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Knowledge Networks and Strong Tie Creation: the Role of Relative Network 

Position 

 

Abstract 

The proximity literature usually treats proximity in terms of common attributes shared by 

agents, disregarding the relative position of an actor inside the network. This paper discusses 

the importance of such dimension of proximity, labelled as in-network proximity, and proposes 

an empirical measurement for it, assessing its impact (jointly with other dimensions of 

proximity) on the creation of strong knowledge network ties in ICT in the region of Trentino. 

The findings show that actors with higher in-network proximity are more attractive for both 

other central actors and peripheral ones, which is further strengthening their position within the 

network.  

 

Keywords: knowledge networks, in-network proximity, strong ties, proximity dimensions. 

 

1. Introduction 

The significant role of knowledge and knowledge networks in the innovation process is central 

in the literature on regional development. Regions create and use knowledge to build 

competitive advantage (Asheim et al, 2007). Knowledge networks operate as channels for 

knowledge creation and transfer (Owen-Smith & Powell, 2004; Boschma & ter Wal, 2007), 

through social and business links (Granovetter, 1973). These relationships can be more or less 

intense (Granovetter, 1973).  

A key issue in the literature of knowledge networks is how agents choose other agents for the 

creation and transfer of knowledge. The literature acknowledges that this happens because of 
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similarities in the attributes of the actors which are referred to as homophily in the sociology 

literature (Borgatti & Foster, 2003), or proximity in the economic geography literature 

(Boschma, 2005). The proximity literature has produced several classifications of proximity 

(Torre & Rallet, 2005, Boschma, 2005; Broekel & Boschma, 2012; Caragliu & Nijkamp, 

2016). The common feature of these taxonomies is that they consider the similarities in the 

attributes of the actors, but they disregard their relative position within the network.  

The relative position of an actor within the network, however, seems to be important for the 

creation of strong ties between actors that are beneficial for the actors in order to face uncertain 

situations (Rost, 2011). Actors are likely to seek to create strong collaborative ties with other 

more central actors in the knowledge network, than with more peripheral ones. This is because 

the relatively more central actors are associated with a higher number of connections and, 

consequently, an easier reach to knowledge resources.  

The aim of this paper is to define a new measure of proximity, the in-network proximity, able 

to cover this gap in the literature. Apart from the conceptual justification and definition of this 

kind of proximity, the paper will also propose an empirical measurement, examining how it 

affects the probability of repeated collaborations (strong ties) between actors.  

This study places itself within the literature on core-periphery network structure (Morrison & 

Rabellotti, 2009) and on the effect of proximity on knowledge networks that take into 

consideration the centrality of actors inside the network (Autant-Bernard et al, 2007; Cassi & 

Plunket, 2015). However, compared with the existing empirical studies that use the absolute 

difference of centralities of actors inside the network, this paper contributes with an analytical 

method of assessing whether two actors can be considered central or peripheral, and 

simultaneously distant or proximate between them. 

For doing so, we use the quantiles of the absolute differences and the sums of all pairs of actors 

inside the knowledge network. Empirically, we assess the impact of in-network proximity, 
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alongside other kinds of proximity on the occurrence of repeated research collaborations based 

on a unique set of data on collaborative projects in Information and Communication 

Technologies (ICT) in the Italian region of Trentino. 

The paper is structured as follows. Section 2 presents a critical review of the literature on the 

different dimensions of proximity, pointing out the relevance of the relative distance between 

actors within a network. Section 3 provides a definition and a measurement for in-network 

proximity. Section 4 presents the data of the case study analysis, in which the role of in-network 

proximity on networks’ development is tested. Section 5 presents the results of the analysis, 

and Section 6 discusses the conclusions and the implications out of the findings of the study. 

 

2. Knowledge networks and the importance of actors’ proximity 

The literature confirms that the similarity in the characteristics of actors (proximity) is 

important for the development and reinforcement of collaboration between them (Boschma 

2005; Boschma & Frenken, 2010; Balland et al, 2015). However, proximity means more than 

just geographical closeness: two actors in a knowledge network can demonstrate proximity 

although they are not geographically close. Several works provided different classifications of 

proximity (Torre & Rallet, 2005; Boschma, 2005; Broekel & Boschma, 2012; Caragliu & 

Nijkamp, 2016). The most used classification is the one by Boschma (2005) who proposed five 

dimensions of proximity that affect the propensity of actors to exchange knowledge and 

innovate. These dimensions are geographical, cognitive, organizational, social, and 

institutional proximities. 

Geographical proximity is represented by the physical distance of two actors and is regarded 

beneficial for knowledge transfer. In the empirical studies, the geographical proximity is 

measured by the absolute geographical distance between two actors (Broekel & Boschma, 

2012), travel time (Ejermo & Karlsson, 2006), or by categories of geographical proximate 
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actors, like inside the country, neighbouring countries and the rest of the world (Ponds et al, 

2007; Hansen, 2015), or just local and non-local (Boschma & ter Wal, 2007). 

