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Abstract — Regional resilience is high on the scientific and policy agenda. An essential feature

of resilience is diversifying into new activities. But, little is known about whether major economic

crises accelerate or decelerate regional diversification, and whether the impact di↵ers between

specialised and diverse regions. This paper o↵ers systematic evidence on the e↵ects of three

of the largest crises in U.S. history (the Long Depression 1873-1879, the Great Depression

1929-1934, and the Oil Crisis 1973-1975) on the development of new technological capabilities

within U.S. metropolitan areas. We find that crises reduce the pace of diversification in cities

and that they narrow the scope of diversification to more closely related activities. We also find

that more diverse cities outperform more specialised cities in diversifying during times of crisis

but more diverse cities do not have a stronger focus on less related diversification during these

unsettled times.
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1 Introduction

The financial crisis of 2007-2008 was seen as the largest global economic crisis since the Great

Depression of the 1930s. Although the crisis was global, strong intra-country disparities in

vulnerability to the shock have been noted (Martin, 2012). As a result, questions on how to

prevent regions from entering crises and how to alleviate the impacts of crises on regions have

once more returned to prominence on the research agenda. However, despite the wide interest,

the literature on regional resilience is still largely considered as work in progress (Boschma,

2015).

A crucial component of regional resilience is the ability of regions to diversify into new activities

(Pike et al., 2010; Boschma, 2015; Xiao et al., 2018). When regions are hit by a shock, it

may be crucial to develop new growth industries to speed up the recovery process in regions

during times of crisis. Several case-studies (Grabher, 1993; Glaeser, 2005) indeed suggest that

diversifying into new activities aid overcoming downturns. However, little is actually known on

how much diversification occurs in crises relative to periods of regular economic activity. Theories

inspired by Schumpeter have expressed divergent views on this issue (Filippetti and Archibugi,

2011): some scholars claim major crises trigger technological breakthroughs (Schumpeter, 1939;

Kleinknecht, 1987), while others suggest that dramatic drops in demand prevent the introduction

of new (major) technologies during unsettled times (Schmookler, 1966; Scherer, 1982). Which of

these theories prevails at the regional level remains unclear.

The literature on regional resilience has also claimed that specialised and diversified regions may

respond di↵erently to economic shocks. In particular, specialised regions are generally perceived

to be unable to adapt to crises because of lock-in (Grabher, 1993; Boschma and Lambooy, 1999;

Hassink, 2005; Essletzbichler, 2007). This might suggest that less specialised regions are more

capable of diversifying into new activities than more specialised regions in times of major crises.

Little systematic evidence is yet available.

Previously, empirical evidence on these questions relied primarily on case studies. Work of

Hidalgo et al. (2007); Kogler et al. (2013); Boschma et al. (2015); Balland et al. (2015); Rigby

(2015), among others, made it possible to quantify such a qualitative phenomenon as the

relatedness between technologies, opening up the way for more systematic analyses. Advances
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in data availability complement this development. The recent HISTPAT U.S. patent data set

(Petralia et al., 2016) reaching back to 1836, allows us to examine some of the deepest crises

the United States has experienced. We focus on patterns of technological diversification within

Metropolitan Statistical Areas (MSAs) during three of the most devastating economic shocks in

U.S. history: the Long Depression, the Great Depression and the Oil Crisis 1.

The analysis yields four insights. First, we find that U.S. cities diversify less during major

crises. Second, in periods of crisis, cities diversify more in stronger related activities than during

periods of prosperity. Third, more diverse cities have a higher probability of diversifying during

crises than do specialised cities. The advantage is twofold. In the first place, diverse cities have

a larger technological portfolio and therefore have closer technological proximity to potential

new technologies, enabling them to diversify more easily. Secondly, we show that even when

controlling for this advantage, diverse cities outperform more specialised cities. Suggesting that

local attitudes and/or vested interests di↵er in the regions, which induce more diverse cities to

be more open to diversification. The fourth insight of the paper yields that even though diverse

cities are more able to diversify into any new activity than their more specialised counterparts,

they do not significantly di↵er in how much they focus on less related diversification.

The structure of the paper is as follows. In Section 2, we discuss recent theorizing on regional

resilience and diversification, and how that is related to periods of crisis. Based on these

theoretical considerations, we derive four hypotheses. In Section 3, we explain the data and the

methodology used. In Section 4, we present the main empirical findings. Section 5 of the paper

will conclude and discuss the findings in light of a future research agenda.

1The Financial Crisis (2007-2008) is too recent to be included in the analysis as we insist that for successful
diversification, new technologies should persist in a region for a certain time period. As further explained in
Section 3

2



2 Resilience of Regions and Diversification in Times of Crisis

In recent years, studies have investigated the ability of regions to bounce back after a crisis

(Balland et al., 2015; Martin, 2012; Diodato and Weterings, 2015; Cuadrado-Roura et al., 2016;

Crescenzi et al., 2016; Bristow and Healy, 2018; Fratesi and Perucca, 2018). The regional

resilience literature is fundamentally interested in the capacity of regions to recover from a shock,

and what processes drive that recovery. Many resilience studies follow an equilibrium approach,

looking at the ability of regions to return to a pre-existing equilibrium state after a shock, or

to move into a new equilibrium state (Fingleton et al., 2012). These studies tend to overlook

the fact that a substantial part of the recovery process may depend on the ability of regions to

develop new growing activities that o↵set processes of decline (Boschma, 2015; Balland et al.,

2018). As such, to tackle the question of regional resilience requires understanding of how regions

diversify into new activities.

In recent years, scholars have put a lot of e↵ort in explaining why regions di↵er in their ability

to develop new technologies, industries or jobs. This empirical literature suggests that regions

do not start from scratch when diversifying: they tend to build on existing local capabilities, a

process that has been labelled related diversification (Ne↵ke et al., 2011; Boschma et al., 2015;

Rigby, 2015). This is not to say that unrelated diversification (i.e. the successful development of

new activities unrelated to local activities) does not occur in regions, but the evidence shows it

is a rare phenomenon(Hidalgo et al., 2007; Ne↵ke et al., 2018; Pinheiro et al., 2018).

Boschma (2015) has connected the growing literature on diversification to the field of regional

resilience. Inspired by scholars who advocate an evolutionary approach to regional resilience

(e.g. Christopherson et al., 2010; Pike et al., 2010; Simmie and Martin, 2010; Martin and Sunley,

2015; Webber et al., 2018; Cainelli et al., 2018), Boschma (2015) links resilience to the ability of

regions to diversify and create new growth paths, to o↵set stagnation and decline during shocks.

An idea that echos in certain case-studies (see: Grabher, 1993; Glaeser, 2005). This implies

that instead of looking at the vulnerability of regions to a shock (conventionally measured as a

decline in output levels) and the ability to recover from a shock (conventionally measured as a

return to previous output levels, or to new equilibrium output levels), there is a need to examine

to what extent shocks impact the ability of regions to diversify (Xiao et al., 2018).
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However, little is known on whether and how regions diversify during major crises. Do periods

of deep economic distress accelerate or slow diversification? This question has not received a

lot of attention in the regional resilience literature but a related debate has been taking place

in the long wave literature for many years. Innovation theories, inspired on Schumpeter, that

developed in the 1980s (Dosi et al., 1988) viewed radical innovations as clustering in waves rather

than occurring randomly over time. Schumpeter referred to this as swarming of innovations

which he believed happened during the downswing period of the long wave. In his work on basic

innovation, Mensch (1975) developed the depression trigger hypothesis to explain the tendency

for radical innovations to bunch during periods of crisis. This hypothesis was challenged by

other scholars (Clark et al., 1981; Duijn, 1983) who argued that most innovations take place just

after the crisis, during the upswing of a long wave. Kleinknecht (1981) reconciled both views,

stating that “the argument that depression is acting as a trigger for major innovations .... does

not exclude the existence of a swarm of related innovations which accompany the di↵usion of

newly introduced products” (p. 295).

