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Abstract

This paper proposes a method to decompose cross-country differ-

ences in productivity (TFP) into a technological component - depending

on the overall productivity of a country - and an allocation component,

which depends on whether factors of productions are allocated to pro-

ductive or unproductive industries. Using a sample of over 2 million

firms from 30 countries, the analysis estimates that 1/4 of inequality

between countries is due to the Composition effect, while 3/4 to the

Place effect. Moreover, once accounting for heterogeneity at the sub-

national level, I find that the Composition effect may be as high as

50%.
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1 Introduction

Why is it that, for instance, Germany and Japan have high standards of liv-

ing? Economists typically organize the answer to this central question in two

steps: (1) Germany and Japan are wealthier because they are more productive,

and (2) they are more productive because of institutions, geography, culture,

history (and so forth). Yet, looking closely to the economy of these countries,

it is easy to notice that both are specialized in the production of cars, which

happens to be one of the most productive industries. Are Germany and Japan

more productive in anything they do? Or can it be that Germany and Japan

are more productive because they are specialized in industries with higher

margins? Moreover, not every part of these countries is as productive as their

core manufacturing and service centers. How much regional heterogeneity in

productivity creates distortions on they way we interpret the world?

I argue that our understanding of productivity differences is not complete

until we unpack what happens at the sub-national level, both in the industry

and regional dimensions. The disaggregation of productivity is an additional

layer of analysis, a useful tool to better understand the symptoms of economic

growth and can, in turn, guide the search for the root causes, as well as help

defining growth strategies. The aim of this paper is to shed some light on the

matter by measuring the relevance of industrial and regional aggregation in

explaining productivity differences. With respect to the industrial dimension,

in particular, the purpose is not to causally link industrial structure to wealth,

but to estimate the extent to which differences in the output mix are a sig-

nificant phenomenon. This can, in turn, guide future research into the root

causes of growth and, ultimately, help shaping policy strategy.
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For early development economists, structural change was a key ingredi-

ent of economic growth (Kuznets, 1966). Its role in growth theory became

somewhat marginal when the literature focused on models that could explain

the Kaldor facts (first neoclassical, then endogenous growth theory), and only

recently has the literature begun to reconcile leading models with structural

change (Herrendorf et al., 2014). Yet, a number of theoretical and empiri-

cal articles in the past two decades have suggested that the composition of a

country’s output might be important. Models that lead to these conclusions

typically involve asymmetric externalities across industries and an economy

open to trade (Matsuyama, 1992; Young, 1993; Galor and Mountford, 2006;

Hausmann et al., 2007). The main insight of these types of models is that

comparative advantages might induce some countries to specialize in tech-

nologically stagnant industries, in turn creating differences in the aggregate

productivity level or growth. Additional empirical exploration hints in the

same direction. Imbs and Wacziarg (2003) find a non-monotonic relation-

ship between the diversification of the output mix and development. Caselli

(2005) finds that structural change – in this case shifting factors of production

to non-agricultural sectors – would have nearly the same effect on reducing

cross-country income variance that one would obtain by increasing agricul-

tural productivity. This is because productivity in agriculture exhibits much

greater variance than does productivity in the rest of the economy. A similar

point is made in Rodrik (2013), showing that manufacturing exhibits uncon-

ditional convergence. Rodrik (2013) concludes that the lack of convergence

observed at the national level cannot be due to economy-wide factors.

Yet, in spite of this emerging literature we still do not have a clear ex-

pectation on how much the variations in output mix contribute generating

differences in overall productivity. Since this has, as argued, important impli-

cations on how we study the causes of development and how we shape growth

policy, in this paper I measure the relevance of output structure in explaining

productivity differences. To this end, I explore in detail total factor produc-

tivity (TFP) and its industrial dimension, decomposing the variance of TFP
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into two main components. The first, a Composition effect, measures the part

of the variance that depends on the industrial structure of a nation. Nations

with high shares in productive industries would have a strong Composition

effect. The second, a Place effect, captures the amount of variance that can

be attributed to nationwide differences in TFP. When a nation, for instance,

is relatively more productive in all industries, the Place effect plays a more

important role.

I estimate TFP, the Place effect, the Composition effect and their variance

using a firm-level dataset of firms spread across several nations and industries

(Bureau van Dijk1). The cross-country estimates from this analysis reveal that

the Place effect explains approximately 79% of the difference, while 29% can

be attributed to the Composition effect.2 This implies that, even if it were

possible to freely transfer technology across countries, large differences in stan-

dards of living would persist. It is argued that this cross-country estimate of

the Composition effect is a lower bound for two reasons. First, adjusting for

price differences across countries indicate that the Composition effect might be

more important. Second, countries are collections of heterogeneous cities and

regions, some more wealthy, urbanized and diversified, others more rural typi-

cally lagging in productivity and lacking diversity. Accounting for subnational

heterogeneity suggests a much larger role of Composition of up to 50%.

A case is made that the relationship between the Composition and Place

effects can be additionally interpreted as an indicator of how easily technol-

ogy diffuses through space: the more dominant is the Composition effect, the

more places are technologically homogeneous (that is, with lower variance of

within-industry productivity). This intuition is exploited to run the decompo-

sition analysis on different sets of nations and regions, with the expectations

1To compromise between breadth and depth, two datasets from Bureau van Dijk are
used: the main dataset is a cross-section from Orbis. For particular estimates, I use a 10-
year (2005-2014) panel of European firms from Amadeus, which also includes information
about the NUTS3 location of firms.

2Composition and Place do not sum to one. The next section details the mathematical
properties and possible interpretations of the measure.
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that in more homogeneous places (proximity, language, integrated markets)

the Composition effect plays a more relevant role. In line with this expecta-

tion, I find that subnationally, for instance in France, Germany and Italy, the

Composition and Place effects are responsible for (roughly) an equal amount

of inequality across regions.

The main message of the paper is that the industrial composition of coun-

tries explains an important share of the differences in standards of living. This

allows for old and new explanations that – complementary to the standard ap-

proach – can improve our understanding of growth and development.

The results of the analysis can be related to other analyses of structural

change. Articles such as Timmer and de Vries (2009) or McMillan et al. (2014)

find that structural change in recent years, especially in Latin America and

Africa, has been growth reducing (with the trend reversing in Africa after

2000). Whereas this type of analysis is concerned with change over time (the

amount of labor that moves from and to productive and unproductive sectors),

this paper offers a cross-sectional picture, to clarify how large the potential

gain from structural change and technological catch up is. This method is more

similar to that in Caselli (2005), which assesses the gains from changes in agri-

cultural productivity vis-à-vis the gains from transitioning to non-agricultural

activities. This analysis expands this methodology and applies it to a dataset

that includes as many as 800 sectors. Another related stream of literature is

emerging around the so-called misallocation hypothesis (Banerjee and Duflo,

2005). The conjecture is that a large portion of the within-industry productiv-

ity gap between developed and emerging economies is due to the latter having

high productivity dispersion. The lower aggregate sectoral productivity is the

result of factors of production being disproportionately employed in unpro-

ductive firms. This hypothesis finds some empirical confirmation (Hsieh and

Klenow, 2009 and 2010; Bartelsman et al., 2013), and it has been interpreted

as the consequence of a distortion (e.g., different rules for small firms) in the

allocation and selection process. Comparably, this paper examines the role of

allocation and selection, not within but between industries.
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The paper proceeds as follows. Section 2 presents a novel method of cross-

sectional productivity decomposition. Section 3 discusses the data, as well as

issues related to the measurement of productivity. In section 4, one can find

stylized facts about productivity. The main results of the paper are in section

5, while section 6 concludes the paper.

