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Abstract 

The geographical distribution of innovative activities is an emerging subject, but still poorly understood. 
While previous efforts highlighted that different technologies exhibit different spatial patterns, in this 
paper we analyse the geography of innovation in the very long run. Using a US patent dataset geocoded 
for the years 1836-2010, we observe that – while it is true that differences in technologies are strong 
determinant of spatial patterns – changes within a technology over time is at least as important. In 
particular, we find that regional entry follows the technology life cycle. Subsequently, innovation 
becomes less geographical concentrated in the first half of the life cycle, to then re-concentrate in the 
second half. 
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1. Introduction 

Innovation is more geographically concentrated than other human activities. Whereas specialized 
technology hubs in Silicon Valley or Kendall square are obvious examples, the phenomenon is not 
limited to a few special innovative regions, but extends to all innovative activities in general (Asheim 
and Gertler, 2005). This brings the question: what does determine the geographical distribution of 
innovative activities?  

The interest of economics and innovation scholars in the geographical dimension of innovation 
activities has been growing in the last few decades (Jaffe et al. 1993; Feldman, 1994; Audretsch and 
Feldman, 2004; Breschi and Malerba, 2005). Similarly, the dynamics of knowledge production and 
diffusion has become a core topic in economic geography (Asheim and Gertler, 2005; Boschma, 2005; 
Cooke, 2001; Essletzbichler and Rigby, 2007). This has generated a fruitful cross-fertilization between 
these two academic communities and has contributed to the emergence of a cross-disciplinary research 
area named the Geography of Innovation (henceforth GI). A central tenet in this line of research is that 
knowledge spill-overs are spatially localised. Rooted in the Schumpeterian and evolutionary economics 
tradition (Nelson, 1993; Lundvall, 1992), this literature conceptualises innovation as a systemic process, 
which is the outcome of interactions and feedbacks between a variety of actors - i.e. public and private 
- and sources of knowledge, including universities and Public Research Organisations (Asheim and 
Gertler, 2005). The geographical implication of this theoretical argument is that physical proximity to 
knowledge sources facilitate the access, exploitation and diffusion of knowledge and eventually 
accelerates the innovation activity locally (Audretsch and Feldman, 1996b; Breschi and Malerba, 2001). 
It descends that regions hosting more innovative firms and relevant sources of knowledge have higher 
chances to be at the forefront in the next round of innovation as compared to firms in less innovative 
regions (Breschi, 2000: 214). This cumulative process is peculiar to how knowledge accumulates and 
has relevant geographical consequences: it triggers a self-reinforcing process of clustering, which 
eventually leads to uneven distribution of innovation activities over space (Breschi and Malerba, 2001).  

Another theoretical claim of this literature is that the scope of possible innovative activities is bounded 
by the cognitive and technological knowledge owned by actors who contributed to their development 
(Breschi et al. 2003). From a geographical perspective, the crucial implication is that regions can 
successfully diversify in activities (e.g. products, technologies or industries) that are related to the pre-
existing set of capabilities present in the region (Boschma, 2017; Rigby, 2015). In other words path 
dependence strongly shapes the direction of technological change (Dosi, 1988). 

Several studies have contributed to understand the clustering of innovation activities as well as how 
regions diversify in new technological activities (Breschi and Malerba, 2005; Feldman et al. 2005; 
Rigby, 2015; Kogler et al. 2013; Boschma et al. 2014). However, relatively little attention has been 
devoted to investigate jointly the sectoral and the geographical dimensions behind these processes, in 
particular from a long-term perspective. A notable exception is the work of Breschi (2000), where 
technological specific factors (i.e. technological regime) are used to characterise different spatial 
patterns of innovation.  

While building on the intuition of Breschi (2000), this work extends his analysis by adopting a very 
long-run perspective on the determinants of the geography of innovation. More specifically, we analyse 
the spatial patterns of innovation of US metropolitan areas over a period of almost 200 years (1836-
2010). This allows us to go beyond the usual static approach adopted in most empirical works on 
Schumpeterian patterns of innovation (Breschi et al. 2000; Castellacci, 2007; Malerba and Orsenigo, 
1996 and 1997). 
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The long-run perspective proves to be crucial. We find that, indeed, the geography of innovation varies 
by technology. However, changes over time within any given technologies are – so we find in this paper 
– as important, or even more important, than between-technology differences. We show that 
technologies, strikingly, have life cycles that can last over 150 years (see section 5). This means that 
short time-series dataset of 20, 30, 40 years may not be able to pick up the strong trends that we observe. 

The empirical analysis draws on an original dataset of historical US patents (HISTPAT) (Petralia et al. 
2006), which provides accurate information on the location of the main inventor, the technological 
classes of the patent and the year of application of the patent. Patents data from HISTPAT are used to 
build the main variables of analysis.  The spatial patterns of concentration, diversification and ranking 
of innovators are built following the empirical work of Breschi et al. (2000) and Breschi (2000). For 
the determinants of the spatial patterns of innovation, we use technological regimes as measured in Park 
and Lee (2006) – with minor modifications explained in section 4. 

We find that we can explain spatial patterns of innovation, with a remarkable degree of accuracy using 
technological regimes. In particular, technological opportunities (measured as flow of new patents in a 
class) closely tracks movement in geographical concentration, in entry of new regions, and in the 
stability of regional leaders. Other technological regimes (such as cumulativeness and complexity) also 
play an important, although smaller, role. 

The paper is structure as follows: section 2 discusses the concept of technological regimes, as a way of 
describing the underlying features of a technology. Section 3 outlines a theoretical framework to 
imagine how technological regimes might influence the geography of innovation. Section 4 describes 
the data and the main variables we employ in our analysis. Section 5 presents the main results and their 
robustness. In section 6, we reflect on how the long-run perspective can change our interpretation of 
the determinants of spatial patterns of innovation. We conclude the paper in section 7, indicating some 
additional avenue of research. 

 

2. Technological regimes  

The notion of technological regime has been used in the innovation literature to characterise different 
technological environments, and it is usually defined as the combination of four elements (Breschi et 
al., 2000; Malerba and Orsenigo, 1996 and 1997): technological opportunity; appropriability conditions; 
knowledge cumulativeness and properties of the knowledge base. 

Technological opportunities are identified with the external and internal sources of knowledge which 
feed the innovation process in a given industry/technology. Overall, they influence the speed and 
intensity of technological change in a specific knowledge environment. In the words of Breschi et al. 
(2000) they are defined as the probability of innovating per unit of investment in search (pag. 391). 
Higher opportunities reflect an environment which is favourable to innovation; therefore they provide 
firms strong incentive to engage with research activities. Overall, higher opportunities correspond to a 
higher rate of technological change. 

Appropriability conditions indicate the extent to which innovation is protected from imitation. They 
impact on the profitability of an innovation and ultimately on the firms’ incentive to invest in R&D. 
Higher appropriability means higher protection, which translates into higher rents for firms. However, 
this positive individual effect is counterbalanced by the reduction of knowledge spillovers to other 
firms: therefore appropriability may have a negative impact on technological change at sectoral level.  
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The cumulativeness of knowledge indicates that the innovation activity undertaken today builds on past 
innovation. It signals the incremental and bounded nature of the learning process. Therefore it also sets 
the boundaries of technological change and its path dependent character (Dosi, 1988). Since every new 
piece of knowledge is developed around some related knowledge base, firms innovate mostly along 
specific trajectories (Breschi et al. 2003).  

The nature of the knowledge base is defined around a set of properties which includes specificity, 
complexity, tacitness and independence. Higher degree of tacitness, specificity and complexity imply 
less opportunity for knowledge diffusion, and in turn lower innovation activity. Conversely, higher 
independence may favour the wider diffusion and adoption of technology by other firms and eventually 
has a positive effect on innovation at sectoral level.  

