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Abstract. The paper analyses whether and to what extent regional related and unrelated 

variety matter for the development of green technology, and whether their influence 

differs over the technology life-cycle. Using patent and socio-economic data on a thirty-

year (1980-2009) panel of US States, our study finds that unrelated variety is a positive 

predictor of green innovative activities. When unpacked over the life cycle, we find that 

unrelated variety is the main driver of green technology development in early stages while 

related variety becomes more prominent as the technology enters into maturity. 
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1 Introduction 

The objective of this paper is to analyse whether and to what extent regional related and 

unrelated variety matter for the development of technology, and whether their influence 

differs along the various stages of the technology life-cycle. To address these questions, 

we focus on green technology, a particular instantiation of innovation consisting of 

standards and artefacts aimed at mitigating or reversing the negative effects of human 

action on the environment. We frame the analysis in the context of economic geography 

under the premise that climate change is a global phenomenon with markedly local 

manifestations, and that regions and countries differ significantly both in their exposure 

to climate events as well as in their ability to respond to them. From a policy perspective, 

the green economy is often touted as holding the potential for new growth and job 

creation. At the local scale, the pressure is on regions’ and countries’ institutions to create 

the adequate premises for innovation in adaptation and mitigation strategies. 

Economic geographers and innovation scholars concur that the more diverse the spectrum 

of know-how available in a region, the greater the potential of successfully exploiting 

available inputs as well as unexplored interdependences between them (Rigby and 

Essletzbichler, 1997; Frenken and Boschma, 2007; Balland and Rigby, 2016). This rests 

on the premise that the composition of activities through which knowledge is channelled 

into productive uses affects the rate and direction of technical change in a region. In this 

vein, it has been argued, the more sectors are related, the easier is recombination 

stemming from the transfer of knowledge from one context of application to another. A 

thorough review of empirical studies by Content and Frenken (2016) confirms that 

relatedness is an important driver of regional diversification across a broad spectrum of 

dimensions (e.g., products, industries, technologies) and of spatial units (e.g., countries, 

regions, cities, labour market areas) of analysis. In particular, related diversification is 

observed to be a stronger driver compared to unrelated diversification. This is, to some 

extent, not surprising considering the nature of these constructs. Diversification is an 

uncertain process that can be better dealt with by relying on available local resources, and 

on well-tested connections across them, both trademark features of related variety. 

Unrelated diversification, on the other hand, entails implementing new forms of 

coordination across different and formerly unassociated capabilities (Desrochers and 

Leppälä, 2011; Boschma, 2017). At the same time, Boschma and Frenken (2006) call for 

caution against determinism, highlighting that spatial contingencies are of minor 
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importance at the initial stage of development of a sector, because a gap is likely to exist 

between the requirements of new knowledge and the established environment. 

Within this debate, the question of whether and to what extent related and unrelated 

variety actually affect technological innovation has been addressed only recently by 

Castaldi et al. (2015). Their empirical analysis on the United States (US) shows that the 

two forms of regional diversification are not opposite but, rather, complementary forces. 

In particular, radical innovations is observed more frequently in federal states with a 

diversified knowledge base across unrelated domains, whereas incremental innovation 

has a stronger association with related variety in local knowledge. The present paper aims 

to move this analysis forward by distinguishing between related and unrelated variety 

along the path of development of green technology. In so doing we take issue with the 

notion that either related or unrelated variety are drivers of innovation regardless of the 

life-cycle stage of the technology. 

We propose that it is important to consider simultaneously region-specific and external 

factors that may trigger opportunities for new industry and technologies to emerge. To 

this end, we adopt a regional knowledge production function (RKP) approach that 

incorporates qualitative features of the local knowledge base as well as the degree of 

maturity of technology. So far, the analysis of regional innovation has focused mainly on 

the extent to which R&D and human capital interact (Charlot et al., 2015) and affect 

(Crescenzi et al., 2015) the innovation generation process. However, following the 

evolutionary tenet that innovation is the result of successful recombination of existing 

ideas (Schumpeter, 1939; Basalla, 1982; Weitzman, 1998; Arthur, 2007), we account for 

the fact that the structure of the regional knowledge base and the relatedness between its 

components influence the recombination process (Frenken et al., 2007; Castaldi et al., 

2015). Against this backdrop, we expect the life cycle stage of technology to determine 

whether local diversification (or specialisation) across knowledge domains provides the 

highest benefits for innovation. 

The study builds on the above to test two conjectures. The first is that unrelated variety 

of the local knowledge stock matters for innovation at early stages of the technology life-

cycle while related variety has little or no effect. The second is that, as the technology 

approaches maturity, related variety of the local knowledge base is the major driver, while 

unrelated variety loses progressively prominence. The empirical analysis is on green 

technology development in a panel of 48 US federal states and District of Columbia 
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(D.C.) between 1980 and 2009. Our main data source is the catalogue of patent 

applications contained in PATSTAT. From this, we extract information on patent family 

to develop an original indicator for the stage of development of green technologies, and 

on the location of inventors to assign patents to states. In order to study the relationship 

between technology life cycle and regional knowledge structure we build entropy 

indicators that are decomposed at different levels of relatedness between technological 

domains (Jacquemin and Berry, 1979; Attaran, 1986; Frenken et al., 2007; Castaldi et al., 

2015). Finally, we follow the parametric approach proposed by Charlot et al. (2015) and 

adopt a random growth specification of the unobservable part of the model to control for 

time-invariant regional characteristics, common time effects and time-varying 

unobservable features whose exclusion would bias the econometric estimation. 

The analysis yields two main findings. First, green technology development exhibits 

stronger association with unrelated variety than with related variety. This is not surprising 

considering that, first, the transition towards environmentally sustainable production is 

still at early stages (OECD, 2015) and, second, that green technology, being more 

complex than non-green technology, requires the orchestration of diverse and cognitively 

distant knowledge inputs (Barbieri et al, 2018). The second key finding is that unrelated 

variety has stronger association with the early stages of the green technology life cycle, 

while related variety becomes more important as technology enters into maturity. On the 

whole, the paper claims novelty on three fronts. First, we operationalise the empirical 

connection between the technology life cycle and the knowledge base, which had so far 

only been approached on conceptual grounds (Vona and Consoli, 2015). The second 

contribution is to the debate spurred by Castaldi et al (2014) on whether and to what 

extent related and unrelated variety affect technological innovation, with the additional 

benefit of the life-cycle perspective. Third, last but not least, we add empirical evidence 

on the connection between environmental sustainability and regional studies on which, 

according Truffer and Coenen (2012), the sub-discipline of environmental economic 

geography has been largely silent. 