Kleinknecht (1981, 1987) supported the depression trigger hypothesis, claiming that in periods

of crisis, demand drops dramatically and returns on further improvements of mature products

and technologies are low, and therefore the relative risk of introducing radical innovations

for firms decreases. This incentive becomes even stronger when productive resources are set

free during the downswing of the economy, leading to declining wages and lower capital costs,

which makes it more attractive to invest (Krugman, 1993; Glaeser, 2005). Moreover, many

innovative breakthroughs are technologically related to each other, showing interdependencies

and complementarities (Rosenberg, 1982; Carlsson and Stankiewicz, 1991) which makes them

cluster in time (Rosenberg and Frischtak, 1983; Boschma, 1999). And once radical innovations

are introduced, they will attract new investments that will lead to a large stream of additional

innovations, known as the bandwagon e↵ect (Clark et al., 1981).

Diametrically opposing this depression trigger hypothesis, is the demand pull hypothesis sug-

gesting that dramatic drops in demand during crises prevent the introduction of new (major)

technologies (Schmookler, 1966; Freeman et al., 1982; Scherer, 1982). Freeman et al. (1982)

argued that R&D activity is reduced considerably in long wave depressions. Instead, the rise in
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demand during the upswing provides more favourable conditions for firms to introduce break-

throughs and major innovations (Geroski and Walters, 1995). Schmookler (1966) claimed that

upswings in inventive activity followed upswings in demand (Coombs et al., 1987). Moreover,

depression phases are characterized by a mismatch between major technologies and institutions

(Perez, 1983; Dosi, 1984): the successful introduction and di↵usion of major breakthroughs in

the economic system requires a set of new institutions that take a long time to develop (Freeman

and Perez, 1988). The demand pull claims suggest that new major technologies are more likely

to enter the economy in the growth phase of the long wave.

For similar reasons, but in a regional setting, agents faced by a drop in demand can opt to

innovate in other technologies and possibly more specifically into technologies that are new

to the region, or postpone diversification until demand rises again. Reformulating the neo-

Schumpeterian ideas into the framework of the regional diversification literature, we could expect

regions to introduce and develop new activities during downswings as much as during upswings.

Therefore, we develop a set of competing hypotheses on how regions adopt technologies new to

them. Hypothesis 1a builds on the depression trigger hypothesis, stressing that diversification is

more likely to occur during periods of crisis. As stated above, economic agents might be more

willing to take risks and to try out something new when current products and technologies show

decreasing returns. Institutional agents (like regional governments) may see major enduring

crises as windows of opportunity and are therefore more prone to promote new ways of getting

out of the crisis. By contrast, Hypothesis 1b builds on the demand-pull hypothesis and states that

diversification is even more unlikely to take place in regions during periods of crisis. Inventions

have to wait until upswings in demand arises. We therefore formulate the following two competing

hypotheses:

Hypothesis 1 (a). cities diversify more during crises than non-crisis periods

Hypothesis 1 (b). cities diversify less during crises than non-crisis periods
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Furthermore the contrasting Schumpeterian views on adopting new major technologies also yield

di↵erent expectations on the level of unrelated diversification during crises. The depression

trigger hypothesis suggests that unrelated diversification is more likely, while the demand pull

hypothesis suggests that in case of diversification, this is more likely to be more closely related

to other regional activities. Unrelated diversification would just add to the high uncertainty

that is already inherent to a crisis period. When regions diversify during a major crisis, related

diversification, though still risky, provides more certainty during highly crises.So, we formulate

the following hypotheses:

Hypothesis 2 (a). cities diversify more in less related technologies during crises than non-crisis

periods

Hypothesis 2 (b). cities diversify more in related technologies during crises than non-crisis

periods

The regional resilience literature argues that variety is crucial for resilience because it can

accommodate sector-specific shocks (Essletzbichler, 2007, 2015; Diodato and Weterings, 2015;

Rocchetta and Mina, 2017). This is in line with numerous case studies on specialised regions

that showed structural problems of adjustment (Boschma and Lambooy, 1999; Pike et al., 2010).

Specialised regions may have a low capacity to diversify in new activities, because they are

cognitively, socially and politically locked-in (Grabher, 1993; Hassink, 2005). For example,

Grabher (1993) describes how the Ruhr-area in Germany was prosperous in the 1950s because

of its strong specialisation in the steel industry. However, when adverse times hit in 1970s the

region adapted poorly exactly because workers, firms, and instutions were strongly focused on a

limited set of activities.

Variety in a region, instead, promotes regional diversification because a larger set of new activities

are easier to undertake when a larger set of related capabilities is present (Boschma, 2015).

Related variety has been mentioned in particular (Balland et al., 2015), as recombinations are

more feasible and can be made more e↵ective across activities that share similar knowledge

and skills (Frenken et al., 2007). Xiao et al. (2018) showed that related variety indeed a↵ected

positively the resilience of European regions in terms of maintaining and increasing their ability
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to develop new industrial specializations after the 2008 economic shock. But also unrelated

variety in regions facilitates diversification, especially in unrelated technologies (Castaldi et al.,

2015). Moreover, in diverse regions, industries and vested interests are less likely to dominate

the institutional and policy network that can block new key developments (Ne↵ke et al., 2018;

Boschma, 2015). Therefore, strongly specialised regions are expected to be less able to diversify.

Few studies have empirically tested whether more or less diverse regions are more capable of

diversifying during major crises. The case-study by Grabher (1993) suggests that the mentioned

weakness of strongly specialised regions in diversifying becomes even more apparent in times of

crisis. When the main activity of a specialised region is prospering the lack in diversification

potential would seem of little concern. However, when this industry faces a major downturn a

specialised region will face di�culties in developing new activities to overcome decline. We argue

that specialised regions are less able to diversify especially into more unrelated technologies than

are more diversified regions. First of all because a larger technological portfolio means more

technologies are easier to develop building on existing knowledge. But secondly, because we also

expect this e↵ect to hold when one controls for this fact, we expect regions that are more diverse

to develop more unrelated activities in crises, because their diversity enables them to deviate

more easily from the constraints of their past. This leads to the following hypotheses:

Hypothesis 3. diverse cities diversify more than specialised cities during crises

Hypothesis 4. diverse cities diversify more in less related technologies than specialised cities

during crises than non-crisis periods

Where hypothesis 1 and hypothesis 2 explore the di↵erences between periods of crisis and periods

of prosperity, hypothesis 3 looks into the di↵erence between diverse cities and specialised cities

during crises, hence the sample for this hypothesis only consists of crisis periods. Hypothesis 4

compares the change in focus on unrelated technologies between diverse cities and specialised

cities as they enter a crisis. In other words, hypothesis 4 evaluates hypothesis 2 for di↵erent levels

of diversity. As such, the extent to which city-regions diversify more in less related technologies

during crises can be compared across the level of diversity of these city-regions.
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3 Data and Methodology

The hypotheses outlined above are tested with a unique dataset of U.S. patents covering the

period 1836� 2002. This long time span allows us to test the hypotheses across three major

crises in U.S. history: the Long Depression, the Great Depression and the Oil Crisis. Although

we are aware of limitations of patent records (Griliches, 1981), patent records hold a wealth of

information regarding the process of invention and the nature of additions to the expanding stock

of knowledge. The patent data originates from the e↵orts of Petralia et al. (2016) geographical

locations for all patents over the period 1836� 1974 from Google scans of historical U.S. patents.

Patents since 1974 are available from the NBER patent data (Hall et al., 2001).

Diversification in a Metropolitan Statistical Area (MSA) is captured by the development of a

comparative advantage in a new technology within that MSA1. Technologies are represented by

the di↵erent primary classes of the United States Patent and Trademark O�ce (USPTO) patent

classification system2. When diversification occurs, it is possible to calculate the relatedness of

the new technology to the technologies present in the MSA in the previous time period.

We restrict our sample to MSAs within the contiguous U.S.A. We also impose a minimum of

10 patents per year for a time period of a MSA to be taken into account and a minimum of

0.5 patents3 per year in a certain primary technology class. As a result, data is drawn from a

sample of 274 MSAs and 2, 171 MSA-time periods. Below, we introduce our definitions and

measurements of crises, diversification, relatedness and diversity.

3.1 Crises

Like Balland et al. (2015), we build on trends in patenting per region to indicate when regions

are in crisis, as patent counts are highly correlated with economic performance (Glaeser and

Ponzetto, 2007; Rothwell et al., 2013). To ascertain this link with economic performance, we

focus on the great historical crises of the United States, identified independently of the patent

data, while using patent counts to indicate the breadth and depth of these crises per MSA.