Such a composite notion of technological regime has been widely applied to explain the dynamics of 
industries and markets, and in particular to characterise the so called Schumpeterian patterns of 
innovation (Cohen and Levin, 1989; Malerba and Orsenigo, 1996; Nelson and Winter, 1982; Winter 
1984). The literature has identified two main of such patterns: Schumpeter Mark I or widening pattern 
is characterised by frequent innovation, low concentration of innovators, high entry rate and where 
small firms drive the innovation process; Schumpeter Mark II or deepening pattern is characterised 
instead by high stability of entry rates, high concentration of innovators and markets, which are 
dominated by large corporations (Breschi et al. 2000; Schumpeter, 1934 and 1942).  

Empirical studies have shown that the above patterns differ significantly across sectors, while they are 
mostly invariant across countries (Breschi et al. 2000; Castellacci, 2007; Castellacci and Zheng, 2010; 
Malerba and Orsenigo, 1996 and 1997; Montobbio, 2003; Park and Lee, 2006). They have found that a 
Mark I pattern tends to prevail among traditional sectors, like furniture, agriculture as well in sectors 
relying on mechanical technology (e.g. equipment, ship building, machine tools). On the other side, a 
Mark II pattern is more often found in high tech or complex sectors (among others aviation, biotech, 
electronics, computers). Breschi et al. (2000) provides an empirical test of the association between 
technological regimes and Schumpeterian patterns of innovation. They find that higher technological 
opportunities are associated with a widening pattern (i.e. low concentration, higher entry rates and 
turbulence in the ranking of innovators): firms that spot such opportunities will undertake R&D 
activities, introduce new products and develop into new sectors. This latter entry dynamics will reduce 
market concentration and eventually will challenge the incumbents in the industry. Similarly, the 
findings on the impact of appropriability are consistent with theoretical predictions, whereby higher 
appropriability is associated with high concentration, low entry and a stable ranking of innovators. 
These conditions reflects the feature of a deepening pattern (or Schumpeter Mark II), which is usually 
associated with the presence of large established firms, with large R&D departments and strong 
oligopoly market power (Malerba and Orsenigo, 1996). The other components of the technological 
regime (i.e. nature of knowledge base and cumulativeness) are also proven to be important predictors 
of the sectoral innovation patterns (Breschi et al. 2000).  

A geographical analysis using technological regimes can be found in Breschi (2000). He posits that 
sectoral and spatial patterns of innovation are intimately related. Using patent data from the European 
Patent Office (EPO) in the period 1978-91, this work shows that the spatial patterns of patenting differ 
systematically across technological classes. The analysis identifies the typical Schumpeterian patterns 
of innovation and associates them to spatial factors. The findings show that a widening pattern is 
characterised by low spatial concentration and cumulativeness of innovative activities. To this pattern 
are associated mainly patents in traditional technological classes. Another widening pattern, which 
includes mainly machinery and engineering technologies, is also identified and associated with low 
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levels of spatial concentration and high spatial cumulativeness. Finally, a third pattern, which consists 
mainly of chemical and electronic classes, combines features of a deepening pattern with high degree 
of spatial concentration and cumulativeness. Overall, this empirical evidence shows that the 
cumulativeness of knowledge is one of the most important components of the technological regime and 
drives the process of geographical concentration of innovation activities. 

In our study we build on these findings and share with Breschi (2000) the idea that the determinants of 
“a technological regime do not only affect the way innovative activities are differently structured and 
organised across sectors, but they may have consequence also at the geographical level” (pag. 215) .  It 
can be argued that sector’s specific features, such as the degree of tacitness of knowledge, greatly affects 
the way innovative activities are geographically organised. It has been indeed observed that innovative 
activities that mostly rely on tacit knowledge show a tendency towards geographical concentration 
(Asheim and Gertler, 2005; Audretsch and Feldman, 1996b). On the same vein, it can be noted that 
technological opportunities are differently distributed across space: for example only some regions host 
relevant sources of knowledge (e.g. universities), and because of that they may be able to attract 
innovative firms. This self-reinforcing process does not only affect the innovative performance of 
individual firms, but also how the organisation of innovative activities unfolds over space. 

In addition, we can argue changes over time within any given technologies along its life cycle are as 
relevant as between-technology differences. The sectoral and spatial patterns of innovation observed in 
a given time period reflect the peculiar stage of development of an industry and its core technology in 
that specific timeframe. As shown by the literature on industry life cycle, at different stages of 
development of an industry correspond different opportunities, levels of concentration and entry 
patterns (Klepper, 1996; Audretsch and Feldman 1996a). The relevant external sources of knowledge 
and the nature of the knowledge involved also vary according to the maturity of a sector and its 
technology (Klepper, 1996 and 1997; McGahan and Silverman, 2001). Breschi et al. (2000) 
acknowledged indeed that “a technological environment characterised by specific opportunity 
conditions may be related to a specific stage (italics added) in the development of an industry” (pag. 
391, footnote 4). However, a dynamic perspective is rarely found in the literature on technological 
regimes1.  

While building on the above literature, we extend it by providing a systematic framework to test the 
relationships between each component of a technological regime and its spatial patterns of innovation. 
More in details, we test the effect of each component of a technological regime both on the clustering 
of innovation activities and on the diversification opportunities of regions. We also provide a 
characterization of the spatial concentration of innovation overtime.  

3. Technological regimes and spatial patterns of innovation 

In our analysis we characterise the spatial patterns of innovation according to three main indicators: the 
spatial concentration of innovation, which measures the geographical concentration of technological 
activities across regions; the spatial entry of regions, which indicates whether a new technology appears 
in a region; the stability in the raking of innovative regions, which captures the changes in regional 
innovativeness. Not surprisingly these indicators show a close resemblance to those used in the 

                                                             
1 Breschi et al. 2000 keep constant the determinants of technological regimes in their empirical analysis. 
Empirical studies that looked at technological regimes in such a dynamic perspective are Audretsch and 
Feldman, 1994 and McGahan and Silverman, 200) 
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literature on Schumpeterian patterns of innovation (Breschi et al. 2000). However, a note of warning is 
needed: the mechanisms underpinning the relation between the above spatial processes and the 
components of a technological regime may differ from the mechanisms driving the Schumpeterian 
patterns discussed in the earlier literature. Therefore, in this section we set out specific theoretical 
arguments to unravel the relationships between technological regime and the spatial patterns of 
innovation. For each component of a technological regime (i.e. technological opportunity, 
appropriability, cumulativeness, nature of knowledge base) we discuss how it potentially relates to the 
indicators of spatial patterns of innovation (i.e. spatial entry, spatial concentration and stability of 
innovative regions). A summary of these relationships is presented in Table 1. At the end of this section 
we will briefly elaborate on the relation between the spatial concentration of innovation and the 
technology life cycle.  

Technological opportunities 

A technological environment that is favourable to innovation positively affects the entry of new firms, 
because the firms’ returns of R&D increase as well as the quality and variety of knowledge sources 
(e.g. research centre, universities) they can tap into. Higher firms entry translates into more potential 
innovators, which are possibly distributed across different regions. If the latter is true, an increase of 
entry should lead to a decrease in the geographical concentration of innovation activities. However, as 
argued in Breschi (2000), higher opportunities may favour incumbents when they are able to identify 
earlier than newcomers these new opportunities and move quicker into these emerging 
markets/technologies. Under this latter scenario, when new opportunities come up the technological 
gap between incumbents and newcomers will be growing instead of closing. Therefore, we can claim 
that higher technological opportunities may be associated also to lower entry of firms and higher 
geographical concentration.  

