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Abstract

This article develops a three-dimension indicator to capture the main features of

General Purpose Technologies (GPTs) in patent data. Technologies are evaluated

based on their scope for improvement and elaboration, the variety of products and

processes that use them, and their complementarity with existing and new technolo-

gies. Technologies’ scope for improvement is measured using patenting growth rates.

The range of its uses is mapped by implementing a text-mining algorithm that traces

technology-specific vocabulary in the universe of all available patent documents. Fi-

nally, complementarity with other technologies is measured using the co-occurrence of

technological claims in patents. These indicators are discussed and evaluated using

widely studied examples of GPTs such as Electric & Electronic (at the beginning of

the 20th century) and Computer & Communications. These measures are then used

to propose a simple way of identifying GPTs with patent data. It is shown there exist

∗Department of Economic Geography, Utrecht University, Utrecht, The Netherlands. Email:

S.G.Petralia@uu.nl. I would like to thank all the comments received at the CID Growth Lab at the Harvard

Kennedy School, the Macro Connections Lab at MIT, the SPRU seminar series at Sussex University, the

seminars at QMUL and LSE. Additionally, I am grateful to Ricardo Hausmann and Petra Moser for the

comments received.

1



a positive association between the rate of adoption of GPTs in sectors, measured in

terms of the number of GPT patents, and their growth.

Keywords: Technological Change, General Purpose Technologies, Disruptive Tech-

nologies.

JEL Classification: O33, O34.
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1 Introduction

Scholars have long emphasised the importance of technological change as a key factor behind

economic growth and the rise in modern living standards. In particular, considerable atten-

tion has been devoted to better understand how major inventions, those having far reaching

and prolonged implications, have transformed the modes of production throughout history.

Widely discussed examples of disruptive technologies are the steam engine, the electricity,

and more recently Computer & Communication (C&C) technologies.

A significant amount of effort has focused on understanding what make these technologies

so revolutionary, what are the common features, if any, that distinguish them above others

and that forge their disruptive and pervasive nature. Such a characterization can be used

to create measurable indicators that improve our understanding of these technologies, their

impact, and help informing and guiding policy making.

The previous literature has often referred to these disruptive technologies as General

Purpose Technologies (GPTs). It has been argued that GPTs differ from others by possessing

a wider scope for continuous improvement and elaboration, on the one hand, and higher

complementarity, on the other. The latter means that a GPT should be able to diffuse across

a wide range of sectors, not only because it is used as an input in many different products

and processes (wide pervasiveness), but also because it is a technological complement of

existing and new technologies (high innovation complementarity). These characteristics are

what make GPTs “engines of growth” (Bresnahan and Trajtenberg, 1995).

While theoretical models have advanced greatly, providing a precise and coherent charac-

terization of what defines a GPT and the economic implications of its diffusion (Bresnahan

and Trajtenberg, 1995; Helpman and Trajtenberg, 1998b,a; Aghion and Howitt, 2000), a lack

of convincing and comprehensive empirical evidence has called into question the relevance

and usefulness of the notion of GPTs (Field, 2008). This is because the empirical literature

on the subject has struggled to provide a measurable way of characterizing GPTs. As Lipsey,

Carlaw, and Bekar (2005) note, “if the concept of a GPT is to be useful, then GPTs must

be identifiable”.
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For instance, Hall, Trajtenberg, et al. (2006) discuss how to characterize GPTs with

patent data studying the case of Information & Communication Technologies (ICTs). They

propose a series of indicators based on a group of selected patents granted by the United

States Patent and Trademark Office (USPTO) and argue that these indicators are not able

to fully portray ICTs as a GPT. In addition, Moser and Nicholas (2004) use a similar set

of measures to evaluate whether electricity matches the GPT criteria based on a sample of

historical patents assigned to publicly traded companies in the 1920s, ultimately concluding

that chemical technologies evidenced more of the characteristics of a GPT than electrical

technologies. Also using patent data, Feldman and Yoon (2012) argue that technologies of

genetic material recombination exhibit some of the characteristics of a GPT.

As a consequence, the empirical evidence remains inconclusive: either there is no par-

ticular technology that is capable of fulfilling the criteria established by theory, or current

measures are not suitable to identify GPTs.

This article develops a set of patent-based indicators to capture the main characteristics

of GPTs in data. Technologies are evaluated based on their scope for improvement and

elaboration, the variety of products and processes that use them, and their complementarity

with existing and new technologies. While technologies’ scope for improvement is measured

using patenting growth rates, the range of its uses is mapped by implementing a text-

mining algorithm that traces technology-specific vocabulary in the universe of all available

patent documents. Finally, complementarity with other technologies is measured using the

co-occurrence of technological claims in patents.

These indicators have several advantages. First, they can be calculated at different levels

of aggregation and do not rely on broadly defined technological categories like C&C or

E&E. In addition, they do not use current patent citations to evaluate the past behavior

of technologies, instead, they are constructed based on information that is available for all

patent documents at the moment of issue. This means that these indicator can be used

to study the behaviour of technologies since 1836 in the US, where digitized versions of

historical patent documents are available. Finally, they treat the GP-ness of technologies
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as a matter of degree. They contemplate the possibility that technologies fulfill some of the

criteria of the GPT definition but not all of them and evaluate the intensity at which they

do.

The usefulness of these indicators is discussed and evaluated from two different perspec-

tives. On the one hand, a top down approach is followed, where indicators are evaluated

in reference to the anecdotal and historical evidence surrounding widely studied examples

of GPTs such as E&E at the beginning of the 20th century and C&C more recently. This

first approach follows closely what has been done in the literature (Moser and Nicholas,

2004; Hall, Trajtenberg, et al., 2006; Feldman and Yoon, 2012), thus facilitating compar-

isons. It centers the discussion around a pre-selected set of technologies that are often cited

as canonical examples of GPTs. It is shown that indicators behave as expected in light of

the anecdotal and historical evidence on E&E and C&C technologies.

On the other hand a bottom up approach is followed, in which the same indicators are

calculated at a finer level of aggregation (technological class level in the USPTO classification

system). I then propose a simple way of identifying GPTs in patent data without relying

on any imposed categorization of technologies but based on how technologies rank according

to the indicators described before. I classify as GPTs those that rank above the average

in terms of all three patent indicators, thus defining a technological “frontier” after which

technologies are consider to be GPTs. It is shown that results are in line with anecdotal and

historical evidence, and that there exist a positive association between the rate of adoption

of GPTs in sectors (measured in terms of the number of GPT patents) and their growth,

as predicted by theoretical models (Helpman and Trajtenberg, 1998b,a; Aghion and Howitt,

2000).

These results challenge some of the notions and practices that have been applied to

understand and measure GPTs in the past. First, it is shown there exists a high level of

heterogeneity in the GP-ness of technologies that compose commonly used technological

categories like E&E and C&C, such that very dynamic and complementary technologies

coexist with stagnant and mature ones. In addition, there is also a considerable degree of
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heterogeneity in the type of technologies that compose this newly defined set of GPTs, as they

form an interconnected cluster of related technologies that span multiple categories. This

suggests that our understanding of what delimits the boundaries of a GPT is more elusive

and diffuse than previously thought. It is perhaps because of this fact that scholars have

struggled to find a connection between the emergence of GPTs and their economic impact

(Field, 2008). If we allow technologies to organize themselves based on their potential for

growth and complementarity, results suggest GPTs can be better understood as a cluster or

a network of related technologies that are connected to one another by underlying principles

and mutual dependencies.