1We note that if a region diversifies in activities where patenting is uncommon this will not be captured by
our methodology.

2Primary technology class are comparable over time as the USPTO reclassifies all patents when new class
definitions are introduced.

3Patents that are assigned to inventors in multiple MSAs, only count as 1 divided by the number of MSAs on
that patent for each of the MSAs.

8



Each nationwide crisis is regarded as a shock at the regional level. A metropolitan area can then

either enter into a crisis or not. At the regional level, the emergence and the duration of crises

are identified from patent records using an adapted version of the business cycle algorithm of

Harding and Pagan (2002), after Balland et al. (2015). We follow the definition of technological

crises by Balland et al. (2015) as sustained periods of negative growth in patent activity: “more

formally, a time series recording yearly patenting activity can be defined as a continuum of local

maxima (peaks) and minima (troughs) that divide the series into periods of technological growth

from trough to peak and technological crisis from peak to trough.” (p. 6).

The algorithm to detect business cycles “identifies potential turning points as the local minima

(trough) and maxima (peak) in the series. Let Pt be a patent count yearly series. A trough

is identified as (p(t�j), , p(t�1)) > ptrought < (p(t+j), , p(t+1)) while a peak follows the condition

that (p(t�j), , p(t�1)) < ppeakt > (p(t+j), , p(t+1)).” (Balland et al., 2015, p. 172). To prevent

noise due to years of random growth or decline, two extra conditions are imposed: “The phases

(technological growth or technological crisis) should be at least 2 years long, while complete cycles

(period between 2 peaks or between 2 troughs) should be at least 5 years long.”

As a result of this procedure, time periods are defined separately for each MSA. Therefore, the

length of time periods varies and does not necessarily match those of other MSAs. For each of

the U.S. metropolitan areas that we examine, all periods of technological crisis and growth are

identified between 1836 and 2002. If a period of regional technological crisis overlaps with one of

the three great U.S. crises, it is retained in our model. Crises that do not overlap with one of

the three great U.S. crises or experience a decrease in patenting activity of less than 35 percent4

during the crisis are ignored.

The decision to ignore regional downturns in patenting that do not occur during a nation-wide

shock decreases the risk of including local crises that are unrelated to major economic downturns

or spurious decreases in patent counts. Figure A1, in Appendix A, depicts the number of MSAs

entering a period of growth in green, respectively a period of crisis in red per year, during the

time periods associated with each of the great historical crises. The impact of the crises on

4Lowering this threshold leads to greater standard errors in the results, indicating that diversification behaviour
during small (less significant) crises does not di↵er much from diversification behaviour during periods of growth,
which is to be expected.
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patenting activity is clearly visible. One can also note a small time lag between the actual start

of the great historical crises and MSAs entering a period of downturn in patenting for the first

two major crises. The e↵ect of the Oil crisis is immediately visible5. Because of the time lag in

the reaction of patenting activity, we retain the regional crises that start in years when more

MSAs enter a crisis period than MSAs enter a period of growth. For the Long depression this is

1876 to 1878, for the Great depression 1932 to 1938, and for the Oil crisis 1972 to 1976. All

other crisis periods are dropped from the sample. Regional periods of growth are kept regardless

of when they occur.

Table 1 shows the strong impact of the great historical crises on the patent production at the

regional level. A↵ected MSAs, in the second column, indicates the number of MSAs that enter a

crisis that meets the aforementioned requirements and respective time period. Una↵ected MSAs

are MSAs that were in a growth phase before the start of the crisis and remain so over the course

of the crisis. #MSAs gives the total number of MSAs that meets the requirement of producing

on average ten patents per years in that time period. Note that the number of una↵ected MSAs

and a↵ected MSAs do not sum to the total number of MSAs. MSAs could already be in crisis

upon entering the respective time periods or could enter in a crisis in which less than 35% of

patenting activity is lost. The last two columns respectively give the average time duration of

the crises, and the average percentage of patent activity lost at the trough compared to the peak

for the a↵ected MSAs. The Great Depression stands out as having impacted the most regions.

Table 1 – The Regional Impact of the Great Historical Crises

Crisis A↵. MSAs Una↵. MSAs #MSAs Avg. Crisis Duration Avg. Crisis Depth

Long depression 30 19 101 ⇠ 3.7 years ⇠ -53.6%
Great depression 139 2 205 ⇠ 6.4 years ⇠ -74.3%
Oil crisis 128 44 252 ⇠ 6.7 years ⇠ -59.4%

5Note that the years indicate the end year of the previous cycle period and the start year of the next cycle
period. E.g. a period of crisis starting in 1972 indicates that the peak was in 1972 and the first year of downturn
is 1973.

10



3.2 Diversification

We use the notion of Revealed Comparative Advantage (RCA) (see Hidalgo et al., 2007) to

identify in which technologies each MSA is specialised across the time periods examined. In

equation 1, x represents the number of patents, c denotes the city-region (MSA), i is the primary

technology class, and t indicates the time period. RCA values are bounded on the left by

zero. A RCA value of 1 indicates that an MSA has the same share of patenting activity in a

particular technology class as the national average. RCA values of 1 or greater indicate regional

specialization in a technology. A technology enters the technological portfolio of an MSA when

an MSA develops a specialization in a technology class that it did not have in the previous time

period we refer. An entry is considered a diversification of the region. To account for spurious

entries of technologies we add the condition that an entering technology has to remain present

in the portfolio of an MSA (with RCA => 1) for at least two time periods.

RCAcit =

xcitPI
i=1 xcit

PC
c=1 xcitPC

c=1

PI
i=1 xcit

, (1)

3.3 Relatedness

Technologies that are not in the technological portfolio of an MSA in time period t� 1 (those

for which the RCA value is below one) enter or do not enter in time period t. An important

predictor of the entry of a technology within an MSA is how closely related it is to technologies

that are already present in the region (Boschma et al., 2015; Balland et al., 2018). This notion

of relatedness is essential for hypotheses 2, and 4, where we focus on less related diversification.

The co-occurrence of technology classes on patents is used to measure the relatedness between

technologies. Technology classes are more related to one another as they co-occur with a frequency

that is greater than that which would be predicted based on the overall counts of classes in the

population of patents of a given time period. The formula for relatedness, outlined by van Eck

and Waltman (2009) and improved by Steijn (2018), is reported in equation 2. Where Cijt is

the number of co-occurrences between technology i and technology j in time period t. Sit and

Sjt is the number of co-occurrences involving respectively technology i and technology j in time

period t, N is the total number of technologies, and m is the total number of co-occurrences.
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TRijt =
Cijt

( SitPN
n=1 Sn

SjtPN
n=1 Sn�Sit

+ SjtPN
n=1 Sn

SitPN
n=1 Sn�Sjt

)m
, (2)

Building on relatedness, relatedness density (see Hidalgo et al., 2007) gives the relatedness of a

region to a technology that is not yet present in its technological portfolio. Relatedness density is

equal to the sum of relatedness values of the technologies in the region to the possibly entering

technology divided over the sum of relatedness values of all technologies to this technology, as

can be seen in equation 3.

Rel.densitycit =

P
j2c,j 6=i TRijtP
j 6=i TRijt

, (3)

3.4 Diversity

For hypotheses 3 and 4, a measure of the extent of specialization in a region is required. Here we

follow Duranton and Puga (2000) who propose a simple diversity index, known as the Relative

Diversity Index (RDI). The intuition is that if the relative distribution of patenting activity

over technology classes in an MSA resembles the national distribution, then the city is relatively

diverse. However, when the patents of an MSA cluster strongly above the national average in

a few classes then it is seen as specialised. Duranton and Puga (2000) use the inverse of the

formula6 in equation 4, like before x stands for the number of patents, c indicates the MSA,

i the respective technology, and t the respective time period. A value close to zero denotes a

diverse city, whereas the larger the value the more specialised a city is.

