T � Si � Sj)
, i 6= j, (7)

DFormula(Cij , Si, Sj , T ) =
(SiT + SjT � 2SiSj)Cij

SiSj(2T � Si � Sj)
, i 6= j, (8)

Three important notions can be derived from formula 8. First, it is confirmed that when

there are no observed co-occurrences, i.e. Cij = 0, the di↵erence is zero. Second, if and

only if Cij > 0 then Si � Sj � 1 and T � Si + Sj and therefore (SiT + SjT > 2SiSj .

This indicates that formula 1 yields larger outcomes than formula 2 in all possible cases,

with at least one observed co-occurrence. E↵ectively overestimating the relation between

entity i and j. Third, for di↵erent values of Si, Sj , Cij and T the di↵erence between

formula 1 and formula 2 will also vary. This means that the di↵erence between the

formulas is not proportional for each pair but the relatedness between certain pairs is

more strongly overestimated than for other pairs.

To explore the di↵erence due to di↵erent values of Si, Sj , Cij and T the partial derivatives

are taken of DFormula with respect to each. Because T is a function of Si, Sj , and all

15Note that the order of the original formula and the improved formula has been altered compared to
the previous calculation of the di↵erence of the respective probabilistic measures.
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other co-occurrences,
P

n

k 6=i,j
Sk. T is replaced by Si + Sj + L in formula 10 in which

L =
P

n

k 6=i,j
Sk and its range is equal to or larger than zero.

The partial derivatives �DFormula
�Cij

, �DFormula
�Si

, and �DFormula
�L

are respectively given in

formulas 9, 10, and 11. 16

�DFormula

�Cij

=
(S2

i
+ S

2
j
+ SiL+ SjL)

SiSj(Si + Sj + 2L)
, i 6= j, (9)

�DFormula

�Si

=
Cij(S2

i
Sj + S

2
i
L� 2SiS

2
j
� 3SiSjL� S

3
j
� 3S2

j
L� 2SjL

2)

S2
i
Sj(Si + Sj + 2L)2

, i 6= j, (10)

�DFormula

�L
=

�Cij(Si � Sj)2

SiSj(Si + Sj + 2L)2
, i 6= j, (11)

Given the domain of each formula, formula 9 is always positive, and, when at least one

co-occurrence exists, formula 10 can be positive or negative depending on the respective

inputs and formula ?? is always negative.

This last statement suggests that a relationship between two entities will be more

overestimated by formula 1 when there is a smaller amount of other possibilities to

co-occur with.

Despite being informative, partial derivatives give an incomplete picture of the discrepancy

between the two formulas as these give the direction of a function with respect to an

infinitesimal increase in one of the variables while keeping the others equal, even though

it is in reality impossible to keep the other variables equal as the inputs are all related to

16The partial derivatives �DFormula
�Si

and �DFormula
�Sj

are very similar in the sense that one can interchange

the Si and Sj to obtain the same formula, therefore �DFormula
�Sj

is not shown.
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each other. Necessarily Cij consists of Si and Sj , and if not all Si co-occur with Sj then

L must at least have enough occurrences to co-occur with the remaining i and js. In

other words, the following logical conditions hold: Cij  min{Si, Sj}; and L � |Si � Sj |.

In the next section theoretical simulations are run in which these conditions can be met.

5 Simulational exploration of the overestimation

For the theoretical simulations a simple co-occurrence matrix C depicted in Matrix 5 is

used. Albeit it simple, this matrix allows for some exploration of the numerical di↵erence

between formula 1 or formula 2 for di↵erent values of Si, Sj , Cij , and L. In four di↵erent

simulations, hypothetical and rather extreme situations are simulated to get insight on

the e↵ects of increasing the values of each of the variables Si, Sj , Cij , and L, while

meeting the conditions Cij  min{Si, Sj}; and L � |Si � Sj |.