2 Decomposing productivity: Composition ef-

fect and Place effect

Using standard notation, I define TFP as

Aig =
Yig

Kα
igL

1−α
ig

, (1)

where g is used to index locations (be it countries or regions) and i to index

industries. Equation 1 is a standard measure of TFP. Yig is output, Kig is

capital, and Lig is employment. This definition of productivity serves as a

reference. In this paper, a variety of productivity measures are explored and

tested for robustness. For instance, I allow for capital and labor shares to be

estimated, output to be measured as revenue or quantity and employment to

be adjusted by wages to control for differences in human capital. The next

section elaborates on the measurement of TFP. For the present, the definition

in 1 is sufficient for our purposes. The share of industry i in country g is

defined as

sig =
Kα
igL

1−α
ig

Kα
g L

1−α
g

. (2)

Then, aggregate productivity can be expressed as follows

Ag =
Yg

Kα
g L

1−α
g

=∑
i

sigAig. (3)

The decomposition measure is derived from the following identity.
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∑
i

(Aig −Ai)(sig − si) =∑
i

(Aig −Ai)(sig − si), (4)

where si is the share of industry i in the whole economy and is defined similarly

to sig in equation 2. The identity can be rewritten as

Ag = −A + ∑
i

sigAi

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Composition

+∑
i

siAig

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
Place

+∑
i

(Aig −Ai)(sig − si)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Residual

. (5)

The Composition term, which this paper also refers to as Cg, indicates the

amount of TFP that can be attributed to the output structure. The Place

term, also called Pg, captures the amount of TFP due to own productivity –

regardless of the output mix. The third term, Rg, can be seen as a residual,

but it could also have an economic interpretation as a Ricardian effect of

specialization: Rg is high if a place g has large shares in activities in which it

has high productivity (although the advantage in Rg is absolute, not relative).

As is shown below, this residual/Ricardian term plays no role in the main

indicator employed in this analysis, and therefore, the first interpretation, as

a residual, is stressed. However a secondary indicator used for robustness is

included in the analysis. Note that the term A is the average productivity of

the economy, and since it is constant, it does not contribute to the variance.

We have

V ar(Ag) ∶= σ
2
A = i′

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ2
C σCP σCR

σCP σ2
P σPR

σCR σPR σ2
R

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

i. (6)

Where i is a vector of ones, and the matrix on the right-hand side (RHS) is

the variance-covariance matrix of Composition (C), Place (P), and the Ricar-

dian/residual effect (R). To obtain the main indicators, the following thought
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experiment is employed. What would the variance of productivity be if every

country had the same industry productivity? If we set Aig = Ai, the standard

deviation σA becomes equal to σC . Equally, we can ask, what would the vari-

ance of productivity be if every country had the same composition of output?

Will this reallocation of production factors reduce the variance? We can see

by substitution that, by setting sig = si, we simply obtain that σA = σP . Our

main indicators are

IP =
σP
σA
,

IC =
σC
σA
.

(7)

The indicator IP describes the world, at current productivity, with no Com-

position effect. It reports what share of the standard deviation of productivity

would be left if we were to shut down the Composition effect entirely and is,

therefore, an indicator of the importance of the Place effect. Symmetrically, IC

indicates what share of the standard deviation of productivity would be left by

nullifying productivity differences. It is, then, an indicator of the Composition

effect. Additional interpretation can be unveiled by noting that

V ar(Pg) ∶= σ
2
P = V ar(∑

i

siAig) =∑
i,j

sisjCov(Aig,Ajg). (8)

The covariance term is high when productivity is mainly a country charac-

teristic: for any industry pair ij, higher productivity in country g in i implies

higher productivity in j. The effect is amplified by the weights, when the

covariance is high in industries that represent a large share of the economy.

When the covariance term nears zero for all industry pairs, there is no Place

effect and industry productivity is randomly distributed across countries. For

the Composition effect, we can write

V ar(Cg) ∶= σ
2
C = V ar(∑

i

sigAi) =∑
i,j

AiAjCov(sig, sjg). (9)
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The Composition effect is irrelevant when industry shares are randomly

distributed. It becomes more important for explaining the variance of produc-

tivity across countries when some places have systematically larger shares in

industries that are more productive on average.

An interesting link with equation 9 is that the term Cov(sig, sjg) is one

of the common metrics to measure coagglomeration economies or the product

space (Porter, 2003; Hausmann et al., 2014; Diodato, Neffke, and O’Clery,

2018b). The idea behind these types of indicators is that two industries co-

occur geographically more often when they have specific bilateral externali-

ties, such as Marshallian knowledge spillovers, labor sharing and supply-chain

linkages (Ellison et al., 2010). As discussed in the introduction – theoretical

models, which support the hypothesis that the output mix is important to un-

derstand productivity differences across countries, typically resort to industry-

specific externalities. It is interesting, then, that the importance of composi-

tion in the variance depends on the degree to which industries coagglomerate.

3 Data and measurement of productivity

To measure country-industry productivity, I start from firm-level statistics

from Bureau van Dijk’s Orbis dataset, which collects balance sheet informa-

tion for more the 200 million companies. The main shortcoming of this data is

that there is some variation in terms of coverage between countries. Orbis in-

cludes all companies that are legally obliged to publicly report their accounts.

Differences in laws that trigger mandatory reporting in different countries cre-

ate heterogeneity in coverage. Bureau van Dijk attempts to correct this bias

by collecting information on all the remaining companies that they can. This

is unlikely to entirely solve the problem, but it certainly mitigates the distor-

tion. I show, in fact, in section 5.1 that firms in the Orbis dataset represents

reasonably their countries’ economy. Orbis has many other advantages. It is a

global dataset, which allows for systematic comparison across the world. Most

companies are assigned detailed geographical (including subnational informa-
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tion) and industrial codes,3 which serve the purpose of this research. One can

also distinguish consolidated from unconsolidated accounts, to avoid assign-

ing attributes to a geographical area that in fact come from the accounts of

a multi-plant (potentially multinational) corporation. Finally, Orbis contains

balance sheet data that can be used to measure TFP.

In its simplest form, TFP can be measured using value added (VA) as out-

put, fixed capital as capital stock K and the number of employees as labor

L. However, recent works (see, for instance, Bartelsman et al., 2013) have

stressed the difference between TFPR (TFP revenue) and TFPQ (TFP quan-

tity). It can be easily seen with a stylized model that TFPR is not an adequate

measure of firm productivity. If we describe the environment of firm j with

a model of monopolistic competition and a technology that uses capital and

labor as input, demand for firm j is

xj = p
−σ
j

E

I
, (10)

where x is physical output, p is price, σ is the elasticity of substitution,4 and

E and I are total demand and the price index of the economy,5 respectively.

Production is

xj = AjK
α
j L

1−α
j , (11)

where Aj is TFP. However, measuring productivity as TFPR would result in

TFPRj =
V Aj

Kα
j L

1−α
j

=
pjxj

Kα
j L

1−α
j

= Ajpj =
σ

σ − 1
(
r

α
)α(

w

1 − α
)1−α. (12)

3To get a sense on the level of detail, the dataset distinguishes between 16 German
NUTS1 (Länder), 38 NUTS2 (regions), and over 400 NUTS3 (districts). To get a sense of
the industrial detail, transportation equipment is divided in 2 NACE rev2 2-digit industries
and 12 4-digit industries, including manufacturing of bicycles, motorcycles, motor vehicles,
semi-trailers, ships, sporting boats, trains, airplanes.

