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Abstract 

Cities are epicenters for invention. Scaling analyses have verified the 

productivity of cities and demonstrate a super-linear relationship between cities’ 

population size and invention performance. However, little is known about what 

kinds of inventions correlate with city size. Is the productivity of cities only limited 

to invention quantity? We shift the focus on the quality of idea creation by 

investigating how cities influence the art of knowledge combination. Atypical 

combinations introduce novel and unexpected linkages between knowledge 

domains. They express creativity in inventions and are particularly important for 

technological breakthroughs. Our study of 174 years of invention history in 

metroplitan areas in the United States (US) reveals a super-linear scaling of atypical 

combination with population size. The observed scaling grows over time indicating 

a geographic shift towards cities since the early 20th century. The productivity of 

large cities is thus not only restricted to quantity, but also includes quality in 

invention processes. 
 

Keywords: Atypical Knowledge Combination; Cities; Historic Patent Data; 

Invention; Scaling Analysis 

JEL: O30; O31; O33;  



2 

1 Introduction 

It is well known that invention activities are spatially concentrated (Audretsch and Feldman 

1996) and primarily an urban phenomenon (Bettencourt, Lobo, and Strumsky 2007). 

Empirically, scaling analyses demonstrate the predominance of cities and reveal a super-linear 

scaling of inventors and inventions with respect to city size. That is, a disproportionate number 

of inventors and inventions concentrate in large cities indicating increasing returns to 

urbanization (O’hUallichain 1999; O’hUallichain and Leslie 2005; Bettencourt, Lobo, and 

Strumsky 2007; Bettencourt et al. 2007).  

The productivity of cities rests on the idea of inventions being the outcome of knowledge 

combinations. This requires people to interact as knowledge is distributed across individuals, 

organizations, and institutions. (Usher 1954; Nelson and Winter 1982; Utterback 1996; 

Hargadon 2003; Arthur 2009). Large cities provide more opportunities for knowledge 

combination due to the concentration of critical requirements such as people, diversity, 

creativity, skills, infrastructure, and financial resources (Kuznets 1960; Jacobs 1969; Florida 

2002; Glaeser 2011). The compactness of these factors in cities facilitates information flows 

among actors, stimulating knowledge combinations and in turn inventive outcomes (Bettencourt, 

Lobo, and Strumsky 2007). But how urban environments influence the art of knowledge 

combination remains unexplored.  

The large and diverse pool of existing knowledge provides large cities with more 

opportunities to explore atypical combinations than their non-urban counterparts. Atypical 

combinations introduce novel and unfamiliar linkages between less connected knowledge 

domains. They are an essential feature of creativity and a fundamental building block of high-

impact science and technological breakthroughs (Schilling and Green 2011; Uzzi et al. 2013; 
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Kim et al. 2016). The exclusive focus on invention quantity in existing scaling analyses, 

however, overlooks such differences in quality (O’hUallichain 1999; O’hUallichain and Leslie 

2005; Bettencourt, Lobo, and Strumsky 2007; Bettencourt et al. 2007).  

In this paper we address the lacuna in scaling analysis by studying knowledge combinations 

with respect to city size and particularly ask: how does urban knowledge diversity relate to 

knowledge combinations? How do atypical knowledge combinations scale with city size? Are 

cities more explorative because their diversity allows them to be? 

Empirically, we rely on scaling analysis to study how knowledge combination relates to 

cities’ population size and technological diversity. Following Uzzi et al. (2013), we distinguish 

between atypical and typical knowledge combinations based on z-score measures to proxy 

knowledge exploration and exploitation respectively. This empirical approach relies on 

historical patent data from 1836 to 2010, which enables us to study the geography of knowledge 

combinations over 174 years of US invention history (Petralia, Balland, and Rigby 2016). 

Studying almost two centuries allows us to reveal true long-term dynamics of knowledge 

combinations. 

Our main findings suggest that large cities increasingly concentrate atypical combinations 

and thus have become crucially important for knowledge exploration in the long-run. We 

associate this development to the systematic relationship between knowledge diversity and city 

size. The knowledge diversity in large cities provides more opportunities for distinct knowledge 

combinations and to explore new combinations. Thus, large cities drive technological progress 

not only in quantitative, but also in qualitative terms. The increasing concentration in large 

cities, however, reinforces a widening between urban centers and the rest of the country.  

The paper is organized as follows. The literature on the geography of invention and 

knowledge combination is presented in Section 2. We describe the data and empirical methods 
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in Sections 3 and 4. The results are presented and discussed in Section 5. Section 6 concludes 

the paper. 

 

2 Theoretical Underpinnings 

2.1 The Geography of Invention 

 

The notion of the death of distance has culminated in Friedman’s (2005) claim of the ‘flat 

world’. This stream of research argues that technological change erodes the obstacles (e.g. 

physical barriers, travel time, socio-cultural differences) that once limited the exchange of labor, 

goods, and knowledge (O’Brien 1992; Castells 1996; Cairncross 1997). In particular, innovation 

in telecommunication and computing technologies unfasten the mobility of production factors 

and detach economic activity from its territorial and socioeconomic context (O’Brien 1992; 

Castells 1996). Accordingly, technological progress spreads economic activities to every part of 

the world and enhances the global diffusion of knowledge. In such a scenario, location becomes 

less relevant reducing the geographic concentration of economic activities of all kind and 

eventually diminishing spatial inequalities over time. 

Friedman’s thesis has revitalized an active debate about the role of geography for economic 

activities (Christopherson, Garretsen, and Martin 2008; Florida, Gulden, and Mellander 2008; 

Rodriguez-Pose and Crescenzi 2008). The spatial distribution of the world economy doubts a 

flattening of the world, as economic activities and wealth are increasingly concentrated in space. 

More precisely, overwhelming empirical evidence is pointing in the exact opposite direction to 

what was proclaimed by Friedman and others. Scott (1993) and Saxenian (1994), for example, 
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analyzed the prevailing concentration of certain industries, i.e. semiconductors and aerospace, in 

California and Massachusetts showing that geographic clustering is a common phenomenon. 

Most paradoxically, the digital industry – believed to be the driver that flattens the world -  is 

itself highly clustered (Zook 2000). Beyond single case studies, it has been shown that economic 

activities, more general, concentrate in specific locations and that the concentration tends to 

grow over time (Marshall 1890; Hall and Markusen 1985; Ellison and Glaeser 1999; Dumais, 

Ellison, and Glaeser 2002; Ellison, Glaeser, and Kerr 2010). Geography therefore represents an 

important determinant in order to understand economic development and inequalities between 

cities.  