The remainder of the paper is organised as follow. The next section presents the 

theoretical background of the article. Section 3 describes the data, variables and empirical 

strategy. Finally, whereas Section 4 presents the descriptive statistics and discuss the 

results, Section 5 concludes the paper and illustrates the policy implications. 
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2 Theoretical background 

2.1 Industry life cycle and agglomeration economies 

In economic geography, two complementary pathways are usually seen as triggers for 

regional development. One dates back to Marshall’s (1920) idea of interaction and 

proximity of goals and of competences, whereas the other stems out the work of Jane 

Jacobs (1969) and thrives on the diversity of competences of the local economy. Glaeser 

et al. (1992) have further extended this framework emphasising the importance of 

diversification for urban growth. The question of whether industries benefit in different 

ways from agglomeration externalities depending on their stage of maturity has been 

recently explored from both empirical and theoretical perspectives.  

The life cycle heuristic has been a staple of scholarly research on the opportunities and 

the challenges associated with innovation. Empirical evidence both from regional 

economics (Norton, 1979; Norton and Rise, 1979; Markusen, 1985) and industrial 

dynamics (e.g. Gort and Klepper, 1982; Abernathy and Clark, 1985; Audretsch and 

Feldman, 1996; Klepper, 1996; 1997; Agarwal and Gort, 2002) supports the conjecture 

that emerging industries grow at a faster pace than those locked into old, mature 

industries.1 Duranton and Puga (2001) elaborate a conceptual framework that explains 

how diversification and specialisation favour, respectively, young and mature industries. 

At the beginning of the life cycle young firms need experimentation of their new products 

or prototypes. Diversified local environments act as the seedbed for alternative production 

processes that can be tried, adopted or discarded by firms. However, when firms reach 

maturity and need to switch to mass production, specialised cities are more suitable due 

to lower production costs. These findings are confirmed by empirical studies that have 

investigated the association between agglomeration economies and industry life cycle. 

Neffke et al. (2011a) confirm Henderson et al.’s (1995) insights showing that Marshallian 

specialisation externalities exert a positive impact as long as maturity is reached. On the 

contrary, young industries benefit from local diversity that becomes even negative for 

mature ones (Neffke et al., 2011). 

                                                
1 For instance, Norton and Rise (1979) find that the decline of the US Manufacturing Belt during the late 
sixties was essentially a core-periphery realignment, which has theoretical roots in the product life cycle 
framework. The decentralisation of production to peripheral Southern and Western states followed the 
dispersion of innovative capacity and the rise of new, high-tech sectors at the beginning of the life cycle. 
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The process that links together agglomeration externalities and industry growth along the 

life cycle has been studied in depth in a strand of economic geography that places 

diversification at the heart of the innovation process. In particular, diversification leads 

to regional growth due to the knowledge spillovers and learning opportunities that urban 

diversity brings about (Glaeser et al., 1992; Duranton and Puga, 2001; Frenken et al., 

2007). In turn, empirical evidence confirms that Jacob’s externalities are associated with 

the adoption of new production processes or the development of new product, whereas 

Marshall externalities are often perceived as detrimental (Harrison et al., 1996; Kelley 

and Helper, 1999; Feldman and Audretsch, 1999; Castaldi et al., 2015). The theoretical 

explanation of the positive relationship between diversification of the regional structure 

and the generation of innovation can be found in the recombinant innovation theory 

(Schumpeter, 1939; Nelson and Winter, 1982; Weitzman, 1998; Fleming, 2001). Therein, 

the higher the availability of pieces of knowledge the higher the likelihood of successfully 

recombining knowledge in an original manner that leads to innovation. In this context, 

local search and bounded rationality are important dimensions (March and Simon, 1958; 

Nelson and Winter 1982), so innovators tend to recombine bits of knowledge they are 

familiar with in order to decrease the risk of failure even though. In so doing, however, 

they reduce the chances of developing radical innovation. On the contrary, when 

innovators recombine cognitive distant bits of knowledge they face higher uncertainty 

but, if successful, the resulting innovative output exerts higher impacts. 

The recent evolutionary turn in economic geography builds on tenet that Jacobs 

externalities do not merely lead to a more efficient division of labour within regions. 

Rather, in a diversified environment the opportunities for innovation increase due to the 

availability of different types of knowledge that is geographically close and can be 

recombined. Along these lines, Frenken et al. (2007) moved the debate on agglomeration 

economies further by acknowledging that diversification per se does not fully capture the 

mechanism that brings about regional economic growth. The flow of knowledge within 

regions requires a balance of cognitive distance to avoid lock-ins and of cognitive 

proximity to enable effective learning (Nooteboom, 2002; Iammarino and Boschma, 

2009). The notion of related (unrelated) variety has been put forth to explain how 

agglomeration externalities lead to regional growth. Related industries share some 

cognitive structures that enhance learning opportunities and knowledge spillovers that 
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enable regions to growth faster – a result that has been confirmed by an increasing number 

of studies (Frenken et al., 2007; Essletzbichler 2007; Bishop and Gripaios 2010).  

These studies have directly or indirectly assumed that diversified local contexts are 

supportive of knowledge spillovers and recombinant innovation. Castaldi et al. (2014) 

have directly tested to what extent diversified regional knowledge bases trigger the 

generation of innovation. Their findings are in line with the recombinant nature of 

innovation put forward by evolutionary studies. More radical innovations seem to emerge 

in regions whose knowledge base is diversified across cognitive distant technological 

domains, whereas incremental innovation are developed in regions characterised by 

related variety in local knowledge.  