The effect of spatial entry (i.e. when a region develops a new industry/technology) depends on whether 
technological opportunities are either spatially distributed or concentrated. If for example a new 
university or laboratory is established in a region that is already active or specialised in that technology 
(or in related ones), so it can be regarded as an incumbent, then this region may attract additional 
innovators that trigger a cumulative process of concentration that will ultimately let the region to make 
a big leap over other competing regions. At the end of this process we will most likely observe a growing 
concentration and less spatial entry. In short, higher technological opportunities can generate also lower 
spatial entry, whereby incumbent regions are those benefiting most from new technological 
opportunities.  

As for the impact of technological opportunities on the stability ranking of innovative regions, the effect 
depends on the above dynamics of spatial entry. If higher opportunities favour the incumbent regions 
over the newcomers, spatial entry will decrease and in turn this will lead to higher geographical 
concentration. This latter outcome will favour stability. On the contrary, if higher opportunities trigger 
the entry of newcomers (i.e. regions), the effect will be disruptive, and we should observe the emergence 
of a new ranking of innovative regions.  

To sum up, the relation between technological opportunities and geographical concentration is an 
ambiguous one: it can be either positive or negative. Similarly, the impact of technological opportunities 
on spatial entry and on the stability of ranking of innovators can be either way, depending on where 
these opportunities emerge in the geographical space.  
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Appropriability conditions 

The tightening of the appropriability conditions usually reduces the diffusion of knowledge spillovers 
in the industry. At sectoral level, this can translate into a slowdown of technological change. Incumbent 
regions (firms) will benefit most from such technological environment. Eventually this will lead to 
lower sectoral, but also lower spatial entry as well as higher geographical concentration. The extent of 
these latter spatial effects depends on how much knowledge spillovers are localised. The more they tend 
to be localised, the higher the impact on spatial entry and concentration. Higher appropriability 
conditions also imply that already innovative regions will be able to raise higher entry barriers and in 
turn safeguard their leadership in the industry. Therefore, it can be argued that the spatial ranking of 
innovative regions will not change with the increase in the protection of innovation. 

Cumulativeness 

At sectoral level, when new knowledge strongly depends on previous cumulated knowledge, i.e. 
cumulativeness is high, we can expect that all firms in that particular industry will benefit from it, since 
they share these externalities and build on them their future innovation activity. This can translate in 
higher geographical concentration, assuming that knowledge spillovers are highly localised. We will 
also observe lower spatial entry, given that incumbents are those that mainly benefit from these 
spillovers, so the spatial ranking of innovators will stay unchanged.  

The nature of knowledge base 

The nature of the knowledge base is a crucial dimension of a technological regime that affects the 
overall ability of firms to access and exploit opportunities and externalities. The prevailing properties 
will shape the form and speed as well as the spatial scope of knowledge diffusion. The property of 
knowledge will also affect the protection tools used by firms and the extent to which knowledge is 
cumulative. Three main properties are usually identified in the literature: degree of tacitness, complexity 
and independence. The more a piece of knowledge is embodied in artefacts or individuals (i.e. tacit), 
built on different knowledge domains (i.e. complex) and part of a system (i.e. less independent), the 
more is difficult to share it across actors and space. Therefore, it can be argued that the higher the 
tacitness, complexity and interdependence of knowledge, the higher the likelihood that innovation 
activities will be spatially concentrated. These features will also act as entry barriers for newcomers 
(both firms and regions), so leading to a situation in which incumbent actors (either firms or regions) 
will maintain their leadership. Therefore, we can argue that to a higher degree of the above knowledge 
features corresponds less spatial entry and a stable spatial ranking of innovators.  

 

Table 1 - Technological Regimes and Spatial Patterns of Innovation: expected relationship 

 
Technological Regime 

Spatial Pattern of Innovation 
Concentration Entry Stability 

Opportunity +/-  -/+ +/- 
Appropriability +  - +  
Cumulativeness +  - +  
Complexity +  - +  
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Spatial patterns of innovation along the technology life cycle 

The spatial patterns of innovation along the life cycle of a technology can be described using a diffusion 
curve which reproduces the stages of an industry life cycle, i.e. emergence, take off and maturity/fall 
(Klepper, 1996; Audretsch and Feldman, 1996a). Typically, the initial stage is associated to the entry 
of new and small firms, as depicted by a Schumpeter Mark I pattern or entrepreneurial technological 
regime (Winter, 1984). At this stage, innovation mainly concerns products, with designers and 
engineers exploring and solving the technical failures and bottlenecks of a technology (Perez and Soete, 
1988). Knowledge is prevalently tacit, and the closeness to knowledge sources is crucial to address the 
variety of technical problems present in the early stages of technological developments. This phase is 
inherently turbulent, where the demand, functions and scope of a technology are not defined yet and 
subject to rapid change. The prevalence of tacit knowledge, along with the need of quick and intense 
interactions with knowledge sources, indicates that innovation activity is geographically localised in 
this stage (Audretsch and Feldman, 1996a). Therefore, we can argue that a spatial pattern characterised 
by high geographical concentration prevails in the initial stage of technological development.  

During the take-off, the features of a technology are clearly defined, demand conditions are set; 
therefore we observe a rapid market growth. The focus of attention shifts from product specifications 
to the production process. Efficiency gains can be achieved by optimising plant production and 
organisation. Technical knowledge becomes increasingly standardised, while experience and skills 
needed for producing it (i.e. know-how) are now accumulated in firms’ production units, so still far 
from standardisation (Perez and Soete, 1988). If this latter know-how is strongly embedded in firms 
and spills over only locally, we can still observe a tendency towards geographical concentration. 

When the technology reaches maturity both technical and scientific knowledge are codified and easily 
transferrable over space. Similarly, production know-how becomes embedded in the technology and 
codified in manuals or the like, with explicit protocols and procedures. We can expect wider diffusion 
and/or imitation, with knowledge travelling over space much more easily that in the previous phases of 
the life cycle. The maturity phase corresponds to a Schumpeter Mark II pattern (Malerba and Orsenigo, 
1996), or routinized technological regime (Winter 1984), characterised by the presence of large 
incumbent firms with high entry barriers to newcomers (Audretsch and Feldman, 1996).  

The Schumpeter’s Mark I and II patterns (Schumpeter, 1934 and 1942) reflect the evolution of the 
European and American industrial structures between the end of nineteen and the mid-twenty century 
respectively. Our aim is to reproduce these and post WWII other patterns drawing on more than 150 
years patent data time series (i.e. 1836-2010). We can expect that spatial concentration of innovation 
will show differences overtime that are as relevant as those observed across technological sectors. A 
characterisation of these patterns for a selected group of technological classes will be provided in section 
5. After that we will investigate the how technological regime affect these spatial patterns. 

4. Data, methods and variables 

4.1 Overview 

Patents data from HISTPAT-US are used to build the main variables of analysis (Petralia et al., 2016). 
This dataset collects historical US patents from 1836 to 1975 and it also contains information on the 
geographical (county-level) location of inventors, as well as information on the patent class. We merge 
HISTPAT-US with the NBER patent dataset (Hall et al., 2010) to obtain a long, uninterrupted data 
series of patents that spans for almost two centuries. We argue that this perspective in the very long run 
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allows to reveal hidden connections between technological regimes and spatial- Schumpeterian patterns 
of innovations. 

The spatial-Schumpeterian patterns are built following the empirical work in Breschi et al. (2000). We 
employ number of indicators to capture the following concepts 

1) Concentration: capturing the geographical concentration/dispersion of innovation activities. 
Particular care is dedicated to its  measurement (see section 4.2); 

2) Entry: to look at how many new patents are not from incumbent regions; 
3) Rank-Stability: to measure the degree to which leading regions maintain their role of innovators 

over time. 