Of all economic activities, the tendency towards spatial concentration is even stronger for 

invention activities. Spatial patterns of invention have been subject in a growing body of 

empirical studies showing that invention activities are not equally distributed across regions, but 

rather occur highly concentrated in space (Feldman 1994; O’hUallichain 1999; Acs, Anselin, 

and Varga 2002; Dumais, Ellison, and Glaeser 2002; Sonn and Storper 2008; Feldman and 

Kogler 2010; Castaldi and Los 2017). Most striking, the spatial concentration is relatively 

persistent and, more importantly, increases over time (Varga 1999; Co 2002; O’hUallichain and 

Leslie 2005; Sonn and Park 2011) challenging the ‘death of distance’ argument. As knowledge 

is a crucial source for economic growth (Lucas 1988; Romer 1990), regions more capable of 

creating new knowledge possess an economic advantage over less inventive regions (Feldman 

and Florida 1994).  

The observed concentration is systematic, as a large body of empirical research suggests 

invention being primarily an urban phenomenon. In particular, the inventive performance of 

metropolitan areas grows disproportionately with population size indicating increasing returns to 

urbanization (O’hUallichain 1999; Bettencourt et al. 2007; Bettencourt, Lobo, and Strumsky 
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2007). These findings indicate a spatial concentration of invention activities in larger 

metropolitan areas. Kuznets (1960) elaborated how a larger population size is associated with a 

greater productivity of new knowledge. Although not explicitly referring to Kuznets’ work, 

more recent contributions rely on his thoughts about cities as centers for knowledge creation. 

Bettencourt et al. (2007) adopted a theoretical and methodological framework called scaling, 

which stems from biology (Schmidt-Nielsen 1984; West 1997) and quantifies the relation 

between size (e.g. body size, population size) and aggregated outcomes (e.g. metabolism rate, 

wealth, and inventions). The dependence of invention activity Y on population size N can be 

expressed as a scaling law of the following form (Bettencourt, Lobo, and Strumsky 2007): 

 

Y = Y0 Nβ (1) 

where β is the scaling exponent, which falls into three broad categories revealing three 

different scaling mechanisms. First, β smaller than one expresses a sub-linear relationship 

implying economies of scale. Second, a linear relationship is evident if β equals one. Third, if β 

is greater than one, the relation between population size and inventive performance of a city is 

super-linear revealing increasing returns to urbanization, as reported, for example, in 

Bettencourt, Lobo, and Strumsky (2007). That is, if a city doubles its population size, it 

increases its inventive output more as twice as much. The empirically confirmed super-linear 

scaling of invention activities (Carlino, Chatterjee, and Hunt 2007; Arbesman, Kleinberg, and 

Strogatz 2009) reveals the dominant role of large metropolitan areas for invention, at least, in 

quantitative terms.  
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But why are cities so remarkably productive with respect to inventions? The literature on 

urban scaling attributes the productivity to two major interdependent factors: population size and 

knowledge diversity (Kuznets 1960; Jacobs 1969; Bettencourt, Lobo, and Strumsky 2007). 

Highly skilled and creative minds increasingly concentrate in urban areas stimulating creative 

processes such as invention activities. Inventors in cities thus have access to a larger and also 

more diverse pool of knowledge than inventors living outside of cities. This is crucially 

important, as inventions often build on the combination of existing knowledge (Usher 1954; 

Nelson and Winter 1982; Utterback 1996) and thus on interpersonal interactions that are 

facilitated by geographic proximity (Liben-Nowell et al. 2005). Urban environments provide 

more opportunities for knowledge exchange between actors and thus facilitate knowledge 

combinations (Bettencourt, Lobo, and Strumsky 2007). Nevertheless, existing scaling analyses 

do not ask how cities influence knowledge combinations. Therefore, they disregard qualitative 

differences of knowledge combinations and treat inventions as a homogeneous quantity 

(O’hUallichain 1999; O’hUallichain and Leslie 2005; Bettencourt et al. 2007; Bettencourt, 

Lobo, and Strumsky 2007; Carlino, Chatterjee, and Hunt 2007; Sonn and Park 2011). By 

analyzing and evaluating the novelty of knowledge combinations, we particularly shift the focus 

from quantity to quality and extend existing approaches. In the next chapter, we argue that 

knowledge combinations are heterogeneous and that cities concentrate essential factors, which 

affect knowledge combinations in their quality.  

 

2.2 Geography of Knowledge Combination 

 

Knowledge combination represents an important mechanism of idea creation (Usher 1954; 

Nelson and Winter 1982; Utterback 1996; Hargadon 2003; Arthur 2009). Inventions consist of 
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multiple components that are put together in a novel way to fulfill a specific purpose. The 

components themselves are rarely completely new; rather, they typically represent existing 

pieces of knowledge (Arthur 2009). Crucially, the art of creatively combining different 

knowledge domains is one important source for different degrees of novelty across inventions 

(Ahuja and Lampert 2001). 

Exploration and exploitation are two important search processes in research and 

development (R&D), which differ significantly in their underlying combinatorial characteristics 

(March 1991). Exploitation thereby refers to the reuse and refinement of existing combinations, 

whereas exploration describes the search for and development of new combinations. Exploring 

new combinations implies higher costs and risks than reusing proven combinations. Due to these 

characteristics, combinations identifying exploitation occur more frequently and hence represent 

typical combinations. In contrast, combinations resulting from exploration are rather rare and 

atypical among observed combinations. In line with previous studies, we rely on the 

terminology of atypical (typical) combinations as proxies for exploration (exploitation) 

(Schilling and Green 2011; Uzzi et al. 2013; Kim et al. 2016). Combinatorial characteristics are 

a strong predictor for the impact of inventions. It is the combination of previously disconnected 

components, i.e. exploration, that leads to novel ideas and high impact results (Fleming 2001; 

Dahlin and Behrens 2005; Schoenmakers and Duysters 2010; Schilling and Green 2011; Uzzi et 

al. 2013; Kim et al. 2016; Verhoeven, Bakker, and Veugelers 2016). 

Consequently, spatial variance of exploration and exploitation will affect the regional 

outcome of invention quality. That is, places of knowledge exploration, i.e. regions that are more 

capable to combine knowledge in an explorative fashion, are more likely to produce atypical 

inventions. However, no study exists that seeks to identify such inter-regional variations. The 

literature about knowledge combination is silent about possible geographical patterns and offers 
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little insight into the geography of invention. Although the combinatorial character of 

knowledge is embedded in contemporary concepts of economic geography (e.g. related variety 

(Frenken, Van Oort, and Verburg 2007)), differences between regions have not been taken into 

account to explain spatial inequalities. We therefore shift the focus explicitly to knowledge 

combination as the research object in order to disentangle the geography of invention in 

qualitative terms. But why should places differ regarding the intensity of exploration and 

exploitation?  