Cognitive proximity expresses the overlapping in knowledge bases of actors. To measure 

cognitive proximity, empirical studies use proxies such as technological profiles derived from 

patent data (Nooteboom et al, 2007), statistical classifications of economic activities, like 

NACE codes (Broekel & Boschma, 2012; Broekel, 2015), or industrial classification with 

digits (Boschma et al, 2009; Boschma et al, 2012). 

Organizational proximity concerns the degree of similarity of actors in organizational terms. 

Organizational proximity is assumed to help the knowledge exchange and reduce the 

transaction costs. Empirically, there is a distinction between profit and non-profit 

organizations, or private and public (Cantner & Graf, 2006; Broekel & Boschma, 2012). 

Alternatively, the organizational proximity can be measured in terms of subsidiaries of the 

same parent organization (Balland, 2012; Balland et al, 2015; Broekel, 2015).  

Social proximity refers to the embeddedness of actors in the micro-level, in terms of friendship, 

kinship, and experience (Boschma, 2005). The majority of the empirical literature tends to 

consider the idea of social proximity equivalent to the concept of strong ties (Broekel, 2015). 

Alternatively, in the empirical literature, social proximity is treated as the possibility of two 

actors to be close socially after sharing a common situation back in time (Broekel & Boschma, 

2012) or the degree that individuals affiliated to the organizations under research are socially 

interacting between them out of the organizational context (Huber, 2012). 

Finally, institutional proximity is an aspect of proximity where the actors share common 

institutional and cultural attributes (Gertler, 2003; Capello et al, 2009). Institutional proximity 

provides to the actors stable conditions for knowledge transfer (Boschma & Frenken, 2010). It 

can be expressed by either formal institutions, such as laws, or informal institutions, such as 

cultural norms, which affect the way in which actors coordinate their actions.  
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The common characteristic of all the aforementioned dimensions of proximity is that they take 

into consideration the attributes (characteristics, values) that individual actors may share. They 

disregard the relative position of an actor inside the network, and in this case inside the 

knowledge network. This element, however, can be assumed to be extremely relevant for the 

occurrence of strong ties. This idea stems from the theory of preferential attachment, which 

supports that the most connected (central) nodes are more probable to receive new links 

(Barabasi & Albert, 1999).  

Since the actors become part of the network, they increase their connectivity according to how 

much they are suitable to compete for connections (Bianconi & Barabasi, 2001). In this way, 

the fitter nodes outcompete the less fit ones. So, when a new actor enters into the social 

network, it seeks to be connected with centrally positioned, well-established actors (Newman, 

2001; Wagner & Leydesdorff, 2005). Hence, there is a cumulative advantage for the better 

positioned actors (Gluckler, 2007). Future ties tend to form around strong ties by processes of 

trust and indirect referrals. In this way, persistent and resilient network structures emerge 

within tightly connected groups of actors. Simultaneously, the networks tend to expand through 

a process in which the actors seek for diversity of relations (Glucker, 2007; Morrison & 

Rabellotti, 2009).  

Based on preferential attachment (Barabasi & Albert, 1999), literature has considered the 

position of the actors in terms of actor’s and tie’s attributes and in structural way (brokerage 

and bridging ties, triadic closure).  

The idea of brokerage and bridging ties is connected to the Granovetter’s (1973) strength of 

weak ties. Bridging is the activity in which a tie connects separate sub-networks inside the main 

network (Everett & Valente, 2016).  Bridging ties enable actors to tap on resources that 

otherwise they would not be able to have access to, and the control of such ties may empower 

actors inside the network (Cassi & Plunket, 2015; Everett & Valente, 2016). This control of an 
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actor over a bridging tie is defined as brokerage (Burt, 2005; Everett & Valente, 2016). Hence, 

brokerage is treated as a node attribute, and highlights the importance of the position of an 

actor inside the network.  

Again, originating to Granovetter (1973) and closely connected to the notion of brokerage 

(Burt, 2005), another measure that underlines the importance of an actor’s position inside the 

network is the triadic closure. Triadic closure is the case when a node acts as an intermediary, 

connecting two other actors, translated in a social context as ‘a person introducing two of its 

personal acquaintances to each other’ (Opsahl, 2013; ter Wal, 2013). Therefore, in case that 

two actors are not connected with each other, the actor that is a common connection holds, in 

one hand, a favourable position, which though requires effort in preserving two separate 

relationships, and these two separate actors are more probably to connect with each other (ter 

Wal, 2013). Triadic closure is frequently used by the literature as a structural measurement of 

the ‘status’ or ‘reputation’ of an actor inside the network (Balland et al, 2016). 

In line with strong and weak ties (Grannovetter, 1973), we assume that actors which have 

‘privileged’ positions (in terms of bridging, triadic closure, or in our case centrality) inside the 

network, to know and trust each other, so they are preferred for collaboration. However, their 

knowledge may overlap; therefore, bearers of new knowledge may be more peripheral or new 

actors in the network.  