Matrix 5 0

BBBBBBBBBB@

Classes a b c d

a 0 1 1 1

b 1 0 1 1

c 1 1 0 1

d 1 1 1 0

1

CCCCCCCCCCA

In the first simulation, Matrix 5 is taken and the number of co-occurrences between c &

d is increased by 1 in each step k, ceteris paribus. Matrix 6 gives this simulation:

Matrix 6 0

BBBBBBBBBB@

Classes a b c d

a 0 1 1 1

b 1 0 1 1

c 1 1 0 1+k

d 1 1 1 + k 0

1

CCCCCCCCCCA
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In each step k the resulting relatedness matrix using formula 1 is subtracted from the

resulting relatedness matrix using formula 2 and divided over the value of formula 2 to

express the di↵erence in percentages. The relatedness values for the pairs a & b, and c &

d are then plotted for each step. Each of these two changing relationships represent a

di↵erent scenario:

• a & b. The changing di↵erence in relatedness for the pair a & b simulates a steady

increase in L, keeping Cij = 1 and Si = Sj = 3. This result is depicted in Figure 1.

• c & d. The changing di↵erence in relatedness between classes c & d simulates a

steady increase in Cij but also in Si and Sj , keeping L = 6. To increase Cij beyond

the maximum value of Si and Sj Si and Sj also have to increase. From the partial

derivatives can be derived that an increasing Cij would increase the di↵erence

whereas an increase in Si and Sj can both increase or decrease the di↵erence. The

result of the simulation is depicted in Figure 2.
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Figure 1 – The difference in relatedness between the original
formula and the improved formula for class a & b when L increases.

The absolute di↵erence between the calculated relatedness of formula 1 and formula 2

for the pair a & b is equal to 1/3 across the entire simulation. However, as the number

of other co-occurrences L increases potential co-occurrence candidates increase as well

and therefore the expected number of co-occurrences for a & b decreases. As a result,

relatedness values are higher as L increases and the relative di↵erence decreases, as can

be seen in Graph 1.
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Figure 2 – The difference in relatedness between the original
formula and the improved formula for class c & d when Ccd, Sc and
Sd increase.

For pair c & d L remains equal to 6 but Ccd, Sc and Sd increase. Figure 2 depicts how the

di↵erence in the estimated relatedness increases asymptotically converging from 33.3%

to the value of 100%. As the Observed

Expected
should be close to one when two entities are close

to having 100% of the occurrences in the sample but the values of the original formula 1

converges to two the di↵erence is close to 100% of the correct value.

To simulate an increase in Cij while keeping Si, Sj , and L equal, ceteris paribus, another
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simulation is needed: matrix 1 is altered by replacing the number of co-occurrences

between entities a & b and c & d by a large amount of co-occurrences x.

Then in each step k of the simulation a co-occurrence is subtracted from this amount x

and added to the co-occurrences between entities a & d and b & c. See matrix 6. This

keeps Si, Sj and L equal but increases Cij for the relatedness between a & d. Note that

the result is insensitive to the exact value of x as the resulting change in the denominator

and numerator cancel each other out.

Matrix 7 0

BBBBBBBBBB@

Classes a b c d

a 0 x� k 1 1 + k

b x� k 0 1 + k 1

c 1 1 + k 0 x� k

d 1+k 1 x� k 0

1

CCCCCCCCCCA

The result is a stable overestimation of 33.3% for all values of k. When a & d co-occur

more often but the total number of co-occurrences in the sample stays the same the

relatedness between a & d naturally increases. Nonetheless, the increase in relatedness is

proportional for the two formulas and therefore the di↵erence remains 33.3%.

Lastly, an increase in Si and Sj while keeping Cij equal is simulated. The simulation

is very similar to the first simulation except that next to increasing the co-occurrences

between c & d also those between b & c is increased in each step k, see matrix 4. As a

result, Sb and Sc increases while Cbd is kept at one. L increases necessarily as well in the

form of Sc to match the added co-occurrences of Sb and Sd.
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Matrix 8 0

BBBBBBBBBB@

Classes a b c d

a 0 1 1 1

b 1 0 1 + k 1

c 1 1 + k 0 1 + k

d 1 1 1 + k 0

1

CCCCCCCCCCA

Once again the percentual di↵erence between calculating the level of relatedness for the

pair b & d using formula 1 and formula 2 is stable at 33.3% for all values k. This time

the relatedness between b & d decreases as k increases because their total number of

occurrences Sb and Sd increase but their number of co-occurrences remains 1.