The literature on urbanization externalities suggests regional diversity playing a major role 

for knowledge combination. The argument harkens back to Jacobs (1969), who described the 

benefits of large and diverse cities for socioeconomic interactions. Firms, for example, benefit 

from a cross-fertilization of ideas between industries, rather than being stuck in industry-internal 

thought patterns. Hence, diversity increases the likelihood of knowledge spillovers between 

heterogeneous actors (Bettencourt, Lobo, and West 2008; Arbesman, Kleinberg, and Strogatz 

2009). Regions with large (knowledge) diversity, in particular, provide more opportunities for 

knowledge combination than less diverse cities where such diversity is missing. Being located in 

diverse environments, allows to draw from larger pools of distinct knowledge ‘pieces’ (e.g., 

technologies, sectors, industries), which in turn increase the opportunities for atypical 

combinations. 

The geographic nature of knowledge spillovers reinforces the importance of the regional 

diversity for combination processes. An exhaustive literature demonstrates that knowledge, in 

general, does not travel easily over long geographic distances. More precisely, knowledge tends 

to stay in the same region where it was once created, although the effect diminishes as 

technologies mature (Jaffe 1989; Jaffe, Trajtenberg, and Henderson 1993; Anselin, Varga, and 

Acs 1997; Varga 2000). It is often argued that codified knowledge travels more easily than tacit 
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knowledge, while tacit knowledge is more likely to adhere to specific places (von Hippel 1994; 

Maskell 1999; Gertler 2003). Yet, it is difficult to assess the difference between codified and 

tacit knowledge empirically. Balland and Rigby (2017) disentangle the two knowledge types by 

arguing that tacitness can at least partially be captured by the complexity of what is known. 

Their findings suggest that knowledge complexity limits the geographic distance of knowledge 

spillovers even more. However, in most instances, codified and tacit knowledge are 

complements and hence, the geographic stickiness of the latter will also reduce the mobility of 

the former (Cowan and Foray 1997). Accordingly, the local knowledge base represents a crucial 

determinant of regional knowledge combination processes. Consequently, more diverse cities 

have access to a larger variety of local knowledge, enabling them to realize more distinct 

combinations than less diverse cities.  

Diversity is critically linked to urbanization. Larger cities, usually, host more different 

industries than smaller towns. Recently, Youn et al. (2016) analyzed how diversity of business 

activities relates to city size in US metropolitan areas. They found a linear relationship between 

city size and business diversity. In an earlier work, Mori, Nishikimi, and Smith (2008) observed 

a similar relationship between industrial activities and the population size of metropolitan areas 

in Japan. Clearly, this pattern is not limited to a single nation. The theoretical logic behind the 

observed linear scaling of population and diversity rests on the notion of the urban hierarchy 

(Christaller 1933). The central idea is that activities found in the largest cities include those 

located in the smallest towns, but not vice versa. Larger cities, i.e. central places, provide more 

sophisticated products, services, and technologies for their less populated surroundings. New 

York, for example, has a larger potential to explore new knowledge combinations than Branson, 

Missouri. 
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Regional diversity, however, is not sufficient to actually explore new combinations. It rather 

indicates the potential that could be explored. Importantly, exploration requires certain skills and 

actors to use the given potential, which are not equally distributed across space (Glaeser and 

Maré 2001; Florida 2002; Bettencourt et al. 2007; Combes, Duranton, and Gobillon 2008; 

Bacolod, Blum, and Strange 2009; Storper and Scott 2009; Lee, Sissons, and Jones 2016). 

Spatial wage disparities, i.e. the urban wage premium, indicate that people living in larger cities 

earn more then their nonurban counterparts (Weber 1899; Glaeser and Maré 2001). Combes et 

al. (2008) attribute this observation to the spatial sorting of skills. Up to half of the wage 

disparities is explained by differences of the local workforce composition. Relatedly, 

Bettencourt et al. (2007) observe a super-linear scaling for both creative employment, as defined 

by Florida (2002), and R&D employment. That is, individuals with better qualifications for 

exploring and exploiting knowledge combinations tend to concentrate in larger and more 

densely populated cities. It follows that cities not only have the larger potential for atypical 

knowledge combinations, but also have a higher capacity (due to the urban concentration of the 

skills and talents needed for this task) to exploit these potentials. Based on this, we expect 

atypical combinations to concentrate in large cities. We hypothesize this relationship as follows: 

 

Atypical and typical knowledge combinations scale super-linearly with city size. However, 

atypical combinations scale to a larger extent with city size than typical combinations. 
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3 Data 

In line with previous studies, we rely on patent data to analyze invention activities as results 

of combinatorial search processes (Fleming 2001; Dahlin and Behrens 2005; Arts and Veugelers 

2015; Schoenmakers and Duysters 2010; Kim et al. 2016). Patent data has some peculiarities, 

which affect the results. Patent activities are not equally distributed across firms, technologies, 

and sectors. Most importantly, the tendency to patent an invention is biased in favor of 

manufacturing activities (Griliches 1990). Thus, patents underestimate the inventive outcome in 

less manufacturing intensive regions. Eventually, the decision to patent rests on strategic 

judgement. Not every invention results in a patent due to various reasons, e.g. information 

disclosure, the ease of circumvent patent claims, and application costs (Cohen, Nelson, and 

Walsh 2000). Acs, Anselin, and Varga (2002), however, find that patents are a reliable indicator 

to measure invention activities at the regional level.  

We draw the patent data from three different data sources. The first source is HistPat, which 

was recently generated by Petralia, Balland, and Rigby (2016) and is publicly available. This data 

set contains geographic information on patents from the United States Patent and Trademark 

Office (USPTO) ranging from 1836 to 1975. We complement HistPat by using the data set from 

Li et al. (2014), which covers the years 1975 to 2010 and contains geographic information as 

well. Third, we used the Master Classification File of the USPTO Bulk Storage System, which 

provides information on technology classes for the whole time span. The data sets were matched 

by using patent numbers as unique identifiers. With this data in hand, we were able to analyze the 

geography of knowledge combination for granted US patents over the last 174 years. 

Patent data reveal how knowledge is combined, as each invention is classified into at least 

one technology class. In many cases, one single invention is grouped into more than one class. 
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This information has been used to study the knowledge combination process (Fleming 2001; 

Dahlin and Behrens 2005; Schoenmakers and Duysters 2010; Kim et al. 2016). The underlying 

classification scheme is the Cooperative Patent Classification (CPC). The CPC has been 

established to harmonize individual classification systems between the USPTO and the 

European Patent Office. Using the CPC thus allows for cross-country comparison of empirical 

results. 

Scholars have long debated how to define a city, theoretically and for the purposes of 

quantitative research (Louf and Barthelemy 2014; Arcaute et al. 2014). HistPat locates patents 

not to American cities, but to counties. This signifier of invention location does not suffice. The 

county level  represents a narrow administrative boundary; it does not take into account 

interregional dependencies crossing county boundaries. Focusing on county boundaries can 

therefore lead to spatial bias, as inventors living in one region could potentially generate their 

invention in neighboring ones. To capture such interregional interdependencies and to minimize 

spatial bias, most geographic analyses use functional units (Bettencourt et al. 2007; Youn et al. 