RDIct =
IX

i=1

����
xcit
xct

� xit
xt

����, (4)

6We choose not to use the inverse as this transformation skews the variable, which makes outliers more
influential in the estimation of its coe�cient.
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3.5 Control variables

Other factors that are correlated with our variables of interest may influence the development

of specialisation in a new technology by an MSA. Having MSAs nearby that have an RCA

in a technology can be expected to positively influence the entry of that technology to the

technological portfolio of a city (see Rigby, 2015). Therefore, we develop a spatial weight matrix

using the inverse distance for the presence of technology in neighboring MSAs . We also include

the average population of MSAs in the time periods. Boschma et al. (2015) employ several

other control variables using information on the inventors. This type of data is unavailable in

HISTPAT or other sources. However, this shortfall can largely be mitigated by the inclusion of

fixed e↵ects. Table 2, gives the descriptive statistics of our variables.

Table 2 – Descriptive Statistics

Statistic N Mean St. Dev. Min Max

Entry 724,752 0.031 0.174 0 1
Crisis 724,752 0.141 0.348 0 1
Relatedness density 724,752 0.089 0.126 0.000 1.000
Population 724,752 416,093 961,537 20,402 17,019,060
Present*W 724,752 0.00003 0.00003 0.00000 0.0003
RDI 724,752 1.086 0.303 0.255 1.833

3.6 Empirics

Entry models are a common tool in the literature that yield insights on the role of relatedness in

diversification (e.g. Boschma et al., 2015; Balland et al., 2018). In spite of the popularity, some

underestimation of risks exists in relation to two particular traits of the econometric specification.

First, the dependent variable entry is binary and is strongly right skewed: there are very little

incidences of successful entries (values of 1) compared to technologies that do not enter (values of

0). Second, the independent variable relatedness density is truncated and strongly right skewed.

The first has already been noticed by Boschma et al. (2015), referring to work by King and Zeng

(2001). They argue that the coe�cient estimates of nonlinear models might not be consistent

when there are too many zeros in the dependent variable. They therefore use an OLS to estimate

the entry model. The use of such a Linear Probability Model (LPM) has certain risks that
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can be considered to be outweighed by the benefits of easier interpretation (see Hellevik, 2009).

However, when the probability of success of the dependent variable is on the extreme ends of

the distribution7, the slope of a logit or probit is not well approximated by the slope of a linear

regression and the flaw of the LPM in predicting probabilities outside the possible range of 0 to

1 generally becomes apparent.

In the case of the entry model, probabilities can be considered to be on the lower end of the

probability distribution. Therefore, a logit model seems more appropriate. Boschma et al. (2015)

run a logit model as robustness check, confirming their results. As said, this is not without a

risk as King and Zeng (2001) warn for inconsistent estimates when probabilities are extremely

low. King and Zeng (2001) also provide guidelines when this risk is more likely to exist. They

show in a simulation that the inconsistency tends to zero as the sample size tends to infinity

and/or the percentage of ones tend to 50%. In our data, there are 724, 752 observations and an

average probability of entry of 3.1%. Following guidelines and simulation results of King and

Zeng (2001), the risk can be assumed to be negligible8.

A logistic regression would seem the way to proceed in estimating the entry model. However, the

skewness of the distribution of relatedness density9 values poses a serious threat to the e↵ective

estimation of its e↵ect on entry. Although OLS and logit models alike do not require variables

to be normally distributed, unlike the error terms, a variable that is highly skewed has the risk

of outliers exerting a strong influence on the results. Regressing relatedness density on entry,

gives the mean e↵ect of relatedness density on entry, but as the mean is far to the right of the

median, this coe�cient is unreliable. Figure 1 gives the histogram of relatedness density.

7Von Hippel (2015) suggests that probabilities of success should be in the range of 20% to 80% for logit and
linear models to be used interchangeably.

8The rules of thumb of Allison (2012) also suggest that the risks are negligible.
9The skewness was also noticed by Uhlbach et al. (2017)
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Figure 1 – Histogram of relatedness density

A standard approach in econometrics is to apply some type of monotonic transformation to

the variable to preserve order but alter the distribution. The most common option, a log

transformation, cannot be applied due to the fact that there are zeros among the values. Other

common transformation methods in dealing with right skewed data (like box-cox, taking the

square, or an inverse hyperbolic sine) are able to deal with zeros but due to the large number of

zeros (12.9% of observations involve zero relatedness density) fail to give a distribution in which

a strong influence of outliers can be ruled out. As a result, we will estimate our econometric

specifications for quantile groups of relatedness density10 and compare how the coe�cients of

interest change between the groups. Next, we introduce the econometric specification.

10Note that this is di↵erent from quantile regressions where the dependent variable is divided over quantiles
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3.7 Econometric specification

Equation 5 gives a regression formula, which is in line with previous work of amongst others

Boschma et al. (2015). If a technology i enters the technological portfolio of city c in time period

t, the value of the dependent variable is 1. If it was not in the portfolio of city c and it did

not enter, its value is 0. The dependent variable is regressed on the relatedness density of the

technology class to the portfolio of each city in the previous time period, on a dummy variable

which indicates if a city is experiencing a crisis or not, on the population in the MSA in time

period t, and on the presence of technology i in the technological portfolio of neighboring MSAs

multiplied by a spatial weight matrix W, a city-fixed e↵ect (�), a technology-fixed e↵ect (✓) and

a time-fixed e↵ect (⌧). Population and Present*W are scaled to have 0 mean and a standard

deviation of 1, as the interpretation of these coe�cients is not so straightforward in its units of

measurement.

Entrycit = �1Rel.densitycit�1+�2Crisisct+�3Populationct+�4Presentit⇤W+�c+✓i+⌧t+✏cit,

(5)

For the main specification of Hypothesis 1, and 2 relatedness density is left out of the specification

but the data is split according to quintiles of relatedness density, due to the mentioned skewness

of this variable. When using quintiles we have to exclude fixed e↵ects, because proper estimation

of fixed e↵ects requires observations with ”successful” entry and ”unsuccessful” entry of each

city, technology, and time period. However, we add them in a robustness check where data is

split according to terciles.

For Hypothesis 3 the RDI variable is added to specification 5, and the crisis variable is left out as

only data from cities in times of crisis is used. Relatedness density is left in the specification for

Hypothesis 3. Here it is an important control variable to assure that more e↵ective diversification

of diverse regions is not driven by their, on average, higher relatedness density values, due

to having more technologies in their portfolio. This advantage even holds within quantiles of

relatedness density values, in the sense that very diverse cities (low RDI), have on average values

that are closer to the upper bound of a quantile compared to more specialised cities (high RDI).
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To investigate risks of imposing a functional form on the relation between RDI and entry, we

also show results by assigning dummy variables to di↵erent ranges of RDI values11 next to the

results using the RDI values proper. However, for this hypothesis we only find minor di↵erences

in interpretation.

Hypothesis 4 is tested in a similar fashion to analysing Hypothesis 1 and 2, hence using the

full dataset, but including the RDI variable. The RDI values are added as the aforementioned

dummy variables, as here there are major di↵erences in interpretation of the results. The results

suggest that an increase or decrease in RDI value leads to di↵erent changes in outcome depending

on the initial RDI value. As such, adding RDI values linearly imposes an unfit functional form.

We also did robustness checks with various di↵erent compositions of relatedness values and RDI

values, seperately standardizing the relatedness values in crisis periods and non-crisis periods

such that the mean is equal in both types of periods, and we tried out penalized log-likihood

methods (see Firth, 1993; Kosmidis and Firth, 2009). These robustness checks yield similar

results as presented below.

11e.g. a dummy variable called RDI 0.3-0.8 is one for all RDI values ranging from 0.3 to 0.8 and zero for all
other RDI values.
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4 Results

4.1 Diversification in times of crisis

Table 3 gives the results for specification 5, as mentioned without fixed e↵ects, for five subsets

of data, ranging from the quintile with relatedness density values among the 20% lowest to

the quintile with the 20% highest values. As expected, the coe�cients on the control variables

are positive and significant. This indicates that both a larger population as having more

neighbouring MSAs specialised in the technology increases the probability of entry ceteris

paribus. The coe�cient on crisis is negative and significant across the quintiles. This indicates

that the probability of an MSA entering a new technological specialization is lower during a

crisis regardless of relatedness density. This confirms Hypothesis 1b and rejects the depression

trigger Hypothesis 1a: cities diversify less during crises.

