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Abstract 

Smart specialization was conceived as a “bottom-up” framework to identify new growth paths 
connected to the existing knowledge cores of regions. Operationalization of smart specialization 
has proven difficult, though a recent “mapping” of technologies in terms of knowledge relatedness 
and complexity suggests a useful cost-benefit framework. We extend these ideas, locating EU 
cities in a smart specialization space and tracking their development of alternative technologies 
over the period 1981 to 2015. Panel models show employment growth and GDP growth are faster 
in cities that exhibit a logic of technological development consistent with the tenets of smart 
specialization. 
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Introduction 

With growth derailed by the 2008 crisis, a continuing productivity gap with the USA, and with 
uneven prospects for many in southern and eastern Europe, the EU announced an ambitious 
development agenda in its Europe 2020 program built around smart, sustainable and inclusive 
growth (Foray et al., 2011; McCann and Ortega-Argiles, 2015). At the core of this development 
project is Smart Specialization (SS), a new vision of regional and national growth possibilities 
built around place-based capabilities. Envisaged as a ‘bottom-up’ initiative identifying local 
potentials for future development, SS seeks to renew and widen the knowledge and industrial base 
of regions, leveraging existing capabilities (Kroll, 2015). 
 
While the European Commission has embraced the concept of SS, concerns have been raised with 
respect to operationalization of SS policy. Since its introduction, SS has been accused of being 
under-theorized (Foray et al., 2011; Boschma, 2014), lacking an empirical base (Morgan 2015; 
Unterlass et al., 2015; Iacobucci and Guzzini 2016; Santoalha 2016), being poorly implemented, 
and running the risk of not being effective in peripheral regions (McCann and Ortega-Argiles, 
2015). Moreover, there is no consensus on what types of activities SS policy should target. Some 
scholars call for SS to promote radical change in regions to avoid lock-in (Grillitsch et al., 2018). 
Others advocate related diversification into more complex activities where such trajectories can 
be identified (Balland et al., 2019). While this debate is crucial for the development of effective 
SS policy, it is fair to say that discussion so far has remained rather speculative, as systematic 
empirical evidence is lacking. The objective of this paper is to contribute to this debate by 
providing empirical evidence of regional economic performance connected to the claims of smart 
specialization. 
 
SS policy was introduced to the EU only in 2014 and thus it remains too early to investigate the 
impact of this ambitious framework. However, it is possible to look back in time, to examine the 
evolution of knowledge cores in European regions, and to assess whether or not regions that 
developed new technologies consistent with the SS approach out-performed those that did not. 
Following Balland et al. (2019), we argue that the objective of SS is to develop new activities that 
increase the complexity of a region’s economy boosting competitive advantage and economic 
performance. As Balland et al. claim, cities and regions are more likely to be successful in 
developing new complex activities if those activities are closely related to existing strengths. This 
comes close to the spirit of SS policy which is about exploiting established capabilities in a region 
to diversify along new growth trajectories. In this paper, we examine whether European cities that 
followed a path of technological development consistent with SS policy out-performed cities that 
did not. Our analysis uses patent data for a set of 145 EU city-regions spanning the period 1981 to 
2015. Results, from analysis of panel models, indicate that regions where technological 
development adhered more closely to the broad contours of our SS policy framework, entering 
more complex, related technology classes while jettisoning less related and less complex 
technologies, enjoyed faster employment growth and faster GDP growth than their competitors. 



 
The paper is organized in four parts. Section 2 briefly reviews the literature around smart 
specialization and concepts such as relatedness and complexity used to operationalize the SS 
policy framework. Section 3 outlines the data employed in this study of technological evolution 
and economic performance in European cities. Section 4 presents findings concerning the link 
between SS and economic outcomes. Section 5 concludes, discussing the implications of our 
analysis for SS policy and its operationalization. 
 

Smart Specialization in a relatedness and complexity policy framework 

The recommendations of the Knowledge for Growth Expert Group commissioned by the EU to 
explore the trans-Atlantic productivity gap provided a technology-driven model of place-based 
policy (Foray et al., 2009). Their call for SS focused on building competitive advantage in research 
domains and sectors where regions possessed existing strengths, and leveraging those capabilities 
through diversification into related technologies and industrial sectors. At the core of SS policy, 
then, is a focus on knowledge production. For individual locations, the policy prescription is to 
identify those technological assets that comprise the region’s knowledge core and then extend 
innovative capabilities along place-based trajectories that both reduce competitive overlap with 
competing regions while enhancing regional synergies. Selection of policy targets within the SS 
approach is viewed as a process of entrepreneurial discovery, of attempts to identify the key 
political-economic actors (inventors, firms, universities, governing institutions and the networks 
that link them) that would comprise a viable innovation system, alongside the domains of activity, 
the trajectories along which dynamic forms of competitive advantage would be developed 
(Asheim, 2014). In this sense, the concept of SS extends the earlier focus on learning regions and 
regional innovation systems in a more targeted or directed evolutionary frame (Morgan, 1997; 
Boschma, 2014). 

Effective development of the SS model will require significant shifts in regional growth and 
innovation policy. Though not a concern in this paper, precisely how SS should be designed, 
implemented and assessed within the policy environment has generated considerable discussion 
(Nauwelaers et al., 2014; Rodriguez-Pose et al., 2014; Moodysson et al., 2015; Foray, 2016; 
McCann and Ortega-Argiles, 2016). There remains the crucial question of how the concept of SS 
might be operationalized. How do we identify the knowledge capabilities of regional economies, 
and how do we assess the trajectories of technological diversification that make most sense for 
regions to follow from an economic point of view? 