4Beware of the possible confusion between elasticity of substitution (σ) and standard
deviation/variance/covariance (e.g., σA, σ2

C , σPR).
5To lighten notation, I define I = ∑k p

1−σ
k .
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The price of labor and capital is w and r, respectively. To obtain the

final expression for TFPRj, two substitutions are applied. First, equation

11 is used to substitute for Kα
j L

1−α
j . Then, optimal pricing behavior would

lead to the mark-up rule where pj = [
σ

σ − 1
(
r

α
)α(

w

1 − α
)1−α]/Aj. The term

Aj – the objective of the analysis – drops out. This framework shows that

there is no theoretical proportionality between a firm’s TFPRj and Aj, the

efficiency with which inputs are transformed into output. Intuitively, this lack

of correlation stems from the opposing effects of optimal output versus optimal

pricing. While output is proportional to productivity, it is the opposite for

prices in the event that firms choose a mark-up on marginal costs, which in

turn are negatively related to productivity.

Hsieh and Klenow (2009) highlight that there is a theoretical link between

output and value added – in this model, it can be derived from equation 10 as

xj = (pjxj)σ/(σ−1)(I/E)1/(σ−1) – and propose the following adjusted measure of

TFPQ

TFPQj =
V A

σ/σ−1
j

Kα
j L

1−α
j

κ. (13)

The Hsieh and Klenow (HK) measure is the baseline indicator of produc-

tivity in this analysis. In their work, the TFPQ indicator is calculated using

the standard capital share of one-third (α = 0.33) and an elasticity of substitu-

tion σ = 3. In the benchmark results in this paper, I opt for the same capital

share but a larger elasticity (σ = 7). In the results and in the appendix, one

can find a careful explanation for why this benchmark was chosen, as well as

a discussion of the robustness of this choice.

I highlight here that using TFPQ has a drawback in this context. Since we

wish to aggregate productivity across industries, the aggregation in equation

3 requires that the units of measure for output Yig are comparable across

industries. When Yig is in values, comparability is guaranteed. However,

when Yig is in output, one would need to resort to the additional assumption

of homogeneous units of output for the different industries. For this reason,
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I also report and discuss TFPR. It should be noted, additionally, that the

measure of this paper does not actually use physical quantities, but rather

deflate values of final output – rendering the aggregation conceptually less

problematic.

An important control in this context concerns the price index. In the HK

measure, the term κ = (I/E)1/(σ−1) is dropped because the authors are inter-

ested in comparing the productivity of firms in the same country and in the

same industry. They subsequently assume that κ is a constant.6 This assump-

tion is more stringent in our context, where the comparison between countries

and industries is at the core of the analysis. I test whether the main conclu-

sions of the baseline indicator are robust to a country-specific price index, in

an attempt to factor in the evident nominal differences across countries. To

coherently model a country-specific price index (avoiding the complications of

including trade costs), countries must be thought of in isolation. Using the

simplifying assumption that each firm j in industry i produces with efficiency

Ai,7 the price index Ig is

Ig =∑
i

P 1−σ
ig = [

σ

σ − 1
(
rg
α

)α(
wg

1 − α
)1−α]1−σ∑

i

(1/Ai)
1−σ. (14)

Demand, Eg, equals national value added, that is rgKg + wgLg. The ad-

justment term, (I/E)1/(σ−1), is therefore

(Ig/Eg)
1/(σ−1) =

rαgw
1−α
g

(rgKg +wgLg)1/(σ−1)
κ1, (15)

where κ1 collects all the constant terms. The only additional assumption re-

quired to construct the adjustment term concerns the rental price of capital, r,

which I do not observe. Following HK’s reasoning, I set an homogeneous price

of 10%, which includes a 5% interest rate and 5% depreciation. Alternative

6The term κ in Hsieh and Klenow (2009) also includes a distortion that is not modeled
here. This difference does not change the constant nature of κ.

7With these assumptions, the correction term accounts only for exogenous differences
such as capital and labor endowment or institutional factors, not for productivity differences.
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prices of capital are also tested, but there are minimal differences in the out-

come (available upon request). While it certainly is an impure way to correct

for price differences across countries, the term in 15 behaves as expected –

with a negative relationship with both countries’ output and productivity.

A last issue in the measurement of productivity concerns the share of cap-

ital, α. In the core of the analysis in this paper, I assign to α the widely

accepted value – at least for the whole economy – of one-third. Moreover it

assigns the remaining two-thirds to labor (1−α). For robustness, the analysis

is repeated using estimated values of α̂. The assumption of constant returns to

scale is also relaxed, using β̂ instead of 1− α̂. The use of estimated parameters

raises additional concerns. As highlighted in previous works, most notably by

Olley and Pakes (1996) and Levinsohn and Petrin (2003), OLS or fixed effects

estimates of the production function would lead to biased results. Assuming

the same production function as I have in this paper – Yig = AigKα
igL

β
ig – the

simplest translation into an econometric model would be

log(Yig) = αlog(Kig) + βlog(Lig) + γ + εig, (16)

where Aig would be equal to exp(γ + εig). The issue arises if unobserved

shocks in the production technology (εig) are correlated with K and L, which

would occur in the event that firms adjust the level of inputs to the change

in productivity. Levinsohn and Petrin (2003) show that the direction of the

bias with more than one factor of production is nontrivial. In the simple case

in which capital is fixed (i.e., firms cannot adjust the number of machines in

a given year in response to an unexpected shock) and labor is a free to move,

then α would be unbiased while β would be upward biased. To solve the

simultaneity bias, Levinsohn and Petrin (2003) (building on the work of Olley

and Pakes, 1996) propose an estimation method – LP hereafter – in which

intermediate inputs are used as a proxy variable for the unobserved shock.

The results of this paper are tested for robustness to simultaneity bias. A 10-

year panel dataset derived from a subsection of Orbis (Amadeus) comprising
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only European firms is used in this case.

4 Stylized Facts

Productivity at the country or industry level is measured starting from firm-

level data. A direct consequence of this choice is that the quality of the

estimates for each nation varies with the coverage that Bureau van Dijk has

of that country. As discussed in section 3, both the breadth and depth of

coverage is rather heterogeneous across countries in this dataset. Moreover, an

additional constraint is imposed by the availability of the information required

to build a TFP measure, namely employment, fixed assets, and value added.

These strong requirements all add up to vastly reduce the pool of firms in the

Orbis dataset that we can use. For instance, the data include almost 600,000

Dutch companies. Yet, value added information is available for only 100 of

these companies. Since the reliability of the TFP estimate at the country level

depends on how many firms are available for that country, I am forced to drop

a considerable number of countries from the analysis for which the number of

firms was deemed insufficient. Using a threshold of 500 firms, we are left with

30 countries.8

Table 1 lists the top-10 and bottom-10 countries by productivity.9 It can be

observed that the majority are developed or emerging economies. While this

somewhat limits the extent to which we can generalize this study, it is worth

noting that the restricted sample still presents large variance to be explained,

with almost 10-fold differences in TFP from the most- to the least-productive

country.

8These countries are Australia, Austria, Belgium, Bosnia and Herzegovina, Bulgaria,
the Cayman Islands, the Czech Republic, Finland, France, Germany, Hong Kong, Hungary,
India, Ireland, Italy, Japan, South Korea, Latvia, Luxembourg, Macedonia, Norway, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Ukraine, and the United Kingdom.
For robustness, the analysis is also repeated with different thresholds.