This paper is organized as follows: Sections 2 establishes the foundations, explains the

rationale, and implements this three-dimensional index using the two most iconic technologies

of the last century as examples, E&E and C&C technologies. Section 3 calculates the same

set of indicators at the level of technological class in the USPTO classification system (there

are more than 400 classes) and proposes a simple way of identifying GPTs in patent data. It

is also shown that results are in line with historical and anecdotal evidence, and that there

is a positive association between the rate of adoption of GPTs in sectors, measured in terms

of the number of GPT patents, and their growth. Section 4 concludes.
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2 Measuring GP-ness of Technologies

The aim of this section is to propose and discuss a set of indicators to identify the main

characteristics of a GPT using patent data. These indicators are evaluated in reference to

the anecdotal and historical evidence surrounding widely studied examples of GPTs such as

E&E at the beginning of the 20th century and C&C more recently. Therefore, this section

follows closely the methodological approach that has been implemented in the literature

(Moser and Nicholas, 2004; Hall, Trajtenberg, et al., 2006; Feldman and Yoon, 2012), thus

facilitating comparisons. It centers the discussion around a pre-selected set of technologies

that are often cited as canonical examples of GPTs, showing that the proposed indicators

behave as expected in light of the anecdotal and historical evidence on E&E and C&C

technologies.

Given the amount of information and the level of detail contained in patent documents

it is natural to start looking for ways of characterizing GPTs using patent data. Every

patent provides information about the technological nature of the invention, the geographical

location of the inventor, and the prior art, among other things. This means that one could

identify whether a patent has claimed, for instance, rights on the invention of a new electrical

device, a new function for a chemical compound, or both. Therefore, a patent can claim

rights to different types of components or technologies that have been created and combined

to come up with a new product.

Information about US patents’ technological class(es) is made available by the USPTO.1

The USPTO classifies patents into classes according to the type of invention to which they

claim rights. There are currently more than 400 different technological classes in use, and

whenever a new class is created, or an existing one re-defined, all available patents are

re-classified to maintain temporal consistency. Furthermore, patents can be grouped into

broad economically relevant categories (Chemical, C&C, Drugs & Medical (D&M), E&E,

1http://www.uspto.gov/learning-and-resources/electronic-bulk-data-products
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Mechanical, and Others).2

Even though there is no agreement on how to measure GPTs, there is a clear under-

standing on what defines them. According to Bresnahan and Trajtenberg (1995); Helpman

and Trajtenberg (1998b,a); Aghion and Howitt (2000); David and Wright (1999); Moser and

Nicholas (2004); Jovanovic and Rousseau (2005); Hall, Trajtenberg, et al. (2006); Lipsey,

Carlaw, and Bekar (2005), a GPT must have the following characteristics:

1. Wide scope for improvement and elaboration. The technology should be able

to go through a process of technical advance after it is first introduced, a continuous

process of technological improvement. This idea is build on the notion that a GPT

would generally grant the possibility to cumulatively build knowledge around it.

2. Potential for use in a wide variety of products and processes. The technology

should spread across and be used in most sectors. This feature has been extensively

discussed by Moser and Nicholas (2004), Hall, Trajtenberg, et al. (2006), and Feldman

and Yoon (2012), which use the diversity of patent citations to proxy for the generality

of an innovation.

3. Strong complementarity with existing or potential new technologies. The

technology should have an impact on other existing and new technologies, not only by

creating the need to alter and combine many of the existing technologies but also by

increasing the opportunities to develop new technologies in combination with it.3

The GPT indicators discussed in this section are constructed and explained using E&E

and C&C technologies as a benchmark. This is because they constitute two widely accepted

examples of a GPT that, given the vast anecdotal and historical evidence surrounding them,

2See Hall, Jaffe, and Trajtenberg (2001) for details. The concordance is available at http://www.nber.

org/patents/.
3This is also related to the literature of windows of opportunities (Perez and Soete, 1988; Lee and Lim,

2001).
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allow for a preliminary assessment about the fitness of the indicators. Later, this rigid

administrative categorization is relaxed and technological classes are used as the basic unit

of analysis.

2.1 Wide Scope for Improvement and Elaboration

One of the aspects that distinguish GPTs from the rest is their capacity to go through a

continuous process of technological improvement. This notion is based on the idea that most

technologies are originally introduced as unrefined versions of their best self. It is argued that

there exist a potential in GPTs that is based on the distance to the most efficient/mature

version of themselves, which requires developing and perfecting them for many different

uses and adapting them to a wide arrange of complementary and yet potentially unrelated

technologies

This is probably the least challenging characteristic to relate to data. Previous empirical

approaches have often used patenting growth to measure the extent to, and pace at which,

technologies have been advancing. For instance, Jovanovic and Rousseau (2005) examine

the growth rate of total patenting activity in the US and relate changes in its pace to the

electric and ICT era. Moser and Nicholas (2004) demonstrates that patent activity in the

category of E&E technologies grew the fastest in the 1920s. Similarly, Hall, Trajtenberg,

et al. (2006) finds that classes related to C&C technologies grew faster than others after the

1980s.

Let’s consider how E&E technologies have grown in terms of patenting activity since 1880.

Table I shows the share occupied by different technological categories from 1880 to 1950,

using as a starting point the invention of the first electric light-bulb. This period covers the

emergence, development, and diffusion of E&E technologies (David, 1990; Goldfarb, 2005).

Since C&C and D&M technologies represented approximately 1% of total patenting activity

at the time, in this table they are not treated as separate categories but placed within the

category Others. During this period E&E technologies grew faster than any other, from

representing a 3.7% of all patenting activity to almost 15%. They showed more than a
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four-fold increase in participation.

Table I: Share Occupied by Technological Categories 1880-1950

Chemical E&E Mechanical Others

1880 9 3.7 34.1 53.2

1890 7 6.8 38.1 48.2

1900 9.6 5.7 37.3 47.4

1910 8.1 6.9 38.6 46.4

1920 8.8 8.6 39.3 43.3

1930 12.5 10.6 34.9 42.1

1940 15.8 12.8 31.3 40.1

1950 17.6 15 27.8 39.6

Notes: Values are in percentages.

Similarly, C&C technologies evidenced a remarkable growth since the 1960s, one year

after the first integrated circuit was patented in the US. In the 50-years period considered,

C&C technologies grew from representing 4.4% to 33.4% of total patenting activity, which

makes it the biggest category today.

These results provide a comprehensive overview of the emergence and evolution of these

two technologies that enlarges but mainly agrees with what Moser and Nicholas (2004) and

Hall, Trajtenberg, et al. (2006) have found using a selected subset of patent documents.
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Table II: Distribution of Patenting Activity 1950-2010

Chemical C&C D&M E&E Mechanical Others

1960 19 5.1 1.9 17.3 29.3 27.5

1970 22.9 6 2.7 18.7 25.8 23.8

1980 23.7 6.8 6.4 15.1 24.1 23.9

1990 19.5 10.5 8.5 17.3 22.4 21.8

2000 14.7 19.5 11.5 19.5 17.8 17

2010 10.8 33.5 9.7 22.1 13.3 10.6

Notes: Values are in percentages.

2.2 Potential for Use in a Wide Variety of Products and Processes

It is argued that as GPTs evolve and develop they should spread throughout the economy,

given their potential to be used as an input in many different applications. For example,

electricity is used as a power source in a wide range of sectors, to power household appli-

ances, transportation services, and a varied number of industries. Additionally, the ability

of electricity to drive chemical reactions, or to be used to transport information, drastically

expands its range of uses and its pervasiveness.

Several approaches have been used to evaluate the pace at which GPT candidates diffused

throughout the economy. For the case of electricity, one possibility is to consider the overall

nationwide electrification of factories and households. David (1990) documents that the

electric power used for mechanical drive capacity in the U.S. reached more than 50% by

1920, while Goldfarb (2005) and DuBoff (1979) find that by 1929 the ratio of electric motor

power to total motor power reached 82%, on average. Jovanovic and Rousseau (2005) show

that by 1929, nearly 70% of households had electrical connections.