There is a large body of literature showing that the knowledge capabilities of regions change over 
time (Hall and Preston, 1988; Kogler et al., 2013). The set of capabilities expands when new 
technologies enter the region and it contracts as established technologies are abandoned. The 
process of invention, of developing new technologies, is a resource-using activity and, as such, 
constrained by resources available to actors. The pace and direction of technological entry and exit 
in a region is shaped by expectations regarding the costs and returns to the exploration and 



exploitation of different kinds of ideas. Following Breschi et al. (2003), knowledge subsets that 
demand similar and complementary capabilities and skills for their use are referred to as being 
related. When knowledge components are dissimilar and tend not to be combined, they are 
considered to be unrelated. The cost of diversifying from one technology to another will be 
relatively low when the two technologies are related. As the relatedness between technologies 
declines, the costs of diversifying from one to the other increases, as there is less overlap between 
the required capabilities, and more resources must be used to understand the growing share of that 
which is novel. A similar reasoning holds for abandoning a technology. That is, the (opportunity) 
cost of exiting a technology is relatively low if capabilities are maintained in related technologies. 
However, that cost will rise steeply when there are few alternatives and when that technology is 
widely used in the development of many other ideas, especially those that are valuable (Pinheiro 
et al., 2018). 

The importance of relatedness for innovation and economic development in regions has been 
highlighted by Boschma (2005) and Frenken et al. (2007). In early work, studies adopted a static 
view on relatedness, concentrating on the relationship between related variety and economic 
growth in a region. Later papers took a more dynamic approach to relatedness, shifting attention 
to the processes through which the industrial or technological structures of regions evolve (Neffke, 
2009; Neffke et al., 2011). This work tended to confirm the theoretical ideas outlined above, 
finding persistent patterns of entry and exit of activities in regions over time, following the 
principle of relatedness (Hidalgo et al., 2018). Thus, the entry of new activities is enhanced by the 
degree of relatedness with existing activities in a region, and the exit of current activities is 
promoted when those activities are less related to the technological base of the regional economy 
(Boschma, 2017). With respect to knowledge dynamics in particular, regions are inclined to build 
new capabilities in technologies related to their existing strengths, and more likely to discard 
capabilities in technologies far from their knowledge core (Kogler et al., 2013; Boschma et al., 
2015; Rigby, 2015). 

The knowledge cores of regions vary not only in terms of technological composition but also in 
terms of value. Currently, there exist few direct measures of the returns to technologies, like 
forward citations or litigation (Trajtenberg, 1990; Harhoff et al., 2003; Ejermo, 2009). Following 
the concept of complexity introduced by Hidalgo and Hausmann (2009), Balland and Rigby (2017) 
define complex technologies as those which combine many knowledge components and which are 
produced in relatively few regions with broad sets of capabilities. These technologies are regarded 
as valuable because they generate relatively high rents and their tacit nature means that they are a 
persistent source of regional growth (Maskell and Malmberg, 1999). Less complex technologies, 
that can be produced by many regions, tend to have low value and only limited capacity to sustain 
competitive advantage. 

Balland et al. (2019) developed a SS framework around these core ideas of relatedness and 
complexity. This framework rests upon a methodology to systematically identify new 
technological opportunities that complement and leverage the existing knowledge stocks of 



regions. These technological opportunities can be identified as those knowledge fields in which a 
region does not yet possess critical development capacity, that have a high degree of relatedness 
with the region’s existing knowledge base and that would raise the value, or upgrade, the region’s 
portfolio of knowledge assets. Their template for operationalizing SS policy is summarized in 
Figure 1. 
 
For any region, it is possible to map technological fields in which the region does not possess a 
relative technological advantage at time t. These potential new technologies are located in Figure 
1 according to their relatedness and their complexity relative to the existing knowledge core of the 
region. The four quadrants in Figure 1 highlight the cost-benefit tradeoff that undergirds SS policy. 
The policy-maker should consider developing those technologies that occupy the north-east 
quadrant, for these technologies promise above average returns (higher complexity) at relatively 
low risk (higher relatedness). Technologies in the south-west quadrant are poor choices for SS as 
they are far removed from the existing knowledge core of the region and characterized by relatively 
low (complexity) value. New technologies that are far from the region’s knowledge core are risky 
in the sense that they are unrelated to the technological capabilities of the region. The north-west 
and south-east quadrants in Figure 1 represent risk-return profiles that are less straightforward to 
appraise. The high risk-high benefit quadrant might yield significant technological rents to a 
region, though the probability of sustained innovation in these unrelated technologies is low. 
Technologies that fall in the low risk-low benefit quadrant have a strong likelihood of successful 
development yet they present little value added to the region’s economy. 
 
Figure 1: The Smart Specialization Framework 
 

 
Source: Balland et al. (2019) 
 
While this SS framework highlights the role of relatedness in shaping regional development 
trajectories, a number of scholars have argued that SS policy should encourage regions to induce 



radical change in order to avoid lock-in (Frenken and Wanzenbock, 2018; Grillitsch et al., 2018). 
The concern here is that pushing a model of development around the concept of relatedness will 
narrow the base of regional economies making them less resilient over time. While there is little 
empirical evidence to date that supports such claims (Pinheiro et al., 2018), we reject these 
arguments for they assume that related development must narrow the set of capabilities that regions 
possess. This need not be the case. It is important to note that the relatedness between different 
activities is not static but shifts over time as new activities are developed and new recombinations 
of existing activities appear. These dynamics may broaden the knowledge core of regions that 
develop new technologies related to their existing stocks. In this paper, we contribute to these 
debates by analyzing whether regions that follow the logic of SS enjoy higher economic 
performance in the long-run. 
 