9While I chose a threshold of 500 firms for the benchmark results, I opted to be more
inclusive in this descriptive section and to show countries with information on more than
300 firms. This includes countries like Switzerland and the US.

14



Table 1: Countries ranked by productivity.

ISO2 Name Ag # 4-d sectors # firms

Top 10

CH Switzerland 0.182 136 322

DE Germany 0.161 761 73309

JP Japan 0.155 274 4098

SE Sweden 0.141 567 90415

AU Australia 0.139 223 908

FR France 0.135 579 169024

IE Ireland 0.128 299 1942

AT Austria 0.124 501 4849

GB United Kingdom 0.121 580 34287

FI Finland 0.121 520 24733

Bottom 10

PT Portugal 0.043 577 217464

CZ Czech Republic 0.043 683 43886

VN Viet Nam 0.041 146 453

KR Korea, Republic of 0.040 406 48692

SK Slovakia 0.037 539 35402

RO Romania 0.025 567 79816

BA Bosnia and Herzegovina 0.020 369 3557

BG Bulgaria 0.018 569 63888

MK Macedonia, the Former Yugoslav Republic of 0.018 486 13601

UA Ukraine 0.018 406 6982

Productivity is measured as the benchmark TFPQ, that is, adjusting value added using σ = 7

and using fixed assets for capital and employment for labor; the capital share is set to 0.33,

and countries with fewer than 300 firms are excluded.

As highlighted in the introduction, it is natural to think of these differ-

ences across countries as a result of generalized productivity differences in all

sectors. Countries such as Japan or Germany are more productive than Mace-

donia or Ukraine in most industries. Figure 1 in fact shows that – if we take
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the 30 least-productive industries – the countries with the largest TFP are still

more productive than the average in these low-productivity industries. One

can think of figure 1 as a visual depiction of the Place effect: some countries

are more productive in everything they do, and hence, data on their general

level of productivity provide information about productivity in some particu-

lar industry. That is, Cov(Aig,Ajg) > 0, which means that V ar(Pg) > 0 (see

equation 8).

Figure 1: A visual depiction of the Place effect. Countries with higher produc-

tivity are also more efficient in low-productivity industries.
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Productivity is measured as the benchmark TFPQ.

However, the average differences in productivity between industries are as

large as those across countries. Table 2 in fact shows that telecommunications

firms are on average 10 times more efficient at transforming inputs into out-

put than agricultural firms. These large differences in productivity must be

considered in combination with the specialization of countries. In fact, one

can notice, for instance, how manufacturing of motor vehicles is among the

most productive industries. This is an industry in which Germany is tradi-
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tionally strong and employs large shares of the workforce. This implies that

at least part of the higher productivity of this country is due to a special-

ization in high-productivity industries. Symmetrically, it is well known that

in less-developed countries, a larger portion of the population is employed in

agricultural activities, hence reducing the average productivity of the country.

Table 2: Industries ranked by productivity.

NACE Name Ai # countries # firms

Top 10

61 Telecommunications 0.238 38 5322

12 Manufacture of tobacco products 0.226 21 121

19 Manufacture of coke and refined petroleu 0.224 32 648

51 Air transport 0.222 34 642

60 Programming and broadcasting activities 0.194 35 1952

9 Mining support service activities 0.194 33 497

35 Electricity, gas, steam and air conditio 0.189 38 8509

21 Manufacture of basic pharmaceutical prod 0.184 37 2006

30 Manufacture of other transport equipment 0.184 36 3241

29 Manufacture of motor vehicles, trailers 0.182 37 6965

Bottom 10

75 Veterinary activities 0.067 24 3071

15 Manufacture of leather and related produ 0.064 33 9133

31 Manufacture of furniture 0.064 36 14234

87 Residential care activities 0.060 26 8190

16 Manufacture of wood and of products of w 0.060 35 16593

85 Education 0.058 33 23207

91 Libraries, archives, museums and other c 0.057 21 959

13 Manufacture of textiles 0.042 36 10909

2 Forestry and logging 0.037 30 6753

1 Crop and animal production, hunting and 0.028 38 47940

Productivity is measured as the benchmark TFPQ.
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Figure 2: A visual depiction of the Composition effect. Countries with higher

productivity have larger shares in high-productivity industries.
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Productivity is measured as the benchmark TFPQ. Shares are computed as in equation 2.

Figure 2 visually captures the concept of the Composition effect. The

larger the amount of resources a country devotes to production, in industries

that are on average more productive, the larger its average TFP. Together,

figures 1 and 2 suggest that, to explain the differences in productivity across

countries, both the Composition and the Place effect are required. Starting

with the following section, the analysis of this paper, based on the decomposi-

tion method proposed in section 2, is aimed at more rigorously evaluating the

relative importance of the two factors.

5 Results of decomposition

5.1 The industry dimension

In this section, I present the main results of decomposing productivity dif-

ferences between countries. That is I use the measure developed in section
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2 to assess how much of productivity is due to industries composition. For

now, I ignore that we can see countries as collection of regions. The results of

decomposition accounting for within-nation regional differences are discussed

in section 5.2.

The benchmark estimation in table 3 can be taken as a representative sum-

mary of the results. Recall that, for this benchmark, I chose an elasticity of

substitution of σ = 7 and a constant capital share of α = 0.33. Moreover, em-

ployment instead of the wage bill is used for the labor variables, the economy

is divided into 4-digit industries, and all countries with fewer than 500 firms

have been excluded from the analysis. With these choices, I find that – con-

servatively – at least 1/4 of the cross-country inequality in productivity is due

to the Composition effect. More precisely, this means that, if we were to erase

productivity differences within industries overnight, approximately 29% of the

standard deviation of productivity would persist due to specialization in in-

dustries with different productivity levels. Moreover, over 3/4 of the inequality

is due to the Place effect. More accurately, if we were to change the industry

share such that every country dedicated an equal amount of resources (equal

to the world average) to every industry, 79% of the cross-country variation

would remain.

This is an interesting result. While the predominance of the Place effect is

probably the prior of most researchers and development practitioners, I show

here that in our most conservative estimates – without price corrections and

without accounting for within-nation regional heterogeneity, at least 29% of

the variation is due to the Composition effect, a number far from negligible.

This shows that lagging nations could make progress not only by adopting the

technology of more-advanced countries but also by shifting resources within

their industrial/technological portfolio.
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Table 3: Summary of results.

Estimate type Composition Place Residual

Benchmark 0.292 0.786

Alternative Indicator 0.193 0.624 0.183

Firm threshold = 250 0.305 0.782

Firm threshold = 1000 0.299 0.811

Constant firms (5000) 0.490 0.795

Unconsolidated accounts 0.235 0.811

Exclude selected services 0.292 0.786

Eurostat shares (1-digit industries) 0.160 0.998

Orbis shares (1-digit industries) 0.163 0.966

Wage bill instead of employment 0.378 0.573

Price Index Adjustment 0.476 0.584

σ = 2 0.333 0.721

σ = 12 (∽ TFPR) 0.223 0.883

Estimated K and L shares (OLS) 0.387 0.796

Estimated K and L shares (FE) 0.541 0.885

Estimated K and L shares (LP) 0.728 0.932

Composition and Place effect, with the exception of the alternative indicator in the second

row, are expressed in terms of relative standard deviation, that is, σC/σA and σP /σA

In the remainder of this section, I provide an in-depth discussion of the

robustness of the estimates of the Composition and Place effects. The main

table of results – table 3 – reports selected output. An overview of the issues

related to robustness is provided here. For some of the issues the main text

provides an in-depth discussion, while for others dedicated sections can be

found in the appendix. Specifically, in this section I discuss whether the firms

selected in the Orbis dataset are representative of their countries’ economy and

the role of nominal price differences across countries. The sensitivity to the
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choice of elasticity is discussed in appendix A. The choice of capital share α

is discussed in appendix B. Sections 5.2, 5.3, and appendix C discuss changes

in the industrial and geographical dimensions.