2016). In this study, we use 171 Combined Statistical Areas (CSA), which is the largest unit of 

the Metropolitan Statistical Areas in the United States. 

We gathered population data of US counties back to the first documented entries, which 

were in New York County in 1656. We used Wikipedia as a data source to obtain the 

information for every US county, then aggregated the population size to the CSA level1. The 

population data are only available for ten-year periods. However, these data allow for 

constructing a panel covering a long time period. 

                                                        
1 We used Wikipedia because it offers data for the entire 174 years of observation. We compared the population 

size for the most recent years with official data sources such as census.gov, finding no differences. 
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4 Methods 

4.1 Z-scores Approach 

Following Uzzi et al. (2013) and Kim et al. (2016), we investigate the combinatorial nature of 

invention by applying z-score measures at the subclass level of the CPC2. Teece et al. (1994) 

introduced z-scores for estimating the relatedness between industries, even though they used the 

term “relatedness measure”. Z-scores compare the observed combination of technology classes 

to what would be expected under the assumption that combination is random. More formally, 

the z-score is expressed as follows: 

  (2) 

where oi,j is the empirically observed co-occurrence count of technology classes i and j. ui,j 

and σi,j are the expected co-occurrence and standard deviation, respectively. A high value for oi,j 

can be driven by the combination of i and j or by a high number of patents n for both classes. If 

ni and nj are large, one can expect to observe a fair amount of combination, even if there is little 

synergy between them. By contrast, a small ni and nj result in a relative small number of 

combinations. To control for this effect, we compare the observed co-occurrence oi,j to what can 

be expected given ni and nj if knowledge combination were random (Teece et al. 1994). 

The expected co-occurrence ui,j represents a hypergeometric distribution and is thus given by 

the product of the number of patents in both technology classes ni and nj divided by the total 

number of patents N: 
                                                        
2 As a robustness check, we also used the CPC class level (three digits) showing that results are 

independent of the technological resolution (see Appendix B).  
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  (3) 

and its standard deviation σi,j is given by: 

  (4) 

If i and j were combined more often than expected, equation (2) produces a positive value. A 

positive z-score indicates a typical class combination, and, relatedly, an invention that 

recombines known elements. Conversely, if the two classes i and j are rarely paired together 

relative to their expected occurrence, equation (2) produces a negative number. This indicates an 

atypical knowledge combination, and, relatedly, an innovative invention. 

We can only consider patents that were assigned to at least two technology classes when 

discussing knowledge combination because z-scores measure the typicality of combination 

between technology pairs. Single class patents shed no light on the combination process. This 

gives us a total sample of 1,706,499 patents granted to inventors living in US metropolitan areas. 

4.2 Cumulative Knowledge Combination 

Knowledge accumulates over time, giving rise to the emergence of technological trajectories 

(Dosi 1982; Nelson and Winter 1982). However, the characteristics of knowledge combination 

can vary over time. An atypical combination, for example, can diffuse in the knowledge space 

over time if it is repeated in subsequent inventions. Atypical then becomes typical, under the 

right circumstances and on a long enough time line. Conversely, a certain combination can lose 

its typicality over time if it is superseded by newer knowledge combinations. To capture this 
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temporal evolution, we rely on an approach similar to the one applied by Kim et al. (2016). For 

example, if t is 1950, we consider all patents from the beginning of the observation in 1836 to 

1950 to calculate oi,j3. This approach takes into account the cumulative nature of knowledge 

production and allows the z-scores to evolve over time. 

 

4.3 Scaling Analysis 

Urban scaling analyses express the dependency of a certain quantity Y (e.g. air pollution, bike 

thefts, inventions) on cities’ population size N as a power-law relation (Bettencourt et al. 2007): 

Y = Y0Nβ 

or its linear transformation 

(5) 

log(Y ) = log(Y0) + β log(N) (6) 

  

with Y0 representing a normalization constant. We estimated β by using an Ordinary Least 

Squares estimation. Thus, β can be interpreted as the exponent of population size N. β falls into 

one of the three categories: β = 1 (linear), β < 1 (sub-linear) and β > 1 (super-linear) (see also 

section 2.1). We use 95% confidence intervals to test the significance of the exponents falling 

into one of the three categories. A super-linear relation, for example, is often associated with 

increasing returns to urbanization. When N doubles in size, Y increases more than twice as 

much. 

                                                        
3 We also applied a 20-year rolling window approach in which the history of knowledge combination washes 

out over time; see Figure A.1 in the Appendix. The cumulative and the rolling window approach correlated on 
average at a high level, with 0.9 < R < 1. 
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5 Results 

In a first step, we analyzed the scaling relation between technological diversity and the 

population size of cities. One simple measure of diversity is the number of distinct technologies 

D in a city. A given technology class belongs to the local portfolio if at least one corresponding 

patent is filed. The hierarchical nature of the CPC allows us to analyze the number of distinct 

technologies at a more granular level. Youn et al. (2016) showed that the resolution by which 

technologies are considered ‘distinct’ clearly affects the results. We control for this observation 

by using three different levels of technological resolution as defined by the CPC: subclasses 

(Dmax = 654), groups (Dmax = 10,154) and subgroups (Dmax = 218,570). 

Figure 1 illustrates D as a function of population size at different levels of technological 

resolution for the whole time span. D is normalized by Dmax to ensure comparability between 

resolution levels (fig. 1, panel A). Diversity at the subclass (red dots) and group level (green 

dots) strongly follows a logarithmic law. The corresponding exponents βsubclass = 0.22 ± 0.02 and 

βgroup = 0.56 ± 0.03 imply that diversity relates sub-linearly to population size as β < 1. This 

finding suggests that larger cities are more diverse, but that diversity does not increase 

disproportionately with city size. 

When using the most fine-grained level of distinction, subgroups (blue dots in panel A and D 

of fig. 1), the exponent changes to βsubgroup = 0.95 ± 0.04. The corresponding 95% confidence 

interval ranges from 0.86 to 1.03. Hence, the range includes β ≈ 1, which corresponds to a linear 

relation of diversity and city size. The result is similar to that of Youn et al. (2016), who 

observed an exponent of β = 0.98 ± 0.02 for the relation between diversity of business activities 

and city size. Accordingly, technological diversity is also strongly related to city size in a linear 

fashion. This relationship, however, is very sensitive to the level of technological resolution. 
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Figure 1: Technological diversity as a function of population size at three different levels of technological 

resolution. Diversity is normalized in A by Dmax for comparability reasons. Scaling relations between population 

and technological diversity B at the subclass level (Dmax = 654), C at the group level (Dmax = 10,154), and D at the 

subgroup level (Dmax = 218,570).  