Table 3 – Regression results (Hypothesis 1 and 2)

Dependent variable:

entry
0-20% 20-40% 40-60% 60-80% 80-100%

Crisis �1.232⇤⇤⇤ �0.747⇤⇤⇤ �0.734⇤⇤⇤ �0.514⇤⇤⇤ �0.295⇤⇤⇤

(0.184) (0.102) (0.071) (0.045) (0.028)
Population 0.400⇤⇤⇤ 0.257⇤⇤⇤ 0.148⇤⇤⇤ 0.083⇤⇤⇤ 0.073⇤⇤⇤

(0.032) (0.027) (0.018) (0.011) (0.004)
Present*W 0.573⇤⇤⇤ 0.395⇤⇤⇤ 0.432⇤⇤⇤ 0.381⇤⇤⇤ 0.288⇤⇤⇤

(0.032) (0.020) (0.013) (0.010) (0.007)
Constant �4.706⇤⇤⇤ �4.484⇤⇤⇤ �4.004⇤⇤⇤ �3.377⇤⇤⇤ �2.510⇤⇤⇤

(0.035) (0.028) (0.022) (0.017) (0.011)

Time Fixed E↵ects No No No No No
Technology Fixed E↵ects No No No No No
MSA Fixed E↵ects No No No No No

Observations 144,950 144,950 144,951 144,950 144,951
Log Likelihood �5,304.951 �8,149.655 �13,199.480 �22,153.370 �40,856.230
Akaike Inf. Crit. 10,617.900 16,307.310 26,406.960 44,314.740 81,720.460

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

To facilitate interpretation, the average probability of entry per quintile group outside of crisis

is given in blue in Figure 2. This average probability is equal to the intercept converted to

probabilities of each quintile group as population and present*W have been scaled. The red line
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in Figure 2 then gives the change from the no crisis base scenario when a crisis occurs. As can

be deduced from the coe�cient on crisis. The shaded area gives the 95% confidence interval. As

has been noticed earlier in the literature, the probability of entry increases when the entering

technology is more strongly related to local technologies.
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Figure 2 – Probability of entry according to crisis status

From figure 2, we can deduce how the crisis a↵ects the development of new technological

specialization (entry) by MSAs across relatedness density groups. Figure 3 depicts the di↵erence

in percentages between the entry probabilities during a crisis and outside a crisis across quintiles.

Technologies with low relatedness values, those in the lowest quintile, are 70.6% less likely to be

added to the technological portfolio of cities during crises than outside of crises, whereas for

technologies with relatedness density values in the highest quintile, the entry probability is only
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about 24.1% smaller during crises. This confirms Hypothesis 2b: cities diversify more in related

technologies during crises. Apparently, in times of high uncertainty, diversification is more likely

in technology classes that are more closely related to the knowledge core of the region. This

likely reflects the uncertainty of economic agents in terms of future technological development

during the highly turbulent phases of major crises.
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Figure 3 – Percentage difference in probability of entry between crisis
and no crisis across quintile groups

However, unobserved time-invariant characteristics at the MSA-level, technological class-level,

and/or time period level may be correlated with our variable of interest. Therefore, we re-run

the regressions while including the fixed e↵ects mentioned in the main specification. For fixed

e↵ects to be correctly estimated, at least one incident of successful and non-successful entry is
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required for all values associated to a particular dummy. To maintain a su�cient amount of

observations, we run the analysis using terciles instead of quintiles. The resulting figures are

based on a respective MSA, Technology and Time Period with the respective coe�cient closed to

the median across all regressions. As shown in Table A1, Figure A2 and Figure A3 in Appendix

A, the results are confirmed, albeit it less large.

4.2 Diversity and diversification in times of crisis

In Hypothesis 3, we posit that more diverse cities tend to diversify more than specialised cities

during crises, even when controlling for relatedness density. The sample here only consists of

data from cities in crisis. RDI captures the diversity e↵ect. Regression results are given in Table

4, while Table 4 gives the marginal e↵ects of the coe�cients keeping all else at its average.

Across all levels of relatedness density, including the least related, the e↵ect of RDI is negative

and significant, indicating that when cities are more specialised (RDI is higher) the probability

of entry decreases. As we control for relatedness density, this increase in the probability of entry

when cities are more diverse is not due to the fact that having a larger technological portfolio

means having more relatedness to other technologies. This corroborates the existing literature

reviewed in Section 2, which claims that there is more to diverse cities that allows them to

diversify into new activities, than just having increased technological proximity. Table A3 confirm

that the advantage of diverse cities holds respectively when introducing fixed e↵ects. Table A4

gives the results when using dummy variables for ranges of RDI values. These suggest that

overall the relation between RDI and entry is reasonably well approximated12 by the functional

form assumed in Table 4.

We note that contrary to Table 3, Population has an insignificant e↵ect in some specifications.

As we find that diversity has a positive e↵ect on entry, this suggests that the positive coe�cient

on population in Table 3 was more likely a “diversity-e↵ect” rather than a “size-e↵ect”, as

population is correlated with diversity. As expected, relatedness density and the presence of

technology i in nearby MSAs have a positive e↵ect on the possible entry of technology i.

12Only for one out of four samples (the one with the least related relatedness density values) the functional
form is less clear, but that is the focus of Hypothesis 4.
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Table 4 – Regression results (Hypothesis 3)

Dependent variable:

entry
0-25% 25-50% 50-75% 75-100%

RDI �1.384⇤⇤ �0.984⇤⇤⇤ �0.577⇤⇤⇤ �1.529⇤⇤⇤

(0.655) (0.317) (0.200) (0.118)
Relatedness dens. 15.676 10.486 10.716⇤⇤⇤ 2.404⇤⇤⇤

(64.786) (8.291) (1.990) (0.166)
Population �0.407 0.120⇤⇤ �0.001 �0.023⇤⇤

(0.751) (0.053) (0.041) (0.012)
Present*W 0.658⇤⇤⇤ 0.615⇤⇤⇤ 0.465⇤⇤⇤ 0.419⇤⇤⇤

(0.119) (0.045) (0.030) (0.018)
Constant �4.197⇤⇤⇤ �4.157⇤⇤⇤ �4.433⇤⇤⇤ �2.332⇤⇤⇤

(0.828) (0.446) (0.292) (0.126)

Time Fixed E↵ects No No No No
Technology Fixed E↵ects No No No No
MSA Fixed E↵ects No No No No

Observations 19,951 25,164 28,182 28,966
Log Likelihood �329.487 �1,011.821 �2,402.095 �6,187.553
Akaike Inf. Crit. 668.973 2,033.642 4,814.191 12,385.110

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

As diverse regions outperform specialised regions in diversifying across all levels of relatedness

in times of crisis, a relevant question becomes how diverse regions change their diversification

behaviour in relative terms compared to more specialised regions. Do diverse cities switch more

strongly to less related technologies during crises than specialised cities? As noted in hypothesis

4. For this we reproduce figure 3 but by estimating the e↵ect for di↵erent groups according to

RDI13. The resulting Figure 4, based on Table A5 is shown below.

When entering a crisis, the most diverse regions, with RDI values 0.3-0.8, lose over 75% of the

diversification in the least related technologies. While the most specialised regions, with RDI

values 1.4-1.8, only lose under 50%, and the intermediate group of regions with RDI values

1.2-1.4 does not even diversify less in the least related technologies during crises than outside

of crises. At the same time, there is a negligible di↵erence between the groups when it comes

13Note that for sake of legibility the two intermediate groups with RDI values between 0.8-1 and 1-1.2 are
removed.
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to the strongest related technologies. Suggesting that in relative terms it are actually more

specialised regions who diversify more strongly into less related technologies. With the addition

that extreme specialisation (RDI 1.4-1.8) decreases the focus on less related diversification

compared to slightly lesser specialised regions. However, these results are not robust as adding

fixed e↵ects leads to the disappearance of di↵erences between the RDI groups, as can be seen

in Figure A4, based on Table A6. This suggests that unobserved factors related to the specific

cities, technologies, or time periods associated with each group explain the di↵erence between

the RDI groups observed in figure 4 rather than the di↵erences in diversity. Therefore hypothesis

4 cannot be accepted, nor is the opposite true.
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23



5 Conclusion

In this paper, we provide systematic evidence on the diversification behaviour of regions in

times of major crisis. Diversification is considered to be a crucial part of regional resilience, as

developing new capabilities may allow regions to come out of crises. For a long time, questions like

the ones asked here relied on case studies, which although insightful were di�cult to generalize.