Another approach is to rely on patent data. Moser and Nicholas (2004); Hall, Trajtenberg,
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et al. (2006); Feldman and Yoon (2012) measure the range of applicability of E&E and

C&C technologies through citations. They use the technological diversity of citing patents

to evaluate the generality of any cited patent. Therefore, the generality of a technology

depends on how heterogeneous its citing patents are.

One of the main concerns with the use of patent citations to trace back knowledge is that

they may be actually reflecting the technological structure of citing rather than cited patents.

For instance, it is well known that patents tend to cite disproportionately other patents

within the same domain to delimit the scope of their claims (Hall, Jaffe, and Trajtenberg,

2001). The possibility of tracing knowledge embodied in patents back in time through

citations relies on two assumptions. First, that direct citations provide a comprehensive

picture of the type of knowledge contained in a patent and second, that the dynamics of

patent citations are invariant enough so that prior and distant knowledge is still cited in

a meaningful way. If patent citations are more concerned with delimiting the scope of the

invention rather than comprehensively accounting for its knowledge composition, then the

ability of a citation today to trace knowledge back in time is severely undermined.

Consider the problem of measuring the extent of use of E&E technologies in the 1920s

bearing in mind that digitized citations are not available before 1975. One possibility is to

assume that we can use citations made by patents after 1975 to obtain information about

the state of the technological landscape in the 1920s. The pioneering studies of Moser and

Nicholas (2004) and Hall, Trajtenberg, et al. (2006) are good examples of this, since they use

citations from 1975 to 1999 to trace the evolution of key technologies that were introduced

long before 1975. However, in the Appendix A it is shown that commonly used generality

measures based on patent citations produce a ranking that remains almost invariant since

the 1890s for all technological categories, suggesting that this approach may be actually

reflecting the current state of the technological landscape rather than the intended one.

Here a different approach is considered, which exploits the wealth of information con-

tained in patent documents and provides a characterization of technologies based on in-

formation that is available at the time of issue and for all patents. Note that all patents
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contain a detailed description of the invention, which can be scrutinized to identify key-

words related the use of components, notions, or principles of any technology regardless of

whether the patent produces that particular type of technology as an output. For instance,

it could be possible to trace patents that contain specific wording related to E&E(C&C)

technologies even if they don’t belong to the category of E&E(C&C). This set of patents

will typically include inventions that use E&E(C&C)-related terms because they rely on

E&E(C&C)-related components, notions, or principles, but do not produce any particular

technological improvement in that area.

Figure I can be used as an example. It shows the first page of the patent number

2,956,114 assigned to Ampex Corporation in 1960 for a broad band magnetic tape system

(tape recorder). This particular patent falls under the category of C&C and cites patents

only in C&C and Mechanical. This implies that using a citation based method, or its main

technological classification, we are not able to identify that the invention contains electrical

components.

Examining the patent description, however, provides enough clues for a text mining algo-

rithm to detect the electrical nature of it. Figure I highlights electricity-related words that

could be used to identify that this invention uses E&E components, notions, or principles.

It is clear then that the set of words used to identify technologies is a key element in

this process. One could, in principle, choose to use a predetermined set of words that is

unequivocally associated with a technology. In the case of E&E this seems relatively easy

to do since most of the words containing “electro” or “electri” are likely to refer to E&E-

related components, notions, or principles. However, for C&C technologies the task is not

so straightforward because relevant words such as “port” or “screen” may be describing

completely different technologies.4

4See for instance: https://www.google.com/patents/US2386950. This patent contains both words but

describes a new mean for protecting ships at sea.
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This subsection develops a data-driven algorithm to identify relevant keywords (2-grams)

in any category or group of patents. The entire procedure for identifying these keywords is

explained and documented in the Appendix B. It requires creating a vocabulary of technically

relevant keywords used by the USPTO to describe technologies, computing their frequency

of use within and outside the category (in this section E&E and C&C technologies), and

finally selecting those that were at least 5 times more likely to appear within them than

in any other category. As a result, this procedure produces a list of approximately 2000

E&E(C&C)-related keywords of length two to be searched, from which Table III displays

the most relevant in each category.

Table III: Top 10 of Most Characteristic Keywords

E&E C&C

deflection current coherency unit

fuse tube register sender

vertical charge trunk circuit

focusing electrode cord circuit

overload current idle trunk

focus electrode calling station

lightning arrester telegraph system

shallow junction reservation station

deflection coil branch history

accelerating electrode dial pulse

After identifying the set of E&E and C&C-related keywords it is therefore possible to

evaluate the variety of technologies using E&E or C&C components, notions, and principles.

The most straightforward way to do this consists of counting the number of different techno-

logical categories (technological classes in the USPTO classification scheme) that use E&E
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or C&C related vocabulary at any point in time. A technological class is considered to have

“used” E&E or C&C technologies if more than 3 different keywords were found in at least

one patent within that class.5

Therefore, the pervasiveness of use of a technology is measured at the extensive margin, in

line with how it has been defined and modelled (Bresnahan and Trajtenberg, 1995; Helpman

and Trajtenberg, 1998b). Note that GPT models usually measure diffusion based on the

variety of sectors a technology has pervaded or is able to complement with.6

Figure II shows the share of technological classes in which E&E(C&C)-related vocabulary

has been found. This share is calculated with respect to the total number of different non-

E&E(C&C) technological classes available at any point in time. For instance, Figure II shows

that by 1880, fewer than 5% of all non-E&E technological classes were using E&E-related

vocabulary to describe inventions. By the end of the 1930s, this share had increased to

approximately 70%. Similarly, C&C-related vocabulary appeared in less than 10% of non-

C&C classes by 1950, increasing to more than 60% by 2010. These technologies pervaded

the whole inventive structure, affecting the entire nature of technological production since

their introduction.

5Results are not sensitive to the choice of the number of keywords or to the number of patents considered.

For a detailed analysis on the intensive margin of diffusion please refer to the Appendix C
6For instance, Helpman and Trajtenberg (1998a) and Aghion and Howitt (2000) characterizes each

sector with a set of parameters that determine the order of adoption of the technology, to later evaluate the

trajectory of the economy as one sector after the other adopts it.
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Figure II: Share of Tech Classes Using E&E and C&C Vocabulary

2.3 Strong Complementarity with Existing and New Technologies

One of the most valuable features of a GPT is its capacity to act as an “enabling technology”.

This means that its introduction provides a vast number of opportunities to adapt and

modify existing products and processes, to expand the space of possible inventions and

innovations, and to create opportunities to develop new products, processes and technologies

in combination with it. For instance, Bresnahan and Trajtenberg (1995) note that “...the

productivity gains associated with the introduction of electric motors in manufacturing were

not limited to a reduction in energy costs. The new energy source fostered the more efficient

design of factories, taking advantage of the new found flexibility of electric power.”

The far-reaching extent of its “innovation complementarities” (IC) is one of the most

salient aspects of a GPT, as it is considered to be responsible for the creation and rein-

forcement of rapid technical advance and economic growth. Even though there is a vast

literature collecting case-specific historical evidence (DuBoff, 1979; David, 1990; Helpman

and Trajtenberg, 1998a; Rosenberg, 1998; Lipsey, Carlaw, and Bekar, 2005; Goldfarb, 2005;

Bresnahan, 2010; Nuvolari, Verspagen, and von Tunzelmann, 2011), there has not been any
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systematic and comprehensive empirical study on this subject.