 

Next, we analyzed how the US cities’ local diversity relates to knowledge combination. As 

was explained in Section 2, a proportional increase of diversity shifts knowledge combination 

opportunities (distinct knowledge combinations). The CPC distinguishes 654 different 

subclasses (Dmax), enabling 213,531 distinct class combinations. Using subclasses is sufficient to 

study knowledge combinations, as cities realize only a small fraction of what is theoretically 

feasible. The average share of realized combinations across all cities is 3%. The most diverse 
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city is New York, with patents in 630 different technologies between 1990 and 2010. New 

York’s knowledge base allows for 198,135 distinct combinations, of which 17,182 were realized 

(9%). 

 

 

Figure 2: Scaling relationship between technological diversity and the total number of distinct class combinations A 

in 1850, B in 1900, C in 1950, and D in 2010 in US metropolitan areas.  

 

Local diversity can be seen as the endogenous potential for knowledge combination. Figure 

2 plots the relationship between diversity and distinct class combination at the city level at four 

different time periods. In 1850, the relationship was almost linear. Over the years, the curve 

became steeper, as cities’ technology portfolios grew more diverse. 
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We investigated the relationship between diversity and knowledge combinations once more 

by employing the scaling approach. Figure 3 visualizes the development of the scaling exponent 

β over time. The scaling exponent of diversity is larger than 1, indicating an overproportionate 

increase of distinct class combinations with cities’ diversity. 

In addition, Figure 3 shows that scaling increases over time. We interpret this finding as 

evidence for growing disparities between the least and the most diverse cities. To understand 

this finding in greater depth, we divided the sample into two subsamples based on each cities’ 

diversity in each year. The most diverse cities belong to the upper quartile, and the least diverse 

cities to the lower quartile. We compared both groups’ sample means and corresponding 95% 

confidence intervals based on the one sample t-test. Figure 4 visualizes the result. The difference 

between both sample means is significant and clearly increases over time, emphasizing the 

increasing disparity between the groups. This disparity is largely driven by the increasing 

diversity of the most diverse cities, such as New York, Greater Boston, Los Angeles, Chicago, 

and the Bay Area. 

 

Figure 3: Scaling exponent of diversity with respect to the number of distinct combinations over time. Dashed lines 

indicate the 95% confidence interval. 
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Figure 4: Average number of technologies in the most diversified (green line) and least diversified cities (orange 

line). Dashed lines indicate the 95% confidence intervals. 

 

In a further analysis, we examined the correlation between knowledge combination typicality 

and population size. Our hypothesis claims that the resources needed for expanding the set of 

knowledge combinations are especially concentrated in large cities, such that larger cities have 

more atypical knowledge combinations (s. sec. 2.2). 

Figure 5 illustrates β of atypical (red line) and typical (blue line) combinations in relation to 

population size over time. The scaling exponent of atypical combinations has increased over the 

last 174 years. Until 1900, the exponent was smaller than one; this indicates there were no 

particular benefits of city size at that time. Since then, atypical combinations appear to become 

an urban phenomenon, with β > 1 and a maximum of 1.54 ± 0.07 in 1970. Between 1970 and 

2010, the scaling exponent, however, has slightly decreased. 

Interestingly, urbanization is not just favorable for atypical, but also for typical 

combinations. For most years since 1836, the scaling exponent of typical combinations has been 

greater than 1 and larger than the exponent of atypical combinations. That is, cities have been 
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more successful at knowledge exploitation than exploration. In the last decade, both exponents 

have converged to almost the same value. Based on this finding, we may only partially confirm 

our hypothesis: both atypical and typical combinations scale super-linearly with city size, but 

atypical combinations do not scale to a larger extent than typical combinations. 

 

Figure 5: Scaling exponent of population size over time for atypical (red line) and typical combinations (blue line). 

Dashed lines indicate the 95% confidence interval. 

 

 

6 Conclusion 

The increasing availability of large and historic datasets opens new possibilities for empirical 

research. This study is among the first analyzing the geography of invention over almost two 

centuries. Our analysis of American invention history reveals that knowledge exploration clearly 

concentrates in large cities. That is, atypical combination scale super-linearly with cities` 

population size. The scaling exponent is significantly increasing over the last 174 years, which 

suggests that large cities drive technological progress not only in quantitative, but also in 
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qualitative terms. This finding challenges the prominent ‘death of distance’ thesis in almost all 

regards (Friedman 2005).  

We attribute the growing importance to the opportunities given in large cities. In particular, 

knowledge diversity in large cities provides opportunities for knowledge combination not found 

in smaller and less diverse towns. Beyond diversity, larger cities also concentrate the skills to 

exploit the given diversity. Inventors in large cities realize a disproportionate number of distinct 

knowledge combinations, which also affects the exploration of new combinations. Given the 

cumulative nature of knowledge, wealth, innovation, and human skill, our results suggest a self-

reinforcing process that favors metropolitan centers for knowledge creation. Thus, knowledge 

creation plays a major role for creating and maintaining spatial inequalities. 

Increasing spatial inequalities have profound implications for regional development and 

policy making. Inequalities unfold in form of invention activities, as one crucial economic 

activity that transforms our economy and society. The benefits of knowledge creation in large 

cities are not shared by all regions. It reinforces a widening divergence between large cities - as 

centers of knowledge exploration - and smaller towns. Given the importance of geography for 

knowledge generation, it is unlikely that spatial concentration of invention activities will stop. 

Earlier research, moreover, observes a decreasing productivity of R&D and highlights that more 

resources and capabilities are necessary to yield useful R&D outcomes (Jones, Wuchty, and 

Uzzi 2008; Lanjouw and Schankerman 2004; Wuchty, Jones, and Uzzi 2007). Large cities 

provide the required resources and capabilities in close geographic proximity. Smaller towns 

lack the requirements to compete, get disconnected, and fall behind. It should be, furthermore, in 

the interest of policy makers that all places benefit from urban externalities. That is, policy has 

to consider how to distribute the novelty created in the centers down the urban hierarchy to 

smaller towns and lagging regions.  
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However, much research remains to be done. Why did it take longer for atypical 

combinations to scale that strongly with city size? Has this process stopped or will it continue? 

Moreover, atypical knowledge combinations do not automatically imply a high technological 

impact or economic value. Thus, it remains unclear precisely how (a)typical combinations relate 

to the economic performance of cities, and how they explain local stories of success and failure. 

 

Acknowledgements 

The author would like to thank Tom Broekel for very helpful comments and fruitful discussions. 

Special thanks also to Pierre-Alexandre Balland, David Rigby, Kerstin Schäfer, and Timo 

Kleiner for additional comments. The author used R for numerical simulations and data 

visualizations. Especially the EconGeo package by Balland (2017) was helpful. It also provides 

the zScore function to compute the z-scores.  

 

References 

Acs, Zoltan J, Luc Anselin, and Attila Varga. 2002. “Patents and Innovation Counts as Measures of Regional 
Production of New Knowledge.” Research Policy 31 (7): 1069–85. https://doi.org/10.1016/S0048-
7333(01)00184-6. 