 

The variation exploited in the analysis is by decade-technological class, technological class divides 
patents among over 400 3-digit technology classes. The choice of using decades (when years are 
available) has the advantage of pooling somewhat sparse patent data. It also helps in the design of some 
indicators (e.g. rank-stability, see section 4.2). The regional level at which indicators are computed can 
be either at county level or at state level. 

The technological regimes are measured following, to a large extent, Park and Lee (2006).  

a) Opportunity: captured as the total size of innovative activity. As we will discuss, this is a 
quantity that not only varies across technology, but has a particularly strong and relevant 
dynamic within technology, over time. In fact, it appears to reflect the life cycle of a technology; 

b) Appropriability: measured through self-citations; 
c) Cumulativeness: measured as the steepness of the convergence term in time series, or, 

alternatively, as the share of persistent innovators; 
d) Complexity: as the average number of secondary classifications in patents within a primary 

technological class. 

4.2 Dependent variables: spatial-Schumpeterian patterns of innovation 

Concentration 

We argue that, in the long-run dynamic context of our analysis, an ideal measure of spatial concentration 
must have the following properties 

 P1. Be neutral to the redefinition of geographical boundaries of the US; 

 P2. Be consistent with alternative measures. 

Property P1 must be binding in our context since the dataset cover years of westward expansion of the 
US, which gradually extends the set of states and counties in the US. 

Property P2 is important to make sure of the robustness of our results. 

Perhaps, the three most popular choice for spatial concentration at the region level are the Gini, the 
Theil and the Herfindahl-Hirschman Index (HH, henceforth). We notice that the Gini and the Theil do 
not have property P1. To see this, imagine that all innovation in the textile manufacturing is shared 
equally between New Jersey and Massachusetts. We can express the Theil index as 

!ℎ#$%&' = ln(,) −/012&' ln 0
1
12&'

44

5

267

, 
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where s is the share patent of technology class i in region r (in the example s is 0.5 for New Jersey and 
Massachusetts and 0 for the rest).  Growth in concentration would be registered for the simple fact that 
a new state is counted in the union (e.g. N goes from 49 to 50).2  

While one could say that concentration is indeed larger in this newly enlarged country, we argue that – 
since this is entirely due to a mechanical change in the `denominator’ – it should not be captured. The 
HH index does not suffer from this issue, in fact we write 

99&' =/12&'
:

5

267

, 

It can be noticed that summing additional zero terms has no effect on the index. We could be tempted 
to focus uniquely on HH, but in doing so we would not be able to check whether property P2 is satisfied, 
as we would not have comparable measure to test it against. Rather than discarding the Theil and Gini 
index, we opt to compute these indices while keeping N constant, to the largest set available. This forces 
P1 to hold for all indices which, in turns allows to increase comparability.  

Keeping N constant makes, in fact, the dynamics of HH and Gini over time very similar. However, the 
Theil index is still not comparable (see figure A1 in appendix). Following the discussion in Jost (2006), 
the Theil index is only a proxy for concentration (diversity in their work) in the same way “[t]he radius 
of a sphere is an index of its volume but is not itself the volume” (p.363; Jost, 2006). The author argues 
that the Theil index (more precisely its analogue, Shannon entropy) should be modified by taking 
exp(index), rather than the simple index. In our context, this seemingly minor change is enough, as 
testified in figure A1 in appendix, to get the Theil index to agree with HH and Gini.  

By applying these careful modifications, we now have three indices of concentration that satisfy 
properties P1 and P2. We therefore focus our analysis on one index (Theil) and use the remaining two 
for robustness. 

Entry 

In Breschi (2000) an analogous variable is constructed by defining innovators at the film level. To make 
full use of the longitudinal extent of HISTPAT-US, we opt to ignore the role of assignees and focus 
instead on a variable aiming to capture entry of regions. As our interest lies on the geographical 
dispersion of innovation, we argue that this choice is desirable even if assignee data were available. We 
then define entry as 

;<=>?&' =
∑ A&2'2∈5CDEF

∑ A&2'2
 

Where P is the number of patents and ,;G&' is the set of regions that patent for the first time in class i 
in decade t. In other words, the indicator is the share of patents originating from regions that patent for 
the first time in that technology.  

Rank-Stability 

To measure stability we follow more closely the work of Breschi (2000). The main challenge in our 
context is that we need, as for the other variable, a time-varying metric. We therefore resort to splitting 
a decade in two 5-year periods and then correlate the rank of innovative regions in the two periods. 
Formally 

                                                             
2 For the Gini index, think for instance on how the Lorentz curve changes by adding regions. 
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H=IJ$%$=?&' = corr
2
(>I<N(12&,O7∈', 12&,O:∈')) 

Note that regions are ranked for each technological class, twice every decade. When the ranking in the 
first part of the decade is similar to the second part, it means that the technology is stable in the period. 

 

4.3 Explanatory variables: technological regimes 

Opportunity 

Following Park and Lee (2006), we measure it simply as 

PQQR>=S<$=?&' = A&'. 

That is simply counting the number of patents in class, in a decade3. While this may appear simplistic, 
we find that – by capturing the size of the innovation market, both relative to other technologies and 
relative to the same technology in different stages of its life cycle – the indicator is one of the major 
explanatory factors of the geography of innovation. 

Appropriability 

We use self-citation over total citation (Jaffe et al.  1993; Park and Lee, 2006). As citations are not 
available in HISTPAT-US, to control for the role of appropriability on spatial patterns of innovation, 
we are constrained to restrict the analysis to the period 1970-1990, which is covered in the NBER patent 
citation dataset. Indexing assignee as a, defining patent citation as UVW'   (with C=1 if patent o cites 
patent d), and J as the set of patents pairs that have at least one author in common – the indicator is  

XQQ>RQ&' =
∑ ∑ (UVW'|	{R, \} 	 ∈ ^)VW∈&

∑ ∑ (UVW')VW∈&
 

Cumulativeness 

We measure it (following Park and Lee, 2006) as the share of patents held by persistent innovators over 
total  patents. 

US_S%I=&' =
A &̀'

A&'
 

Where PI are patents held by persistent innovators, defined as assignees that – within decade t – have 
at least 4 patents in the first 5-year period, as well as at least another 4 patents in the second 5-year 
period (e.g. 1980-1984 and 1985-1989). The denominator  denotes all patents in the class-decade. Note 
that, as for appropriability, the use of additional information (assignees in this case) forces us to restrict 
the analysis to the period 1970-1990. 

As Cumulat is limited to a short time frame, we test an additional indicator, taken from Breschi (2011). 
The idea is to measure the size of the mean-reversion term in a growth-level regression, this captures 
the stationary of the time series for a specific class in specific decade (using years to have variation 
within a class-decade combination). 

                                                             
3 Note that we use specifications in level as well as in growth. In the latter case opportunity is more in line with 
the measurement in Park and Lee (2006). 
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US_S%I=&'
∗ = bc'd , computed with the model ∆A&,f∈' = b&'A&,f∈' +	 h&,f∈'. 

Index ? ∈ = indicates a year within decade t. A separate model is fitted for each class-decade 
combination. Note that cumulat* is the only variable that can have negatives. As we run our regressions 
with a specification in logs, we re-centre this variable by adding a scalar s=3. All other variables do not 
have negatives, but sometimes have a value of zero. As this is also true also for the dependent variables, 
we prefer to run the main regressions, conditioning on all the variables having positive values. As 
robustness check, we re-run the analysis with all observations, by adding a small (0.001) scalar to all 
observations. Our results (available upon request) hold to this alternative method for handling zeros.   