This subsection proposes a way of measuring the “innovation complementarity” (IC) of

technologies using the co-occurrence structure of the technological classes within patent doc-

uments. Whenever a patent is issued, several claims are made regarding the inventiveness

and scope of the patent. These claims specify all inventions contained within a particular

patent for a product or process, and are classified based on their technological characteristics

into different technological classes. Therefore, a patent can be classified into different tech-

nological categories, implying that a given product or process required multiple inventions

in different fields to be realized. The extent and diversity of the IC of a technology can be

measured by examining the diversity of its class co-occurrence profile.

For instance, consider the Ampex broad band magnetic tape system (1960) described in

Section 2.2. This patent has claims in two different technological classes, class 360 (Dynamic

Magnetic Information Storage or Retrieval) in C&C and class 386 (Motion Video Signal

Processing for Recording or Reproducing) in E&E. This is because the patent introduces two

main complementary improvements. The first concerns a more efficient way of comprising

and recording frequencies (class 360), which allowed the size of the magnetic tapes to be

reduced considerably. For this improvement to be properly used, higher precision in the

speed of motion of the recording system needed to be achieved. This is when improvements

in E&E technologies related to components regulating motion for recording devices had to

be developed (class 386).

Therefore, the co-occurrence of technological classes within a patent can be used to mea-

sure the IC of technologies. A GPT should co-occur with a wide variety of different technolo-

gies (classes); this is because its IC allows it to be re-combined with existing technologies to

improve existing products (such as tape systems), as well as to develop new-to-the-world and

yet complementary technologies. Note that this measure varies considerably with respect

to the one developed in Section 2.2. This is because the IC of a technology is evaluated

using the the co-occurrence of different technological classes with itself, while the indicator

devised in Section 2.2 is calculated scrutinizing patent documents outside the domain of the
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technology.

Consider again E&E and C&C technologies as examples, in this case their IC would

be measured by counting the number of technological classes they co-occur with. Figure III

shows the IC of all main technological categories,7 providing a set of clear and straightforward

messages: First, E&E and C&C technologies increased the variety and scope of their IC

since their introduction over other types of technologies and in line with what is expected.

They began as very narrow technological fields to later become the most complementary

technologies. In the case of E&E technologies, the timing and dynamics of these results are in

line with previous historical evidence suggesting that the transformative power of electricity

did not acquire momentum until after the 1914s (David, 1990; Greenwood, 1997; Lipsey,

Carlaw, and Bekar, 2005; Field, 2008). In addition, results show that C&C technologies

surpassed others in terms of IC only after the 2000s.

Figure III: Innovation Complementarity of Technologies

7To avoid taking into account irrelevant, proximate combinations, co-occurrences of different classes

within the same category are not counted. Thus, for instance, if a class within chemicals co-occurs with

another class in the same category it is not considered an IC.
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These subsections have developed a set of indicators aimed at characterizing the GP-ness

of technologies with patent data. Even though grouping patents into broad technological

categories may be useful to exemplify the construction of the indicators and to provide

a first reality check, it is clear this approach imposes rigid administrative boundaries on

technologies which are not desirable nor needed. The next section applies the same logic

to create the same indicators at the level of technological class in the USPTO classification

scheme and discusses a data-driven approach to identify GPTs.

3 The Concept of a GPT Frontier

3.1 Measuring GP-ness of Technologies in Detail

If the indicators developed before constitute a suitable empirical counterpart of what theory

describes as the main characteristics of a GPT, how can we operationalize these principles in

a way that is useful, flexible and informative? What would happen if we let technologies sort

themselves according to this definition? Would technologies within E&E and C&C remain at

the top of the classification and in line with the historical evidence? Can we learn something

from this self-organizing exercise?

The most straightforward way to start answering these questions is to calculate all three

metrics at a finer level of aggregation than the broad NBER categorization used before. Note

that the indicators developed in the previous section can be constructed at technological class

level in the USPTO classification scheme (there are more than 400 active classes).8

Consider Figure V, it shows a scatter-plot of all existing technologies (classes) according

to their Growth, IC, and UC in the period 2005-2010. Growth rates are calculated as ∆

Pt = Pt−Pt−5

Pt−5
− 1, where Pt represents the number of patents in a given year. Values for

the period are then averaged. UC and IC values are expressed as the average number of

technological classes they complement with in this period. Technologies with higher values

8In principle they could also be computed at finer levels of aggregation such as the subclass level.
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of Growth, IC, and UC are located in the upper-right quadrant of the figure (in red). In

this particular period, the type of technologies that appear at the top are mostly in C&C

and E&E (Figure IV). Table IV shows the correlation of the different measures while Table

V details the top and bottom ranked technologies.

Table IV: Correlation Table

IC UC Growth

IC 1 0.251 0.180

UC 0.251 1 0.217

Growth 0.180 0.217 1

Figure IV: Distribution (Top 10)

Figure V: Map of Technologies (2005-2010)

Note: Growth, UC, and IC values were averaged over the period 2005-2010. Technologies are

ranked based on the average normalized value (de-meaned and divided by the standard deviation)

of the indicators (Growth, UC, IC). In Figure V warmer colors (red) represent higher values. Table

IV shows the correlation between these measures. Figure IV shows the number of technological

classes per category of the top ten ranked technologies.
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Table V: Ranking of Technological Classes (2005-2010)

Rank Category Class Growth IC UC

1 E&E Television 0.4 147.3 163.2

2 C&C Telecommunications 0.6 128.8 162.5

3 E&E Radiant energy 0.4 191.7 182.5

4 E&E Illumination 0.3 155.3 160.3

5 C&C Communications: electrical 0.3 229.5 155.3

6 C&C Image analysis 0.5 136.8 148.2

7 E&E Active solid-state devices 0.2 188 146.2

. . . . . .

413 Mechanical Advancing material of indeterminate length -1 33.2 59.3

414 Others Heating systems -1.1 21.8 103.5

415 Others Industrial electric heating furnaces -1.1 18 107.5

416 E&E Recorders -1.1 23.2 91.3

417 Chemical Explosive and thermic compositions -1.3 13.2 137.3

418 Chemical Combinatorial chemistry technology -1.6 27 133.5

419 E&E Scanning-probe techniques or apparatus -1.9 18.3 161.3

Notes: Growth rates are calculated as ∆ Pt =
Pt−Pt−5

Pt−5
, where Pt represents the number of patents in

a given year. Values for the period are then averaged. UC and IC values are expressed as the average

number of technological classes they complement with in the period. Technologies are ranked based on

the average normalized value (de-meaned and divided by the standard deviation) of the indicators

(Growth, UC, IC)

Several points are worth mentioning about the resulting ranking in table V. Note that

there exist a considerable degree of heterogeneity in the type of technologies at the top. This

group is formed by an interconnected cluster of related technologies that span outside the

borders of commonly used categories. Most of the E&E technologies that appear at the top of

Table V, such as those related to the production of solid state devices, are closely connected

to C&C technologies. On the other hand, the bottom of Table V is occupied by mature

technologies, those still having a broad impact in terms of UC but that do not function

as a platform for other technologies to innovate with (low IC) and that have exhausted

their potential for improvement (low Growth). In addition, note that certain domains such

as E&E contain dynamic technologies (active solid state devices) that coexist with already

stagnant or mature ones (recorders).
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A remarkably similar pattern can be found if we inspect the ranking of technologies at the

peak of the electrical revolution in the 1930s. Table VI shows top and bottom technologies

for the period 1930-1940. As expected, the top of the ranking is occupied by technologies in

the area of E&E and related, like refrigeration technologies. This detail is not minor since

the development of the sector of electrical refrigerators in the US was one of the fastest

growing industries after the electrification of households. The production of refrigerators

jumped from 5,000 units in 1920 to 1,000,000 units in 1930, reaching 6,000,000 units by 1936

(Nebeker, 2009).9

Table VI: Ranking of Technological Classes (1930-1940)

Rank Category Class Growth IC UC

1 E&E Electricity: circuit makers and breakers -0.100 167.400 299.300

2 Others Refrigeration 0.400 126 232.100

3 E&E Electric lamp and discharge devices 0.400 121.200 217.100

4 Mechanical Clutches and power-stop control 0 136.400 260.400

5 E&E Electric lamp and discharge devices: systems 0.600 101 186.600

. . . . . .