The simulations in this section show that the di↵erence can range between close to 100%

and close to 0. In real world applications of co-occurrence data the bias introduced by

using formula 1 instead of formula 2 will be somewhere in between the extreme scenarios

simulated here. In which each respective value in the relatedness matrix will be closer to

a specific scenario than others.

6 Real world data-based exploration of the overestimation

The theoretical and simulational explorations demonstrate that formula 1 overestimates

the relatedness between entities compared to formula 2 in a way that disproportionally

a↵ects certain pairs more than other pairs. However, the question remains how close

these examples are to real world applications.

Therefore, the outcomes of formula 1 and formula 2 are compared using USPTO technology

class data from utility patents in periods of 5 years from 1855 to 2014.17

In the occurrence matrix O of each time period the rows indicate patent numbers and the

columns technology classes, like the example in Matrix 1. By multiplying the transpose

17A period of 5 years is also used by Boschma et al. (2015).
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of O by O itself a technology classes by technology classes co-occurrence matrix C is

obtained. As before, the diagonal of C is set to zero and Si can then be calculated as

the column sum of column i or the row sum of row i.18 Next formula 1 and formula 2

are calculated using the C of each time period and the results are compared in Table 1.

Table 1 gives a number of statistics for each time period mentioned in the respective

header. The first row gives the number of di↵erent technology classes (n) referred to on

the patents. This number is equal to the number of columns/rows in C. The second

line gives the number of pairs that have a value higher than 1 according to formula 1

by van Eck and Waltman (2009), these relatedness pairs have more or just as much

observed co-occurrences as expected and are therefore seen as related in research within

this domain (see for example Balland et al., 2015). The third line gives the same statistic

but employs the improved formula 2. On line four the di↵erence between the number of

related pairs according to each formula is given.19. Di↵erence (%) expresses this di↵erence

as a percentage of the number of related pairs according to the improved formula 2.

Focussing on these first five statistics it can be seen that in 1855 to 1859 patents made

references to 327 di↵erent technology classes and that according to formula 1 5154 pairs

of technology classes can be seen as related, while formula 2 identifies 5150 related pairs.

As a result, formula 1 identifies 4 pairs or 4
5150 ⇥ 100 = 0.07% more as related than

formula 2.

In later time periods the di↵erences increase both in absolute terms as in relative terms

with a maximum in relative terms of 0.29% in 1885-1889 and a maximum in absolute

terms with 62 pairs wrongly seen as related in 1955-1959.

Next to the overestimation another problem of using formula 1 instead of formula 2 is

18Note that the relatedness function in the EconGeo package for R (see Balland, 2016) sets the diagonal
of the input co-occurrence matrix to zero automatically.

19Note that there are no pairs identified as related by formula 2 that are identified as unrelated by
formula 1, as formula 1 > formula 2, when Cij > 0. See also Section 4.
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that the relatedness between some pairs is more overestimated than between other pairs.

The last four statistics explore this disproportionality. The largest di↵erence in value

gives the largest di↵erence in the relatedness value of a single pair between formula 1

and formula 2, while its percentage counterpart gives the largest overestimation relative

to the value given by formula 2. In relative terms the highest over estimation is 3.23%

and occurs in 2000-2004, this percentage is way below some of the extreme scenarios

simulated in Section 5. The largest absolute di↵erence is 0.837 in 1860-1864.

The last two statistics are similar but give the smallest di↵erence, when Cij > 0.20 When

at least one co-occurrence exists between a pair its relation is overestimated as already

shown mathematically in Section 4. The values are close to zero both in absolute terms

as in relative terms and therefore in strong contrast to the highest values, showing that

some pairs get more overestimated than others.

The results also show that there is not necessarily a direct connection between the number

of technology classes and the number of related pairs or the overestimation. In 2000-2004,

there is the second highest number of di↵erent technology classes, while the number of

related pairs is lower than in 1950-1954 when fewer technology classes were in use.