Complexity 

We capture the idea of complexity following the perspective on innovation highlighted by Fleming and 
Sorenson (2001): innovation can be seen as a recombination of different technologies. In this light, we 
can measure the complexity of a patent by counting the number of secondary classification listed in a 
patent. Defining that number as Hifor patent k, we measure complexity of a class, we write 

 

UR_Q%#j$=?&' =
∑ Hii∈&,'

A&'
, 

that is the average number of secondary classes among patents with primary class i. 

 

5. Empirical findings  

In what follows we present the empirical findings of our analysis by looking first at the dynamics of the 
spatial innovation patterns (Section 5.1) and at its determinants (Section 5.2). In section 5.3 we carry 
out several robustness checks. 

 
5.1 The long term dynamics of the US spatial innovation patterns  

The growth in patenting has been remarkable since 1836 (see Figure 1). Although this historical trend 
is well known, less is known about its geographical and sectoral distribution. The information extracted 
from Histpat allows us to reconstruct the spatial and sectoral patterns of innovation since 1836 till today, 
unveiling the within and between sectoral heterogeneity.  

Figure 1 – Total patent flow over time. 
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As shown in Figures 2a and 2b, geographical concentration of patenting fluctuated overtime both at 
county and State level. A first declining trend in geographical concentration can be depicted between 
the early nineteen till early twentieth century. These are the years of the entrepreneurial capitalisms 
described by Schumpeter in Theory of Economic Development (1934). Creative destruction is the main 
force driving structural change in those days. Following the literature on technological regimes, this 
pattern has been named as entrepreneurial technological regime (Winter, 1984) or Schumpeter Mark I 
(Malerba and Orsenigo, 1996), which are characterised mainly by the entry of new and small innovative 
firms and competitive markets. After the turn of the century concentration rises again till approximately 
WWII. Also in this latter case, the growth in spatial concentration is coherent with the so called 
Schumpeter Mark II or routinized technological regime (Winter, 1984; Malerba and Orsenigo, 1996). 
This is the historical period when the US economy was dominated by oligopolistic industries and large 
R&D labs started to become central in firms’ innovation activities. After WWII, we can observe a 
decline in spatial concentration, which reflects the emergence of new technological trajectories related 
to new sectors and technologies (e.g. semiconductors), which were partly emerging in new regions. It 
was underway the gestation of a new techno-economic paradigm based on ICT which will 
geographically materialise with emergence of new clusters (e.g. Silicon Valley). More recently, since 
the early 1980 we observe a reverse trend towards concentration, which is best exemplified by the 
dominance of few innovation clusters, for example in industries such as pharmaceuticals,  
semiconductors, ICT and electronics (e.g. Boston, Silicon Valley, Austin). 

 
Figures 

2a      2b 

     

In order to unveil the heterogeneity of the overall pattern illustrated above, we analyse the dynamic of 
individual technological classes over time. As shown in Figures 3a and 3b below, this dynamic describes 
a pattern that is remarkably close to either a logistic diffusion model or the product and industry life 
cycle (Fig.3a) 
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Figures 

3a       3b 

  

Figure 3b presents an exemplary case, the “boot and shoe making” technological class, which follows 
the typical S-shaped cumulative curve of the diffusion model. The example clearly illustrates a case 
where technology has achieved full maturity. Besides the diffusion curve, the data reproduce also the 
growth dynamics of a typical industry life cycle (Klepper, 1996), characterized by three main stages: 
emergence, take-off and maturity. After the emergence, rapid growth driven by entry is usually ending 
with what Klepper called a shake-out. The shake-out occurs at the peak of entry in the industry, and is 
followed by negative growth rates and decline in patenting/entry. However, not all technological classes 
follow the same pattern. Figures 3c-3e below identify three paradigmatic cases of technologies that are 
at different stages of the life cycle: take-off/growing; renewal/new paradigm; complete/ maturity 
/decline respectively (see Figures 3c-3e).  

Figures  

3c      3d 
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3e 

 

For example, electricity power systems represents a technological class still in its growing phase, which 
over more than 150 years has not yet achieved full maturity. On the contrary, the railway appliances 
class represents a typical mature technology which went through all the stages of the life cycle. Another 
peculiar example is given the by the combustion engine class. After reaching maturity, a new wave of 
entry gave rise to a renewal of this technology, which is now growing again.  

Figures  
4a      4b 

  

The spatial concentration of technological classes, as those described above, follow patterns which 
are coherent with the different degree of maturity of their technologies. For example, the 
technological class “electricity” is still expanding. Coherently we observe that its spatial 
concentration has been declining steadily since its emergence. A mature technology like “railway 
appliances” shows a more complex spatial dynamic. A declining trend characterised its emergence 
and take-off stages, which ended in the early 1900s. After having reached the peak of entry, 
concentration increased quickly during the shake-out, which was followed by a spatial de-
concentration during the maturity phase.  

 
5.2 Technological regime and spatial patterns  

In this section we analyse more in details the relation between each component of the technological 
regime and how they impact on the spatial patterns of innovation (i.e. spatial entry, geographical 
concentration, ranking of innovative regions). To correctly estimate the relation between technological 
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regimes and spatial patterns, we include time dummies in all our regressions. This avoids that we pick 
up spurious relations and allows us to control for large trends, such as change in overall concentration 
of economic activities (which, as we show in figure A2, declines during the period of Westward 
expansion, and increase afterwards). Table 2 presents the baseline model, which includes the four 
components of a technological regime. In Table 3 we add an interaction term capturing the joint role of 
cumulativeness and appropriability conditions. The last specification presents the baseline model with 
all independent variable lagged (see Table 4). 

 

Technological opportunities 

In the first column of Table 2, the coefficient estimate of the variable opportunity shows a negative and 
statistically significant sign, which indicates that higher technological opportunities reduce the spatial 
concentration of innovation. This finding is coherent with the positive sign associated to the opportunity 
coefficient in the entry model (second column, Table 2) and suggests, in line with our claims, that higher 
technological opportunities provide regions (and firms therein) with strong incentives to diversify 
towards new technological classes. Entry of new regions will in turn make the geographical distribution 
of innovation activities less concentrated. Following this logic, we should observe also a shift in the 
ranking of regional innovators. Instead, the positive sign of the opportunity coefficient in column 3 
(Table 2) indicates the opposite: higher opportunities reinforce the existing ranking of innovative 
regions. This latter finding suggests that incumbents are able to keep ahead of those laggard regions 
that for the first time entered new technological fields. Though surprising, we can explain this latter 
finding by noticing upon closer inspection that - especially in the first half of the life cycle (see Figure 
A3 in appendix) - innovation clusters were very stable overtime. This evidence indicates that while 
undoubtedly the growth of patenting favoured the entry of new regions, most innovative hubs remained 
anchored to established locations.  

Table 2 – Technological regimes and spatial patterns of innovation: Baseline regression 
 

 (1) (2) (3) 
VARIABLES theil entry stability 

    
opportunity -0.583*** 0.576*** 0.117*** 

 (0.0120) (0.0129) (0.00433) 
approp -0.0740*** -0.0162 0.00803 

 (0.0184) (0.0199) (0.00643) 
cumulat 0.242*** -0.0645*** 0.0427*** 

 (0.0108) (0.0122) (0.00370) 
complex 0.164*** 0.0713* 0.0352*** 

 (0.0431) (0.0420) (0.0122) 
Constant -0.728*** 0.196* -1.089*** 

 (0.117) (0.119) (0.0406) 
    

Observations 1,262 1,262 1,254 
R-squared 0.723 0.787 0.765 

Robust standard errors in parentheses. All variables in logarithm. Time dummies included 
*** p<0.01, ** p<0.05, * p<0.1 
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Appropriability and cumulativeness   

We predict that higher appropriability allows for greater protection of innovation, which is expected to 
lead to higher spatial concentration, lower entry and higher stability. We find that appropriability is 
only associated with concentration in the baseline model and with the opposite sign, compared to our 
expectations (see columns 1 to 3, Table 2).  