It is important to highlight that, using the chosen indicator, the Composi-

tion and the Place effects do not sum up to one. The variance of productivity

is not only generated by the Composition and Place effects, but also by the

variance of a third residual term, as well as all the covariances. The choice

of solely examining σC and σP is justified by the fact that setting Aig = Ai

yields σA = σC . Similarly, setting sig = si, σA = σP . These thought experiments

(what would σA be in the two cases) allow us to organize our understanding of

the structure of A in two parts: Composition and Place. Since this is already

adding a rich layer of complexity to the way normally the structure of A is

understood, I opted for this bipartite division. However, a valid alternative

would have been to analyze all terms that compose the variance of Ag. In fact,

the following equivalence also holds

V ar(Ag) = Cov(Pg,Ag) +Cov(Cg,Ag) +Cov(Rg,Ag) (17)

where, for instance, Cov(Pg,Ag) = V ar(Pg) + Cov(Pg,Cg) + Cov(Pg,Rg). In

the second row of table 3, this property is exploited to construct a second

indicator, where the three terms sum up to one. It is clear that the impor-

tance of the Composition and Place effects (at least in relative terms) is not

excessively different from that estimated with the primary indicator, with the

former capturing 20% and the latter 60%. This alternative, however, leaves

room for a residual term. As discussed in section 2, the residual term can

also be interpreted as Ricardian specialization. According to this interpreta-

tion, approximately 20% of the differences in productivity can be ascribed to

countries specializing in what they are better at.

Table 3 also shows a number of robustness checks aimed at addressing

the concern that Orbis might not be representative. First, a crucial check

is whether the presence of firms with consolidated accounts are significantly
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distorting the results, but it does not seem to be the case. Next, a small

threshold in terms of the minimum number of firms required for a country to

enter the analysis is concerning because we might include a country where the

information collected in Orbis are not representative of its structure. I observe

however that results are robust to different thresholds, with minimal changes

halving or doubling the threshold. This means that the results are not driven

by the inclusion/exclusion of few extra countries where information are more

likely to be biased. Next, in the row labeled ‘constant firm’, I include only

the 19 countries that have more than 5000 firms represented. I then select,

randomly, 5000 firms for each of the countries, to keep the sample size con-

stant. This process, which if repeated gives consistent results, suggests that

the potential misrepresentation of some countries does not bias the estimate

of the Place effect, but it might bias the Composition effect. This hints at a

potentially larger role of the Composition effect. We can additionally check

whether the firms in Orbis are over- or under-represented in some industries.

To control whether that is the case, I use value added by 1-digit industry (21

NACE aggregated industries, identified by a letter code) as reported in the

national accounts of individual countries (use and make tables). I collect the

national accounts for 18 European nations (Eurostat) and for each of them

compare the share of value added of every 1-digit industry as computed using

Eurostat with the same share obtained using the Orbis dataset.

Figure 3 shows this comparison for Germany, whose pattern is very similar

to that of all other 17 nations checked (with the exception perhaps of Spain,

which has slightly larger discrepancies10). The figure (left panel) shows that

some industries, particularly public services (such as public administration,

code O), but also some privately supplied services real estate and professional

and scientific activities (L and M) have significant distortions. Code C contains

all manufacturing activities and also shows non negligible bias. The right panel

of figure 3 shows, nonetheless, that – once we exclude all public services, as

10Versions of figure 3 using the 17 other nations are available upon request.
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well as industries L and M – there is a better correspondence between the

shares estimated with the national accounts and those estimated with Orbis

data. Manufacturing too appears to have better estimated shares in this case.

I interpret this pattern, which again is not only observed in Germany, as

evidence that Orbis systematically captures some industries better than others.

Figure 3: Distribution of activities across industries in Germany according to

Orbis and Eurostat.
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The left panel includes the whole economy, the right panel shows only selected industries.

To verify whether this could be a problem I perform two controls: first, I

test the decomposition excluding all the industries that show here to be poorly

represented in Orbis. In table 3 the row ‘exclude selected services’ shows that

outcome of a decomposition where all industries with 4-digit NACE code larger

than 6700 have been dropped.11 Only marginal changes can be observed. Sec-

ond, I attempt to use the industry shares estimated with the national accounts

directly in the decomposition. While in later discussion in this paper I argue

that using coarse industrial aggregation results in biased outcome, I can run

here two decomposition routines, one using Eurostat shares the other using

Orbis shares for 1-digit industries. The results, because of the coarse aggre-

gation (all manufacturing is collapsed in one sector) are not very informative

alone (besides, it also uses a smaller selection of countries). However, compar-

ing one against the other suggests that Orbis is representative at 1-digit level

11Mainly: real estate, professional services, public administration, defense, education,
health and social services, arts and entertainment.
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for our purposes. While we cannot test the same with more disaggregated

industrial classifications, the results are reassuring.

Another important set of controls is performed on the sensitivity of results

to price corrections. Table 3 shows three types of decomposition in its third

block. The first one uses employees payroll instead of employment as in Hsieh

and Klenow (2009), following the argument that wages correct (imperfectly)

for differences in human capital. The second one uses the correction term

theoretically derived in section 3. For both estimates, the role of Composition

is closer to that of the Place effect, with 38% Composition and 57% Place in

the first case, and 48% Composition and 58% Place in the second one. For this

reason, I regard the benchmark estimate of 1/4 Composition and 3/4 Place as

a lower bound.

Next, the estimate of the Composition effect increases at lower elasticities

of substitution, σ, and declines when the elasticity raises. The outcome of

the decomposition is, however, relatively stable around the benchmark. As a

midpoint between the values found in the literature of σ = 3 and σ = 12 (which

gives an approximation of TFPR, as in this case σ/(σ − 1) ≃ 1), the value of

σ = 7 is chosen as a compromise because neither option is desirable. Appendix

A elaborates on this issue.

The capital and labor shares (α and β) estimated via OLS do not substan-

tially change the outcome of the decomposition, with only the Composition

effect increasing to 39%, while the Place effect remains stable. However, this is

not the case when estimating the shares using fixed effects (FE) or the Levin-

sohn and Petrin estimator (LP). In this case – see appendix B – the estimated

shares of capital and labor show a net departure from the assumption of con-

stant returns to scale. The resulting decomposition shows a marked increase

in both the Composition effect and Place effect. While such large differences

are likely to reflect issues with LP estimates (LP was expected to be more in

accord with OLS than FE, see Levinsohn and Petrin, 2003), this shows that

the decomposition of productivity in this dataset is not robust to the estimator

24



used. Nonetheless, the qualitative conclusion that both effects are important,

with the Place effect capturing the largest share of the variance, continues to

hold.

5.2 Aggregation and the regional dimension

An important question concerns the role of geographical heterogeneity into the

estimates. It is a well-established fact that levels of productivity can exhibit

large differences across regions in a country. Using OECD data, for instance,

I verify that the ratio between richest and poorest NUTS2 region in a country

(based on income per capita PPP in 2013) is 1.7 for France and Germany, 1.8

for the UK, 2 for Spain, and 2.2 for Italy. The ratio between the richest region

in Italy and the poorest in Germany is 1.5. This heterogeneity suggests that it

is not always meaningful to think about the difference in productivity between

two countries.