When comparing these specific time periods, 2000-2004 turns out to have a much more

concentrated co-occurrence matrix C than the one in 1950-1954. In 2000-2004 each row

or column i contains a few pairs with a lot of observations while others have relatively

few observations. This contrasts with the more even spread of observations across C in

1950-1954. The average Gini coe�cient per row of C in 2000-2004 is 0.936 versus 0.909

in 1950-1954.

Very much like the simulation based on matrix 7, where Si and Sj was increased while

keeping Cij equal, the pairs with little co-occurrences are less overestimated when there

20When Cij = 0 both formulas return 0 and the di↵erence is therefore also zero and obviously the
smallest.
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are more occurrences of the same technology class with other classes, as is more the case

in 2000-2004. The pairs with relatively high numbers of co-occurrences have a larger

share of the sample in 2000-2004 compared to 1950-1954, like in matrix 6, where Cij is

increased while Si and Sj are kept equal, these pairs are more overestimated in 2000-2004.

The pairs with relatively many co-occurrences are likely to pass the threshold of 1 using

either formula, the stronger overestimation for these pairs in 2000-2004 does not lead to

much change with respect to passing this threshold. This is not the case for the pairs

with relatively fewer co-occurrences, which are less overestimated in 2000-2004 than in

1950-1954. Therefore in 2000-2004, these are less likely to pass the threshold irrespective

of whether formula 1 or formula 2 is used. While in 1950-1954 these pairs are more

likely to pass the threshold using formula 1 but not when using formula 2. As a result,

2000-2004 has larger overestimations of individual relatedness values but less pairs that

are wrongly identified as related.

The comparison shows that using formula 1 instead of formula 2 in research can lead to

non-negligible di↵erences and that some pairs and matrices are a↵ected disproportionally.

Note that with an incorrect specification of Si, Sj and m formula 1 becomes even more

inaccurate, see Section 4. It is unlikely that papers employing formula 1 instead of

formula 2 would have reached fundamentally di↵erent conclusions but a risk is more

present in some cases than others. It is recommended to use formula 2 in future research.
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Table 1 – Patent comparison results
1855-9 1860-4 1865-9 1870-4 1875-9 1880-4 1885-9 1890-4

Number of technology classes 327 335 343 356 361 372 379 385
Number of related pairs (Original formula) 5154 4902 7910 8954 10100 12396 13438 13484
Number of related pairs (Improved formula) 5150 4898 7892 8934 10080 12370 13398 13464
Di↵erence 4 4 18 20 20 26 40 20
Di↵erence (%) 0.07 0.08 0.22 0.22 0.19 0.21 0.29 0.14
Largest di↵erence in value 0.827 0.837 0.788 0.786 0.822 0.662 0.593 0.63
Largest di↵erence (%) in value 2.643 2.177 2.009 1.961 2.258 2.333 2.425 2.36
Smallest di↵erence in value 0.00599 0.00505 0.00234 0.00169 0.0011 0.00107 0.00084 0.00082
Smallest di↵erence (%) in value 0.0294 0.0268 0.01 0.0075 0.0085 0.0037 0.004 0.0032

1895-9 1900-4 1905-9 1910-4 1915-9 1920-4 1925-9 1930-4
Number of technology classes 385 387 390 394 403 404 405 415
Number of related pairs (Original formula) 14196 15866 16372 16742 17784 18036 19560 21432
Number of related pairs (Improved formula) 14160 15842 16338 16694 17754 17990 19528 21396
Di↵erence 36 24 34 48 30 46 32 36
Di↵erence (%) 0.25 0.15 0.20 0.28 0.16 0.25 0.16 0.16
Largest di↵erence in value 0.625 0.515 0.586 0.666 0.645 0.753 0.711 0.677
Largest di↵erence (%) in value 2.568 2.341 2.303 2.441 2.536 2.173 1.933 1.872
Smallest di↵erence in value 0.00063 0.00056 0.00042 0.00051 0.00038 0.00039 0.00023 0.00018
Smallest di↵erence (%) in value 0.0026 0.0054 0.0055 0.0071 0.0052 0.0023 0.0036 0.0071