389 Others Printed matter -0.600 29.200 14.100

390 Mechanical Vehicle fenders -0.700 22.100 35.700

391 C&C Computer graphics processing & visual display systems -0.500 13.700 4.700

392 Others Merchandising -0.600 8.500 17.200

393 Mechanical Compound tools -0.800 24.100 28.500

Notes: Growth rates are calculated as ∆ Pt =
Pt−Pt−5

Pt−5
, where Pt represents the number of patents in a given year.

Values for the period are then averaged. UC and IC values are expressed as the average number of technological

classes they complement with in the period. Technologies are ranked based on the average normalized value

(de-meaned and divided by the standard deviation) of the indicators (Growth, UC, IC)

Therefore, these indicators are able to organize technologies in a way that is consistent

with the historical and anecdotal evidence on the evolution of GPTs. In addition, results

9The highest share of this market was occupied by the Kelvinator Company of Detroit, Michigan, which

introduced the first refrigerator with automated control based on the inventions of engineer Nathaniel B.

Wales.
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show that the top of this ranking is occupied by a cluster or network of related technologies

that are connected to one another by underlying principles and mutual dependencies. Note,

however, that this cluster of technologies span multiple technological categories, challenging

some of the notions that have been used to identify GPTs in the literature.

If the indicators outlined before constitute suitable empirical counterparts of what theory

describes as the main characteristics of a GPT, which technologies would qualify as GPTs?

If as Lipsey, Carlaw, and Bekar (2005) point out, what distinguishes GPTs from others is a

matter of degree, where do we draw the line to separate GPTs from the rest? Are GPTs to

be identified in relative terms with respect to contemporaneous technologies or in absolute

terms with respect to all technologies ever invented?

3.2 Introducing the Concept of a GPT Frontier

It seems clear, at least in theory, that GPTs should posses all of the characteristics mentioned

before and not just some of them. One crucial factor in the definition of what constitutes a

GPT is that the characteristics technologies are evaluated upon are not substitutes of one

another. For instance, a technology that possesses low capacity to recombine with other

technologies would not be able to compensate that by improving faster than the rest, since

the propagation mechanisms described by Helpman and Trajtenberg (1998b,a); Aghion and

Howitt (2000) will not be present; which means that positive feedbacks and externalities

will not materialize. Similarly, it is to be expected that mature and already exhausted

technologies have high pervasiveness of use across sectors. Regardless of how high the use of

a mature technology is, this does not compensate for its lack of potential for improvement.

A simple way of identifying GPTs using the indicators developed before is to consider

as such those that rank above the average in terms of IC, UC, and Growth. This implies

that only those technologies located at the “frontier” (in the upper right quadrant of Figure

V or at the top of Tables V & VI) would qualify as GPTs, as they fulfill all three criteria

simultaneously.

In what follows I provide a first attempt to test this idea by evaluating whether there
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is a correlation between the rate of adoption of GPTs in a sector and its growth, in line

with what theory predicts (Helpman and Trajtenberg, 1998b,a; Aghion and Howitt, 2000).

GPT adoption is measured in terms of the number of patents within a sector that fulfill the

criteria mentioned before (i.e. the number of patents in technological classes that rank above

the average in terms of IC, UC, and Growth). Hence, the aim of this last section is not to

provide causal evidence to prove or disprove the existence of GPTs and their impact, but

rather to find support about the claim that the indicators proposed here can be considered

as useful instruments in the discussion of what is and what is not a GPT.

One the one hand, Growth, UC, and IC values are calculated for all technological classes

in the USPTO classification scheme since 1920 (the oldest year for which digitized patent

documents are available).10 Then, for any given year, technologies (technological classes in

the USPTO scheme) are classified as GPTs if they rank above the average in terms of their

Growth, UC, and IC (after normalizing their values).11 Then patents are identified as GPT

or non-GPT based on their technological classification.

On the other hand, sector level data is matched with patenting information using firms

as intermediaries. There are few firm-level databases that can be used to link patenting

information of firms within sectors that also contain information about their economic per-

formance. The ORBIS database (compiled by the Bureau van Dijk Electronic Publishing,

BvD) is a commercial dataset that provides economic and administrative data for more than

130 million firms worldwide, covering more than 100 countries since 2005.12 In addition, each

company possesses an unique identifier (usually at the corporation level) that links firms to

their patent activity at the USPTO, making it possible to connect economic indicators of

firm performance with their patenting profiles.13 This later aspect is crucial because it allows

10Data can be downloaded here: https://dataverse.harvard.edu/dataverse/GPT-Indicators
11In every year and for each of the variables (Growth, UC, and IC) values are normalized by subtracting

the mean and dividing by the standard deviation.
12Compustat Global and Compustat North America contain detailed information of listed firms, however

they cover mostly large firms.
13Patenting activity in the US has been used extensively in economics and innovation studies to address
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one to evaluate how changes in technological profile of companies within sectors relate to

their overall performance.

There are 302,052 unique manufacturing companies in the 2017 version of the this dataset,

which covers the period 2000-2017.14 However, there are several aspects to be considered

when using ORBIS data. First, it should be taken into account that before 2008 and after

2013 the number of firms in the sample represent only a fraction of those appearing between

2008 and 2013. In fact, Kalemli-Ozcan, Sorensen, Villegas-Sanchez, Volosovych, and Yesiltas

(2015) show that firms in this database represent only a fraction of the total output for

European countries prior 2005.15 In addition, economic or financial indicators are not always

available even if firms appear in the sample. For instance, crucial information such as the

number of employees or the operating revenue is available for 57% and 70% of the companies,

respectively, in the period 2008-2013. In the Appendix D there is a detailed description of

the yearly, sector, and country composition of the ORBIS database.

In what follows the analysis is conducted based on a set of manufacturing firms for which

there is information about their operating revenue in 2008 and 2013 and have at least one

employee.16 Therefore, the economic performance of sectors is evaluated at the beginning and

end of the period for which the ORBIS database contains a stable number and composition

of firms, while GPT adoption is calculated as the number of GPT patents granted to firms

in it. Because the number of patents a company files varies greatly from year to year (Hall,

issues of global scope, this responds not only to the importance and size of the US technological market but

also to the consistent and systematic way patents applications have been evaluated over the years; making

data collected at the USPTO very suitable for comparisons, both across countries and over time.
14The focus on manufacturing companies responds to the fact that most of what is patented comes from

these industries.
15Please refer to the Appendix D for more details.
16The operating revenue of a firm, as opposed to total revenue, constitutes a better instrument to evaluate

the productivity and profitability of a firm. This is because the latter may include revenues from sources

that are unrelated to the day-to-day activity of the firm, such as asset sales, interests earned from deposits,

etc.
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Jaffe, and Trajtenberg, 2001), the patenting activity of firms is evaluated using a 5-years

windows previous to the date the economic data is available.

The final sample contains 106,739 firms from 80 countries that operate in 297 differ-

ent NACE 4-Digit sectors. 10,668 companies (10%) have at least a patent granted by

the USPTO in this period. For more details about the country and sector distribution

of firms in the database please refer to the Appendix D17 (See also Kalemli-Ozcan, Sorensen,

Villegas-Sanchez, Volosovych, and Yesiltas (2015) for a more general discussion of the ORBIS

database).