2.2 Technology life cycle in the regional knowledge production function 

The literature presented above emphasises the key role that technological change plays in 

regional development. Along the life cycle, industries rely on different types of 

innovation that require different sources (Norton and Rise, 1979). The birth of new 

industries typically follows radical innovation and the development of immature 

technologies, whereas once a dominant design is established, technological disruptions 

are less likely and the industry reaches a maturity stage in which innovation is mostly 

incremental (Neffke et al., 2011a). Such a mechanism implies that industries exploit 

different types of agglomeration externalities according to their stage of maturity. So far, 

we have observed that existing studies treat technology as a latent element that evolves 

and leads to industry maturity. Agglomeration economies are beneficial for industry and 

regional growth because of their indirect effect in terms of knowledge spillovers and 

learning opportunities. However, no study has provided a direct test to explore why 

agglomeration externalities should trigger industrial technology.  

Like industries or products, technology evolves along a S-shaped (or double-S-shaped) 

life cycle moving from a period of introduction to growth, maturity and decline 

(Achilladelis et al., 1990; Achilladelis, 1993; Andersen, 1999; Haupt et al., 2007). In the 

introduction phase different pieces of knowledge are recombined to obtain a new 

technology that differs from what has been developed before. In this phase, a small 

number of firms are involved in the experimentation and aim at solving the technological 

problems that characterise this activity. The technology that emerges in this phase is often 

associated with high production costs, low penetration in the market and uncertainty in 

the potential use of the technology itself (Callon, 1998). In the growth phase the lower 
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uncertainty that surrounds the new technology triggers a phase of development in which 

R&D risk decreases, innovation is less radical and the number of innovators increases 

(Haupt et al., 2007). Finally, when a dominant design is reached the technology enters a 

maturity phase that is mainly characterised by incremental innovation, high 

standardisation and widespread diffusion. 

A critical issue in the diffusion literature is the implicit assumption is that neither the new 

technology nor the one that is being replaced change (Hall, 2004). This static view stands 

in sharp contrast with empirical evidence on the incremental adaptations that ultimately 

leads to improvement of technology (Christensen, 1997; Foster, 1986). Moreover, and 

closer to the goals of our analysis, central to the dynamics technology is the balance 

between intrinsic performance characteristics and the specific features of the selection 

environment (Vona and Consoli, 2015). These features can be bottlenecks – see e.g. the 

analysis of the American machine tool industry by Rosenberg (1976) or Hughes’ (1983) 

account of the evolution of the electrical power system – or can be facilitating 

circumstances of the ecosystem – as is the case in Constant’s (1980) study on aircraft 

piston-engine or in Henderson’s (1995) analysis on optical lithography.  The broader 

point is that acknowledging the role of the context of adoption entails shifting the focus 

from substitution between new and old technology to the evolution of the selection 

environment. This resonates with Boschma and Frenken’s (2006) cautionary remark 

concerning deterministic accounts of regional variety: spatial contingencies, and the 

associated uncertainties, matter. 

Building on these premises, we look at how agglomeration economies and technology 

life cycle interact. In the geography of innovation literature, the RKP function approach 

provides a suitable theoretical framework to investigate these issues (see e.g. Crescenzi 

et al., 2007, 2012; Ponds et al., 2010; Feldman et al., 2014; Charlot et al., 2015). Therein 

the regional perspective is embedded in the knowledge production function framework 

proposed by Griliches (1979) to observe the regional determinants of the generation of 

innovation. However, whether regional innovation inputs (e.g. human capital and R&D 

investments) and agglomeration economies exert heterogeneous effects on innovation 

output according to the maturity of the technology remains an unexplored question. 

Delving into details provides insights into the type of knowledge base structure that 

enables regions to intensify their innovative activities and evolve along the life cycle. To 

do so, we extend the RKP framework to incorporate knowledge diversification at different 
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levels of variety (Frenken et al., 2007; Castaldi et al., 2015). Moreover, since the regional 

endowment of innovation inputs and given the heterogeneity of regional structural 

characteristics, we also test whether specific features of the local knowledge base exert 

different impacts on innovation output depending on the level of development of regions. 

3 Empirical application 

3.1 Data 

The empirical analysis builds on an original dataset that incorporates information on 

patenting activities and socio-economic data in 49 US Federal States over the period 

1980-2009. Patent data are extracted from the 2016 version of PATSTAT (source: 

European Patent Office, EPO). Relevant to our analysis is the subset of environmental-

related patents identified through the Env-Tech classification of the OECD (2016), which 

lists International Patent Classification (IPC) and Cooperative Patent Classification 

(CPC)2 codes concerning 95 green technologies, grouped into 8 families and 36 

subgroups.3 Following prior literature, we also extract from PATSTAT information on 

patent families, our unit of analysis (see e.g. Hall and Helmers, 2013). To avoid double 

counting of inventions for which protection was sought at different national offices, we 

identify 1,071,869 patent families (or 2,379,464 patent applications) to which at least one 

Env-Tech classification code is assigned. The resulting data set includes patent families, 

filled between 1980 and 2009 in eight domains of green technology: environmental 

management, water management, energy production, capture and storage of greenhouse 

gases, transportation, buildings, waste management and production of goods. 

3.2 Measuring regional knowledge base 

To measure regional knowledge base, we assign patent families to US states using the 

inventor’s address information obtained from PATSTAT. In particular, we identify the 

geographical coordinates of inventors’ address and assign the patent families he/she 

developed to US states using geographical projection. To carry out this task we exploit 

                                                
2 The IPC and CPC are two technology classification systems employed by patent offices to classify patent documents 
relatively to their technicalities. These classification systems are characterised by a hierarchical structure that describes 
the technical content of the patents through classification codes. At the lowest level of this hierarchy, i.e. full-digit, the 
codes are very specific and refer to narrow technological fields, e.g. IPC full-digit C03C 1/02 – “Pre-treated ingredients 
generally applicable to manufacture of glasses, glazes or vitreous enamels”. At the highest level, i.e. 1-digit, the codes 
refer to general, broad technological domains, e.g. IPC 1-digit C - “Chemistry, Metallurgy”. 
3 In an intermediate step, we convert the IPC codes listed in the ENV-TECH into CPC codes using a correspondence 
table provided by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO). This 
enables us to deal with just one classification system. 
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GeoNames4 a database containing worldwide geographical information on, among others, 

administrative borders and postal codes. 