Data and operationalization of the smart specialization framework 

At its core, the SS initiative rests upon a framework to identify new technological opportunities 
that complement and extend the existing knowledge stocks of regions. These technological 
opportunities can be identified as those knowledge fields that satisfy three simple criteria. First, 
they should be technologies in which a region does not currently possess critical development 
capacity. Second, they should have a high degree of relatedness with the region’s existing 
knowledge base. Third, their development should raise the value, or upgrade, the region’s portfolio 
of knowledge assets. Balland et al. (2019) provide a template for operationalizing SS policy using 
patent data applied to EU regions. We combine patent data from the European Patent Office (EPO) 
and regional economic accounts from Cambridge Econometrics to analyze the technological 
evolution and economic performance of 145 EU cities spanning the years 1981-2015. The cities 
examined have generated at least 50 patents in each of the 5-year segments spanning the overall 
study period. These “cities” are defined by combining data from NUTS3 regions according to 
Eurostat (2019). In the analysis below we discuss construction of a smart specialization index, and 
its components, before exploring the relationship between that index and city performance. 
 
Development of the SS framework demands identification of the knowledge core of regions and 
the value of different technology fields. Here we follow Kogler et al. (2013), Boschma et al. 
(2015), Rigby (2015) and Balland and Rigby (2017) who extend the product space arguments of 
Hidalgo and Hausmann (2007) into knowledge space. These efforts utilize patent data that are 
classified by technology field, by the timing and location of invention. The EPO places patents 
into at least one of 652 different technology classes in the Cooperative Patent Classification (CPC) 
system. By convention, inventions are dated using patent filing dates rather than grant dates to 
more precisely capture the time at which new knowledge is produced and to eliminate the bias 
associated with shifts in the time-lag of examination. The geography of invention is traced by the 
location of patent (co-)inventors. In the analysis that follows, we focus on patents generated by 
inventors across cities identified in EPO data. Individual patents are weighted from 0 to 1 
according to the share of their co-inventors that are located within the EU. In similar fashion, 



patents are fractionally allocated to different technology fields according to the frequency of 
knowledge claims that they make within each CPC class. We recognize that patents are an 
imperfect measure of knowledge production, in part because not all new knowledge is patented, 
yet there is no clearly superior alternative (Griliches, 1990). 
 
Measuring Technological Relatedness and Relatedness Density 
 
To measure technological relatedness between CPC classes for a given time period, we count the 
weighted number of EU patents that contain a co‐class pair, say i and j, and then standardize this 
count by the number of patents in total that record knowledge claims in CPC classes i and j. 
Relatedness (𝜙𝜙𝑖𝑖𝑖𝑖𝑡𝑡 ) in period t is therefore a standardized measure of the frequency with which two 
technology classes appear on the same patents. High values of relatedness indicate that two 
technology classes are more frequently combined on patents than the average of such pairings. 
This suggests that there are significant technological complementarities between these classes. 
Low values of relatedness indicate that technology classes are relatively independent of one 
another. 

The relatedness between technologies is readily visualized as a network in knowledge space. 
Figure 2 maps the relatedness between CPC technology classes for the periods 1981-1985 and 
2011-15, a time span that brackets the study period. The colors in Figure 2 correspond to eight 
aggregate technology groupings recognized by Schmoch (2008). Classes with high relatedness 
values are located close to one another. Hence, we see individual technologies of different 
aggregate types (colors) clustering together in the knowledge space, capturing the cognitive 
proximity between those classes. The size of the nodes in Figure 2 illustrates the number of patents 
produced in each technology class. The nodes are scaled across the two time periods to illustrate 
the rapid growth in the pace of invention across the EU over the last 35 years. 

Between 1981 and 1985, 59,823 patents were generated across the EU cities examined. Between 
2011-15, 136,972 patents were developed over the same areas. These counts comprise 
approximately 66% and 40% of total EU patents for the two periods respectively, the remaining 
patents generated in other parts of the EU. (Note that while our study rests on a subset of EU 
patents overall, results from analysis across all NUTS2 regions reported in Appendix 3 are 
qualitatively the same as those we report below.) During the first period mapped in Figure 2, the 
three technology classes generating the most patents were C07D -  Heterocyclic Compounds, 
C07C – Acyclic or Carbocyclic Compounds and G01N – Investigating or Analyzing Materials. 
For the 2011-15 period, most CPC patents were located in the following three classes A61K – 
Preparations for Medical, Dental or Toilet Purposes, H04L – Transmission of Digital Information 
and G06F – Electrical Digital Data Processing. The changes over time in the relative positions of 
the nodes in Figure 2 reflect technological discoveries that lead to different frequencies of 
combinations of technology classes on individual patents. 

 



Figure 2: Technological Relatedness in the EU Knowledge Space 

 

 

 

Notes : The eight aggregate CPC technology classes are electronics (red), instruments (green), chemicals (black), 
biotech (yellow), industrial process (blue), machinery & transport (purple), consumer goods (grey) and climate change 
technologies (light green). 

 



While Figure 2 illustrates the relatedness between technology classes in the EU, it is also possible 
to measure the degree to which patents cluster in knowledge space around a particular technology 
field. This measure of clustering is referred to as the relatedness density of a technology, following 
Hidalgo et al. (2007). The relatedness density of technology class i in city r time t is found as the 
technological relatedness (𝜙𝜙𝑖𝑖𝑖𝑖𝑡𝑡 ) of technology i to all other technologies j in which city r exhibits 
regional technological advantage (RTA), divided by the sum of the technological relatedness of 
technology i to all other technologies that are found in city r in period t 
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and where RTA is a binary variable that assumes the value 1 (0) when a city possesses a larger 
(smaller) share of patents in a particular technology than the reference region (the sum of all 
metropolitan areas considered in the EU) for a given period. More formally, city r has RTA in 
technology i at time t such that 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑟𝑟𝑡𝑡 = 1 when 
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In the analysis that follows, revealed technological advantage, technological relatedness between 
patent classes and the relatedness density of all technology fields are constructed for each of our 
145 cities for consecutive five-year periods running from 1981-85, …., to 2011-15. 