Figure 4: Aggregation in the geographical and industrial dimensions.

Composition (left) and Place (right) effects as functions of the level of aggregation in the

industrial and geographical dimensions. The axis labeled as ‘industry’ measures the number

of digits in NACE classification used for the decomposition routine. Equally, the axis labeled

as ‘region’ indicates the number of digits in the NUTS classification, where NUTS0 is the

national level.
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I then attempt to take into account the subnational geographical hetero-

geneity in the proposed decomposition method. The Amadeus data used in

this analysis contains an identifier for the 3-digit NUTS geographical location

of the firm. We can, thus, estimate how the Composition and Place effects

change when we change the geographical dimension from the most aggregate

(NUTS0, which corresponds to nations) to the most disaggregate (NUTS3,

which typically corresponds to cities and their broad surroundings). I find

that disaggregation at the geographical level changes the estimates of both

Composition and Place effects, with the former increasing and the latter drop-

ping markedly. At the most disaggregated level I find that Composition and

Place are equally important: 0.581 and 0.589 respectively. This prompts us to

consider what is the effect of aggregation for the industrial dimension as well.

The concern is even larger than in the geographical dimension. One in fact

could argue that, although ignoring the within-nation geographical differences

clearly hides some of the dynamics of productivity, a researcher could be inter-

ested to learn about decomposition at the country level. This is not the case

for the industrial dimension where aggregation only gives biased information

about productivity. In appendix C, a simple model of aggregation is proposed

to show that industry disaggregation indeed corrects for noise, and therefore,

disaggregated data are preferable.12 Because of the conclusions of this model,

in the previous section I only presented results at the maximum disaggregation

possible in this data (4-digit NACE). I however test here with more aggregate

industrial classification and find, in line with the aggregation model, that the

importance of Composition drop, while that of the Place effect rises. The

effect of aggregation on the estimates is summarized in figure 4. It is clear

from the figure that disaggregating in both industry and regional dimensions

increases, albeit non-monotonically, the importance of the Composition effect

and decreases that of Place. Disaggregation – the figure indicates – changes

12The model also shows that disaggregation makes the decomposition terms converge to
a finite limit and therefore cannot be used to obtain arbitrary values for the Composition
and Place effects.
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the conclusions deeply. Whereas in the aggregated case one would conclude

that we live in a world dominated by the Place effect, Composition and Place

are equally important if the regional and sectoral granularity is taken into

account.

5.3 Technology diffusion

While disaggregation of data reveals concealed aspects of productivity, a case

can be made that slicing the data along the industrial and regional dimension

can provide new information as well. If, for instance, we compute the decom-

position routine for east and west Europe separately, I argue that the difference

can be interpreted as an indication of technological homogeneity within the

group of countries. In fact, according to this interpretation, a stronger Compo-

sition effect signals greater homogeneity in industry technology across places,

that is {Aig −Ai} is small for many industries. By this logic, one can interpret

the difference in the Composition effect as an indicator of how easily technol-

ogy diffuses. The argument is valid for both the geographical and industrial

aggregation of data.13

Figure 5 shows some selected decomposition on subsets of the data. The

decomposition of European countries is very similar to the benchmark, perhaps

because the majority of the sample consists of countries in Europe. However,

it can be observed that in the European Union, the Composition effect is

approximately 50% larger than in the benchmark case, while in western Eu-

rope, it is almost twice as large, indicating greater technological homogeneity

among these nations. In the subsample of Asian countries, the Composition

and Place effects are almost equally important, although this must be inter-

preted with caution, as we have a very small subset of Asian countries (Japan,

13Though the industry dimension is not symmetric to the geographical one: the decompo-
sition is a way to assess homogeneity of industries across geographies. By disaggregating, say,
agriculture and manufacturing into several products we assess the homogeneity of produc-
tivity of potatoes and textile across geographies (rather than the homogeneity of technology
between potatoes and textile).
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South Korea, Australia, India, Hong Kong).

Figure 5: Decomposition of selected geographical or industrial subsets.
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The standard assumptions on TFPQ used in the benchmark case apply. The Composition

and Place effects are measured using the main indicator of relative standard deviation

If we look subnationally, at NUTS2 regions within a country, I find that

on average the effect of Composition and that of Place are very similar, as

shown in the productivity decomposition of France, Germany and Italy in

figure 5.14 While perhaps part of the larger impact of the Composition effect

is due to lower level of noise in more disaggregated data, it is likely that

some of the difference arises from less constrained knowledge diffusion within

a country compared to between countries. Likely, technological homogeneity is

easier to achieve at shorter distance and with a homogeneous population. To

informally test the conjecture that the relative importance of the Composition

and Place effects can be interpreted as a sign of the technological homogeneity,

the following econometric specification is tested. The 16 European countries

for which sufficient data are available to to run the decomposition analysis at

14With the German case exhibiting a Composition effect far stronger than the Place effect.
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the subnational (NUTS2) level are selected.15

The decomposition analysis is run on country pairs; for instance, France

and Italy would have 22 and 21 NUTS2 regions, respectively. Thus, the de-

composition analysis for this pair of countries is limited to 43 NUTS2 regions.

There are 120 country pairs ((162−16)/2 = 120), and for each of them, the ratio

between the standard deviation of the Composition and Place effects, σC/σP ,

is computed. Table 4 reports the econometric results when this indicator is

regressed against distance and contiguity, variables that refer to the 120 pairs

of countries.

As one should expect, distance is negatively related to the ratio σC/σP ,

as countries that are farther apart have more heterogeneous technology. The

effect, however, is significant only if a contiguity variable is not included. This

could be interpreted as evidence that a short distance is not sufficient for

knowledge diffusion, but the right channel is necessary. Possibly, contiguity

allows for human capital migration, while distance without contiguity only

allows for trade. Yet another interpretation is that a shared border indicates

institutional similarity, which in turn facilitates technological diffusion. This

would explain why sharing a border is more relevant than proximity and why

the Composition effect is stronger between regions than between countries.

The evidence presented, however, only allows for speculation, which is outside

the scope of this analysis. The main point highlighted by these regressions is

that the interpretation proposed – the variation in the relative importance of

the Composition and Place effects can be seen as an indicator of technological

homogeneity – is in line with the evidence on how σC/σP varies with distance

and contiguity.

15These countries are Belgium, Bulgaria, the Czech Republic, Germany, Denmark, Spain,
Finland, France, Hungary, Ireland, Italy, Poland, Portugal, Romania, Sweden, Slovakia.
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Table 4: Distance decay of technology diffusion.

Dependent variable: σC/σP

(1) (2) (3) (4)

Distance -0.087* -0.040 -0.042

(0.051) (0.058) (0.058)

Contiguity 0.230** 0.191* 0.202*

(0.100) (0.115) (0.115)

GDP per capita (origin) 0.002

(0.002)

GDP per capita (destination) 0.003

(0.002)

Constant 1.032*** 0.880*** 0.941*** 0.812***

(0.079) (0.037) (0.095) (0.127)

Adj.R2 0.016 0.035 0.030 0.034

Obs. 120 120 120 120

Each observation represents a country pair. The dependent variable is obtained from the

decomposition at the NUTS2 level of all regions in the pair. Standard errors are in paren-

theses, and significance is denoted as follows: P < 0.1:*,P < 0.05:**, P < 0.01:***

A final comment, possibly hinting at future research, is on the subsets of

the industrial dimension. Although the priors were less strong than for the

other subsets shown in figure 5, it was somewhat unexpected that manufactur-

ing had a smaller Composition effect than agriculture and services did. The

evidence in Caselli (2005) and Rodrik (2013), in fact, suggests that manufac-

turing has a more homogeneous technology than agriculture (the former) or

services (the latter).16 The sectoral heterogeneity in technology diffusion is

largely an understudied topic. Yet, its importance is far from marginal be-

cause – as highlighted in section 1 – the existence of asymmetric externalities

between industries has severe implications for which type of world we live in.