Inventor’s address is geo-localised detecting the postal code within the address string and 

searching for it in GeoNames. When the postal code information is missing, we identify 

the city name in the address string using GeoNames. That is, we split addresses in several 

elements in order to isolate the street, city, etc. Then, since the city name is usually 

provided at the end of the address we search for it by browsing the address string from 

right to left. Our algorithm compares each element of the address with the city name 

information included in GeoNames. We repeat this process for all the elements of the 

address string moving from the end to the beginning and associate the address to the city 

name in case of matching.5 In order to reduce potential noise, we limit the search to cities 

with at least five thousand inhabitants and manually check if the city name is far from the 

end of the address string. Finally, we use the Google Maps API – a programmable 

interface developed by Google since 2005, to assign the geographical coordinates of the 

remaining addresses not found in the first steps.6  

In spite of EPO’s constant updates, a non-negligible share of inventor’s addresses is still 

missing from the PATSTAT database. Therefore, after the data cleaning process (detailed 

in Appendix A) we exploit the work by the Institut Francilien Recherche Innovation 

Société (IFRIS) where missing addresses have been filled using sources such as REGPAT 

and National Patent Databases.7 This extra effort allows us to geo-localise 798,455 

(74.5%) green patent families worldwide, 149,161 of which in the US (91.3 % have half 

or more of their inventors geo-localised and 67.1 % have all their inventors geo-localised). 

We then group patent families according to the state of residence of the inventor.  

Figure 1 shows the geographical distribution of green and total patenting activities per 

million inhabitants at state level (Panel A and B, respectively). Not surprisingly, the two 

distributions follow a similar pattern with states such as Massachusetts, Connecticut, 

Alabama, Georgia, Maryland and Kansas that fall in the top quintile in both panels. It is 

                                                
4 GeoNames is a geographical database available under a Creative Commons attribution license which contains over 
10 million geographical names corresponding to over 9 million unique features whereof 2.8 million populated places 
and 5.5 million alternate names. A feature can be physical (mountain, lake…), political (country, territory…), a human 
settlement (city, village…), etc. See http://www.geonames.org for more information. 
5 For example, in the address: John Smith, 1 West 72nd Street, New York, NY, there are four elements to check: “John 
Smith”, “1 West 72nd Street”, “New York” and “NY”. Starting from the right, the city will be detected in the second 
loop of the algorithm, i.e. New York. 
6 Daily search limits and costs did not enable us to use Google Maps API to search for the geographical coordinates of 
all addresses.  
7 For more details, check https://github.com/cortext/patstat 
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worth noting that states in the Great Lakes (e.g. Michigan, Indiana, etc.) and New England 

(e.g. Massachusetts, Connecticut, etc.) are particularly effective in the production of green 

technological knowledge, whereas states in the West (e.g. California, Oregon, 

Washington, etc.) perform better in total patenting over time. Another noticeable element 

is that some states rank high in the distribution of green patent families per million 

inhabitants and low in total patenting activities, for example Illinois, Michigan and Ohio.  

The overall green patenting trend by groups as per Env-Tech (OECD, 2016) is reported 

in Figure 2. Therein we observe that patenting in most green technologies experience an 

acceleration after 2000. Technologies that improve the sustainability of the energy and 

building sector lead the trend, followed by green products and processes and 

transportation. The number of patent families related to water-related and carbon capture 

and storage technologies is relatively smaller compared to other green technologies 

(Panel A). However, the latter increases at a faster pace compared to 1980 levels, as 

showed in Panel B. Patenting on transportation and energy efficiency buildings 

experiences a sharp increase after 2005. Conversely, environmental management and 

water-related technologies exhibit lower growth rates over the period. 

FIGURES ONE AND TWO ABOUT HERE 

3.3 Measuring regional knowledge base diversification 

We calculate entropy indicators to measure diversification of regional innovative 

activities. The advantage is that such measure can be scaled up or down at different levels 

of aggregation associated with specific degrees of relatedness. In the seminal paper by 

Frenken et al. (2007), the entropy measure is decomposed into related and unrelated 

variety to capture the extent to which relatedness and diversification characterise the 

regional cognitive structures. Recently, Castaldi et al. (2015) employ the same measure 

to assess diversification in technological capabilities of US federal states. In the present 

paper, we follow Castaldi et al. (2015) in the use of geographical information on patent 

families (as detailed in Section 3.2) to calculate the entropy indicators using patent data 

at the state level in US. To do so, we exploit the technological classification codes 

assigned to each patent. The hierarchical structure of the International Patent 

Classification (IPC) system can be used to measure variety at different code digits. We 

calculate related, semi-related and unrelated variety of patenting activities assuming 

relatedness between two patents when they share the same IPC code. Moreover, this 

relatedness increases when the number of IPC digits rises. Specifically, unrelated variety 
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(UV) is measured using the entropy of the patent family distribution over IPC 1-digit 

classes: 

!"#$ = &'(,#$ln	
1
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Where pfk,it is the share of patent families in technological field k = [1…N] at IPC 1-digit 

level, with at least one inventor located in state i at time t. Semi-related variety (SRV) is 

equal to the entropy at 4-digit within each IPC 1-digit level. Given the decomposition 

theorem developed by Theil (1972), SRV is the difference between the entropy measure 

calculated at 4-digit and 1-digit level (i.e. UV): 
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Where pfl,it represents the share of patent families in each state over technological fields 

l=[1…P] (IPC 4-digit level). Finally, we calculate related variety (RV) at the IPC 8-digit 

level. As before, RV is obtained by subtracting to the entropy at 8-digit, the one at 4-digit 

level. In so doing, we calculate variety across narrow technological fields (i.e. IPC 8-digit 

level) within each broader technological field (i.e. 4-digit level):  
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Where pfm,it is the share of patent families in state 8 at time 9 over technological fields 

m=[1…R]. As far as we move from UV to RV, the cognitive distance between 

technological fields decreases. RV is calculated across very similar and specific 

technological domains compared to UV, which is measured across distant and broad 

technological fields.  

3.4 Measuring life cycle stages 

To identify the maturity of green technologies, we develop a measure of technology life 

cycle based on two indicators: the geographical ubiquity of patenting and volume of 

patenting intensity. We calculate these using worldwide patent families for each macro-

technology reported in the Env-Tech classification.8 It is worth noting that this empirical 

                                                
8 The Env-Tech classification OECD (2016) groups green technologies at different digits (up to three). In 
the present paper we focus the 2-digit which is a compromise between narrow (three digits) and broad (1-
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exercise is based on the information on all patent families and not only those filed by US 

applicants/inventors (the focus of our study). This enables us to measure the overall stage 

of development of green technologies to which all worldwide inventors contributed to.  