Measuring Knowledge Complexity 

Hidalgo and Hausmann (2009) outline a method for calculating the complexity of products and 
countries using trade data. Their complexity index reflects the difficulty of producing particular 
commodities as revealed through the spatial distribution of individual products and the 
combination of different product bundles in country export baskets. Balland and Rigby (2017) 
develop a measure of knowledge complexity for U.S. regions and technology classes using an 
eigenvector reformulation of the method of reflections outlined by Hidalgo and Hausmann (2009). 

Here we follow the approach of Balland and Rigby (2017) and develop a bimodal network that 
connects cities to the technological fields in which they are most active. Note that we do this for 
n=366 cities and k=652 CPC technology classes that demarcate the U.S. city-system of technology 
production. Hence, we borrow complexity measures for the 652 CPC patent classes generated from 
U.S. rather than EU data. We do this simply because the method of reflections does not work well 
for EU regions. We believe that this is primarily due to the fact that EU regions are parts of 



different countries and so many of the more complex types of technologies that are found in few 
U.S. cities tend to be duplicated across cities and regions within the EU. This duplication lowers 
the complexity values of technologies that we understand to be more complex. That said, the 
correlation between the complexity values for CPC technology classes in the U.S. and EU systems 
is about 0.6. Using EU complexity data in the following analysis produces results that are 
qualitatively similar to those shown below. Table 1 reports the top ten technology fields in terms 
of complexity for the period 2011-15. The table shows complexity values indexed to the score of 
the most complex class. 

 

Table 1: Top Technology Fields by Complexity, 2011-15 

CPC 
Patent Class 

Technology Field Complexity 
(Indexed) 

H04L Transmission of digital information 100 
H03M Code conversion 96.7 
H03K Control of electronic oscillations 95.3 
G06F Electronic digital data processing 95.2 
H01L Semi-conductor devices 89.1 
H03K Pulse techniques 88.6 
H04N Pictorial communication 88.3 
H01S Devices using stimulated emissions 88.0 
B81C Manufacture of micro-structural devices 87.4 
G05F Systems for regulating electric/magnetic variables 84.4 

 
 

Table 2 highlights the EU cities with the highest and lowest values of aggregate complexity in the 
period 2011-15. The complexity score for each city is built as a weighted average of the CPC 
technology class scores and the share of each city’s patents in those classes. Scores for the initial 
period for each of the cities observed are also provided. A more comprehensive chart showing 
complexity values for all 145 cities over time is reported in Appendix 1. Rennes enjoys the highest 
complexity score for the period 2011-15 as a result of patent specialization in telecommunications 
sectors that score high in complexity. Reims, an older industrial city with little invention in new 
technology classes, has the lowest complexity score of the 145 EU cities in 2011-15. There is some 
stability in city complexity ranks over time: the correlation coefficient in city complexity scores 
between 1981-85 and 2011-15 is 0.44. Of the top 20 most complex cities in 2011-15, seven were 
in the top 20 in 1981-85: Edinburgh, Eindhoven, Grenoble, London, Nice, Rennes and Toulouse. 
Of the 20 least complex cities in 2011-15, nine have remained at the bottom of the complexity 
table since 1981-85: Aberdeen, Amiens, Bologna, Coventry, Iserlohn, Odense, Osnabruck, Reggio 
nell’Emelia and Reims. The average change in city rank by complexity across the entire study 



period was 33. Over the thirty-five years examined, Malmo recorded faster growth in technological 
complexity than any other city, and Ipswich recorded the fastest decline in complexity. 

 

Table 2: Complexity Scores in EU Cities 

Rank & City 
 

Complexity Score 
1981-85                2011-15 

Rank & City Complexity Score 
1981-85                2011-15 

1 Rennes 59.02 84.11 136 Bologna 44.95 44.61 

2 Dublin 49.23 72.11 137 Ingolstadt 48.34 44.37 

3 Stockholm 52.82 70.28 138 Bielefeld 49.38 44.15 

4 Antwerp  55.70 70.25 139 Coventry 41.63 44.12 

5 Grenoble  59.81 69.29 140 Osnabruck 44.72 43.61 

6 Tampere 46.25 69.21 141 Rouen 48.98 41.60 

7 Nice 59.38 68.08 142 Reggio n’E 41.32 41.29 

8 Caen 50.70 67.45 143 Aberdeen 45.58 41.28 

9 Helsinki 51.84 67.11 144 Amiens 43.22 39.67 

10 Eindhoven 73.49 67.03 145 Reims 45.15 39.15 

Notes: Reggio n’E is Reggio nell’Emilia. 

 

Smart Specialization in EU City-Regions, 1981-2015 

From the methods just discussed it is possible to identify all technology fields in which EU cities 
have RTA and those in which they do not have RTA, alongside measures of the knowledge 
complexity and the relatedness density of those technologies across the five-year time-periods 
examined. Using these variables, individual cities are mapped in the smart specialization 
framework of Figure 1 to highlight the relatedness density and complexity of the technology fields 
in which they gain and lose RTA between time periods. These patterns correspond to technological 
entry and technological exit. 