These contradicting findings are however not surprising given that both theoretically and empirically 
the effect of appropriability on innovation outcomes is often vague (Levin et al. 1985; Breschi et al. 
2000; Park and Lee, 2006). Theoretically, we know that higher appropriation provides higher protection 
from imitation; however, it also stimulates competition, because newcomers have stronger incentives 
to enter sectors where rents can be more easily appropriated. Empirically, measuring appropriability 
with self-citations, we potentially capture different effects. In particular, higher self-citations can signal 
that actors rely less on others’ knowledge, and do so because they lack R&D resources. This finding 
has been found in particular in the case of latecomer countries (Park and Lee, 2006), but it can possibly 
apply also to latecomer regions more in general.  

Table 3 – Technological regimes and spatial patterns of innovation: models with interaction 
term 

 (1) (2) (3) 
VARIABLES theil entry stability 
    
opportunity -0.541*** 0.532*** 0.114*** 
 (0.0126) (0.0131) (0.00477) 
approp 0.308*** -0.415*** -0.0261** 
 (0.0482) (0.0358) (0.0110) 
cumulat 0.420*** -0.250*** 0.0260*** 
 (0.0258) (0.0207) (0.00740) 
complex 0.136*** 0.101*** 0.0374*** 
 (0.0404) (0.0384) (0.0122) 
apprcumu 0.101*** -0.106*** -0.00935*** 
 (0.0120) (0.00960) (0.00329) 
Constant -0.206 -0.348*** -1.137*** 
 (0.133) (0.119) (0.0397) 
    
Observations 1,262 1,262 1,254 
R-squared 0.745 0.808 0.767 
Robust standard errors in parentheses. All variables in logarithm. Time dummies included 

*** p<0.01, ** p<0.05, * p<0.1 
 

A different interpretation of this unexpected finding descends from the way appropriability interacts 
with cumulativeness. Tighter appropriability conditions tend to be associated with high cumulativeness 
(Breschi, 2000; Dijk, 2000). We capture this relation by adding the interaction term apprcumu. As 
shown in Table 3, once apprcumu is included in the model, the relation between appropriability and 
geographical concentration becomes positive (now in line with expectations, see first column, Table 3), 
and such effect is stronger the higher the degree of cumulativeness. The relation between 
appropriability and spatial entry becomes negative and statistically significant (second column, Table 
3). The impact of appropriability on the ranking of innovators is now negative and significant (see third 
column, Table 3). An hypothesis for these results could be that – contrary to our first intuition – entry 
and stability go hand-in-hand, meaning that periods of entry are also periods of consolidation for leading 
regions (and this is reflected on the fact that in all cases, except for cumulativeness, the coefficients of 
entry and stability have the same sign: see Table 3). However analysing to the lagged model in Table 4 
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– a model that partially addresses concerns of endogeneity buy looking at Granger causality – we 
observe that the results on appropriability are not robust. As further analysis in the next section confirms 
this (together with tables A5, A6 and A7 showing that appropriability has the lowest R2 in univariate 
regressions), we conclude that appropriability is a weak determinant of the geography of innovation. 

Turning our attention to the relation between cumulativeness and geographical concentration (first 
column, Table 2), our findings indicate a positive and statistically significant impact, as expected. When 
knowledge is path dependent, earlier innovators tend to maintain their leadership, so spatial 
concentration of innovation activities increases as observed. Similarly, the impact of cumulativeness on 
spatial entry is negative, confirming that laggards find more difficult to make their way into new 
technological fields (see second column, Table 2). Coherently, we also find that established innovative 
regions keep their lead over competitors, so the ranking of innovative regions does not change overtime 
(see third column). These findings become even stronger when the interaction term apprcumu is 
included (see Table 3).  

Complexity 

As far as complex knowledge is concerned, our findings show a positive association with geographical 
concentration, as expected. This provides some evidence that complex technologies tend to cluster in 
fewer locations than less complex ones. Surprisingly enough, we find a positive relation between entry 
and complexity (see second column, Tables 2 and 3). These findings seem to be counterintuitive and 
contradict recent evidence on the relation between regional specialisation and complexity (Balland et 
al. 2017). To be noticed that the variable complex is negative when included alone in the model. 
However, this relation fades away when lagging the independent variables (see column 2, Table 4). 
This reveals a potential reverse causality between entry and knowledge complexity: entry of new 
regions – with presumably different technological background – makes technology more complex. 
Complexity also appears to increase rank stability of innovative regions.  
 
 
Table 4 - Technological regimes and spatial patterns of innovation: Lagged model 

 (1) (2) (3) 
VARIABLES theil entry stability 
    
opportunity (lagged) -0.595*** 0.536*** 0.115*** 
 (0.0179) (0.0225) (0.00511) 
approp (lagged) -0.106*** -0.0354 -0.000793 
 (0.0351) (0.0389) (0.00964) 
cumulat (lagged) 0.235*** -0.0482** 0.0442*** 
 (0.0152) (0.0191) (0.00465) 
complex (lagged) 0.124** -0.00463 0.0511*** 
 (0.0614) (0.0689) (0.0162) 
Constant -0.696*** 0.266 -1.100*** 
 (0.153) (0.189) (0.0429) 
    
Observations 1,262 1,262 1,254 
R-squared 0.642 0.602 0.686 

Robust standard errors in parentheses. All variables in logarithm. Time dummies included 
 

*** p<0.01, ** p<0.05, * p<0.1 
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5.3 Robustness checks 
 
We test the robustness of our results to a number of standard controls: we compare results at the county 
level with those at the state level. We try different measures of concentration. We analyse the within 
variation with a Fixed Effects model and a First Difference model. We extend the analysis to the full 
1830-2010 period thank to univariate regression and an alternative indicator of cumulativeness. In fact, 
cumulativeness and appropriability are the bottlenecks in our analysis, forcing us to drop older 
observations. As we established that appropriability is a weak determinant of the spatial patterns of 
innovation, by using an alternative index for cumulativeness, we can perform multivariate analysis on 
a long-series of data. 
First, we find that – using state data (see Table A3) – results are robust for concentration and stability, 
but less so for the remaining spatial pattern: entry. We believe that the state level is too broad to capture 
the entry dynamics properly. Figure 5 shows, with our working example on boots, why this the case. It 
can be easily seen that by 1925, every state that could innovate on boots has already entered. For 
counties, instead, entry continues to this day. Although entry peaks before opportunity, the two series 
are positively correlated – if we take entry at the county level. With entry at the state level, we observe 
that between 1850 and 1925 entry is declining while opportunity is growing: the two series are 
negatively related. We conclude that the coarser geographical division at the state level mechanically 
forces the entry index to peak much earlier than at the county level, resulting in the incorrect sign in 
Table A3. 
 