Table VII show the result of regressing the operating revenue per employee (in logs) in

sectors using the 3-digits and 2-digits NACE sector classification available in ORBIS against

the number and share of GPT patents in that sector. Since the coverage of this database

varies greatly across countries and sectors, two different strategies are considered to avoid

including countries for which sectors of the economy are not well represented. On the one

hand, columns (1) and (4) in Table VII include countries that have data for at least 50%

of the sectors in both 2008 and 2013 and sectors that produced at least 1 patent in the

entire period.18 On the other hand, columns (2) and (5) only consider countries for which

the firms in the ORBIS database represent more than 50% of the official gross output and

17Linking patenting activity to economic sectors is not a a straightforward task. The USPTO provides a

concordance between its technological classification scheme and the NAICS and SIC sectors each patent is

most related to, however, this procedure usually assigns patents to multiple sectors, making the links between

technologies and sectors very diffuse (The concordances can be found here: https://www.uspto.gov/web/

offices/ac/ido/oeip/taf/data/). In addition, it is not clear that the proper way to link technologies

with sectors is by their degree of relatedness. After all, the firm the technology is assigned to is the entity

that appropriates the benefits of that invention despite of the fact that the invention may be related to a

different sector the company operates under. The ORBIS database can be used to address this issue, since

information about the main sector of activity is provided for all companies. However, one have to keep in

mind that any aggregation of company data at sector level using ORBIS may not actually be representative

of the true sector distribution in a given country.
18This is to avoid including sectors that do not rely on patenting, such as primary sectors.
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employment data in Eurostat.19 Columns (3) and (6) replicate the procedure in columns

(1) and (4) but at a higher level of aggregation. All regressions include country, sector, and

year fixed effects. Standard errors are clustered at the same level according to Cameron,

Gelbach, and Miller (2012).

Results in columns 1-3 in Table VII show that the number of GPT patents in sectors

is associated with higher operating revenues, after controlling for sector-specific effects and

the total number of other patents (non-GPT). These results suggest there exists a positive

association between sectors’ growth and the number of GPT patents produced, an association

that does not exist for other type of patents. Columns 3-6 replace the number of GPT patents

by its share, in order to use a variable that is less influenced by sector size. In this case, the

total number of patents is included as a control. In sum, results show a positive and strong

association between the share of GPT patents in a sector and its growth. They suggest that

a 10% increase in the number of GPT patents in a sector is associated with an increase in

the operating revenue that ranges from 0.28% to 0.33%.

In the Appendix E it is shown that the number of GPT patents is also associated with

higher operating revenues at firm level. Firm-level results suggest that a 10% increase in the

number of GPT patents in firms is associated with an increase in their operating revenue

per employee of approximately 0.3%, remarkably similar to those obtained at sector level.

19See Table 6.1 and 6.2 in Kalemli-Ozcan, Sorensen, Villegas-Sanchez, Volosovych, and Yesiltas (2015)
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To sum up, this section proposes a data-driven solution to identify the GPTs using patent

data. It is shown that sectors (and firms) producing a higher number (or share) of GPT

patents outperformed others in terms of their operating revenue. This evidence can be seen

as a first reality check on the potential of the proposed indicators to identify GPTs. The

next section discusses the implications and limitations of these findings.
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4 Concluding Remarks

This article develops a three-dimension indicator to capture the main features of General

Purpose Technologies (GPTs) in patent data. Technologies are evaluated based on their

scope for improvement and elaboration, the variety of products and processes that use them,

and their complementarity with existing and new technologies. Technologies’ scope for im-

provement is measured using patenting growth rates. The range of its uses is mapped by

implementing a text-mining algorithm that traces technology-specific vocabulary in the uni-

verse of all available patent documents. Finally, complementarity with other technologies is

measured using the co-occurrence of technological claims in patents.

These indicators have several advantages. First, they can be calculated at different levels

of aggregation and do not rely on broadly defined technological categories like C&C or

E&E. In addition, they do not use current patent citations to evaluate the past behavior

of technologies, instead, they are constructed based on information that is available for all

patent documents at the moment of issue. This means that these indicator can be used to

study the behaviour of technologies since 1836 to present in the US, where digitized versions

of historical patent documents are available. Finally, they treat the GP-ness of technologies

as a matter of degree. They contemplate the possibility that technologies fulfill some of the

criteria of the GPT definition but not all of them and evaluate the intensity at which they

do.

The proposed ranking of GP-ness of technologies is evaluated in reference to the anec-

dotal and historical evidence surrounding widely studied examples of GPTs such as E&E at

the beginning of the 20th century and C&C more recently. In line with what is expected,

and when broad technological categories are used, E&E and C&C technologies occupy the

top of the GP-ness ranking in their reference periods. However, when these indicators are

constructed at a finer aggregation level, results challenge some of the notions and practices

that have been applied to understand and measure GPTs in the past.

First, it is shown there exists a high level of heterogeneity in the GP-ness of technolo-

gies that compose commonly used technological categories like E&E and C&C, such that
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very dynamic and complementary technologies coexist with stagnant and mature ones. In

addition, results show that GPTs can be better understood as an interconnected cluster of

related technologies that span multiple categories.

One of the main goals of this article is to contribute to the discussion of what defines a

GPT and how to measure its most salient features. Results suggests that our understanding

of what delimits the boundaries of a GPT is more elusive and diffuse than what we think.

It is perhaps because of this fact that scholars have struggled to find a connection between

the emergence of GPTs and their economic impact.

An interesting yet unsolved discussion is whether we should understand the existence of

GPTs in absolute or relative terms. If as Lipsey, Carlaw, and Bekar (2005) points out, the

notion of a GPT is a matter of degree, where should we draw the line? Should technologies

be evaluated contemporaneously or with respect to all other technologies ever invented?

Although this article favours the former idea, it remains inconclusive about the potential

implications of such a choice.

How can we evaluate GPT candidates in different periods of time if their potential for

growth and complementarity are highly contextual? It is well documented that the emergence

E&E technologies displaced steam engine related technologies at the beginning of the 20th

century, eroding their potential for growth and complementarity. What does this tell us

about the transformative impact of steam technologies and their GPT potential? Would

we even consider steam technologies as a GPT candidate if E&E technologies would have

emerged 50 years earlier?

One of the main limitations of this study is that measures are inherently backward

looking. They rely on current knowledge about the structure of technologies to evaluate

present and past behaviour. A promising line of research could focus on improving our

capabilities to predict the emergence of new GPTs given early technological trends.
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5 Appendix

A The Use of Citations to Identify Historical Technological Trends

Given the lack of detailed data on historical inventive and innovative outputs, researchers

interested in tracing the evolution of technologies prior 1975 have usually relied on historical

accounts or have found clever ways to trace information of particular events in the available

data.

The pioneering studies of Moser and Nicholas (2004) and Hall, Trajtenberg, et al. (2006)

are a good example of the later, since they use patent citation data from 1975 to 1999 to trace

the evolution of key technologies that were introduced long before data was made available.

Moser and Nicholas (2004) use the Herfindahl-Hirschman concentration index to measure

the degree of generality of the citations received today by a sample of historical patents

assigned to publicly traded companies in the 1920s. In this study they find that chemical

technologies evidenced more of the characteristics of a GPT than electrical technologies. In a

similar fashion, Hall, Trajtenberg, et al. (2006) propose a series of indicators to evaluate the

generality of ICTs based on a group of selected patents granted by the USPTO. Similarly,

these indicators are not able to fully portray ICTs as a GPT.

This subsection provides empirical evidence showing that a citation-based measures may

not be an appropriate vehicle to identify historical trends in the evolution of technologies.

It is argued that citations seem to be reflecting the technological structure of citing rather

than cited patents.