Combining developments in data availability and in methods to quantify relatedness, we were

able to examine technological diversification of MSAs in the U.S. during the Long Depression,

the Great Depression, and the Oil Crisis.

We found that crises have a strong dampening e↵ect on diversification, and that especially

diversification in less related technologies is reduced compared to more prosperous times, which is

in line with the demand pull hypothesis (Schmookler, 1966; Freeman et al., 1982; Scherer, 1982).

We also show that more diverse cities manage to diversify more than their more specialised

counterparts during crises. When it comes to diversification, diverse cities profit from their

diversity in two ways. First, a larger technological portfolio means having more capabilities that

are related to regionally new capabilities, increasing their probability of entry. Second, we show

that when controlling for this advantage, diverse regions still outperform more specialised cities.

Suggesting that more diverse cities are less likely to have interests to block new developments

making them generally more open to diversification. The results show that more diverse regions

also outperform their counterparts when it comes to diversification in less related activities

during crises. However, it is not true that diverse regions focus more strongly on unrelated

diversification than more specialised regions when entering a crisis. In relative terms, the two

types of regions do not significantly di↵er in their focus on less related technologies during crises.

These results give a detailed description on how regions diversify during major crises. However,

the study remains largely descriptive, causal mechanisms can be suggested from theory but are

not tested directly. In particular, future research could explore which features of diverse regions

allow them to diversify more strongly than their relatedness density would suggest.

Furthermore, this paper describes how regions diversify during times of crisis but not how this

impacts the depth and duration of crises. Do regions that diversify more strongly or more

into less related activities experience less damage from crises, and under which circumstances?
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Related diversification is suggested to be more sustainable in the long run in a city because it

can build on local capabilities (Balland et al., 2018). However, a recent study (Pinheiro et al.,

2018) suggests that unrelated diversification brings additional economic growth in countries in

the long run but it is unsure if this also holds for cities (Coniglio et al., 2018).

The framework also allows to retrace previous case-studies in the data and compare them with

a large sample of other cities. This would for example allow us to examine if the story of

“Reinventing Boston” (Glaeser, 2005) is a story of unrelated diversification against the odds or a

more common case of related diversification, and whether major crises like the ones we examined

had a major impact on the diversification pattern in the Boston region. The described diversity

of economic activities in Boston and the associated diversification through economic downturns

is in line with the results here that more diverse regions outperform more specialised regions in

diversification during crises. In this sense, the results also shed light on how cities like New York

remain among the top largest cities through economic cycles.

This study is limited by its focus on technological diversification based on patent data. Conse-

quently, it picks up only that part of new knowledge that is embodied in patents. In order to get

a more comprehensive picture of resilience of cities, it is important to account for other forms of

knowledge that may provide opportunities for cities to diversify. This would include other forms

of new activities like new products, industries or new jobs in which cities can diversify, which

are not captured by patent data, like in most tertiary activities (Xiao et al., 2018).

Finally, a possible improvement for future research would be to include the role of institutions in

regional resilience research (Boschma, 2015). Recent research has shown that regional institutions

like bridging social capital matter for the ability of regions to diversify (Cortinovis et al., 2017).

This might be especially relevant in times of crises when high demands are put on institutional

agents to renew their economies, adapt their institutions, and enable the development of new

growth paths (Freeman and Perez, 1988; Amable, 2000; Hall and Soskice, 2001). To our

knowledge, the e↵ect of regional institutions on regional resilience, and whether institutional

agents like policy makers can make the di↵erence during major crises (Bristow and Healy, 2014;

Dawley, 2014; Sotarauta et al., 2017), has not yet been systematically tested.
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Cuadrado-Roura, J. R., Martin, R., and Rodŕıguez-Pose, A. (2016). The economic crisis in

Europe: urban and regional consequences. Cambridge Journal of Regions, Economy and

Society, 9(1):3–11.

Dawley, S. (2014). Creating New Paths? O↵shore Wind, Policy Activism, and Peripheral Region

Development. Economic Geography, 90(1):91–112.

Diodato, D. and Weterings, A. B. (2015). The resilience of regional labour markets to economic

shocks: Exploring the role of interactions among firms and workers. Journal of Economic

Geography, 15(4):723–742.

Dosi, G. (1984). Technical change and industrial transformation: the theory and an application

to the semiconductor industry. The Macmillan Press LTD, London and Basingstoke.

27



Dosi, G., Freeman, C., Nelson, R., Silverberg, G., and Soete, L. (1988). Technical change and

economic theory. Pinter, London.

Duijn, J. V. (1983). The long wave in economic life. George Allen & Unwin, London.

Duranton, G. and Puga, D. (2000). Diversity and Specialisation in Cities: Why, Where and

When Does it Matter? Urban Studies, 37(3):533–555.

Essletzbichler, J. (2007). Diversity, stability and regional growth in the United States, 19752002.

In Frenken, K., editor, Applied evolutionary economics and economic geography, chapter 10.

Edward Elgar, Cheltenham.

Essletzbichler, J. (2015). Relatedness, Industrial Branching and Technological Cohesion in US

Metropolitan Areas. Regional Studies, 49(5):752–766.

Filippetti, A. and Archibugi, D. (2011). Innovation in times of crisis: National systems of

innovation, structure, and demand. Research Policy, 40(2):179–192.

Fingleton, B., Garretsen, H., and Martin, R. (2012). Recessionary shocks and regional employ-

ment: Evidence on the resilience of u.k. regions. Journal of Regional Science, 52(1):109–133.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80(1):27–38.

Fratesi, U. and Perucca, G. (2018). Territorial capital and the resilience of European regions.

The Annals of Regional Science, 60(2):241–264.

Freeman, C., Clark, J., and Soete, L. (1982). Unemployment and technical innovation: a study

of long waves and economic development. Pinter, London.

Freeman, C. and Perez, C. (1988). Structural crises of adjustment: business cycles. Pinter,

London.

Frenken, K., van Oort, F. G., and Verburg, T. (2007). Related variety, unrelated variety and

regional economic growth. Regional Studies, 41(5):685–697.

Geroski, P. A. and Walters, C. F. (1995). Innovative Activity over the Business Cycle. The

Economic Journal, 105(431):916.

28



Glaeser, E. and Ponzetto, G. A. (2007). Did the Death of Distance Hurt Detroit and Help New

York? Technical report, National Bureau of Economic Research, Cambridge, MA.

Glaeser, E. L. (2005). Reinventing Boston: 1630-2003. Journal of Economic Geography, 5(2):119–

153.

Grabher, G. (1993). The weakness of strong ties: the lock-in of regional development in the

Ruhr area. In Grabher, G., editor, The Embedded Firm, pages 255–277. Routledge, London.

Griliches, Z. (1981). Market value, R&D, and patents. Economics Letters, 7(2):183–187.

Hall, B. H., Ja↵e, A. B., and Trajtenberg, M. (2001). The NBER Patent Citation Data File:

Lessons, Insights and Methodological Tools. NBER working paper series, 8498.

Hall, P. A. and Soskice, D. (2001). Varieties of Capitalism. The Institutional Foundations of

Comparative Advantage. Oxford University Press, New York.

Harding, D. and Pagan, A. (2002). Dissecting the cycle: a methodological investigation. Journal

of Monetary Economics, 49(2):365–381.

Hassink, R. (2005). How to unlock regional economies from path dependency? From learning

region to learning cluster. European Planning Studies, 13(4):521–535.

Hellevik, O. (2009). Linear versus logistic regression when the dependent variable is a dichotomy.

Quality & Quantity, 43(1):59–74.

Hidalgo, C. A., Kilinger, B., Barabási, A.-L., and Hausmann, R. (2007). The Product Space

Conditons the Develpment of Nations. Science, 317(July):482–487.

King, G. and Zeng, L. (2001). Logistic Regression in Rare Events Data. Political Analysis,

9(02):137–163.

Kleinknecht, A. (1981). Observations on the Schumpeterian swarming of innovations. Futures,

13(4):293–307.

Kleinknecht, A. (1987). Innovation patterns in crisis and prosperity: Schumpeter’s long cycle

reconsidered. Macmillan, Basingstoke, Hampshire.