1935-9 1940-4 1945-9 1950-4 1955-9 1960-4 1965-9 1970-4
Number of technology classes 414 417 413 423 427 430 432 434
Number of related pairs (Original formula) 22852 23430 23336 25104 24422 25326 25932 25590
Number of related pairs (Improved formula) 22814 23388 23280 25060 24360 25280 25902 25544
Di↵erence 38 42 56 44 62 46 30 46
Di↵erence (%) 0.16 0.17 0.24 0.17 0.25 0.18 0.11 0.18
Largest di↵erence in value 0.557 0.56 0.525 0.492 0.557 0.529 0.579 0.661
Largest di↵erence (%) in value 1.641 1.76 1.772 1.726 1.51 1.561 1.602 1.892
Smallest di↵erence in value 0.00015 0.00015 0.00022 0.00014 0.00014 0.00011 0.00009 0.00008
Smallest di↵erence (%) in value 0.003 0.0034 0.0063 0.0019 0.0029 0.0018 0.0015 0.0006

1975-9 1980-4 1985-9 1990-4 1995-9 2000-4 2005-9 2010-4
Number of technology classes 436 435 435 435 431 437 436 438
Number of related pairs (Original formula) 25350 25012 24712 23982 24120 24422 24356 26382
Number of related pairs (Improved formula) 25324 24980 24676 23928 24084 24388 24310 26348
Di↵erence 26 32 36 54 36 34 46 34
Di↵erence (%) 0.10 0.12 0.14 0.22 0.14 0.13 0.18 0.12
Largest di↵erence in value 0.684 0.694 0.69 0.524 0.501 0.581 0.592 0.64
Largest di↵erence (%) in value 2.29 2.52 2.192 2.293 2.404 3.234 3.176 2.834
Smallest di↵erence in value 0.00008 0.00008 0.00006 0.00005 0.00005 0.00004 0.00003 0.00002
Smallest di↵erence (%) in value 0.0018 0.0033 0.004 0.0028 0.0033 0.0036 0.0013 0.0012
Notes: A pair is seen as related when the respective formula returns a value of 1 or higher for a certain pair. The statistics expressed in
percentages are taken with respect to the value returned by the improved formula 2.
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7 Conclusion

Co-occurrence data is commonly used in various domains. Researchers generally apply

normalisation measures to correct for the size-e↵ect. To this end, van Eck and Waltman

(2009) make a convincing case to use a probability-based measure known as the association

strength. In which the number of observed co-occurences is divided over the number

of expected co-occurrences, assuming that observations are randomly distributed over

co-occurences.

However, the probability formula to calculate the expected number of co-occurrences is

not suited for the co-occurrence analysis it is recommended for. In this line of research

self-co-occurrences are non-existent or irrelevant, whereas the probability formula assumes

that an observation from an entity can be drawn again after been picked in the first draw.

This paper introduces a formula that is based on, but not equal to, combinations without

repetition in which the probability of drawing entity i and j together is calculated as

the probability of drawing i first and then j, knowing that none of the observations

pertaining to i can be drawn plus the the probability of drawing j and then j, knowing

that none of the observations pertaining to i can be drawn. This formula gives the correct

results in an intuitive example.

Furthermore, it is shown that the original formula overestimates the relatedness between

a pair of entities compared to the improved formula introduced here, when there is at least

one observed co-occurrence, and that the overestimation is not proportional across pairs.

Simulations show that the over estimation of the relatedness can range between virtually

0% and almost 100% of the correct value given by the improved formula. In a real world

example, a number of patent samples showed that the overestimation of individual values

was between virtually 0% and 3.234%, while the di↵erence in the number of pairs that

can be seen as related can be 0.29% more than the number of pairs identified as related

by the improved formula.
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All in all, it is evident that the formula presented here is better equipped for the analysis

of co-occurrence data. The formula, including all recommendations for inputs and

treatment, is available in the EconGeo package for R by Balland (2016).
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