One possible way of evaluating this hypothesis is to apply the procedure used in Moser

and Nicholas (2004) and Hall, Trajtenberg, et al. (2006) from 1890 to 1960 (before the

citation data starts). Ideally, we would like to see that this procedure is able to capture

some of the dynamics that occurred in this period, such as the emergence and development

of E&E technologies, the appearance of C&C technologies or the decline of Mechanical

technologies. Table VIII replicates the generality measures used by Trajtenberg, Henderson,

and Jaffe (1997); Moser and Nicholas (2004); Hall, Trajtenberg, et al. (2006) but considering
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the entire set of patent granted since E&E technologies had a considerable size (1890) and

until the decade before patents started to be digitized (1960).

Therefore the decade of the 1920s in Table VIII can be directly compared to the results of

Moser and Nicholas (2004), Table 1. The only difference is that Moser and Nicholas (2004)

used a subset of patents assigned to publicly traded companies while Table VIII considers all

patents granted in that period. Two things are worth mentioning about this exercise, first,

that the generality attributed to different technological categories using the entire sample

of patents is very similar to that reported by Moser and Nicholas (2004). Meaning that the

subset of patents used in their analysis accurately represented the whole. In both cases,

Chemical technologies has the highest generality index across technologies (0.12 in both

cases) while E&E the lowest (0.09 in Table VIII and 0.08 in Moser and Nicholas (2004)).

Second, the generality index remains practically invariant in relative terms since the

1890s. Chemical technologies has the highest generality index across technologies and E&E

the lowest regardless of the period considered.

Not surprisingly, Hall, Trajtenberg, et al. (2006) also finds chemical technologies to be

the most general, especially when they consider the industry of use. As they mention, one

possible explanation behind these results is that there are a number of chemical classes that

are essentially the same class (532-570), which may bias the generality index up.
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Table VIII: Generality Measures Applied Accross Decades

Decade Chemical Mechanical Others E&E

1890 0.09 0.07 0.08 0.07

1900 0.10 0.08 0.09 0.08

1910 0.10 0.09 0.10 0.08

1920 0.12 0.10 0.11 0.09

1930 0.15 0.13 0.14 0.11

1940 0.18 0.16 0.17 0.14

1950 0.23 0.20 0.20 0.17

1960 0.29 0.26 0.26 0.24

B Procedure to Identify E&E and C&C Keywords

Section 2.2 exploits the wealth of information contained in patent documents to provide a

characterization of the pervasiveness of use of E&E and C&C technologies in their histor-

ical context. To do so, patents not belonging to E&E or C&C classes are scrutinized to

identify keywords related to the use of E&E or C&C components, notions, or principles.

Consequently, patents that contain specific wording related to E&E technologies but do not

belong to the category of E&E can be considered “users of E&E”, and the same holds for

C&C.

This subsection describes how this set of words was chosen. The first step requires

creating a vocabulary of technically relevant words, which was obtained from the manual

used by the USPTO to describe technological classes. This manual contains a detailed

description of all technological classes in the the U.S. Patent Classification System (USPC)
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and is used by examiners to classify patents.20 This definition schedule not only contains a

description of the class but also of all their subclasses. After parsing all definitions for the

54 classes contained in E&E and the 44 classes in C&C, a vocabulary of keywords of length

two (two consecutive words) containing 208,689 keywords for E&E technologies and 122,255

keywords for C&C was created.

The second step is then to calculate how frequently these keywords appear within and

outside E&E and C&C patents. If some of these keywords appear much more often in E&E

or C&C patents than in any other then we can consider them to be highly associated to

E&E or C&C technologies. For instance, Table IX shows the frequency of occurrence of the

E&E keywords shown in Table III of Section 2.2, outside an inside E&E classes. Column 2

shows how many times a keyword was found in the entire set of patents granted since 1920,

while column 3 shows only the number of occurrences in E&E classes.

Table IX: Use of top Keywords in E&E

Keyword Ocurrences(All) Ocurrences(E&E) fE&E/f−E&E

deflection current 16, 032 15, 295 109.4

fuse tube 22, 347 21, 292 106.4

vertical charge 11, 956 11, 221 80.5

focusing electrode 28, 343 26, 363 70.2

overload current 11, 639 10, 819 69.5

focus electrode 13, 343 12, 283 61.1

lightning arrester 12, 316 11, 289 57.9

shallow junction 11, 955 10, 953 57.6

lamp claimed 13, 408 12, 257 56.1

deflection coil 37, 931 34, 656 55.8

accelerating electrode 19, 625 17, 903 54.8

20All class definitions can be downloaded from: http://patents.reedtech.com/classdata.php
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Finally, the last step in the procedure consist of selecting a suitable set of keywords that

may be informative of the type of technology the patent is describing. This set of keywords

is selected based on the ratio shown in column 4 of Table IX. This is the ratio of the share

keyword k represents in E&E technologies (fk,E&E = Ok∈K,E&E /
∑

i∈K Oi,E&E) over the

share keyword k represents in other technologies (fk,−E&E = Ok∈K,−E&E /
∑

i∈K Oi,−E&E).

Where O represent the number of occurrences and K the set of all keywords. Therefore

the set of keywords used to track E&E and C&C-related vocabulary in patents is selected

based on this ratio being higher than 5, which results in approximately 2000 E&E-related

and C&C-related keywords.

When the procedure is implemented at the class level there is only a small change. Instead

of keeping all the keywords with a ratio higher than five, only the first 250 most representative

keywords are kept. This adjustment is to keep the number of keywords to be searched under

a certain limit. Note that this arrangement implies searching for approximately 100,000

keywords in 10,000,000 patent documents. Results are insensitive to choosing either 100 or

500 keywords instead.

C Intensive vs Extensive Margins in Use and ICs

In sections 2.2 and 2.3 adoption is measured at the extensive margin. This is to keep

the characterization of GPTs in data as closely related as possible to how they have been

defined and modelled. For instance, Helpman and Trajtenberg (1998a) and Aghion and

Howitt (2000) characterize each sector with a set of parameters that determine the order

of technological adoption of a GPT, to later evaluate the trajectory of the economy as one

sector after the other adopt it.

This subsection evaluates, on the one hand, the robustness of the results showed in

sections 2.2 and 2.3 to alternative measures of the pervasiveness of use and innovation com-

plementarities of E&E and C&C technologies. This is done by considering the share of total

patent activity occupied by E&E and C&C technologies instead of the share of the total
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number of available classes. On the other hand, a more detailed analysis of the intensive

margin of diffusion is provided, by considering how use and innovation complementarities of

E&E and C&C technologies were distributed across classes.

Figure II in Section 2.2 shows that by 1880 fewer than 5% of all non-E&E technological

classes were using E&E-related vocabulary to describe inventions, while by the end of the

1930s this share had increased to approximately 70%. Similarly, the second column in Table

X reports the share of non-E&E patents that were using E&E vocabulary from 1880 to 1950.

The remarkable increase in the variety of technologies that were using E&E-related vocab-

ulary was also followed by a sharp increase in the number of patents using this vocabulary,

which multiplied by 7 since 1880, going from representing 1% of all non-E&E patents to

7% of them. The same trend can be found with respect to the expansion of the innovation

complementarities of E&E technologies (third column). By 1950, the share of patents where

E&E claims were made in combination with other types of technologies multiplied by 14

(going from 2% to 28%)21.

Table X: Total Patents Share for E&E

Year Use IC

1880 0.01 0.02

1890 0.02 0.04

1900 0.02 0.04

1910 0.03 0.05

1920 0.02 0.08

1930 0.04 0.12

1940 0.07 0.22

1950 0.07 0.28

21This share is calculated with respect to the number of patents that did not complement with E&E in

a given year.
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Analogous results can be found when considering the diffusion of related vocabulary

and innovation complementarities of C&C technologies. The number of patents using C&C

vocabulary went from barely non existent in 1960 to represent more than 9% of patenting

activity in 2010. Similarly, the number of complementary patents rose from 9% to 17%.