Figure 5 – Entry dynamics for boot and shoe making 
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Alternative concentration measures show the robustness of our results with respect to concentration. 
The only marked difference is the effect of appropriability on the Gini index, which is opposite to the 
one we find with Theil and HH indices. This further confirms that appropriability does not explain 
spatial patterns of innovation in a satisfactory way. 
Tables A1 and A2 test Fixed Effects and First Differences specifications. Results are remarkably robust 
for opportunity and cumulativeness; they are instead only relatively robust for complexity and 
appropriability. In this latter case, we mean that Fixed Effects and First Differences estimates are in 
line with the OLS benchmark, although the benchmark itself is not, as discussed, very robust. 
Finally, we extend the analysis to the full period, either by using univariate regressions or by excluding 
appropriabilty and including the alternative indicator of cumulativeness in multivariate regressions. 
Tables A5, A6, A7, show the result of these exercises. We find that the two indicators of cumulativeness 
are consistent with one another in univariate regressions. However, univariate and multivariate results 
vary significantly for this indicator, suggesting that cumulativeness suffers from omitted variable bias 
in univariate regressions. Different is the case for opportunity, which remains consistent throughout. 
Univariate regressions also highlight that opportunity is the single most important determinant of 
innovation patterns with R2

 reaching as high as 0.9.  
All in all, these checks bring us to conclude that opportunity has a consistent and extremely important 
role in determining the geography of innovation. Cumulativeness and complexity also play a small but 
significant role, while appropriability only a weak one. We further discuss the remarkable role of 
opportunity in Section 6 below. 
 

6. Cross-sectional and longitudinal impact of opportunity 
How do we interpret the extremely strong relation between opportunity and the spatial patterns of 
innovation? Given the importance of this indicator – which in essence captures the size of a 
technological class – we think this question deserves a closer look. 
Figure 6 provides one possible interpretation on the role of opportunity, which focuses on the cross-
sectional differences. The figures depict the link between opportunity and the three main indicators of 
spatial innovation: concentration, entry, stability. To focus on the differences between classes we only 
show the bivariate relation in 1950 (the choice of the year is arbitrary, figures with a different decades 
are consistent and available upon request). The figure suggests the following: (1) larger technologies 
are more spatially spread; (2) larger technologies are conducive of more entry; (3) in larger 
technologies, leading innovative regions are harder to disrupt, so change in leadership is less likely. 
This third is perhaps the most surprising result, given that larger entry is expected to be a challenge for 
the leader. We propose that this might have to do with the fact that smaller technologies are less 
predictable, leadership is less consolidated, and new inventions are more likely to be disruptive.  
 
Figure 6 - Concentration, Entry, Stability against Opportunity. Levels in 1950. 
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Top-left: concentration (Theil). Top-right: entry. Bottom-left: stability. All variables in logs. 
 
This interpretation is even more meaningful if we think about opportunity longitudinally. Figure 7 
shows this second take on the role of opportunity, by looking at the First Difference of all variables. It 
is evident the relations are as strong in differences as they are in level. While in principle one should 
not be surprised, we note that – given the behaviour of opportunity that we observed within a class, 
overtime (see Figures 3a-3e) – taking the longitudinal perspective opens up a discussion on how the 
spatial patterns of innovation evolve along the technology life cycle. 
 
 
Figure 7 - Concentration, Entry, Stability against Opportunity. Change VS change. 
 

 
 
Top-left: concentration (Theil). Top-right: entry. Bottom-left: stability. All variables in differences (of 
logs). 
 
Figure 7, in fact, suggests that: (1) when a technology is growing, innovation becomes more diffused, 
when a technology is declining, it becomes more concentrated. (2) Entry grows and decline along with 
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the growth of a technology. (3) Regional leaders are increasingly safe as long as a technology is 
growing, and their position becomes at greater risk when a technology is declining. 
 
As an illustration on how predicting this process is along the life cycle of a technology, we show in 
Figure 8 how opportunity predicts changes over time in a handful of technological classes. We highlight 
two points. First, just looking that the de-trended patterns of concentration is further proof that the 
increase in concentration in the second part of the life cycle is not due to the general trend of 
concentration at the county level that we observe in the whole economy4. Second, each technology has 
its own pattern, based on its different life cycle. As we saw in Figure 3, for instance, the class 
“Electricity: motive power systems” is still growing. Consistently, we find and correctly predict a 
general decline of concentration over time. 
Figure 8 - Predictions of concentration based on opportunity 
 

                                                             
4 This growth is actually very mild for patents, and only starting from the 80s. 
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We could begin advancing some hypotheses on why we observe this pattern. Of particular interest is 
why innovative activities re-concentrate in the second part of the life cycle. Is it just mechanical? There 
are less patents, so is it that the chances small regions would get one are just smaller? Is this trend thus 
a simple consequence of scaling laws? Or does it have to do with the inner working of the corresponding 
industry life cycle? We know that in this phase the industry goes through a shake-out and becomes more 
concentrated in industrial sense (Klepper, 1996). Do the fewer firms also locate in fewer locations? 
These are extremely interesting questions that we cannot answer with our data alone. We then leave 
them to future research. 
 
7  Conclusion 
Our work has investigated the spatial patterns of innovation of US metropolitan areas using a long-time 
perspective. We have used historical patent data to analyse the changing geography of innovation in the 
US over the period 1836-2010.  

Our analysis confirms that technological regimes are strong determinants of spatial patterns of 
innovation. In particular, we find that technological opportunities can predict with extreme precision 
changes in geographical concentration, the entry of new regions, and the stability of regional leaders. 
We also find that other two components of a technological regime (i.e. cumulativeness and complexity) 
play an important, though smaller role. We instead find, in line with the literature, that appropriability 
is a weak determinant of innovation patterns. 
 
By looking at the long-term dynamics of technological classes we are able to unveil their 
heterogenous spatial patterns. We show that spatial innovation patterns change according to the stage 
of development of a technology. For example, growing technological classes, like “electricity”, show 
as expected a long-term trend towards de-concentration. Mature technologies, such as “railway 
appliances”, show instead more complex spatial patterns, from geographical diffusion, during take-
off, to concentration during consolidation. The long-run perspective is indeed illuminating as it allows 
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to show that technological regimes do not only differ across technological classes, as the literature as 
argued so far, but also undergo dramatic shifts within a technology over its life cycle.  

One way to see this is to think of the evolution of spatial concentration over time. We know that the 
US population is getting more concentrated in space, at least at county level (see figure A2). As 
innovative activities are typically more concentrated than population, one might be justified to hold 
the prior that concentration of innovation grows over time. Yet, this does not really happen in the 
aggregate5 (see Figure 2), and it is blatantly false for individual classes, whose concentration only 
grows when the classes are declining, while growing classes are deconcentrating.  

This might be counterintuitive. Our findings do confirm some expected patterns. For instance, more 
complex and newer classes are more concentrated. However, when new and complex classes are 
growing, they would push towards de-concentration. Many questions remain open and are, therefore, 
fertile ground for future research. For instance, a decomposition analysis could try to understand what 
is behind the current trends of mild growth in concentration of innovation: is it that oldest technologies 
are declining? Or is it that so many new and complex categories are appearing?  
Another analysis could attempt to link historical patent data to firms and inventors, in order to analyse 
in greater detail how much the process of geographical de-concentration and re-concentration is related 
to the life-cycle of the underlying industry. Another avenue of research could focus on role of different 
types of firms (e.g. incumbents vs newcomers) in the process of regional technological diversification 
(i.e. spatial entry). More generally, one could use these historical data to investigate the links between 
spatial and Schumpeterian patterns of innovation.  
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Appendix 

 

Figure A1 - Measuring concentration 

 

Top row left: correction for changing number of states in both Gini and Theil. Top row right: Gini is 
corrected for number of states, Theil is not (but it is exponentiated). Bottom row: final measure. Gini 
is corrected for number of states, Theil for number of states and is exponentiated.  