The coordinates of this mapping are developed in the following way. In the case of technological 
entry, all technology classes in which the RTA of a city takes the value 0 in period t are identified. 
These classes are candidates for technological entry (gaining RTA). The relatedness density and 
complexity scores of these potential entry classes are recorded. Next, the actual technological 
fields in which a city gains RTA between period t and period t+1 are identified along with the 
relatedness density and complexity values of these fields. The mean relatedness density and 
complexity scores of the potential entry classes are then subtracted from the relatedness and 
complexity scores of the technology classes in which a city develops RTA. The result indicates 
whether a city builds RTA in technology classes that have relatedness density and complexity 



scores above or below the average of those classes in which it has not yet developed a competitive 
advantage (RTA). 

Summing these deviations across time-periods generates an overall index of entry complexity and 
relatedness density values for each city between 1981-85 and 2011-15. We develop the same index 
for technological exit. Exit occurs when a city has RTA in time period t, but loses it by period t+1. 
Again we identify the technology classes in which cities lose RTA and calculate the sum of the 
complexity and relatedness density measures for those cities across technology classes and time 
periods, relative to the set of all technology classes in which RTA may be lost. Calculating the 
difference between the potential and realized relatedness density and complexity values for entry 
and exit controls for differences in knowledge cores between EU cities and yields measures that 
report how well cities exploit the potential to upgrade to technologies characterized by high 
relatedness density and high complexity, while also abandoning those technologies with low 
relatedness density scores and low complexity. 

Figure 3 maps the results of this exercise for the EU cities examined, with the data on entry shown 
in the top panel and that for exit in the bottom panel. The relatedness density and complexity 
deviations in this figure are normalized. Note that a few cities (in the core of the spaces) are 
dropped from the panels to improve readability. Thinking back to Figure 1, it is advantageous to 
enter technology classes in the top-right quadrant, where relatedness density to the knowledge core 
of the city is high and where the average complexity value of the technology classes that are 
entered is also high. Entering technology classes in the bottom-left quadrant, where density and 
complexity values are low compared to those available, is not likely to improve city performance. 
In terms of technological exit (bottom panel of Figure 3), cities located in the lower-left quadrant, 
where complexity and relatedness density values are lower than the average of all technology 
classes in which RTA is established, should experience the largest gains in performance as they 
are shedding the least attractive technologies. 

From Figure 3, it is clear that cities occupy quite different parts of the SS space both in terms of 
technological entry and technological exit. It is interesting that the most inventive cities, those that 
are generally regarded as the most dynamic parts of the EU, tend to concentrate in the top-right 
quadrant of the SS space in the case of entry. These cities, including Paris, Munich, Berlin, 
Grenoble, Helsinki and Nurenberg, are building RTA in the most complex technology fields 
available to them, and which are often closely related to their existing knowledge core. Other 
innovative cities such as Eindhoven, Stockholm, Aachen, Malmo, Vienna, Rennes, Rome and Nice 
are developing highly complex technologies, though these are less closely connected to their 
existing knowledge bases. Older industrial centers such as Amsterdam, Ruhrgebiet, Reutlingen, 
Siegen, Iserlohn and Barcelona are generating RTA in technologies that build upon their existing 
strengths, but these are often low complexity (low value) fields. A relatively large number of 
smaller cities are entering technology classes that are unrelated to their existing strengths: these 
are the metro areas with negative relatedness density values in the entry panel of Figure 3. 

  



Figure 3: Smart Specialization in EU City-Regions by Entry and Exit, 1981-2015 

 



These cities are split in terms of whether entry is in relatively high complexity classes (Uppsala, 
Bristol, Regensburg and Tampere) or in low complexity classes (Manchester, Munchengladbach, 
Reims, Angers, Koblenz, Salzburg and Oldenburg). 

Shifting to the bottom panel of Figure 3 and the results for technological exit, only a small number 
of EU cities are exiting low complexity classes unrelated to their knowledge cores as SS policy 
would advocate. Again the cities in this group, those in the bottom-left quadrant of the exit panel 
are the EU’s most high-tech centers – Paris, Munich, Eindhoven, Nurenberg, Grenoble and 
Copenhagen. A number of cities are abandoning technologies that generate above average 
complexity values and which are close to their existing capabilities. These are the cities in the top-
right quadrant of the exit panel, highlighted by Enschede, Padova, Nantes, Odense and Konstanz. 
A few cities, notably Stuttgart and Torino, are exiting technology fields that, while relatively 
unrelated to their knowledge cores, exhibit above average complexity. 

Note that while Figure 3 shows these results for the study period as a whole, Appendix 2 reports 
the relatedness density and complexity values for each city for the first and last time-periods, for 
both technological entry and exit. As might be expected, there is considerable movement of cities 
in the SS space over time, though quite some consistency in relative positions especially for larger 
cities. 
 

Does smart specialization improve the economic performance of EU cities? 
 

Do EU cities enjoy improved economic performance if they develop technology stocks in a manner 
consistent with SS? In other words, if cities enter and exit technological fields so that the 
relatedness density and complexity of their knowledge portfolios increase over time, will they 
outperform other cities where technology evolves in some other fashion? To help answer this 
question, a SS index is constructed. This index is found by summing the normalized values of 
relatedness density and complexity for entry (taken from Figure 3) and then subtracting from that 
sum the normalized values of relatedness density and complexity for exit. Cities that enter new 
technology fields that raise relatedness and complexity and which exit technological fields with 
lower than average relatedness and complexity will score highest on the smart specialization index. 
These are the cities in the top-right quadrant of the entry (top) panel in Figure 3 and in the lower-
left quadrant of the exit (bottom) panel. Normalized values of both relatedness density and 
complexity are used so that these two variables have a reasonably similar weight in the resulting 
SS index. 