3. In-Network Proximity: a definition and a measurement  

3.1 In-network proximity: a definition 

Taking into consideration this core-periphery function of social networks, this paper introduces 

the concept of in-network proximity, defined in terms of the position of the actor inside the 

network in respect with the rest of the actors. In other words, in-network proximity measures 

how central the actor is in the network, compared with the centrality of other actors. In case 

that two actors are in-network proximate, this means that they have similar central or peripheral 
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positions in the network, while if they are in-network distant, the one is more central and the 

other more peripheral. 

Thus, central actors that are better in-network positioned are expected to be more preferred for 

repeating collaboration, either by peripheral or by other central actors. This leads us to 

distinguish three cases: two actors can be either central and proximate, or peripheral and 

proximate, or in-network distant, and this is assumed to have a different impact on the 

occurrence of repeated collaborations. More precisely, the in-network proximity is expected to 

be relevant in two specific circumstances, leading to two different research hypotheses: 

H1a: The fact that two actors are central and in-network proximate is important for the 

reinforcement of repeated collaborations (strong ties) between them.  

H1b: In-network distance is important for the reinforcement of repeated collaborations (strong 

ties) between central and peripheral actors.  

A necessary premise to the definition of in-network distance concerns the interpretation of 

proximity. In fact, actors can be in-network proximate or distant in more than one way. An 

actor can be considered more central in relation with the rest of the agents of the network in 

terms of the number of connections that it has (degree centrality) (Freeman, 1978). Closeness 

centrality (Freeman, 1978) constitutes another way to measure the importance of an actor 

inside the network. It indicates how close this actor is to all the other actors of the network. 

Finally, eigenvector centrality constitutes a measure for the influence of the actor to the rest of 

the network (Newman, 2008), taking into account the importance of the agents connected to 

this actor.  

As the centrality of the actors can be assessed by different points of view, the relative position 

of an actor considering its centrality inside the knowledge network may have differentiated 

meaning (Broekel & Boschma, 2012; Cassi & Plunket, 2015).  Therefore, we disentangle the 

aforementioned hypotheses on the effect of in-network proximity and distance, taking into 
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consideration three different types of centrality, namely degree, closeness, and eigenvector 

centralities. The hypotheses form as follows: 

H2a: The position of a pair of actors in terms of their degree centrality affects positively the 

reinforcement of repeated collaborations (strong ties) between them. 

H2b: The position of a pair of actors in terms of their closeness centrality affects positively the 

reinforcement of repeated collaborations (strong ties) between them. 

H2c: The position of a pair of actors in terms of their eigenvector centrality affects positively 

the reinforcement of repeated collaborations (strong ties) between them. 

3.2 In-network proximity: the measurement 

For measuring in-network proximity, it is necessary to assess two elements: the position of the 

single actor inside the knowledge network, and the distance of its position from the position of 

the rest of the actors inside the network (proximity). In terms of proximity we identify the case 

that two actors are distant, which implies simultaneously that one is relatively positioned more 

centrally than the second, and the case that two actors are proximate. In terms of position in 

the network, these two actors can be either both relatively central (proximate), or both relatively 

peripheral (proximate). Therefore, we can distinguish the following three cases: 

!	#$%&	'(	$)*'&+	)$,	-.	 /
%, − ,.*1'&2	3%+*$,*

%, − ,.*1'&2	#&'4%5$*.	 6 -'*ℎ	).,*&$8
-'*ℎ	#.&%#ℎ.&$8

 

For every pair, two actors for being proximate, they need to have a relatively low absolute 

difference of their centrality scores, while for being central they need to have a relatively high 

sum of their centrality scores, which means that they have to be below or above certain 

thresholds. In order to set the lower (L) and upper (U) threshold for this study, we use the 



10 
 

quartiles (Q [25] and Q [75]) of the distributions of absolute differences, and centrality scores 

respectively1.   

Estimating the distribution of the absolute differences of all the pairs of actors the lower 

threshold is L= Q[25] and the lower adjacent value is defined as 4!, such that 4! ≥ :, and 

4(!#$) < :. Therefore, an absolute difference between two actors can be characterized 

relatively low, if $-+3%(!& < :. On the other hand, centrality score constitutes an actor attribute 

that has to be expressed in a dyadic way. For an actor to be characterized relatively central or 

not, we estimate the distribution of the centrality scores of all the actors in the knowledge 

network. The upper threshold, in this case, is U = Q[75] and the upper adjacent value is defined 

as 4!, such that 4! ≤ =, and 4(!'$) > =. The centrality score of an actor should be 4! > =, for 

the actor to be considered relatively central. For every pair of actors in the knowledge network, 

both of them are considered central if the sum of their centrality scores is higher than 2U. Thus, 

a pair of actors is characterized central, if +?5!& > 2=. 

Summing up, two actors are in-network proximate and both centrally when they have relatively 

low absolute difference and relatively high sum of their centralities. They are in-network 

proximate and both peripherally positioned, when they have relatively low absolute difference 

and relatively low sum in their centralities. They are in-network distant in any other case.  