Ahuja, Gautam, and Curba Morris Lampert. 2001. “Entrepreneurship in the Large Corporation: A 
Longitudinal Study of How Established Firms Create Breakthrough Inventions.” Strategic 
Management Journal 22 (6–7): 521–43. https://doi.org/10.1002/smj.176. 

Anselin, Luc, Attila Varga, and Zoltan Acs. 1997. “Local Geographic Spillovers between University Research 
and High Technology Innovations.” Journal of Urban Economics 42 (3): 422–48. 
https://doi.org/10.1006/juec.1997.2032. 

Arbesman, Samuel, Jon M. Kleinberg, and Steven H. Strogatz. 2009. “Superlinear Scaling for Innovation in 
Cities.” Physical Review E 79 (1). https://doi.org/10.1103/PhysRevE.79.016115. 

Arcaute, E., E. Hatna, P. Ferguson, H. Youn, A. Johansson, and M. Batty. 2014. “Constructing Cities, 
Deconstructing Scaling Laws.” Journal of The Royal Society Interface 12 (102): 20140745–20140745. 
https://doi.org/10.1098/rsif.2014.0745. 

Arthur, W. Brian. 2009. The Nature of Technology: What It Is and How It Evolves. New York: Free Press. 
Arts, Sam, and Reinhilde Veugelers. 2015. “Technology Familiarity, Recombinant Novelty, and Breakthrough 

Invention.” Industrial and Corporate Change 24 (6): 1215–46. https://doi.org/10.1093/icc/dtu029. 



25 

Audretsch, David B., and Maryann Feldman. 1996. “R&D Spillovers and the Geography of Innovation and 
Production.” The American Economic Review 86 (3): 630–40. 

Bacolod, Marigee, Bernardo S. Blum, and William C. Strange. 2009. “Skills in the City.” Journal of Urban 
Economics 65 (2): 136–53. https://doi.org/10.1016/j.jue.2008.09.003. 

Balland, Pierre-Alexandre. 2017. EconGeo: Computing Key Indicators of the Spatial Distribution of Economic 
Activities. https://github.com/PABalland/EconGeo. 

Balland, Pierre-Alexandre, and David Rigby. 2017. “The Geography of Complex Knowledge.” Economic 
Geography 93 (1): 1–23. https://doi.org/10.1080/00130095.2016.1205947. 

Bettencourt, Luis M. A., J. Lobo, D. Helbing, C. Kuhnert, and G. B. West. 2007. “Growth, Innovation, Scaling, and 
the Pace of Life in Cities.” Proceedings of the National Academy of Sciences 104 (17): 7301–6. 
https://doi.org/10.1073/pnas.0610172104. 

Bettencourt, Luis M.A., J. Lobo, and G. B. West. 2008. “Why Are Large Cities Faster? Universal Scaling and Self-
Similarity in Urban Organization and Dynamics.” The European Physical Journal B 63 (3): 285–93. 
https://doi.org/10.1140/epjb/e2008-00250-6. 

Bettencourt, Luis M.A., José Lobo, and Deborah Strumsky. 2007. “Invention in the City: Increasing Returns to 
Patenting as a Scaling Function of Metropolitan Size.” Research Policy 36 (1): 107–20. 
https://doi.org/10.1016/j.respol.2006.09.026. 

Cairncross, Frances. 1997. The Death of Distance: How the Communications Revolution Will Change Our Lives . 
Boston, Mass: Harvard Business School Press. 

Carlino, Gerald A., Satyajit Chatterjee, and Robert M. Hunt. 2007. “Urban Density and the Rate of Invention.” 
Journal of Urban Economics 61 (3): 389–419. https://doi.org/10.1016/j.jue.2006.08.003. 

Castaldi, Carolina, and Bart Los. 2017. “Geographical Patterns in US Inventive Activity 1977–1998: The 
‘Regional Inversion’ Was Underestimated.” Research Policy 46 (7): 1187–97. 
https://doi.org/10.1016/j.respol.2017.04.005. 

Castells, Manuel. 1996. The Rise of the Network Society. Information Age. Oxford ; Malden, Mass: Blackwell 
Publishers. 

Christaller, Walter. 1933. Die zentralen Orte in Süddeutschland: eine ökonomisch-geographische Untersuchung 
über die Gesetzmäßigkeit der Verbreitung und Entwicklung der Siedlungen mit städtischen Funktionen. 
Darmstadt: Wissenschaftliche Buchgesellschaft. 

Christopherson, S., H. Garretsen, and R. Martin. 2008. “The World Is Not Flat: Putting Globalization in Its 
Place.” Cambridge Journal of Regions, Economy and Society 1 (3): 343–49. 
https://doi.org/10.1093/cjres/rsn023. 

Co, Catherine. 2002. “Evolution of the Geography of Innovation: Evidence from Patent Data.” Growth and 
Change 33 (4): 393–423. https://doi.org/10.1111/1468-2257.00204. 

Cohen, Wesley, Richard Nelson, and John Walsh. 2000. “Protecting Their Intellectual Assets: Appropriability 
Conditions and Why U.S. Manufacturing Firms Patent (or Not).” w7552. Cambridge, MA: National 
Bureau of Economic Research. https://doi.org/10.3386/w7552. 

Combes, Pierre-Philippe, Gilles Duranton, and Laurent Gobillon. 2008. “Spatial Wage Disparities: Sorting 
Matters!” Journal of Urban Economics 63 (2): 723–42. https://doi.org/10.1016/j.jue.2007.04.004. 

Cowan, R., and D. Foray. 1997. “The Economics of Codification and the Diffusion of Knowledge.” Industrial 
and Corporate Change 6 (3): 595–622. https://doi.org/10.1093/icc/6.3.595. 

Dahlin, Kristina B., and Dean M. Behrens. 2005. “When Is an Invention Really Radical?” Research Policy 34 
(5): 717–37. https://doi.org/10.1016/j.respol.2005.03.009. 

Dosi, Giovanni. 1982. “Technological Paradigms and Technological Trajectories.” Research Policy 11 (3): 147–
62. https://doi.org/10.1016/0048-7333(82)90016-6. 

Dumais, Guy, Glenn Ellison, and Edward L. Glaeser. 2002. “Geographic Concentration as a Dynamic Process.” 
Review of Economics and Statistics 84 (2): 193–204. 
https://doi.org/10.1162/003465302317411479. 

Ellison, Glenn, and Edward L Glaeser. 1999. “The Geographic Concentration of Industry: Does Natural 
Advantage Explain Agglomeration?” American Economic Review 89 (2): 311–16. 
https://doi.org/10.1257/aer.89.2.311. 

Ellison, Glenn, Edward L Glaeser, and William R Kerr. 2010. “What Causes Industry Agglomeration? Evidence 
from Coagglomeration Patterns.” American Economic Review 100 (3): 1195–1213. 
https://doi.org/10.1257/aer.100.3.1195. 



26 

Feldman, Maryann P. 1994. The Geography of Innovation. Economics of Science, Technology, and Innovation, 
v. 2. Dordrecht ; Boston: Kluwer Academic. 