29



Kogler, D. F., Rigby, D. L., and Tucker, I. (2013). Mapping Knowledge Space and Technological

Relatedness in US Cities. European Planning Studies, 21(9):1374–1391.

Kosmidis, I. and Firth, D. (2009). Bias reduction in exponential family nonlinear models.

Biometrika, 96(4):793–804.

Krugman, P. (1993). Lessons of Massachusetts for EMU,Adjustment and growth in the European

Monetary Union, CEPR. Cambridge University Press, Cambridge.

Martin, R. (2012). Regional economic resilience, hysteresis and recessionary shocks. Journal of

Economic Geography, 12(1):1–32.

Martin, R. and Sunley, P. (2015). On the notion of regional economic resilience: conceptualization

and explanation. Journal of Economic Geography, 15(1):1–42.

Mensch, G. O. (1975). Das technologische Patt. Umschau, Frankfurt.

Ne↵ke, F., Hartog, M., Boschma, R., and Henning, M. (2018). Agents of Structural Change:

The Role of Firms and Entrepreneurs in Regional Diversification. Economic Geography,

94(1):23–48.

Ne↵ke, F., Henning, M., Boschma, R., Lundquist, K. J., and Olander, L. O. (2011). The

Dynamics of Agglomeration Externalities along the Life Cycle of Industries. Regional Studies,

45(1):49–65.

Perez, C. (1983). Structural change and assimilation of new technologies in the economic and

social systems. Futures, 15(5):357–375.

Petralia, S. G., Balland, P.-A., and Rigby, D. L. (2016). Unveiling the geography of historical

patents in the United States from 1836 to 1975. Scientific data, 3:1–14.

Pike, A., Dawley, S., and Tomaney, J. (2010). Resilience, adaptation and adaptability. Cambridge

Journal of Regions, Economy and Society, 3(1):59–70.

Pinheiro, F. L., Alshamsi, A., Hartmann, D., Boschma, R., and Hidalgo, C. A. (2018). Shooting

Low or High: Do Countries Benefit from Entering Unrelated Activities? Papers in Evolutionary

Economic Geography, 1807.

30



Rigby, D. L. (2015). Technological Relatedness and Knowledge Space: Entry and Exit of US

Cities from Patent Classes. Regional Studies, 49(11):1922–1937.

Rocchetta, S. and Mina, A. (2017). Technological Coherence and the Adaptive Resilience of

Regional Economies. Papers in Evolutionary Economic Geography, 17(13):1–39.

Rosenberg, N. (1982). Inside the black box: technology and economics. Cambridge University

Press, Cambridge.

Rosenberg, N. and Frischtak, C. R. (1983). Long Waves and Economic Growth: A Critical

Appraisal.

Rothwell, J., Lobo, J., Strumsky, D., and Muro, M. (2013). Patenting prosperity: invention

and economic performance in the United States and its metropolitan areas. Technical report,

Brookings Institution, Washington.

Scherer, F. M. (1982). Demand-Pull and Technological Invention: Schmookler Revisted. The

Journal of Industrial Economics, 30(3):225.

Schmookler, J. (1966). Invention and Economic Growth. Harvard University Press, Cambridge.

Schumpeter, J. A. (1939). Business cycles. McGraw-Hill, New York.

Simmie, J. and Martin, R. (2010). The economic resilience of regions: towards an evolutionary

approach. Cambridge Journal of Regions, Economy and Society, 3(1):27–43.

Sotarauta, M., Beer, A., and Gibney, J. (2017). Making sense of leadership in urban and regional

development. Regional Studies, 51(2):187–193.

Steijn, M. P. A. (2018). Improvement on the association strength: implementing a probabilistic

measure based on combinations without repetition. [Manuscript in Preparation].

Uhlbach, W., Balland, P.-A., and Scherngell, T. (2017). R&D Policy and Technological Trajec-

tories of Regions: Evidence from the EU Framework Programmes. Papers in Evolutionary

Economic Geography, 17(22):1–21.

van Eck, N. J. and Waltman, L. (2009). How to Normalize Cooccurrence Data? An Analysis

of SomeWell-Known Similarity Measures. Journal of the American Society for Information

Science, 60(8):1635–1651.

31



Von Hippel, P. (2015). Linear vs. Logistic Probability Models: Which is Better, and When?

[Blog post].

Webber, D. J., Healy, A., and Bristow, G. (2018). Regional Growth Paths and Resilience: A

European Analysis. Economic Geography, pages 1–21.

Xiao, J., Boschma, R., and Andersson, M. (2018). Resilience in the European Union: the e↵ect

of the 2008 crisis on the ability of regions in Europe to develop new industrial specializations.

Industrial and Corporate Change, 27(1):15–47.

32



Appendix A

10

0

10

20

30

1872 1874 1876 1878 1880
Year

< 
cr

is
is

  #
M

SA
s 

 g
ro

w
th

 >
   

   
   

   
   

   
   

   
   

   
   

  

(a) Long Depression

50

25

0

25

50

75

1929 1932 1935 1938 1941
Year

< 
cr

is
is

  #
M

SA
s 

 g
ro

w
th

 >
   

   
 

(b) Great Depression

40

20

0

20

40

1972 1974 1976 1978
Year

   
 <

 c
ris

is
  #

M
SA

s 
 g

ro
w

th
 >

(c) Oil Crisis
Figure A1 – Number of MSAs starting a period of growth (green) versus a period of crisis (red)



Table A1 – Regression results (Hypothesis 1 and 2) - Robustness check

Dependent variable:

entry
0-33.3% 33.3-66.7% 66.7-100%

Crisis �0.563⇤⇤⇤ �0.364⇤⇤⇤ �0.216⇤⇤⇤

(0.146) (0.063) (0.031)
Population �0.141⇤ �0.290⇤⇤⇤ �0.063⇤⇤⇤

(0.074) (0.058) (0.010)
Present*W 0.556⇤⇤⇤ 0.421⇤⇤⇤ 0.314⇤⇤⇤

(0.036) (0.019) (0.011)
Constant �5.564⇤⇤⇤ �2.491⇤⇤⇤ �2.069⇤⇤⇤

(0.630) (0.443) (0.687)

Time Fixed E↵ects Yes Yes Yes
Technology Fixed E↵ects Yes Yes Yes
MSA Fixed E↵ects Yes Yes Yes

Observations 144,966 203,202 236,718
Log Likelihood �7,312.256 �19,140.410 �52,671.230
Akaike Inf. Crit. 15,684.510 39,502.820 106,662.500

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A2 – Marginal effects (Hypothesis 3)

Dependent variable:

entry
0-25% 25-50% 50-75% 75-100%

RDI �0.003⇤⇤ �0.007⇤⇤⇤ �0.010⇤⇤⇤ �0.084⇤⇤⇤

(0.002) (0.002) (0.003) (0.007)
Relatedness dens. 0.038 0.075 0.185⇤⇤⇤ 0.133⇤⇤⇤

(0.158) (0.059) (0.035) (0.009)
Population �0.001 0.001⇤⇤ �0.00002 �0.001⇤⇤

(0.002) (0.0004) (0.001) (0.001)
Present*W 0.002⇤⇤⇤ 0.004⇤⇤⇤ 0.008⇤⇤⇤ 0.023⇤⇤⇤

(0.0004) (0.0004) (0.001) (0.001)

Time Fixed E↵ects No No No No
Technology Fixed E↵ects No No No No
MSA Fixed E↵ects No No No No

Observations 19,951 25,164 28,182 28,966

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table A3 – Regression results (Hypothesis 3) - Robustness check

Dependent variable:

entry
0-50% 50-100%

RDI �2.544⇤⇤⇤ �1.600⇤⇤⇤

(0.940) (0.267)
Relatedness dens. �0.982 �0.075

(0.861) (0.057)
Population 0.948⇤⇤⇤ 0.331⇤⇤⇤

(0.108) (0.031)
Present*W 0.948⇤⇤⇤ 0.331⇤⇤⇤

(0.108) (0.031)

Time Fixed E↵ects Yes Yes
Technology Fixed E↵ects Yes Yes
MSA Fixed E↵ects Yes Yes
Observations 9,310 52,587
Log Likelihood �907.028 �7,998.234
Akaike Inf. Crit. 2,300.056 17,148.470