As it can be easily seen, our corrections to keep the number of regions (state in the figure) constant, 
together with using exp(Theil) rather than Theil, brings all the indicator to agree on the trends. 
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Figure A2 - Changes in concentration of population  

 

Figure A3 - Stability along the life cycle 

 

We find that stability is positively correlated with opportunity. This translates, longitudinally, to 
growing stability in the first part of the life cycle and to a decline in the shack-out phase. Figure A3 is 
an example from technological class `boot and shoe making’  

Figure A4 - Entry along the life cycle 

 

As noted in the main text, opportunity positively correlates with entry. This, taken in junction with the 
dynamics of stability, means that the new regional entry are not sufficient to disrupt the leadership of 
the major innovators. If anything, it becomes more consolidated during the entry phase.  
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Table A1 - Fixed-Effect regression 
 (1) (2) (3) 
VARIABLES theil entry stability 
    
opportunity -0.352*** 0.619*** 0.108*** 
 (0.0318) (0.0344) (0.0134) 
approp -0.0493** 0.0552** -0.0160 
 (0.0224) (0.0236) (0.0120) 
cumulat 0.0578*** -0.0267 0.0238*** 
 (0.0158) (0.0172) (0.00791) 
complex 0.0603 0.181** -0.0550 
 (0.0771) (0.0833) (0.0336) 
Constant -2.413*** -0.111 -0.970*** 
 (0.237) (0.278) (0.0986) 
    
Observations 1,262 1,262 1,254 
R-squared 0.465 0.694 0.346 
Number of c 426 426 422 

Robust standard errors in parentheses. All variables in logarithms. Time dummies included 
*** p<0.01, ** p<0.05, * p<0.1 

 
Table A2 - First-difference (per decade) 

 (1) (2) (3) 
VARIABLES g_theil g_entry g_stability 

    
g_opportunity -0.367*** 0.640*** 0.110*** 

 (0.0378) (0.0313) (0.0167) 
g_approp -0.0352* 0.0430* -0.0179 

 (0.0209) (0.0244) (0.0113) 
g_cumulat 0.0623*** -0.0316** 0.0234*** 

 (0.0149) (0.0157) (0.00776) 
g_complex 0.135* 0.148* -0.0636 

 (0.0709) (0.0801) (0.0418) 
Constant -0.0236 0.0397** -0.000464 

 (0.0171) (0.0188) (0.00753) 
    

Observations 834 834 830 
R-squared 0.392 0.685 0.245 

Robust standard errors in parentheses. All variable in log-difference. Time dummies included 
*** p<0.01, ** p<0.05, * p<0.1 

 

Table A3 - State instead of counties 

 (1) (2) (3) 
VARIABLES theil entry stability 
    
opportunity -0.255*** -0.125*** 0.145*** 
 (0.0104) (0.0181) (0.00773) 
approp -0.0802*** -0.0618** 0.0206 
 (0.0196) (0.0273) (0.0150) 
cumulat 0.166*** 0.148*** 0.00849 
 (0.00873) (0.0198) (0.00518) 
complex 0.106*** 0.394*** -0.0183 
 (0.0330) (0.0758) (0.0156) 
Constant -1.211*** 0.942*** -0.815*** 
 (0.0892) (0.185) (0.0603) 
    
Observations 1,262 1,262 1,254 
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R-squared 0.516 0.094 0.669 
Robust standard errors in parentheses. All variables in logarithms. Time dummies included 

*** p<0.01, ** p<0.05, * p<0.1 
 
 
Table A4 - Alternative Concentration indicators 

 
 (1) (2) (3) 
VARIABLES theil hh gini 
    
opportunity -0.583*** -0.483*** -0.0145*** 
 (0.0120) (0.0137) (0.000428) 
approp -0.0740*** -0.0659*** 0.00238*** 
 (0.0184) (0.0213) (0.000581) 
cumulat 0.242*** 0.292*** 0.00720*** 
 (0.0108) (0.0136) (0.000397) 
complex 0.164*** 0.0336 0.00485*** 
 (0.0431) (0.0524) (0.00145) 
Constant -0.728*** -0.409*** 0.0734*** 
 (0.117) (0.136) (0.00358) 
    
Observations 1,262 1,262 1,262 
R-squared 0.723 0.537 0.581 
Robust standard errors in parentheses. All variables in logarithms. Time dummies included 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A5 – Univariate regressions: Concentration 

 (1) (2) (3) (4) (5) (6) (7) 
VARIABLES theil theil theil theil theil theil theil 
        
opportunity -0.611***     -0.475*** -0.583*** 
 (0.00295)     (0.00555) (0.0120) 
approp  -0.176***     -0.0740*** 
  (0.0315)     (0.0184) 
cumulat*   -2.455**   -0.101*  
   (1.045)   (0.0579)  
cumulat    -0.240***   0.242*** 
    (0.0251)   (0.0108) 
complex     0.391*** 0.248*** 0.164*** 
     (0.0528) (0.0237) (0.0431) 
Constant -0.557*** -4.673*** -1.347*** -4.896*** -1.491*** -1.078*** -0.728*** 
 (0.0399) (0.106) (0.405) (0.0544) (0.0783) (0.0448) (0.117) 
        
Observations 8,132 1,663 6,185 1,284 7,145 6,185 1,262 
R-squared 0.901 0.120 0.351 0.133 0.337 0.729 0.723 

Robust standard errors in parentheses All variables in logarithms. Time dummies included.  
Column (7) corresponds to column (1) of table 2 (baseline). *** p<0.01, ** p<0.05, * p<0.1 

 
Table A6 – Univariate regressions: Entry 

 (1) (2) (3) (4) (5) (6) (7) 
VARIABLES entry entry entry entry entry entry entry 
        
opportunity 0.641***     0.603*** 0.576*** 
 (0.00291)     (0.00619) (0.0129) 
approp  0.246***     -0.0162 
  (0.0314)     (0.0199) 
cumulat*   2.884**   -0.0634  
   (1.332)   (0.0771)  
cumulat    0.382***   -0.0645*** 
    (0.0226)   (0.0122) 
complex     -0.248*** 0.0362 0.0713* 
     (0.0572) (0.0241) (0.0420) 
Constant -0.259*** 4.463*** -0.778 4.540*** 0.144*** -1.336*** 0.196* 
 (0.0292) (0.105) (0.510) (0.0510) (0.0340) (0.0505) (0.119) 
        
Observations 8,132 1,663 6,185 1,284 7,145 6,185 1,262 
R-squared 0.911 0.132 0.340 0.314 0.374 0.808 0.787 

Robust standard errors in parentheses. All variables in logarithms. Time dummies included. 
Column (7) corresponds to column 2) of table 2 (baseline). *** p<0.01, ** p<0.05, * p<0.1 
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Table A7 – Univariate regressions: Stability 

 (1) (2) (3) (4) (5) (6) (7) 
VARIABLES stability stability stability stability stability stability stability 
        
opportunity 0.123***     0.103*** 0.117*** 
 (0.00114)     (0.00325) (0.00433) 
approp  0.0697***     0.00803 
  (0.00756)     (0.00643) 
cumulat*   1.094***   -0.138  
   (0.0974)   (0.0857)  
cumulat    0.125***   0.0427*** 
    (0.00492)   (0.00370) 
complex     0.0694*** 0.116*** 0.0352*** 
     (0.0136) (0.00884) (0.0122) 
Constant -1.117*** -0.218*** -1.065*** -0.181*** -0.773*** -1.110*** -1.089*** 
 (0.0145) (0.0174) (0.0435) (0.00926) (0.0260) (0.0345) (0.0406) 
        
Observations 7,000 1,652 6,046 1,265 6,263 6,046 1,254 
R-squared 0.725 0.118 0.225 0.507 0.166 0.478 0.765 

Robust standard errors in parentheses. All variables in logarithms. Time dummies included. 
Column (7) corresponds to column (3) of table 2 (baseline). *** p<0.01, ** p<0.05, * p<0.1 

 
 
 
 