The ubiquity indicator captures the extent to which innovative activities are 

geographically spread relative to countries’ specialisation in green technologies. 

Following Balland and Rigby (2017), the geographical scope of inventions is calculated 

using the Revealed Technological Advantage (RTA) for each green technology, country 

and time period as follows: 

2:;<=$ = 	
>?9@A9B<=$/ >?9@A9B<=$<

>?9@A9B<=$= / >?9@A9B<=$<=
 

The RTA measures the intensity of the contribution of each country c to the development 

of Env-Tech technology j at time t. That is, it captures the efforts spent by a country in 

developing a specific green technology (numerator) with respect to global efforts in 

developing the same technology (denominator). The ubiquity of each Env-Tech 

technological domain is given by the number of countries that exhibit a given RTA in a 

particular green technology at time t: 

!DEF!E:G<$ = H=<

=

 

Where Mcj = 1 if RTA>1. Therefore, the higher the number of countries specialised in the 

development of a particular green technology, the higher the UBIQUITY of that 

technology. In other words, the indicator is a proxy for diffusion of green innovative 

activities. The advantage of this measure with respect to other potential patent indicators 

of diffusion (such as i.e. citations, family size, etc.) is that it allows capturing 

specialisation patterns in specific green technologies relative to their global counterparts. 

We calculate a second indicator based on the number of patent families in Env-Tech 

Technologies at country level. This is a proxy of patenting intensity of each country in 

the development of green technologies. Finally, we measure the average growth rate over 

four years of both patenting intensity and the ubiquity indicator. This enables us to smooth 

the trends in both indicators and capture their dynamics over time. 

                                                
digit) technological fields. Table 2 reports the list of green technological domains employed to define 
technology life cycle stages. 
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Combining ubiquity and patenting intensity allows us to define the life cycle stages of 

each Env-Tech technological domain at the worldwide level. Table 1 shows that the 

emergence phase is characterised by a low level of technological diffusion and intensity. 

It represents the lowest level of maturity of the technology where inventive activities are 

highly concentrated in few countries and the number of patents is relatively low. To reach 

the maturity stage we have identified two (non-exclusive) main strategies. The first 

implies moving from the emergence to a development phase in which technological 

advances are still geographically concentrated and characterised by intense patenting 

activity that favours the development of the green technology. Otherwise, technologies 

may be in a diffusion phase, wherein a growing number of countries specialise in the same 

green technology but patenting intensity increases at a lower pace. Finally, in the maturity 

phase standardisation in the design and knowledge-related activities is achieved, both 

patenting intensity and geographical diffusion of inventive activities are at relatively high 

levels. On the whole, this approach affords a dynamic view of technological evolution in 

that not all stages are always achieved, and, coherent with the framework of Section 2.2, 

maturity may be an intermediate stage before the appearance of further developments. 

We assign green technologies to a particular stage of development by standardising the 

indicators and defining the low (high) values shown in Table 1 if the technology exhibits 

ubiquity or patenting intensity below (above) the average value. In so doing, the 

technology life cycle indicator depends on both idiosyncratic features of the technology 

under analysis and on the stage of development of the other green technologies. Table 2 

reports the life cycle stages of green technology in 1980, 1990, 2000 and 2010. The 

indications emerging from this exercise resonate with insights that can be gathered in 

specialised literature or policy reports. To illustrate, “Air pollution abatement” (ENV-

TECH 1.1), “Renewable energy generation” (ENV-TECH 4.1), etc., is found in the 

maturity stage since the 1980s. Conversely, “Environmental monitoring” (ENV-TECH 

1.5) or “Rail transport” (ENV-TECH 6.2) remain in the emergence phase with respect to 

other green technologies. Table 2 also shows some technologies that move from 

emergence to maturity stages – i.e. “Energy efficiency in buildings” (ENV-TECH 7.2), 

“Wastewater treatment” (ENV-TECH 8.1). Importantly, reaching maturity does not 

imply passing through all the life cycle stages. Development (high patenting and low 
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ubiquity) and diffusion (low patenting and high ubiquity) seem alternative pathways to 

achieve maturity.9 

TABLES ONE AND TWO ABOUT HERE 

Finally, we obtain the regional green technological efforts at each stage of the technology 

life cycle as follow: 

I>#$
J = >#<(J)$

<

 

'MN	@?Oℎ	Q = [ST@NU@AO@, V@W@XM&T@A9, V8''YB8MA,H?9YN89Z] 

where the green patent families in state 8 and time 9 are summed according to the life 

cycle stage Q of green technology \ they belong to (see Table 2 and Figure A1). The 

resulting four variables capture the geographical distribution of green patenting activities 

in each stage of the technology life cycle. 

Figure 3 shows the distribution of population-weighted green patenting across US states 

per life cycle stages, i.e. I>#$J . A quick comparison across the different panels of the figure 

shows persistence of leading states in the top quintile of all stages of the life cycle. These 

states are also characterised by a medium-high patenting activity when the size of green 

patenting is concerned. Other states are more effective in the production of green 

technological knowledge just in some stages of the life cycle. Thus, for example, 

Washington ranks high in the development of green technologies in the developing stage, 

whereas New York in the development and diffusion stages. Michigan is effective 

especially in the production of knowledge related to developing and mature green 

technologies but not in those in the diffusion phase. Conversely, South Carolina falls in 

the top quintile in the diffusion stage. 

FIGURE THREE ABOUT HERE 

3.5 The empirical model 

To test whether and what type of knowledge base diversification is associated with the 

generation of new environmental technical knowledge, the paper employs a Knowledge 

Production Function (KPF) inspired approach previously formalised by Griliches (1979) 

that is extended in three directions. First, following Jaffe (1989) and Crescenzi et al. 