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A4 – Regression results (Hypothesis 3) - Grouped RDI

Dependent variable:

entry
0-25% 25-50% 50-75% 75-100%

RDI 0.8-1 �3.840⇤⇤⇤ �0.533 �0.324⇤⇤ �0.333⇤⇤⇤

(1.184) (0.326) (0.159) (0.067)
RDI 1-1.2 �2.011⇤⇤⇤ �1.092⇤⇤⇤ �0.643⇤⇤⇤ �0.682⇤⇤⇤

(0.728) (0.338) (0.160) (0.080)
RDI 1.2-1.4 �2.167⇤⇤⇤ �0.928⇤⇤⇤ �0.452⇤⇤⇤ �0.882⇤⇤⇤

(0.711) (0.316) (0.163) (0.117)
RDI 1.4-1.8 �2.941⇤⇤⇤ �1.155⇤⇤⇤ �0.748⇤⇤⇤ �1.329⇤⇤⇤

(0.714) (0.315) (0.177) (0.170)
Relatedness dens. 12.819 11.471 10.650⇤⇤⇤ 2.513⇤⇤⇤

(64.774) (8.278) (1.988) (0.164)
Population �1.129 0.108⇤ �0.019 0.018⇤

(0.924) (0.056) (0.044) (0.010)
Present*W 0.739⇤⇤⇤ 0.613⇤⇤⇤ 0.475⇤⇤⇤ 0.421⇤⇤⇤

(0.123) (0.046) (0.031) (0.018)
Constant �3.725⇤⇤⇤ �4.486⇤⇤⇤ �4.614⇤⇤⇤ �3.375⇤⇤⇤

(0.562) (0.337) (0.210) (0.070)

Time Fixed E↵ects No No No No
Technology Fixed E↵ects No No No No
MSA Fixed E↵ects No No No No

Observations 19,951 25,164 28,182 28,966
Log Likelihood �321.898 �1,008.195 �2,394.856 �6,194.191
Akaike Inf. Crit. 659.796 2,032.391 4,805.712 12,404.380

Note 1: The reference category is RDI 0.3-0.8.
Note 2: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A5 – Regression results (Hypothesis 4)

Dependent variable:

entry
0-20% 20-40% 40-60% 60-80% 80-100%

RDI 0.8-1 �1.469⇤⇤⇤ �1.292⇤⇤⇤ �0.770⇤⇤⇤ �0.471⇤⇤⇤ �0.408⇤⇤⇤

(0.095) (0.080) (0.058) (0.039) (0.027)
RDI 1-1.2 �2.391⇤⇤⇤ �1.847⇤⇤⇤ �1.169⇤⇤⇤ �0.710⇤⇤⇤ �0.663⇤⇤⇤

(0.117) (0.085) (0.061) (0.043) (0.038)
RDI 1.2-1.4 �2.607⇤⇤⇤ �2.147⇤⇤⇤ �1.561⇤⇤⇤ �1.163⇤⇤⇤ �1.135⇤⇤⇤

(0.114) (0.087) (0.067) (0.054) (0.059)
RDI 1.4-1.8 �2.903⇤⇤⇤ �2.426⇤⇤⇤ �2.032⇤⇤⇤ �1.549⇤⇤⇤ �1.408⇤⇤⇤

(0.119) (0.092) (0.079) (0.070) (0.090)
Crisis �1.617⇤⇤⇤ �1.032⇤⇤⇤ �1.556⇤⇤⇤ �0.554⇤⇤⇤ �0.233⇤⇤⇤

(0.610) (0.310) (0.264) (0.091) (0.036)
Relatedness density �26.501 6.969 9.038⇤⇤⇤ 4.201⇤⇤⇤ 1.706⇤⇤⇤

(32.971) (4.840) (1.735) (0.564) (0.060)
Population 0.185⇤⇤⇤ 0.049 �0.015 �0.031⇤⇤ 0.010⇤⇤

(0.034) (0.038) (0.030) (0.015) (0.004)
Present*W 0.839⇤⇤⇤ 0.523⇤⇤⇤ 0.539⇤⇤⇤ 0.446⇤⇤⇤ 0.338⇤⇤⇤

(0.034) (0.020) (0.014) (0.010) (0.007)
RDI 0.8-1 * Crisis �0.900 0.013 0.950⇤⇤⇤ �0.072 0.047

(1.176) (0.415) (0.302) (0.133) (0.072)
RDI 1-1.2 * Crisis 1.492⇤⇤ 0.301 0.763⇤⇤ �0.041 �0.074

(0.741) (0.415) (0.308) (0.130) (0.091)
RDI 1.2-1.4 * Crisis 1.675⇤⇤ 0.616 1.366⇤⇤⇤ 0.504⇤⇤⇤ 0.157

(0.682) (0.378) (0.296) (0.143) (0.143)
RDI 1.4-1.8 * Crisis 0.925 0.936⇤⇤⇤ 1.276⇤⇤⇤ 0.711⇤⇤⇤ �0.134

(0.688) (0.354) (0.313) (0.163) (0.228)
Constant �2.825⇤⇤⇤ �2.988⇤⇤⇤ �3.374⇤⇤⇤ �3.251⇤⇤⇤ �2.764⇤⇤⇤

(0.062) (0.085) (0.084) (0.065) (0.026)

Time Fixed E↵ects No No No No No
Technology Fixed E↵ects No No No No No
MSA Fixed E↵ects No No No No No

Observations 144,950 144,950 144,951 144,950 144,951
Log Likelihood �4,854.524 �7,728.097 �12,705.440 �21,631.490 �39,694.050
Akaike Inf. Crit. 9,735.049 15,482.190 25,436.890 43,288.970 79,414.100

Note 1: The reference category is RDI 0.3-0.8.
Note 2: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A6 – Regression results (Hypothesis 4) - Robustness check

Dependent variable:

entry
0-33.3% 33.3-66.7% 66.7-100%

RDI 0.8-1 �0.534⇤⇤⇤ �0.622⇤⇤⇤ �0.257⇤⇤⇤

(0.114) (0.058) (0.031)
RDI 1-1.2 �0.954⇤⇤⇤ �0.749⇤⇤⇤ �0.282⇤⇤⇤

(0.137) (0.068) (0.043)
RDI 1.2-1.4 �1.192⇤⇤⇤ �1.121⇤⇤⇤ �0.548⇤⇤⇤

(0.148) (0.077) (0.059)
RDI 1.4-1.8 �1.284⇤⇤⇤ �1.311⇤⇤⇤ �0.785⇤⇤⇤

(0.150) (0.087) (0.080)
Crisis 0.127 �0.659⇤⇤⇤ �0.125⇤⇤⇤

(0.351) (0.175) (0.040)
Relatedness density 25.099⇤⇤⇤ 11.225⇤⇤⇤ 2.678⇤⇤⇤

(6.081) (0.816) (0.059)
Population �0.157⇤⇤ �0.347⇤⇤⇤ �0.056⇤⇤⇤

(0.065) (0.061) (0.011)
Present*W 0.551⇤⇤⇤ 0.410⇤⇤⇤ 0.293⇤⇤⇤

(0.036) (0.019) (0.011)
RDI 0.8-1 * Crisis �1.813⇤⇤⇤ 0.326 �0.047

(0.685) (0.211) (0.068)
RDI 1-1.2 * Crisis �0.228 0.187 �0.245⇤⇤⇤

(0.467) (0.209) (0.079)
RDI 1.2-1.4 * Crisis �0.293 0.721⇤⇤⇤ 0.015

(0.431) (0.208) (0.110)
RDI 1.4-1.8 * Crisis �0.525 0.480⇤⇤ �0.038

(0.401) (0.217) (0.149)
Constant �6.580⇤⇤⇤ �2.488⇤⇤ �3.374⇤⇤⇤

(1.175) (1.119) (0.715)

Time Fixed E↵ects Yes Yes Yes
Technology Fixed E↵ects Yes Yes Yes
MSA Fixed E↵ects Yes Yes Yes
Observations 193,453 227,784 239,775
Log Likelihood �7,803.078 �19,271.320 �51,718.460
Akaike Inf. Crit. 16,858.160 39,910.630 104,830.900

Note 1: The reference category is RDI 0.3-0.8.
Note 2: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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