16Rodrik (2013) argues that technological convergence is easier in manufacturing because
it is more tradable and, hence, subject to stronger competition.
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For this reason, the contradictory evidence cannot lead to swift conclusions

but only calls for further research.

6 Conclusions

The estimates in this paper suggest that the difference in productivity across

a sample of emerging and developed economies is due to both technologi-

cal differences (Place effect) and allocation of resources (Composition effect).

A conservative approach suggests that the former is responsible for approxi-

mately 1/4 of the differences and the latter for 3/4. Allowing for geographical

differences within-country strengthen this results even further, with Place and

Composition each explaining around 1/2 of the differences in productivity.

These estimates imply that both reducing the technological gap and reallo-

cating resources have the potential to improve lagging countries’ productivity

and hence reduce the cross-national differences in standards of living. Tech-

nology adoption, given its central role, appears to be a conditio sine qua non

for economic development. Nevertheless, it might prove insufficient to achieve

full catch up, as without reallocation of labor and capital into more produc-

tive activities, even full technological catch-up (and taking the conservative

estimates) would still leave 29% of the difference in productivity. This hints

that the role of structural change might be far from marginal in a country’s

growth process.

From an academic perspective, this result might add to the recent stream

of empirical and theoretical articles (Imbs and Wacziarg, 2003; Hausmann

et al., 2007; Cadot et al., 2011) showing that there is room for a revised role of

structural change in the theory of growth, a role that used to be prominent in

earlier theories of development. From a policy perspective, the analysis sug-

gests lagging countries need to narrow a productivity gap, while also solving

an allocation problem. The reason for this problem of composition might at

least in part be technological and, hence, mitigated once the productivity gap

is narrowed. However, institutional, infrastructural and demand-side factors
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can create a situation in which a market-winning technology is available, but

a country fails to specialize in it. In Diodato, Malerba, and Morrison (2018a),

for instance, a model shows how demand externalities might lead to failures in

sectoral catch-up, even after the lagging country has entirely closed the produc-

tivity gap. This suggests that the adoption of an industry-specific technology

does not directly imply specialization in that industry. Future research on the

factors that govern the link between adoption and diversification, as well as on

factors that influence structural change – intended as a reallocation of factors

of production from low productivity to high productivity industries – might

improve our still imperfect understanding of economic growth.
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Appendix

A Elasticity of substitution

To move from TFPR to TFPQ, this paper uses the HK correction, which is

obtained by elevating value added to the power of σ/(σ−1). Hsieh and Klenow

(2009) set σ = 3, as they note that the gains from liberalization – the objective

of their analysis – are increasing in σ and setting it low results in a conservative

estimate. If we were to apply the same reasoning, then we would have to set

a high σ: our prior is a low Composition effect, and a conservative estimate

would need to penalize it. Although the sensitivity to σ is not monotonic (see

figure A.2), on average, the Composition effect is decreasing in σ. In spite of

this argument, We do not find it desirable to set an excessively high value for

the benchmark case. As σ/(σ − 1) approaches unity, the proposed measure of

productivity approaches TFPR, and it has been stressed – in the literature and

in section 3 of this paper – that the correct measure is TFPQ. The benchmark

value (σ = 7) is chosen with the aid of figure A.1.

Figure A.1 shows that changing the value of σ significantly affects the

ranking of industries by productivity. However, while above a value of 6,

the differences are contained, below this value, the rankings become highly

unstable – to the extent that for σ = 3, one of the bottom-10 industries becomes

more productive than telecommunications – the most productive for a larger

elasticity.
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Figure A.1: Changes in ranking of Top-10 and Bottom-10 industries by TFPQ.
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All productivities are expressed as TFPQ, relative to the most productive industry for σ = 7

(telecommunications).

If, on the one hand, a high σ is undesirable because it is closer to TFPR

than TFPQ, on the other hand, a low σ is also also undesirable because of

ranking instability. The value of 7 is chosen not only because it is a compro-

mise between a low and a high elasticity, but also because it is the closest

value to the reference value in the literature (Hsieh and Klenow, 2009) that

maintains ranking stability. Additionally, as shown in figure A.2, departing

from σ = 7 does not create major changes in the Composition and Place effects,

which remain relatively stable around the benchmark values.

37



Figure A.2: Sensitivity of Composition and Place effects to the elasticity of

substitution.
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Composition and Place effects are measured with the standard indicator.

B Share of capital and labor

This section discusses the sensitivity of the results to the estimation method.

It is shown that, although FE and LP estimation increase the estimates of

both the Composition and Place effects, the results are qualitatively similar.

Table B.1 provides a brief summary. Since for these estimates only a restricted

sample of European countries is used, the first column of table B.1 – reporting

the standard case, with α = 0.33 and β = 0.67 – shows marginally larger values

for the Composition effect and marginally lower values for the Place effect,

compared to the benchmark case in table 3.
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Table B.1: Estimates of Capital and Labor coefficients.

(Standard) (OLS) (FE) (LP)

Capital share (α) 0.33 0.324*** 0.182*** 0.137***

(0.000) (0.001) (0.003)

Labor share (β) 0.67 0.608*** 0.588*** 0.522***

(0.001) (0.001) (0.002)

R2 0.659 0.249 .

Obs. 1345691 1345691 1290754

Composition 0.367 0.387 0.541 0.728

Place 0.769 0.796 0.885 0.932

For the first column, α and β are assumed. The upper part of the table reports the economet-

ric estimates. For FE, the R2 row reports within R2. Standard errors are in parentheses,

and significance is denoted as follows: P < 0.1:*,P < 0.05:**, P < 0.01:***. The lower part

of the table displays the corresponding Composition and Place effects.

The OLS estimates reported in the second column are a strong justification

for the choice of parameter values in the standard case. In fact, the estimated

value of alpha is almost exactly 1/3, while that of β is only a few percent-

age points below the assumed value of 2/3. Subsequently, the decomposition

results are very close to the standard case. For alternative estimation tech-

niques, results differ more from the standard case. The exponent of labor is

not changed in the fixed effects (FE) estimates, but the capital share is signif-

icantly reduced. This has the consequence of increasing both the Composition

effect and Place effect by 10 percentage points. However, since they both

increase, a qualitative assessment of the importance of the two terms is not

affected by these changes. More extreme is the deviation from the benchmark

results under LP estimation. The estimated coefficients of capital and labor

are much lower. The resulting decomposition suggests that both the Compo-

sition and Place effects are considerable more important, to the extent that

the latter is approaching unity. The Composition effect is also markedly more
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important in this case, with the indicator being almost twice as large as in

the standard case. One interpretation of such large values is as follows: a

reduction in the difference in composition (sig = si) would lead to a standard

deviation of average productivity that is only 7 percentage points lower than

before, hence only marginally reducing the productivity differences. Similarly,

reducing differences in productivity (Aig = Ai) would lead to a standard devi-

ation of average productivity that is 70% of the previous value. This is quite

larger than before and would imply a lower impact of equalizing industry pro-

ductivity. In summary, the importance of both the Composition and Place

effects changes drastically in such an estimation. Nonetheless, the qualitative

conclusion that both effects are important, with the Place effect capturing the

largest part of the variance, still holds.