4. The Empirical Case 

4.1 The region of Trentino (Italy) 

 
1 The quartiles of the distribution are selected as moderate thresholds. Alternatively, different 

percentiles could (2%, 9%, 91% and 98%), or even the outliers could be used for defining stricter 

conditions of proximity and centrality. In this latter case the lower threshold is ! = #[25] − !
" (#[75] −

#[25]) and the upper threshold is , = #[75] + !
" (#[75] − #[25]). 
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The present research analyses the network of actors participating in collaborative projects in 

the ICT regional innovation system of Trentino in Italy. The region of Trentino has some 

unique characteristics regarding its geography, history and funding policy. Geographically, 

Trentino is located in the passage that connects Italy with Austria and further with Germany. 

Due to its location, it is linked to both German and Mediterranean markets. Historically, 

Trentino has been an agricultural region with “soft” industrialization during the 1960's and 

1970's. Although agriculture has still strategic importance for the provincial economy, the last 

twenty years Trentino had an impressive growth in the number of businesses in the ICT sector. 

Finally, the region is an Autonomous Province, enjoying considerable autonomy from the 

Italian central government and has its own elected government and legislative assembly. The 

province is in control of 9/10 of the taxes collected in its territory. During the last two decades, 

the province of Trento has invested heavily in the ICT sector, with the purpose of making 

Trentino a key technology hub in Central Europe. 

4.2 Data from R&D projects 

The data source most used in the literature to trace knowledge transfer depicted in knowledge 

network form is the patent data (Cantner & Graf, 2006). However, in the ICT field, there is not 

a lot of patenting activity, while when it exists the quality of these patent is difficult to be 

assessed, making the use of patent data in several cases quite problematic. 

In this paper, we use data on R&D collaborative projects on ICT sector that include at least one 

actor located in Trentino. It is a complete primary dataset, that includes the entire population 

of projects, and consequently of the actors that participated in such project for a period of 

fifteen years (2000-2014). There are two R&D projects before 2000, however, they are not 

taken into consideration, as the Autonomous Province of Trento started investing heavily on 

ICT research and development since 2000. We collected the entire population of projects 

(regionally, nationally, internationally, publicly or privately funded) using the following 
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procedure. The complete list of public and private organizations with activity on the ICT sector 

was retrieved by the official website of the regional authority. For every organization in this 

list, we visited their official websites, where they publish their R&D activity. We crosschecked 

the projects collected with this method, as well as, the list of organizations, in the web 

catalogues of research projects of European Commission (CORDIS), the Autonomous 

Province of Trento, and smaller public and private funders.  

Data on R&D projects include information at the level of organizations, like the title, acronym 

and abstract of the project, start and concluding dates, funding source, list of participants and 

coordinating actor. For every participant and coordinator, all projects include location and type 

of organization. In Trentino, for the period from 2000 until 2014, a total number of 2,394 actors 

were identified, participating in 543 ICT R&D projects. The average duration of the projects 

is 3.6 years.  

From these actors, 6.55 per cent (157 actors) is located in Trentino, 15.29 per cent (366 actors) 

is located in other regions of Italy, and the rest 78.15 per cent (1,871 actors, the biggest part of 

the actors) is located in other countries. Additionally, there is a detailed distinction of actors in 

terms of incentives and orientation of organization. The actors are distinguished in universities, 

research centres, large firms, SMEs, public agencies, and other kinds of organizations. So, 

20.12 per cent (481 actors) of the actors is universities, 23.16 per cent (555 actors) concerns 

research centres, 19.57 per cent (468 actors) is large firms, 25.08 per cent (601 actors) is SMEs, 

7.26 per cent (174 actors) is public agencies, and the rest 4.8 per cent (115 actors) concerns 

other kinds of organizations. 

4.3 Multiplexity of networks and regression 

Networks are multiplex entities, with a variety of agents connected between them in a variety 

of relationships (Lazega & Pattison, 1999; Skvoretz & Agneessens, 2007). This happens as the 

actors interact in different social contexts that overlap in an extent. Therefore, the constellation 
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of the actors participating in ICT R&D projects in Trentino can be connected between them 

with different relationships indicating knowledge transfer. The collected data provides this type 

of information on collaboration, coordination and funding of projects, indicating interaction 

with an actor that plays a specific role inside the knowledge network.  

The aforementioned kinds of relationships (collaboration, coordination, and funding) can be 

traced for all the R&D ICT projects in Trentino and indicate knowledge transfer between 

actors. The main relationship is the collaboration between two actors. It is implied by the 

common partnership of two actors in the same R&D project. The assumption here is that 

knowledge flows without restrictions among the partners of every project, and consequently 

partnership in the same projects implies information sharing (Inkpen & Tsang, 2005; 

Assimakopoulos et al, 2016; Tsouri, 2019).  

Other two kinds of relationships indicating knowledge transfer were extracted by the data, 

being significant for the existence and management of the knowledge creation and transfer in 

every project. The first is the relationship of coordination. It comes from the interaction of a 

project participant directly with the coordinating agent of the project. The role of a coordinator 

is to distribute and collect the knowledge produced by the project. Therefore, the coordination 

relationship appears important for the diffusion and the management of knowledge inside the 

network (Fritsch & Kauffeld-Monz, 2010; Phelps et al, 2012). The second relationship 

identified is the funding relationship, which is important for the existence of the project itself 

and, as a result, for the transfer of the knowledge among the participants (Landry et al, 2007). 