In Table 3, EU cities are binned into five quintiles on the basis of their SS index calculated across 
all five-year periods between 1981-85 and 2011-15. Twenty-nine cities are located in each of the 
quintiles that are reported in descending order of smart specialization. Across cities in each quintile 
the average rate of employment growth and the average rate of GDP growth are reported. The table 
makes it very clear that, at least in cross section by quintile, cities scoring higher in terms of the 
SS index enjoy faster economic growth. There is a positive monotonic relationship between SS 
and employment growth across the quintiles and a near monotonic relationship for GDP growth. 



Of course, within each of the quintiles there is considerable variation in growth rates of 
employment and GDP across cities. 
 
Table 3: The Relationship between Smart Specialization and Economic Growth 
 

Smart Specialization 
Quintiles (normalized) 

Employment 
Rate of Growth 

GDP 
Rate of Growth 

1 0.30184 0.68426 
2 0.29769 0.66836 
3 0.25388 0.58820 
4 0.21746 0.55201 
5 0.19738 0.56507 

Notes: GDP data are in constant 2005 euros. Simple growth rates for employment and GDP are measured between 
consecutive 5-year periods and then summed. 
 
We now explore the relationship between SS and economic growth in panel form, seeking to push 
more clearly a policy-related claim that if cities adopt a SS approach to managing technology, on 
average they will enjoy improved economic performance. Two different dependent variables are 
used for this task, the rate of growth of employment and the rate of growth of GDP. Growth rates 
are preferred over levels to remove some of the influence of scale. They also fit better with the 
independent variables that comprise the SS indicators, for they are change variables. Arguably, 
employment and GDP are the most general and, perhaps, the most important indicators of 
economic performance. 
 
The primary independent variables in the analysis are the SS index and its main components. All 
variables in the regression model, illustrated below, are measured within EU cities for each five-
year time slice. Using a fixed effect panel format in our regression model focuses attention on 
temporal shifts in technology development within cities and allows removal of the influence of 
fixed city-specific influences on performance. Over the medium-length study period of 35 years 
or so, these fixed effects might incorporate urban variations in broad scale institutions/regional 
innovation systems/growth policy. The analysis incorporates a time-lag in that we examine entry 
and exit in regions between time periods t and t+1 and then explore the variation in regional 
performance for time-period t+1. We add time fixed effects to the regression model to control for 
period-specific shocks that might impact urban growth. Employment or GDP in levels form for 
the base year of the growth period of each city is added to control for city-size, consistent with 
standard growth models. 
 
Although careful search for a well-specified causal growth model is beyond the scope of this 
investigation, we offer a simple framework where changes in the SS index are seen as leading to 
subsequent shifts in economic performance within cities. Given the nature of economic data, we 
anticipate concerns with endogeneity, driven both by simultaneity bias (reverse causation) and by 
time-varying omitted variables. We use an instrumental variables approach to assess the 
exogeneity of our key independent variables. We do not have readily available instruments for our 
SS index and so we use 5-, 10- and 15-year lags of all independent variables as instruments. 



Concerns with use of lagged variables as instruments are raised by Bellemare et al. (2016). The 
advantage of multiple instruments is that we can make use of over-identification possibilities to 
run Hansen’s test of their exogeneity, in addition to the standard tests for weak instruments 
available through first-stage regression diagnostics. All regressions reported are robust to concerns 
with heteroscedasticity. The instrumental variables regressions are estimated with a generalized 
method of moments model. 

Note that as our observations are spatial units we must think about spatial dependence in the data. 
In a simple test, Moran’s I measures were constructed for employment growth and GDP growth 
across the spatial units for different periods. The analysis of spatial autocorrelation in these 
variables made use of city centroids and spatial weights based on inverse distances between all 
pairs of cities included in the analysis. Note that for most all periods the Moran I coefficient of 
spatial autocorrelation was insignificant for both dependent variables (the Moran coefficient turns 
significant in the final period for the employment growth variable). A more comprehensive test of 
spatial dependence in our data made use of spatial panel models. Tests of spatial lag and error 
effects in R using the package spml indicated no significant concerns with either form of spatial 
dependence. Results from spatial lag models are reported in Tables 4 and 5. In our non-spatial 
panel models, we entered spatial lags in final tests, none were significant, and the 
inclusion/exclusion of the spatial variables had no significant impact on the results reported. 

The results of our analysis are displayed in Table 4 (where employment growth is the dependent 
variable) and in Table 5 (where GDP growth is the dependent variable). Overall, the results 
indicate a positive and significant link between metropolitan performance and the SS index, though 
there is some variation in findings across the different models presented. Estimated in fixed effects 
form this link is established at the city level. In Model 1, across Tables 4 and 5, the SS index is the 
key independent variable. The SS variable is positively and significantly related to employment 
growth in cities, but while positive, it is not significantly related to the growth of GDP. In Model 
2, the two primary components of the SS index are separated to examine the differential impacts 
of relatedness density and complexity on urban performance. Both relatedness density and the 
complexity measures are positively related to rates of growth of employment and GDP, though 
only the complexity index is significant in these regressions. We have no clear theoretical 
expectation regarding the city scale measures in the regression models. 