Feldman, Maryann P., and Richard Florida. 1994. “The Geographic Sources of Innovation: Technological 
Infrastructure and Product Innovation in the United States.” Annals of the Association of American 
Geographers 84 (2): 210–29. https://doi.org/10.1111/j.1467-8306.1994.tb01735.x. 

Feldman, Maryann P., and Dieter F. Kogler. 2010. “Stylized Facts in the Geography of Innovation.” In 
Handbook of the Economics of Innovation, 1:381–410. Elsevier. https://doi.org/10.1016/S0169-
7218(10)01008-7. 

Fleming, Lee. 2001. “Recombinant Uncertainty in Technological Search.” Management Science 47 (1): 117–
32. https://doi.org/10.1287/mnsc.47.1.117.10671. 

Florida, Richard. 2002. The Rise of the Creative Class: And How It’s Transforming Work, Leisure, Community 
and Everyday Life. New York, NY: Basic Books. 

Florida, Richard, T. Gulden, and C. Mellander. 2008. “The Rise of the Mega-Region.” Cambridge Journal of 
Regions, Economy and Society 1 (3): 459–76. https://doi.org/10.1093/cjres/rsn018. 

Frenken, Koen, Frank Van Oort, and Thijs Verburg. 2007. “Related Variety, Unrelated Variety and Regional 
Economic Growth.” Regional Studies 41 (5): 685–97. 
https://doi.org/10.1080/00343400601120296. 

Friedman, Thomas L. 2005. The World Is Flat: A Brief History of the Twenty-First Century. New York: Farrar, 
Straus and Giroux. 

Gertler, M. S. 2003. “Tacit Knowledge and the Economic Geography of Context, or The Undefinable Tacitness 
of Being (There).” Journal of Economic Geography 3 (1): 75–99. https://doi.org/10.1093/jeg/3.1.75. 

Glaeser, Edward L. 2011. Triumph of the City: How Our Greatest Invention Makes Us Richer, Smarter, Greener, 
Healthier, and Happier. New York: Penguin Press. 

Glaeser, Edward L., and David C. Maré. 2001. “Cities and Skills.” Journal of Labor Economics 19 (2): 316–42. 
https://doi.org/10.1086/319563. 

Griliches, Zvi. 1990. “Patent Statistics as Economic Indicators: A Survey.” 3301. Cambridge, MA: National 
Bureau of Economic Research. https://doi.org/10.3386/w3301. 

Hall, Peter, and Ann R. Markusen, eds. 1985. Silicon Landscapes. Boston: Allen and Unwin. 
Hargadon, Andrew. 2003. How Breakthroughs Happen: The Surprising Truth about How Companies Innovate. 

Boston, Mass: Harvard Business School Press. 
Hippel, Eric von. 1994. “‘Sticky Information’ and the Locus of Problem Solving: Implications for Innovation.” 

Management Science 40 (4): 429–39. https://doi.org/10.1287/mnsc.40.4.429. 
Jacobs, Jane. 1969. The Economy of Cities. Vintage Books 584. New York: Vintage Books. 
Jaffe, Adam B. 1989. “Real Effects of Academic Research.” The American Economic Review 79 (5): 957–70. 
Jaffe, Adam B., M. Trajtenberg, and R. Henderson. 1993. “Geographic Localization of Knowledge Spillovers as 

Evidenced by Patent Citations.” The Quarterly Journal of Economics 108 (3): 577–98. 
https://doi.org/10.2307/2118401. 

Jones, B. F., S. Wuchty, and B. Uzzi. 2008. “Multi-University Research Teams: Shifting Impact, Geography, and 
Stratification in Science.” Science 322 (5905): 1259–62. https://doi.org/10.1126/science.1158357. 

Kim, Daniel, Daniel Burkhardt Cerigo, Hawoong Jeong, and Hyejin Youn. 2016. “Technological Novelty Profile 
and Invention’s Future Impact.” EPJ Data Science 5 (1). https://doi.org/10.1140/epjds/s13688-016-
0069-1. 

Kuznets, Simon. 1960. “Population Change and Aggregate Output.” In Demographic and Economic Change in 
Developed Countries, 324–51. Princeton, NJ: Columbia University Press. 

Lanjouw, Jean O., and Mark Schankerman. 2004. “Patent Quality and Research Productivity: Measuring 
Innovation with Multiple Indicators*.” The Economic Journal 114 (495): 441–65. 
https://doi.org/10.1111/j.1468-0297.2004.00216.x. 

Lee, Neil, Paul Sissons, and Katy Jones. 2016. “The Geography of Wage Inequality in British Cities.” Regional 
Studies 50 (10): 1714–27. https://doi.org/10.1080/00343404.2015.1053859. 

Li, Guan-Cheng, Ronald Lai, Alexander D’Amour, David M. Doolin, Ye Sun, Vetle I. Torvik, Amy Z. Yu, and Lee 
Fleming. 2014. “Disambiguation and Co-Authorship Networks of the U.S. Patent Inventor Database 
(1975–2010).” Research Policy 43 (6): 941–55. https://doi.org/10.1016/j.respol.2014.01.012. 

Liben-Nowell, D., J. Novak, R. Kumar, P. Raghavan, and A. Tomkins. 2005. “Geographic Routing in Social 
Networks.” Proceedings of the National Academy of Sciences 102 (33): 11623–28. 
https://doi.org/10.1073/pnas.0503018102. 



27 

Louf, Rémi, and Marc Barthelemy. 2014. “Scaling: Lost in the Smog.” Environment and Planning B: Planning 
and Design 41 (5): 767–69. https://doi.org/10.1068/b4105c. 

Lucas, Robert E. 1988. “On the Mechanics of Economic Development.” Journal of Monetary Economics 22 (1): 
3–42. https://doi.org/10.1016/0304-3932(88)90168-7. 

March, James G. 1991. “Exploration and Exploitation in Organizational Learning.” Organization Science 2 (1): 
71–87. 

Marshall, Alfred. 1890. Principles of Economics. London: McMillan. 
Maskell, P. 1999. “Localised Learning and Industrial Competitiveness.” Cambridge Journal of Economics 23 

(2): 167–85. https://doi.org/10.1093/cje/23.2.167. 
Mori, Tomoya, Koji Nishikimi, and Tony E. Smith. 2008. “The Number-Average Size Rule: A New Empirical 

Relationship Between Industrial Location and City Size.” Journal of Regional Science 48 (1): 165–211. 
https://doi.org/10.1111/j.1467-9787.2008.00550.x. 

Nelson, Richard R., and Sidney G. Winter. 1982. An Evolutionary Theory of Economic Change. Cambridge, 
Mass.: The Belknap Press of Harvard Univ. Press. 

O’Brien, Richard. 1992. Global Financial Integration: The End of Geography. Chatham House Papers. London: 
Pinter Publishers. 