Simultaneously with the flows of funds from the funding entities to the participants, these 

funding entities act like knowledge pools and requiring knowledge back in the form or reports.   

Data on these three kinds of relationships, namely collaboration, coordination and funding, 

collected for the Trentino ICT sector, in combination with the agent characteristics (e.g. 

location, organizational kind), can be depicted in three different networks (collaboration, 
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coordination, and funding), used to empirically verify the hypotheses H1 and H2. Descriptive 

evidence for the cumulative knowledge transfer by the three different types of relationships in 

the period 2000 up to 2014 is presented in Table 1. The collaboration network demonstrates 

small world properties. These properties allow fast access to the most peripheral actors of the 

network. The coordination network appears to be less centralized than the other two networks. 

This implies the existence of few high degree actors inside the network that are connected with 

a high number of low-degree actors, reflecting the accumulation and management of 

knowledge by certain actors in the knowledge network. In contrast, the funding network is 

highly centralized, implying the existence of a dominant big funding agency and a range of 

other much smaller funders. 

Table 1: Descriptive knowledge network measurements of Trentino ICT Collaboration, Coordination, and Funding Networks 
(2000-2014) 

 Collaboration Network 
(2000-2014) 

Coordination Network 
(2000-2014) 

Funding Network 
(2000-2014) 

Nodes 2394 2394 2394 
Edges 46148 4090 2717 
Average Degree 43.277 3.831 2.101 
Network Diameter 4 7 7 
Graph Density 0.016 0.001 0.001 
Network 
Centralization 

0.380 0.083 0.895 

Average Clustering 
Coefficient 

0.872 0.274 0.024 

Average Shortest Path 
Length 

2.536 3.917 2.385 

The statistical analysis was performed with Gephi (Bastian et al, 2009) and UCInet (Borgatti et al, 
2002) 

 

The data of the Trentino ICT R&D projects can be summarized in three one-mode 

sociomatrices (actor x actor), portraying the three different networks resulting from the 

collaboration, coordination and funding relationships. The result is three square matrices with 

rows and columns the number of actors, depicting actor-to-actor interactions. In addition, the 

characteristics of the agents are expressed in the same, dyadic, way, resulting to square matrices 

of the same size with the rest of the variables.  
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The linear model that represents the interactions between the matrices/variables cannot be 

estimated by the standard OLS, due to the presence of structural autocorrelation in this type of 

relational data. The observations are not independent, since they are interactions between the 

same actors in the network. This causes problems in the estimation of the model with the 

standard statistical and econometric methods. To avoid this problem, we use Quadratic 

Assignment Procedure (QAP), a permutation method that makes no assumptions about the 

distribution of the parameters (Cantner and Graf 2006; Maggioni et al, 2011; Graf & Kruger, 

2011; Broekel & Boschma 2012; Cantner & Rake 2014, Tsouri, 2019). It creates a permutation 

distribution that could have been produced by random datasets, with the same structure but 

different node assignments as the initial dataset, permuting the rows and columns of the 

dependent variable. Therefore, the p-value produced is the frequency of the coefficients of the 

permuted dataset compared with those of the original dataset. For example, if the coefficient 

of the original dataset is greater than 95% of the coefficients of the random datasets, then it is 

significant at the 0.05 level, as it was the same large or larger to five of 100 permutations. Thus, 

QAP is considered suitable method for this study, due to the dyadic structure of the data and 

the amount of interactions treated. 

5. Explaining the knowledge network by the relative position of the actors 

5.1 Model and variables 

In this paper we depicted the collaboration network as an , × , adjacency matrix, Y, where for 

every case, yij is equal to zero, if the actors at i and j positions have no common participation 

in a project, or yij is equal to a positive integer that represents the existence and the strength of 

the tie between these two actors. According to Granovetter (1973) the strength of a tie equals 

to many times the actors i and j have cooperated between them. The generalized formula that 

estimates the strength of the undirected ties of the collaboration network is the following:  

yij = α + β'xij + εij for all i<j, 
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where yij is the value estimated for the relationship between i and j that this model explains. 

The matrix xij includes all the explanatory and dummy variables that relate i and j.  

The dependent network (Collaboration) is the existence and strength of ties in the simplest 

relationship that implies knowledge transfer, the collaboration network, as it was formed in the 

end of 2014. It takes the value zero when two actors have not collaborated at all, and a positive 

integer value if they did, according to the number of projects the two actors have co-participated 

in. In order to explain the existence and the strength of these relationships we use three sets of 

variables: the first one is the coordination and funding networks, representing different types 

of collaborations that indicate knowledge transfer, the second group is the dummies that 

represent the different dimensions of proximity, and the third set is the representation of the 

relative position of an actor inside the network (in-network proximity). 