Models 3 and 4 in Tables 4 and 5 repeat the same analysis as Models 1 and 2, though they add a 
spatial lag of the dependent variable to confirm that spatial dependence is not a significant issue 
in the analysis presented. The spatial lag model was estimated with the R-package splm using 
inverse distance weights. With the spatial lag term included, the positive coefficient on the SS 
index in Model 3 of Table 5 becomes significant. Models 5 and 6 incorporate instrumental 
variables in an attempt to explore the influence of endogeneity in the data. The key instruments 
are one-, two- and three-period lagged values of our SS index (Model 5), the lagged values of the 
relatedness density and complexity measures (Model 6) and the city scale variable. First stage tests 
for Models 5 and 6 across both tables show that our instruments are identified and that they are 
not weak. Employing multiple lags allows use of Hansen tests that reveal our instrument sets are 
exogenous in all cases. 



 
Table 4: EU city-region employment growth and smart specialization  
(Dependent variable is employment growth) 
 

 
Ind. Variables 

Model 1 
 

Model 2 
 

Model 3 
(spatial lag) 

Model 4 
(spatial lag) 

Model 5 
(IV) 

Model 6 
(IV) 

Spatial lag   0.1746 
(0.1743) 

0.1805 
(0.1735) 

  

Smart spec index 0.0319* 
(0.0179) 

 0.0016** 
(0.0008) 

 0.4655** 
(0.1986) 

 

EE relatedness  0.0120 
(0.0260) 

 0.0003 
(0.0012) 

 0.7226** 
(0.3374) 

EE complexity  0.0504* 
(0.0259) 

 0.0027** 
(0.0011) 

 0.2339 
(0.2006) 

Lagged 
Employment 

0.0003 
(0.0005) 

0.0003 
(0.0005) 

-3.21E-06 
(5.52E-06) 

-4.17E-06 
(5.55E-06) 

-0.0138* 
(0.0078) 

-0.0120* 
(0.0068) 

 
Time fixed effects YES YES YES YES YES YES 

 
Observations 
R2 within 
 
KP LM-statistic 
Cragg-Donald F 
KP Wald F 
Hansen J 

870 
0.12 

870 
0.12 

870 870 435 
 
 

25.874*** 
7.705*** 
3.409*** 

3.456 

435 
 
 

31.401*** 
4.444*** 
3.760** 

4.844 
Notes: The smart specialization measures (relatedness and complexity) are normalized.  EE stands for entry and exit. 
Employment is added to control for city-size in Models 1, 3 and 5, while GDP is added to control for city-size in 
Models 2, 4 and 6. All standard errors are robust and reported in parentheses. * significant at 0.1, ** significant at 
0.05, *** significant at 0.01. In the instrumental variable estimation of Model 5, KP is the Kleinbergen-Paap rk LM 
statistic testing for under-identification and KP Wald is the Wald rk F-statistic testing for weak identification. Note 
that these test-statistics assume heteroscedastic robust standard errors rather than errors that are i.i.d. The Hansen J-
statistic is not significant, confirming that our instruments are exogenous. The spatial lag panel model was typically 
preferred over the spatial error panel model and so is reported in the table. 

 

Using the instrumental variables approach in Model 5 shows that the smart SS index is positive in 
sign and a significant determinant of variations in employment growth and GDP growth. When 
we explore which of the two components of the index exerts the stronger impact on the dependent 
variable, the measure of relatedness density is most important in terms of understanding variations 
in the rate of growth of employment and the measure of complexity most important in terms of 
understanding differences in the rate of growth of GDP. The size of the coefficients is considerably 
higher in the instrumental variables estimates than the prior models, a consistent finding across 
much econometric literature While Models 5 and 6 are certainly not well-specified, the results 
indicate that the core independent variables are exogenous and thus it is reasonable to assume that 
in a less parsimonious model these results may persist.



Table 5: EU city-region GDP growth and smart specialization  
(Dependent variable is GDP growth) 
 

 
Ind. Variables 

Model 1 
 

Model 2 
 

Model 3 
(spatial lag) 

Model 4 
(spatial lag) 

Model 5 
(IV) 

Model 6 
(IV) 

Spatial lag   -0.251 
(0.2200) 

-0.2484 
(0.2195) 

  

Smart spec index 0.0308 
(0.0196) 

 0.0022* 
(0.0011) 

 0.2333** 
(0.0927) 

 

EE relatedness  0.0084 
(0.0302) 

 3.41E-04 
(1.70E-03) 

 0.1910 
(0.1419) 

EE complexity  0.0512* 
(0.0269) 

 0.0038** 
(0.0016) 

 0.2621** 
(0.1202) 

Lagged GDP 0.0035** 
(0.0016) 

0.0032** 
(0.0015) 

1.56E-05* 
(7.99E-06) 

1.39E-05 
(8.04E-06) 

-0.0187 
(0.0115) 

-0.0188* 
(0.0112) 

 
Time fixed effects YES YES YES YES YES YES 

 
Observations 
R2 within 
 
KP LM-statistic 
Cragg_Donald F 
KP Wald F 
Hansen J 

870 
0.39 

870 
0.40 

870 870 435 
 
 

25.124*** 
9.754*** 
6.612*** 

5.592 

435 
 
 

33.022*** 
4.894*** 
5.605*** 

8.146 
Notes: See notes to Table 2. 

 
Though the results are not shown here, if we add together the entry components of the SS index 
(entry_relatedness + entry_complexity) and if we add together the exit components 
(exit_relatedness + exit_complexity), these two composite variables are both significant in a 
specification similar to Model 6 with lagged values of these variables again serving as instruments. 
In these panel regressions explaining employment growth and GDP growth, the coefficients on the 
composite entry and exit variables have the correct sign and they are relatively similar in 
magnitude. 
 