Section 2 characterized the diffusion of E&E and C&C technologies exclusively at the

extensive margin of adoption. However, it is of interest to provide a more detailed analysis

on how diffusion was distributed across classes, since it may be informative about the uneven

nature of the diffusion of these technologies.

Figures VI and VII show the concentration across different classes using the Gini coef-

ficient (the higher the value of the Gini coefficient the more concentrated the distribution

of patents across classes). Figure VI considers the concentration in the use of E&E(C&C)-

related vocabulary. As in described in Section 2.2, only non-E&E(C&C) classes are consid-

ered when evaluating the diffusion of E&E(C&C)-related vocabulary, respectively.

Table XI: Total Patents Share for C&C

Year Use IC

1960 0 0.10

1970 0.01 0.09

1980 0.02 0.09

1990 0.03 0.12

2001 0.05 0.12

2010 0.09 0.17

Note that the concentration of the use of E&E vocabulary has been decreasing since their

introduction and up to the 1960s, with sharp and regular increases before the 1930s. These
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boosts in concentration correspond to the period of development of E&E technologies, where

new products and processes were introduced, probably affecting few surrounding technologies

at the beginning to later spread more widely. After the 1930s, when the technology reached

a maturity phase, the concentration became less pronounced. Since the introduction of C&C

technologies, which are highly complementary with E&E technologies, the concentration of

E&E related vocabulary increased. This is explained by the amount of E&E technologies,

notions, and principles that are used in C&C, the fastest growing technology since then. A

remarkably similar trend can be found with respect to the concentration of the innovation

complementarities of E&E technologies (Figure VII).

On the other hand, C&C technologies haven’t experienced yet a period of de-concentration.

This contrast between the pattern of diffusion experienced by E&E and C&C technologies

can be explained by the degree of complementarity these technologies had with their most

notable predecessor. While C&C technologies complemented and built upon advances in

E&E technologies, the later basically replaced most of the uses of the technologies that

preceded it, like the steam engine.

Figure VI: Concentration of the Use of E&E(C&C)-Related Vocabulary

40



Figure VII: IC Gini

D Description of the ORBIS Database

Table XII shows the number of firms present in the 2017 version of the ORBIS database.

The number of firms included in the sample before 2008 represent only a small fraction of

the number of firms included between 2008 and 2013. In addition, note that after 2013 the

number of firms decreases, which may represent a non-trivial attrition of the sampled firms.

In the analysis carried out in Section 3 only the years 2008-2013 are considered.

41



Table XII: Number of Firms in ORBIS

Year Number of Firms

2000 22, 951

2001 24, 088

2002 23, 897

2003 24, 403

2004 23, 702

2005 21, 951

2006 24, 055

2007 22, 396

2008 168, 549

2009 133, 529

2010 138, 443

2011 145, 932

2012 150, 727

2013 193, 019

2014 137, 820

2015 115, 643

2016 86, 405

2017 36, 921
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Table XIII shows the share of firms with non-missing values for the main economic

indicators this database provides, the number of employees (Employees) and the operating

revenue (OR). Information about the number of employees and the operating revenue is

available for at least 50% of the firms between 2008-2013.
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Table XIII: Share of Non-Missing Observations (2008-2013)

Employees OR

0.526 0.643
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Approximately 10% of all firms that were included in the sample (those with more than

one employee that have information about their OR and Employees) have at least one patent

granted at the USPTO. Table XIV shows the number of firms per country with and without

patenting activity in this period.22 Column (1) of Table XIV shows the number of firms while

Column (2) the share they represent of the total number of firms in the sample. Column

(3) shows how many of these firms have at least one patent granted by the USPTO and

Column(4) the share they represent among all patenting firms in the sample. Note that 98%

of the firms in the sample come from the countries described in this table. Analogously, Table

XV shows the same information but across the 25 most populated sectors in the sample. The

distribution of firms across sectors is less concentrated than across countries, the 25th most

populated sectors account for 50% of all firms.

22Countries are ordered by the number of firms in the sample. Only the first 25 entries are shown.
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Table XIV: Country of Procedence of the Firms Included in the Sample

Country Code Number of Firms Share Patenting Firms Share

CN 25, 809 0.242 356 0.033

KR 14, 554 0.136 670 0.063

IT 13, 404 0.126 1, 244 0.117

DE 12, 717 0.119 1, 870 0.175

ES 6, 456 0.060 254 0.024

JP 6, 005 0.056 1, 902 0.178

FR 4, 138 0.039 636 0.060

GB 3, 802 0.036 784 0.073

CH 2, 899 0.027 432 0.040

SE 2, 014 0.019 390 0.037

CZ 1, 687 0.016 35 0.003

FI 1, 654 0.015 221 0.021

PL 1, 567 0.015 10 0.001

RU 1, 350 0.013 20 0.002

US 1, 108 0.010 562 0.053

TW 1, 079 0.010 465 0.044

AT 946 0.009 145 0.014

BE 643 0.006 124 0.012

PT 535 0.005 14 0.001

AU 505 0.005 71 0.007

HU 485 0.005 21 0.002

NL 429 0.004 98 0.009

RO 335 0.003 1 0

SI 321 0.003 18 0.002

BG 303 0.003 4 0
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E Replication of Results in Table VII at Firm-Level

In this section the analysis is conducted based on a panel of manufacturing firms for which

there is information about their operating revenue in 2008 and 2013 and have at least 20

employees. Therefore, the economic performance of firms is evaluated at the beginning and

end of the period for which the ORBIS database contains a stable number and composition

of firms for which a panel could be created. Because the number of patents a company files

varies greatly from year to year (Hall, Jaffe, and Trajtenberg, 2001), the patenting activity

of firms is evaluated using a 5-years windows previous to the date the economic data is

available.

As before, the GPT profile of firms is evaluated by identifying patents with above-average

values of Growth, UC, and IC in spans of 5 years (from 2004-2008 and 2009-2013).

Table XVI shows the result of regressing the operating revenue per employee of firms (in

logs) against the number and share of GPT patents.23 Results in columns (1) and (2) in

Table XVI show that the number of GPT patents in firms is associated with higher operating

revenues, after controlling for firm specific effects and the total number of other patents (non-

GPT). The difference between Column (1) and (2) is that the latter only includes firms that

have patenting activity in the period. These results suggest there exists a positive association

between firms’ growth and the number of GPT patents produced, an association that does

not exist for other type of patents. Columns (3) and (4) replace the number of GPT patents

by its share, in order to use a variable that is less influenced by firm size. In this case,

the total number of patents is included as a control. Results show, as before, a positive

and strong association between the share of GPT patents in a firm and its growth. Results

suggest that a 10% increase in the number of firms’ GPT patents is associated with an

increase in their operating revenue per employee of approximately 0.3%.

23Standard errors are clustered by firm and year according to Cameron, Gelbach, and Miller (2012).
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Table XVI: GPT Patents and Firm Performance

Operating Revenue per Employee

(1) (2) (3) (4)

GPT Patents (in logs) 0.034∗∗∗ 0.034∗∗∗

(0.010) (0.010)

Non-GPT Patents (in logs) 0.006 0.011

(0.009) (0.009)

Share of GPT Patents 0.054∗∗∗ 0.051∗∗∗

(0.018) (0.018)

Total Patents (in logs) 0.020∗∗ 0.024∗∗

(0.009) (0.009)

Years Included 2008 & 2013 2008 & 2013 2008 & 2013 2008 & 2013

Number of Firms 26,854 5,340 26,854 5,340

Type of Firms All Patenting All Patenting

Firm & Year FE Yes Yes Yes Yes

Observations 53,708 10,680 53,708 10,680

Adjusted R2 0.775 0.711 0.775 0.712

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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