The coordination network (Coordination) is the representation of the relationship between a 

coordinating actor and the rest of the participants of the project. We take it in consideration as 

the specific status of certain actors as coordinators of projects, and the interaction of project 

participants with them may be of importance for stronger collaborations. The funding network 

(Funding) is the depiction of the funding relationship between funding entities and participants 

of projects. Interactions of participants with these specific actors also may affect the 

strengthening of collaboration between agents. 

In the second set of variables we use three of the aforementioned dimensions of proximity, 

namely the geographical (GEOPROX), the institutional (INSTPROX), and the organizational 

(ORGPROX) proximities2. Assuming that two actors are geographically proximate when they 

 
2 In this paper, we do not control for the effects of cognitive and social dimensions of proximity. There 

are not sufficient data for the national and regional projects to control for cognitive proximity in the 

actor level. The omission of these projects would result to the loss of important information on the 

knowledge creation and transfer network inside the region. On the other hand, this paper does not 
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are both located inside Trentino, we employ a dummy variable that equals to one in this case 

and zero otherwise. Institutional proximity relates to the cases when one actor is located inside 

Trentino and the other in any other region of Italy3. Consequently, these two actors belong to 

the same institutional context at the national scale, as they act under the same laws, norms, and 

culture. The dummy variable we employ to express institutional proximity equals to one if the 

interaction is national and zero otherwise. The third dummy variable controls for organizational 

proximity and expresses the case when two actors belong to the same organizational context 

(they are both universities, research centres, SMEs, large firms, or public agencies).  

In the third set of variables employed belong the variables that describe the in-network 

proximity of actors in different centrality terms. In other words, they express how proximate 

or distant are two actors according to their relative position inside the knowledge network. We 

control for the effect of the relative position of the actors in terms of three different kinds of 

centrality, namely degree, closeness, and eigenvector centralities. For each one of them we 

employ a dummy matrix that includes the cases that two actors are either both central and 

proximate or distant, while we consider as reference case when they are both peripheral and 

proximate. Therefore, we employ the following in-network proximity variables: central and 

proximate actors according to degree centrality (DEGCENT_central_proximate), distant actors 

 
control for social proximity, as the repeated interactions are treated as an attribute of a relationship of a 

pair of agents, and not as an attribute of a specific organization. 

3 The institutional proximity has been assessed at the national scale. When we split the Italian regions 

in north and south, assuming that Trentino has more institutional similarities with other Italian regions 

in the north, the result remained insignificant. Hence, actors in Trentino consider actors located in the 

rest of the Italian territory as equal, without differentiating between north and south. This probably 

happens because the institutional setting of Trentino differs considerably from the rest of Italian regions 

in terms of autonomy. 
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according to degree centrality (DEGCENT_distant), central and proximate actors according to 

closeness centrality (CLOSCENT_central_proximate), distant actors according to closeness 

centrality (CLOSCENT_distant), central and proximate according to eigenvector centrality 

(EIGCENT_central_proximate), and distant according to eigenvector centrality 

(EIGCENT_distant).  

As the purpose of the paper is to examine the effect that has the similarity or difference in the 

relative position of two actors on their strong tie connectivity, we test both the overall effect of 

two similarly or differently positioned actors (H1), and the effect of each type of centrality 

(H2). For this purpose we employ the following model. 

(1) B'88$-'&$*%', = B''&3%,$*%', + E?,3%,F + GHIJKIL + MNOPJKIL +

IKGJKIL + QHG).,*&$8#&'4%5$*. + QHG3%+*$,* +

B:IO).,*&$8#&'4%5$*. + B:IO3%+*$,* + HMG).,*&$8#&'4%5$*. + HMG3%+*$,* 

The correlation between the networks and the proximity dimensions, displayed in Table 2, 

suggests that there is significant interaction between the depended and independent variables. 

In some cases, the independent variables are not significantly interacting between them, but 

still the correlation is not so high for implying autocorrelation between them. This first 

evidence from the variable correlations are empirically verified in the interpretative analysis 

discussed in the following session. 
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Table 2: QAP correlations between the variables of the model 

 Collaboratio
n 

Coordinatio
n 

Fundin
g 

GEOPRO
X 

INSTPRO
X 

ORGPRO
X 

DEGCEN
T 
Central 
proximate 

DEGCEN
T 
distant 

CLOSCEN
T 
Central 
proximate 

CLOSCEN
T 
distant 

EIGCEN
T 
Central 
proximate 

EIGCEN
T 
distant 

Collaboratio
n 

1.000 
(0.000) 

           

Coordination 0.476 
(0.001) 

1.000 
(0.000) 

          

Funding 0.084 
(0.001) 

0.182 
(0.001) 

1.000 
(0.000) 

         

GEOPROX 0.002 
(0.059) 

0.000 
(0.583) 

0.007 
(0.052) 

1.000 
(0.000) 

        

INSTPROX 0.000 
(0.413) 

0.001 
(0.210) 

0.001 
(0.203) 

0.389 
(0.001) 

1.000 
(0.000) 

       

ORGPROX 0.002 
(0.047) 

0.001 
(0.228) 

0.001 
(0.107) 

0.011 
(0.001) 

0.009 
(0.001) 