                                                
9 An exhaustive description of the yearly patterns is provided in Appendix B. 
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(2007) we exploit the geographical dimension of the dataset (in our case US states), rather 

than focussing on firms (Jaffe, 1986), as unit of analysis to investigate the spatial 

organisation of innovative activities. Second, we acknowledge that local knowledge 

diversification plays a pivotal role in the knowledge production process (Jacobs, 1969; 

Glaeser et al., 1992) and that various forms of variety are associated with different degrees 

of relatedness between technological domains (Frenken et al., 2007; Castaldi et al., 2015). 

Third, we integrate the technology life-cycle heuristic into the KPF framework in order 

to assess which type of variety in the knowledge base is associated with knowledge 

production process at different the levels of technological maturity.  

We estimate the following empirical model: 

I><$
J = ]0Varietyef + ]h	2&V<$ + ]j	kl<$ + Controlsef + τe + γf + δef + @<$ 

where the dependent variable is the number of patent families per million inhabitants in 

all green technologies and separately for green technologies at different stages of the 

technology life cycle (L) in state j and year t. Variety is a proxy for regional knowledge 

base diversification discussed above that includes UV, SRV and RV. R&D are research 

and development expenditures and HC human capital. In some specifications we also 

include a battery of controls that capture R&D and human capital in neighbouring states 

and population density (Controls).10 We also include time fixed effects (γf), state fixed 

effects (τe) and region specific time trends that control for unobservable heterogeneity 

that varies linearly over time in each state. The latter enables us to capture, among others, 

state-specific time patterns that we are not able to control for due to data availability, such 

as policy intervention, green fiscal reforms, etc. which are usually introduced at federal 

state level. Finally, ejst captures the residual variation. Table 3 provides descriptive 

statistics of the variables employed in the econometric analysis.  

TABLE THREE ABOUT HERE 

 

4 Econometric results 

Before exploring the results of the econometric analysis, Figure 4 provides a graphical 

indication of the extent to which green and total patenting are associated with the regional 

diversification of the knowledge base. There is a positive relationship between patenting 

                                                
10 Neighbour states are defined as states that share a border  
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activities and variety at different level of relatedness. As far as related variety is 

concerned, green and total patents follow an almost-overlapping pattern with a relative 

majority of patents that are generated where greater related variety characterises regional 

knowledge. However, the distribution of patenting activities over quintiles of unrelated 

variety shows that this type of diversification is particularly relevant at supporting the 

generation of green knowledge compared to all patents. At lower levels of unrelated 

variety, total patenting prevails over green patenting. Conversely, as far as unrelated 

diversification of the regional knowledge base increases, green patenting is favoured and 

shows a higher association with this type of variety. 

FIGURE FOUR ABOUT HERE 

These results are confirmed by the econometric estimation of the model detailed in 

Section 3.5 (Table 4). Two main specifications are proposed in order to observe the 

differences between green and total patent families as dependent variable. Common to all 

specifications is that whereas UV and RV variety are positive and statistically significant 

in the case of green patents, SRV and RV are positively associated with total (i.e. green 

plus non green) patenting. This suggests that green inventive activities emerge in states 

where the knowledge base is diversified across unrelated technological domains. On the 

other hand, total patenting activities proliferate in states characterised by semi-related and 

related diversification across knowledge fields. In addition, when testing the difference 

between the coefficients in each respective specification, we observe that while UV and 

RV are significantly different just at 10%, in the case of total patenting the null hypothesis 

of equality between SRV and RV coefficients is rejected.11 This lends support to the 

notion that green technologies need both diversification across unrelated and related 

knowledge domains, and differ from total patenting that require more related 

diversification. The result is in line with studies that emphasise the different nature of 

green technologies. Barbieri et al. (2018) provide evidence of the higher complexity of 

green innovation, suggesting that the recombination process in the green field requires 

bits of knowledge with higher cognitive distance. Here we observe this peculiar feature 

of green technologies from a local perspective. Finally, looking at the innovation input 

we can observe that human capital is positive and slightly significant across all 

specifications. On the contrary, the coefficient of R&D expenditures is not statistically 

significant in both the green and non-green RKP functions. 

                                                
11 The null hypothesis is rejected at 5% 
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TABLE FOUR ABOUT HERE 

Moving to the core of the analysis, Table 5 presents the estimates of the model using 

green patents per capita as dependent variable. First, the coefficient of UV is statistically 

significant for emerging technologies, thus implying that diversification across unrelated 

technological fields favours green technologies in the emerging phase. According to the 

recombinant innovation theory, in the early stage of the life cycle technological 

development benefits from the richness of cognitively distant bits of knowledge. Together 

with unrelated variety, R&D expenditures play a key role in this stage of technology 

evolution. In the subsequent stage of the life cycle, characterised by higher patenting 

intensity, all types of variety exert a positive effect on green innovative activities. In this 

phase human capital is positively associated with green patent production. Moving to the 

diffusion phase, related variety in the local knowledge base is positively correlated with 

the generation of environmental-related patents. In addition, both the main innovation 

inputs, i.e. R&D and human capital are positive and significant. Finally, when maturity 

is achieved, related variety becomes the main driver of green innovative activities. 

These results confirm the propositions outlined in the introduction, and are coherent with 

the conceptual framework of section 2. The development of technology along the life 

cycle requires different types of regional knowledge base diversification and innovation 

inputs. These elements interact with the selection environment of the surrounding states, 

in this case, and enable technology to advance. Unrelated variety exerts more influence 

at the beginning of the life cycle when technologies are at an early stage. Knowledge 

recombination of cognitive distant knowledge is required to enable experimentation and 

trial and error. In these early phases also R&D and human capital are fundamental to 

trigger patenting activity. However, in the maturity phase, when a dominant design is 

established, regional diversification is the main driver of green knowledge production 

though at a higher level of technological relatedness. 

TABLE FIVE ABOUT HERE 

 

5 Conclusions 

The present paper has explored empirically the relationship between local knowledge 

structures and the generation of environmental-related technology in the US over a thirty-

year period. We framed the analysis in the life cycle heuristic to test whether the 
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development of green technology benefits from specific types of agglomeration 

economies at different levels of technological relatedness. While prior literature in 

economic geography had acknowledged the existence of a life cycle path, ours is the first 

paper to operationalise the heuristic by means of an empirical framework. 