O’hUallichain, Breandan. 1999. “Patent Places: Size Matters.” Journal of Regional Science 39 (4): 613–36. 
https://doi.org/10.1111/0022-4146.00152. 

O’hUallichain, Breandan, and Timothy F. Leslie. 2005. “Spatial Convergence and Spillovers in American 
Invention.” Annals of the Association of American Geographers 95 (4): 866–86. 
https://doi.org/10.1111/j.1467-8306.2005.00491.x. 

Petralia, Sergio, Pierre-Alexandre Balland, and David L. Rigby. 2016. “Unveiling the Geography of Historical 
Patents in the United States from 1836 to 1975.” Scientific Data 3 (August): 160074. 
https://doi.org/10.1038/sdata.2016.74. 

Rodriguez-Pose, A., and R. Crescenzi. 2008. “Mountains in a Flat World: Why Proximity Still Matters for the 
Location of Economic Activity.” Cambridge Journal of Regions, Economy and Society 1 (3): 371–88. 
https://doi.org/10.1093/cjres/rsn011. 

Romer, Paul M. 1990. “Endogenous Technological Change.” Journal of Political Economy 98 (5, Part 2): S71–
102. https://doi.org/10.1086/261725. 

Saxenian, Annalee. 1994. Regional Advantage: Culture and Competition in Silicon Valley and Route 128. 
Cambridge, Mass.: Harvard Univ. Press. 

Schilling, Melissa A., and Elad Green. 2011. “Recombinant Search and Breakthrough Idea Generation: An 
Analysis of High Impact Papers in the Social Sciences.” Research Policy 40 (10): 1321–31. 
https://doi.org/10.1016/j.respol.2011.06.009. 

Schmidt-Nielsen, Knut. 1984. Scaling, Why Is Animal Size so Important? Cambridge ; New York: Cambridge 
University Press. 

Schoenmakers, Wilfred, and Geert Duysters. 2010. “The Technological Origins of Radical Inventions.” 
Research Policy 39 (8): 1051–59. https://doi.org/10.1016/j.respol.2010.05.013. 

Scott, Allen John. 1993. Technopolis: High-Technology Industry and Regional Development in Southern 
California. Berkeley: University of California Press. 

Sonn, Jung Won, and In Kwon Park. 2011. “The Increasing Importance of Agglomeration Economies Hidden 
behind Convergence: Geography of Knowledge Production.” Urban Studies 48 (10): 2180–94. 
https://doi.org/10.1177/0042098010382679. 

Sonn, Jung Won, and Michael Storper. 2008. “The Increasing Importance of Geographical Proximity in 
Knowledge Production: An Analysis of US Patent Citations, 1975–1997.” Environment and Planning A 
40 (5): 1020–39. https://doi.org/10.1068/a3930. 

Storper, M., and A. J. Scott. 2009. “Rethinking Human Capital, Creativity and Urban Growth.” Journal of 
Economic Geography 9 (2): 147–67. https://doi.org/10.1093/jeg/lbn052. 

Teece, David J., Richard Rumelt, Giovanni Dosi, and Sidney Winter. 1994. “Understanding Corporate 
Coherence.” Journal of Economic Behavior & Organization 23 (1): 1–30. 
https://doi.org/10.1016/0167-2681(94)90094-9. 

Usher, Abbott Payson. 1954. A History of Mechanical Inventions. New York: Dover. 
Utterback, James M. 1996. Mastering the Dynamics of Innovation. Boston, Mass: Harvard Business School. 
Uzzi, B., S. Mukherjee, M. Stringer, and B. Jones. 2013. “Atypical Combinations and Scientific Impact.” Science 

342 (6157): 468–72. https://doi.org/10.1126/science.1240474. 



28 

Varga, Attila. 1999. “Time-Space Patterns of US Innovation: Stability or Change?” In Innovation, Networks and 
Localities, edited by Manfred M. Fischer, Luis Suarez-Villa, and Michael Steiner, 215–34. Berlin, 
Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-58524-1_10. 

———. 2000. “Local Academic Knowledge Transfers and the Concentration of Economic Activity.” Journal of 
Regional Science 40 (2): 289–309. https://doi.org/10.1111/0022-4146.00175. 

Verhoeven, Dennis, Jurriën Bakker, and Reinhilde Veugelers. 2016. “Measuring Technological Novelty with 
Patent-Based Indicators.” Research Policy 45 (3): 707–23. 
https://doi.org/10.1016/j.respol.2015.11.010. 

Weber, Adna F. 1899. The Growth of Cities in the Nineteenth Century. New York: Macmillan. 
West, G. B. 1997. “A General Model for the Origin of Allometric Scaling Laws in Biology.” Science 276 (5309): 

122–26. https://doi.org/10.1126/science.276.5309.122. 
Wuchty, S., B. F. Jones, and B. Uzzi. 2007. “The Increasing Dominance of Teams in Production of Knowledge.” 

Science 316 (5827): 1036–39. https://doi.org/10.1126/science.1136099. 
Youn, Hyejin, Luís M. A. Bettencourt, José Lobo, Deborah Strumsky, Horacio Samaniego, and Geoffrey B. West. 

2016. “Scaling and Universality in Urban Economic Diversification.” Journal of The Royal Society 
Interface 13 (114): 20150937. https://doi.org/10.1098/rsif.2015.0937. 

Zook, Matthew A. 2000. “The Web of Production: The Economic Geography of Commercial Internet Content 
Production in the United States.” Environment and Planning A 32 (3): 411–26. 
https://doi.org/10.1068/a32124. 

 



29 

Appendix 

A Moving Window vs. Cumulative Approach 

 

Figure A.1: Correlation coefficient between z-scores calculated in a rolling window (20 years) 

and a cumulative approach (see section 4). 
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B Robustness Analysis 

To check if the results described in section 5 are not affected by the choice to use the four-digit 

CPC level (CPC4), we repeated the analysis by using a different level of technological 

aggregation, i.e. three-digit CPC (CPC3). The CPC3 distinguishes between 127 different 

technologies. The figures clearly show that our results are relatively robust using the CPC3. As 

the CPC4 reveals more technological details than CPC3, we decided to use the CPC4 as the 

main level for our analysis. 
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Figure B.1: Scaling relationship between technological diversity and the total number of distinct 

class combinations A in 1850, B in 1900, C in 1950, and D in 2010 in US metropolitan areas 

using the CPC3. 
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Figure B.2: Scaling exponent of diversity with respect to the number of distinct combinations 

over time using CPC3. Dashed lines indicate the 95% confidence interval. 
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Figure B.3: Average number of technologies in the most diversified (green line) and least 

diversified cities (orange line) using CPC3. Dashed lines indicate the 95% confidence intervals. 



34 

 

Figure B.4: Scaling exponent of population size over time for atypical (red line) and typical 

combinations (blue line) using CPC3. Dashed lines indicate the 95% confidence interval. 

 