In one final note, Appendix 3 shows results of estimating the base panel models (Models 1 and 2 
from Table 4 and Table 5) for 274 NUTS2 regions within the EU. The results are consistent with 
those shown above. In the case of NUTS2 regions then, SS and its components are relatively good 
predictors of employment growth and GDP growth over 5-year periods between 1981-85 and 
2011-15. This finding suggests that our core results are not limited to the set of cities that we have 
examined. 
 

Conclusion 
 

Smart specialization represents an important new policy platform for EU regions. The program is 
ambitious, seeking to raise aggregate regional productivity across EU regions and to reduce inter-
regional variations in economic performance. Whether the SS initiative can overcome well-known 
tradeoffs between efficiency and equity remains to be seen. Furthermore, whether the policy 



framework will work for all regions is an open question. At this time, the SS program is in early 
stages of operationalization and little is known about its likely impact. Yet, the importance and the 
size of the initiative call for attention. We argue that some sense of the possibilities of SS might 
be generated through exploration of historical data. We pursue this task by generating an index 
that maps how well EU cities have followed a technology development path that corresponds to 
the principles of SS outlined in Balland et al. (2019). The relationship between this index of SS 
and regional economic performance forms the analytical core of this paper. 

The SS framework rests upon identification of the knowledge core of regions and a mapping of 
new technological trajectories for each region that build on existing capabilities. We demonstrate 
how to capture the knowledge profiles of EU regions and how to identify new knowledge 
possibilities that rest upon existing stocks of technology. Those possibilities can be ordered in 
terms of the costs and benefits of their development. The cost of knowledge development is linked 
to the relatedness of new technologies to the existing knowledge core of the region. When new 
technological alternatives are closely related to that core, the cost of their development is relatively 
low. Technology alternatives that are unrelated to a region’s existing set of capabilities are risky 
to develop and thus pose higher costs. The benefits of developing different technologies depend 
upon the rents they generate. Those rents will tend to be greater for forms of knowledge that are 
more complex, those that are difficult to produce and to imitate. 

EU patent data, measures of employment growth and GDP growth at the city level are used to 
operationalize the arguments above. We map the knowledge cores of 145 EU cities for five-year 
periods spanning the period 1981 to 2015. For each city in each time-period, we examine patterns 
of technological entry and exit and use these to measure how closely changes in the knowledge 
stocks of the city correspond to a SS ideal. If cities develop (abandon) new technologies that are 
more (less) complex and more (less) related to their current knowledge profiles than the average 
of those technologies available to them (currently in use) they will score high on a SS index. The 
SS index, and its two core components of relatedness and complexity, are used as the primary 
independent variables in a series of fixed effect panel regressions that attempt to explain the 
variance in the economic performance of EU cities. Two separate dependent variables, 
employment growth and GDP growth, measure that performance. The panel regressions 
incorporate specific controls for spatial dependence and instrumental variables are developed to 
examine claims of the exogeneity of predictors. 

The results show that EU cities following knowledge development trajectories that are closer to 
the SS ideal experience faster employment growth and faster GDP growth than cities that score 
lower on the SS index. When focusing on employment growth, the cost-component of the SS 
index, our measure of knowledge relatedness, is the most important driver of performance. When 
the target is GDP growth, the benefits-component of SS, knowledge complexity, exerted the 
strongest influence on performance. We are excited by these results that imply smart specialization 
policies that assist cities and regions to diversify their knowledge cores into related and more 
complex technological fields might well generate gains in economic performance. 

 



Still, some words of caution are necessary. Clearly, much more work is required to bolster our 
findings that remain preliminary. The results are robust to analysis at the NUTS2 regional level, 
across a broader set of 274 regions, but whether they will hold in a much more carefully developed 
causal model of economic performance remains to be seen. In addition, sub-setting regional 
accounts to explore how well smart specialization might work across smaller regions, those that 
are more or less specialized, those that are less innovative, and those that are more generally 
rendered “peripheral” in different ways, represent critical next steps. 



Appendix 1: Complexity Scores for all EU cities 1981-85 to 2011-15 

The blue lines in Figure A1 highlight those city-regions that begin the study period with relatively 
high technology complexity scores. The red lines denote regions where the initial technology 
complexity scores are relatively low, while the green and orange lines denote those locations with 
intermediate starting values of technological complexity. To help frame the figure, note that in the 
first-period 1981-85, the lowest city technology complexity score was recorded by Odense (38.4) 
and the highest score by Eindhoven (73.49). By 2011-15, the city with the lowest technology 
complexity score was Reims (39.15) and the city with the highest was Rennes (84.11). 

 



 



Appendix 2 Figure A1: Scatterplot of Entry Relatedness and Entry Complexity 

 



Appendix 2 Figure A2: Scatterplot of Exit Relatedness and Exit Complexity 

 



Appendix 3: EU NUTS2-region employment growth and GDP growth and smart 
specialization  

 
 Dependent Variable is 

employment growth 
Dependent Variable is  

GDP growth 
 

Independent 
Variables 
 

Model 1 Model 2 Model 3 Model 4 

Smart spec index 0.0655*** 
(0.0216) 

 0.0390*** 
(0.0143) 

 

EE relatedness  0.0887** 
(0.0372) 

 0.0201 
(0.0134) 

EE complexity  0.0512** 
(0.0211) 

 0.0336** 
(0.0143) 

Employment or 
GDP in levels 

-0.0043*** 
(0.0004) 

-0.0043*** 
(0.0004) 

-0.0040*** 
(0.0003) 

-0.0039*** 
(0.0003) 

 
Time fixed effects YES YES YES YES 

 
Observations 
R2 within 

1334 
0.56 

1334 
0.57 

 

1318 
0.50 

 1318 
0.52 

Note: All models estimated with robust standard errors 
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