The main finding is that local environment-related innovation are positively correlated 

with a knowledge base that is diversified across unrelated technological fields. This is 

coherent with the notion that green technology is on average more radical and complex 

than non-green technology, and that it requires a higher variety across cognitively distant 

domains (De Marchi, 2012; Barbieri et al., 2018). We also find that diversification across 

unrelated technological domains in local innovative activities favours green innovation 

mostly at early stages of development. On the other hand, more mature technologies 

benefit from a diversification across related knowledge domains. This confirms our main 

conjecture, and is consistent with Castaldi et al (2014) with regards to the influence of 

local economic variety on technological innovation. 

The present paper points to issues that have relevance for policy, i.e. what are the local 

conditions that enable technologies to emerge, develop and mature? We contextualise this 

question in the broader debate on climate change adaptation and mitigation. Besides the 

relevance from a political and socio-economic perspective, environmental-related 

technologies exhibit some peculiar traits that make them different from standard 

technologies and, thus, worth investigating (Barbieri et al., 2018). While on the whole, 

green technologies can be considered at early stages of development (OECD, 2011; 

Barbieri and Consoli, 2017) within this assorted mix are mature technologies, such as e.g. 

photovoltaics panels, that compete in terms with the potential disruption of emerging 

technologies such as e.g. Carbon Capture and Storage. Shedding light on the regional 

dimension of green technologies and their evolution enables to explore how regions may 

contribute to tackle climate change, an issue that the current literature has substantially 

overlooked. 

Last but not least, we reaffirm that formative and stabilizing phases in new technology 

need to be integral to the analysis of how regional knowledge fosters or thwarts 

innovation. Further, we hope that our study provides a useful input and a complement to 

qualitative approaches rooted in the socio-technical transition approach applied to 

sustainability. Given the common ground on evolutionary drivers of regional and 

industrial development, we believe there is scope for cross-fertilization along the lines 
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indicated by Truffer (2011) and Boschma (2017). What is integral to both approaches is 

the need to account for spatial contingencies that bring to bear on the capacity of cities, 

regions and countries to adapt production and consumption. This paper has identified a 

connection between the organisation of local knowledge and the differential state of 

development of green technology which hopefully contributes to move forward the 

subfield of environmental economic geography. 
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Tables  
Table 1. Life cycle stages 

 Ubiquity 

Patenting intensity 
 Low High 
High Development Maturity 
Low Emergence Diffusion 
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Table 2. Life cycle stages of green TECH 

ID ENV-TECH 1980 1990 200
0 2010 

1.1 AIR POLLUTION ABATEMENT 4 4 4 4 

1.2 WATER POLLUTION ABATEMENT 3 4 4 4 
1.3
. WASTE MANAGEMENT 3 3 4 4 

1.4 SOIL REMEDIATION 1 1 3 3 
1.5 ENVIRONMENTAL MONITORING 1 1 1 1 

2.1 DEMAND-SIDE TECH (water conservation) 1 3 3 3 

2.2 SUPPLY-SIDE TECH (water availability) 1 1 1 3 

4.1 RENEWABLE ENERGY GENERATION 4 4 4 4 

4.2 ENERGY GENERATION FROM FUELS OF NON-FOSSIL ORIGIN 1 3 3 4 
4.3 COMBUSTION TECH WITH MITIGATION POTENTIAL 1 1 1 3 

4.4 NUCLEAR ENERGY 2 2 1 1 

4.5 EFFICIENCY IN ELECTRICAL POWER GENERATION, 
TRANSMISSION OR DISTRIBUTION 1 2 1 1 

4.6 ENABLING TECH IN ENERGY SECTOR 1 2 2 2 

4.7 OTHER ENERGY CONVERSION OR MANAGEMENT SYSTEMS 
REDUCING GHG EMISSIONS 1 1 1 3 

5.1 CO2 CAPTURE OR STORAGE (CCS) 1 1 1 3 

5.2 CAPTURE OR DISPOSAL OF GREENHOUSE GASES OTHER THAN 
CARBON DIOXIDE (N2O, CH4, PFC, HFC, SF6) 1 1 1 3 

6.1 ROAD TRANSPORT 2 4 2 2 
6.2 RAIL TRANSPORT 1 1 1 1 

6.3 AIR TRANSPORT 1 1 1 3 
6.4 MARITIME OR WATERWAYS TRANSPORT 1 1 1 3 
6.5 ENABLING TECH IN TRANSPORT 1 1 1 2 

7.1 INTEGRATION OF RENEWABLE ENERGY SOURCES IN 
BUILDINGS 1 1 1 4 

7.2 ENERGY EFFICIENCY IN BUILDINGS 1 3 4 4 

7.3 ARCHITECTURAL OR CONSTRUCTIONAL ELEMENTS 
IMPROVING THE THERMAL PERFORMANCE OF BUILDINGS 1 1 1 1 

7.4 ENABLING TECH IN BUILDINGS 4 4 4 4 

8.1 WASTEWATER TREATMENT 1 3 4 4 

8.2 SOLID WASTE MANAGEMENT 3 3 4 4 

8.3 ENABLING TECH OR TECH WITH A POTENTIAL OR INDIRECT 
CONTRIBUTION TO GHG MITIGATION 1 1 1 1 

9.1 TECH RELATED TO METAL PROCESSING 3 3 3 4 
9.2 TECH RELATING TO CHEMICAL INDUSTRY 1 4 4 4 

9.3 TECH RELATING TO OIL REFINING AND PETROCHEMICAL 
INDUSTRY 1 1 1 3 

9.4 TECH RELATING TO THE PROCESSING OF MINERALS 1 3 1 3 

9.5 TECH RELATING TO AGRICULTURE, LIVESTOCK OR 
AGROALIMENTARY INDUSTRIES 1 3 1 3 

9.6 TECH IN THE PRODUCTION PROCESS FOR FINAL INDUSTRIAL 
OR CONSUMER PRODUCTS 1 1 2 4 

9.7 CLIMATE CHANGE MITIGATION TECH FOR SECTOR-WIDE 
APPLICATIONS 1 1 1 1 

9.8 ENABLING TECH WITH A POTENTIAL CONTRIBUTION TO GHG 
EMISSIONS MITIGATION 1 1 1 4 

ID and ENV-TECH correspond to green technology groups listed in OECD (2016). Numbers in 
the columns indicate the life cycle stage of green technologies: 1=“Emergence”, 
2=“Development”, 3=“Diffusion”, 4=“Maturity” (as per Table 1). Dark colours are associated to 
higher stages of the technology life cycle. 
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Table 3. Descriptive statistics 