1.000 
(0.000) 

      

DEGCENT 
Central 
proximate 

0.038 
(0.001) 

0.005 
(0.006) 

-0.001 
(0.543) 

-0.002 
(0.268) 

0.003 
(0.024) 

0.001 
(0.350) 

1.000 
(0.000) 

     

DEGCENT 
distant 

0.021 
(0.001) 

0.007 
(0.001) 

0.002 
(0.263) 

-0.000 
(0.461) 

0.003 
(0.053) 

0.006 
(0.108) 

-0.184 
(0.001) 

1.000 
(0.000) 

    

CLOSCENT 
Central 
proximate 

-0.002 
(0.095) 

-0.002 
(0.018) 

-0.002 
(0.167) 

-0.003 
(0.161) 

-0.000 
(0.421) 

-0.004 
(0.079) 

-0.003 
(0.123) 

-0.034 
(0.001) 

1.000 
(0.000) 

   

CLOSCENT 
distant 

0.002 
(0.108) 

0.002 
(0.035) 

0.002 
(0.155) 

0.003 
(0.140) 

0.000 
(0.462) 

0.004 
(0.084) 

0.003 
(0.117) 

0.034 
(0.001) 

-1.000 
(0.001) 

1.000 
(0.000) 

  

EIGCENT 
Central 
proximate 

0.014 
(0.001) 

0.000 
(0.308) 

-0.000 
(0.232) 

-0.001 
(0.120) 

-0.000 
(0.473) 

0.000 
(0.333) 

0.001 
(0.167) 

0.004 
(0.001) 

0.007 
(0.001) 

-0.007 
(0.001) 

1.000 
(0.000) 

 

EIGCENT 
distant 

0.020 
(0.001) 

0.006 
(0.001) 

0.004 
(0.090) 

0.003 
(0.185) 

0.001 
(0.338) 

0.010 
(0.021) 

0.025 
(0.001) 

0.100 
(0.001) 

-0.382 
(0.001) 

0.382 
(0.001) 

-0.025 
(0.001) 

1.000 
(0.000) 

The statistical analysis was performed with UCInet (Borgatti et al, 2002) 



20 
 

 

5.2 The role of in-network proximity in the strategic choices of organizations 

Table 3 presents the estimates of Equation (1), examining the effect of the three groups of 

factors on the collaboration ties for the period 2000 up to 2014.  

Table 3: The effect of the different types of in-Network proximity on the strong collaborative ties (2000-2014) 

Dependent variable: Collaboration ties (2000-2014) 

 Model without in-network proximity 
aspects 

Model with in-network proximity 
aspects 

 Coefficients 
(P-values) 

Standard Errors Coefficients 
(P-values) 

Standard Errors 

Coordination 1.330*** 
(0.001) 

0.002 1.329*** 
(0.001) 

0.003 

Funding 0.006*** 
(0.001) 

0.003 0.006*** 
(0.001) 

0.002 

Geographical 
Proximity 

0.007* 
(0.062) 

0.005 0.007* 
(0.075) 

0.005 

Institutional 
Proximity 

0.001 
(0.288) 

0.002 0.001 
(0.350) 

0.002 

Organizational 
Proximity 

0.001* 
(0.052) 

0.000 0.001* 
(0.071) 

0.000 

Degree Central 
and Proximate 

  0.057*** 
(0.001) 

0.001 

Degree Distant   0.008*** 
(0.001) 

0.000 

Closeness Central 
and Proximate 

  0.003 
(0.580) 

0.001 

Closeness Distant   -0.001 
(0.143) 

0.001 

Eigenvector 
Central and 
Proximate 

  0.159*** 
(0.001) 

0.007 

Eigenvector 
Distant 

  0.006*** 
(0.001) 

0.001 

R-sq 0.226  0.229  

Observations 5,728,842  5,728,842  

The statistical analysis was performed with UCInet (Borgatti et al, 2002) 

 

The strong coordination and funding ties (other types of knowledge) during the entire period 

are affecting positively and significantly the overall strong collaboration ties. The effect of the 

coordination ties appears to be much more intense than the funding ones. This means that the 

relationship of two actors when one of them is coordinator of a project, affects extensively the 

strong collaboration between these two actors. Therefore, the management of knowledge by an 
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actor is evaluated more for strong collaborations. The effect is much smaller when the one of 

the two actors is a funding entity, although still significant. 

The second set of variables are three of the traditional dimensions of proximity. The overall 

effect of the proximity dimensions is positive. However, only the geographical and 

organizational proximities seem to have a significant effect on the strong collaboration between 

actors. Therefore, if two actors are located in the same region, they create a stronger 

collaboration, while the fact that two actors are located in the same country does not appear to 

have an effect on the strong collaboration creation. Yet, two actors that they operate under the 

same organizational context (they are both SMEs, large firms, universities, research centres, or 

public bodies), create a strong collaboration between them. 