C Aggregation model

This appendix presents a stylized model of industry aggregation. The aim of

this model is twofold: first, to show that aggregation noise exists. Second, it

demonstrates one cannot obtain arbitrary values of the Composition and Place

effects by selecting a level of disaggregation of his own choosing: it is shown

that under some (reasonable) assumptions, a ‘true’ value of the Composition

effect exists.17

It is rather straightforward to show the worrisome outcome of a model in

which the Composition effect ranges from 0 to 100% of the variance in pro-

ductivity, according to how aggregated the data are: if the entire economy is

considered to be a single industry, then there would be only a Place effect and

no Composition effect. If each firm had a different industry code, then there

would only be a Composition effect and no Place effect. This model, however,

17As highlighted in section 5.2, the argument that aggregation creates noise is stronger
in the industry case. We only develop, therefore, a model of industry aggregation, although
aggregation certainly also creates noise in the geographical dimension. Moreover, to further
simplify the analysis, only the Composition effect is studied.
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uses the implicit assumption that each firm is entirely unique. This assump-

tion is absurd in the context of this research, as two firms would never have the

possibility of learning from one another (no technology diffusion would be pos-

sible in this world). Moreover, and perhaps more important, if each firm had

a different industry code, we would lose the ability to compare countries (each

country would have its own set of industries). A more reasonable assumption

in constructing a model of aggregation is to think of firms as belonging to

a continuum of industries. In this way, it is possible to infinitely disaggre-

gate to more fine-grained classifications, while still maintaining a logical link

of similarity between firms. For a location g, let us imagine that labor and

production are distributed across industries over a continuum i ∈ [0,1]. We

write the following convenient distributions.

Lg(i) =
1

Q − 1
Qiln(Q)Lg, Yg(i) =

1

Z − 1
Ziln(Z)Yg, (C.1)

where Q and Z are random variables (each location draws a value) with ex-

pected values q and z. Note that ∫
1

0 Lg(i)di = Lg and ∫
1

0 Yg(i)di = Yg. To

further clarify the meaning of these distributions, let us assume that a loca-

tion draws the following values: Q = 2 and Z = 3. Figure C.1 depicts the

following quantities Lg(i), Yg(i) and Ag(i) = Yg(i)/Lg(i)18 for this example.

Total labor and output in the country are normalized to 1.

The figure is intended to synthesize how input and output are distributed

across the continuum of industries ranging from i = 0 to i = 1. Subsequently,

this also provides information about the efficiency at which industry i trans-

forms input into output. It is important to highlight that, in this example, as

Q and Z are drawn with values larger than one, the industries with index i

close to one have larger shares than those with index i close to zero.

18For simplicity, the stylized model of aggregation presented here considers labor produc-
tivity instead of TFP.
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Figure C.1: Distribution of labor and output across a continuum of industries.
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The figure depicts an example for one location. In this example, the location extracted Q = 2

and Z = 3. As Z > Q, A ∶= Y /L slopes positively, which means that, for this realization,

more productive activities have larger employment shares.

Moreover, since Z > Q (with Q > 1), the industries that have larger shares

are also the most productive (i.e., there is a positive covariance between the size

of an industry and its productivity). Conversely, if Z < Q, this means that the

country is specialized in less-productive industries. By tweaking the assump-

tions on the probability distribution of Z and Q and the overall productivity

parameter Yg/Lg, one can recreate the different worlds we are attempting to

analyze. For instance, with little covariance between Q and Z and systematic

differences in the average productivity Yg/Lg, one can recreate a scenario in

which the Place effect dominates. Conversely, smaller differences in Yg/Lg and

large cov(Z,Q) can be set to mimic a world in which the Composition effect

is the most important contributor to the differences in productivity.

The point of this model is not to propose an effective way to describe the

underlying process behind the differences in productivity. Its purpose is in-

stead to supply a handy tool for understanding what happens when we use
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the indicators of this analysis on more aggregated data. In fact, the distribu-

tions in C.1 are chosen because they can be conveniently used to describe the

aggregation of industries into larger groups. Let us imagine that we want to

aggregate the employment of country g in I industries, starting from a contin-

uum between zero and one. We are, in other words, transforming – discretizing

– Lg(i) into Lig, where i ∈ I. This operation can be written as

Lig =

i/I

∫

(i−1)/I

Lg(i)di = Q
i/I (

1 −Q−1/I

Q − 1
)Lg. (C.2)

The same operation can be carried out for production.

Yig =

i/I

∫

(i−1)/I

Yg(i)di = Z
i/I (

1 −Z−1/I

Z − 1
)Yg. (C.3)

It can be verified that the estimate of a country’s productivity, Ag, is not

influenced by aggregation. This is not the case, however, for the decomposition

indicators used in this paper. As expected, the transformed indicators are a

function of I – which specifies how coarsely the economy is aggregated into

discrete industries. The Composition term, for instance, is19

Cg =
I

∑
i=1

Lig
Lg

Yi
Li
. (C.4)

The Composition term is obtained by substitution

Cg =
I

∑
i=1

(1 −Q−1/I)(1 − z−1/I)(q − 1)

(1 − q−1/I)(Q − 1)(z − 1)
(
Qz

q
)

i/I Y

L
. (C.5)

In equation C.5, everything except the term (Qz/q)i/I is constant across in-

19It is assumed here that, as Q is uniformly distributed in a narrow range around its
expected value, it is possible to treat the distribution of Lig as linear and approximate Li
as Li = E[Lig(Q,Lg)]G = Lig(E[Q],E(Lg))G, where G is number of locations. That is,
Li = q

iln(q)L/(q − 1). Similarly, we can write Yi = z
iln(z)Y /(z − 1). Numerical simulations

(available upon request) show that this approximation only creates small errors (< 1% for
q = 2, < 0.001% for q = 100).
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dustries (i) and can be taken out of the sum. The remaining term,
I

∑
i=1

(Qz/q)i/I ,

is a geometric series and is equal to

I

∑
i=1

(
Qz

q
)

i/I

=

(
Qz

q
)

i/I

(
Qz

q
− 1)

(
Qz

q
)

i/I

− 1

. (C.6)

With minor algebra, it is possible to find the following expression for the

Composition term, Cg, as a function (ω) of I, Q, z and q

Cg ∶= ω(I,Q, z, q) =
Y

L

(q − 1) ((Qz/q) − 1)

(Q − 1) (z − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψ

(Q1/I − 1) (z1/I − 1)

(q1/I − 1) ((Qz/q)1/I − 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

λ(I)

. (C.7)

Our interest lies in understanding what happens if I → ∞. Since ψ, the

first part of equation C.7, does not depend on I, we can treat it as a constant.

To solve the limit, it is sufficient to split λ(I), the second part of equation

C.7, into two terms [a] (Q1/I − 1)/(q1/I − 1) and [b] (z1/I − 1)/((Qz/q)1/I − 1).

Each is solved using L’Hôpital’s rule. The limit of ω is then equal to

lim
I→∞

ω(I,Q, z, q) = ψ
ln(Q)ln(z)

ln(q)ln(Qz/q)
. (C.8)

The fact that ω has a finite limit for I → ∞ addresses my concern: the

outcome of the decomposition does not arbitrarily change with changes in the

industry aggregation. Instead, it changes by approaching its ‘true’ value when

data are sufficiently disaggregated.
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