The in-network proximity in general appears to be significant for the formation of strong 

collaborations in the Trentino ICT knowledge network (partially verifying H1a). This 

underlines that when two nodes are both relatively central in the knowledge network, they 

collaborate more with each other. Similarly, when two nodes are distant inside the knowledge 

network, one is relatively central and the other relatively peripheral, this affects positively the 

strong collaboration between them in the ICT field in Trentino (partially verifying H1b). 

Without assessing the directionality of this relationship, we can say that two in-network distant 

actors are creating stronger collaborative ties. In all the three dimensions of in-network 

proximity or distance assessed in the paper (referring to degree, closeness, and eigenvector 

centrality measures), when two actors are central and proximate the effect is higher, in 

significance and intensity, than when they are in-network distant.  

Taking into consideration the kind of centrality measurement of the in-network proximity, we 

observe that degree and eigenvector centralities have a significant effect to the ability of strong 

tie creation by a pair of actors (verifying H2a and H2c). The closeness centrality has no 

significant effect to the strong collaborative ties, when it is considered for the measurement of 
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in-network proximity (rejecting H2b). Moreover, the eigenvector centrality has a larger 

positive effect on the strong collaboration than the degree centrality, in terms of in-network 

proximity. Two in-network proximate and central actors in terms of eigenvector create stronger 

ties, than two in-network proximate and central actors in terms of degree centrality. This does 

not hold in the case of in-network distant actors.  

6. Conclusions 

Until today, there are several classifications of proximity (Torre & Rallet, 2005; Boschma, 

2005; Broekel & Boschma, 2012; Caragliu & Nijkamp, 2016) with more frequently used the 

one of Boschma (2005), which also the present paper follows. Also, several dimensions were 

added, either differentiating from the most commonly used five dimensions, for example, 

‘relational proximity’ (Coenen et al, 2004), and ‘cultural proximity’ (Knoben & Oerlemans, 

2006), or by exploring different non-spatial or network attributes of the actors, like the 

‘regional network proximity’ (Wanzenboeck, 2018). However, there was little attention to the 

relative position of the actors inside the network, and the effect that their position has into their 

collaboration. 

The theoretical contribution of this paper is the introduction of a new type of proximity, taking 

into consideration the relative position of actors inside the network in terms of centrality. To 

this direction there were several attempts characterized by the absolute differences in centrality 

(Autant-Bernard et al, 2007; Cassi & Plunket, 2015), however they explore the relative position 

of the actors partially, as they can express only how much distant are two actors in terms of 

centrality inside the network.  

The in-network proximity, described in this paper, is defined in terms of different centrality 

measures (degree, closeness, eigenvector). Two actors may be central and proximate, central 

and peripheral, or distant inside the network. This affects their ability to create strong 

collaborative ties. More specifically, central and proximate actors create stronger ties, which is 
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in line with the theory of preferential attachment (Barabasi & Albert, 1999). The centrally 

positioned actors repeat collaboration with other central actors in the network, as central actors 

gather more ‘reputation’, signalling that they will possess the needed knowledge resources. 

Relatively peripheral actors, either not so active or new, inside the network, behave in a similar 

way. They seek for cooperation with relatively central actors in order to tap on knowledge 

resources they do not acquire. The effect on the creation of strong ties when a pair of actors is 

in-network distant is less strong than the effect between two central actors. Although, we 

cannot control for the directionality of the phenomenon, we speculate that the peripheral actors 

try to create strong ties with central actors for strengthening their position and reach to 

resources and expertise they may not have. On the other hand, central actors repeat 

collaborations with more peripheral actors, in order to avoid the ‘lock-in’, and get access to 

new, external knowledge and skills (Bathelt et al, 2004; Malerba, 2009; Crespo et al, 2013).  

The empirical research on data of collaborative ICT projects from Trentino region in Italy 

showed that not all kinds of centrality have the same effect on the creation of collaboration 

strong ties. The in-network proximity that uses centrality measures calculated by number of 

collaborations (degree and eigenvector centralities) have a significant effect opposed to the 

measure of centrality calculated through shortest path length (closeness centrality). This means 

that for strong ties creation the number of collaborations an actor has may signal its 

‘reputation’, resulting to stronger collaborative ties. The eigenvector centrality effect appears 

to be larger than the one of degree centrality. This happens as eigenvector centrality takes into 

consideration the centrality of the collaborators (in terms of degree) of an actor. Therefore, 

firms in Trentino network seek to create strong collaborations with actors connected to other 

important actors.  

The above findings convey relevant policy implications, as well. When designing innovation 

policies, local policy makers have to take into consideration the strategic behaviour of actors 
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in the knowledge transfer process inside the network. Since, more central actors are the most 

preferred for the strong tie creation, non-directed policies are likely to reinforce their 

dominance in the network, slowing down the emergence of peripheral actors and new entrants. 

This strategy may be sub-optimal when dynamic peripheral actors miss opportunities to be 

chosen for repeated collaboration. In fact, innovation policy might be more effective if it is 

targeting balanced sub-networks of projects, in order to strengthen the position of the peripheral 

actors in the system. This would constitute these peripheral actors more attractive for future 

collaborations with new entrants, strengthening the entire knowledge network, and 

consequently facilitating knowledge transfer.  
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