Variable Description Obs 
Mea
n 

Std. 
Dev. Min Max 

UV (IPC 3-dig) Unrelated variety at 3-digit level 1,470 3.773 .221 2.832 4.204 
SRV (IPC 4-dig) Semi-Related Variety at 4-digit level 1,470 1.248 .205 .268 1.528 
RV (IPC 8-dig) Related Variety at 8-digit level 1,470 1.453 .361 .246 1.916 
GP Green patent families, pmi 1,470 27.69 26.64 0 300.94 

Tot Pat Total patent families, pmi 1,470 429.6 351.2
4 36.18 2810.15 

Emergence Green patents, Emergence stage, pmi 1,470 4.451 4.781 0 51.61 
Development  Green patents, Development stage, pmi 1,470 6.821 9.026 0 95.21 
Diffusion Green patents, Diffusion stage, pmi 1,470 6.163 6.345 0 83.79 
Maturity Green patents, Maturity stage, pmi 1,470 24.08 25.93 0 320.18 

R&D Research and Development expenditures 
(w.r.t. GDP) 1,470 .014 .011 .001 .066 

HC % Population with bachelor degree or 
more 1,470 .057 .021 .0321 .541 

R&D Neighb  Research and Development expenditures 
in neighbouring states (w.r.t. GDP) 1,470 .015 .007 .002 .047 

HC Neighb  % Population with bachelor degree or 
more in neighbouring states 1,470 .055 .007 .037 .093 

Pop Dens Population Density 1,470 4.80 1.476 1.53 9.14 
Number of States: 49; Coverage: 1980-2009; pmi= per million inhabitants 
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Table 4. Regression results 

 (1) (2) (3) (4) (5) (6) 

 GP (log) Tot Pat (log) GP (log) Tot Pat (log) GP (log) Tot Pat (log) 

UV (IPC 3-digit) (log)  1.413*** -0.875 1.403*** -0.881 1.386*** -0.931* 

 (0.460) (0.539) (0.445) (0.519) (0.421) (0.507) 

SRV (IPC 4-digit) (log) 0.317* 0.232*** 0.301 0.215*** 0.286 0.193*** 

 (0.179) (0.0655) (0.179) (0.0682) (0.184) (0.0668) 

RV (IPC 8-digit) (log) 0.397*** 0.523*** 0.394*** 0.521*** 0.392** 0.515*** 

 (0.143) (0.0952) (0.142) (0.0956) (0.154) (0.0987) 

R&D (log)   0.0233 0.00806 0.0222 0.00694 

   (0.0196) (0.0112) (0.0181) (0.0103) 

HC (log)  0.134** 0.140* 0.0960* 0.0995* 

   (0.0644) (0.0689) (0.0545) (0.0532) 

R&D Neighb (log)     0.0427 0.0278 

     (0.0634) (0.0280) 

HC Neighb (log)    0.294 0.224** 

     (0.218) (0.0829) 

Pop Dens    -0.502 -0.889*** 

     (0.813) (0.196) 

State FE  x x x x x X 

Time Dummies x x x x x x 

Random growth x x x x x x 

Obs. 1466 1470 1466 1470 1466 1470 

R2 0.856 0.965 0.857 0.965 0.857 0.966 

F 906429.2 216914.8 52052121.7 225300.1 128242.3 12321.1 

Notes: The analysis covers 48 US Federal States and the District of Columbia over 
1980-2009. Driscoll and Kraay’s (1998) standard errors, robust to heteroskedasticity 
and serial and spatial correlation, in parentheses. * p < 0.1; **p < 0.05; *** p < 0.01.  
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Table 5. Regression results over the life cycle 

 GP (log) Emergence Development  Diffusion Maturity 

      

UV (IPC 3-digit) (log)  1.386*** 0.958* 1.214** 0.597 0.716    

 (0.421) (0.523) (0.590) (0.786) (0.473)    

SRV (IPC 4-digit) (log) 0.286 -0.356 0.783*** 0.166 -0.205    

 (0.184) (0.338) (0.201) (0.249) (0.147)    

RV (IPC 8-digit) (log) 0.392** 0.421 0.516*** 0.434* 0.554*** 

 (0.154) (0.313) (0.157) (0.247) (0.0848)    

R&D (log) 0.0222 0.0784** 0.0192 0.0628** -0.0296    

 (0.0181) (0.0290) (0.0414) (0.0235) (0.0217)    

HC (log) 0.0960* -0.0164 0.333** 0.251* -0.000803    

 (0.0545) (0.105) (0.127) (0.143) (0.0578)    

R&D Neighb (log) 0.0427 0.197*** 0.0772 0.137 -0.0518    

 (0.0634) (0.0517) (0.102) (0.0889) (0.0482)    

HC Neighb (log) 0.294 -0.00881 0.366 0.0946 0.860*** 

 (0.218) (0.375) (0.891) (0.358) (0.261)    

Pop Dens -0.502 0.662 0.999 -0.301 -0.338    

 (0.813) (0.828) (0.965) -1.210 (0.587)    

State FE  x x x x x 
Time Dummies x x x x x 
Random growth x x x x x 
Obs. 1466 1392 1371 1424 1452 

r2.w 0.857 0.542 0.760 0.662 0.885    

F 128242.3 644300.7 86586.6 168032.5 451319.1    

Notes: The analysis covers 48 US Federal States and the District of Columbia over 
1980-2009. Driscoll and Kraay’s (1998) standard errors, robust to heteroskedasticity 
and serial and spatial correlation, in parentheses. * p < 0.1; **p < 0.05; *** p < 0.01.  
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Figures 
Figure 1. Quintiles of green and total patent families per million inhabitants (average 

1980-2010) 

 

(A) Green TECH 

 

(B) All TECH 

Darker colours correspond to top quintiles. 48 US federal states and District of Columbia 

are included in the maps. Alaska and Hawaii are left out from the analysis. The 

cartographic boundary shapefile is provided by the US Census Bureau (Accessed in 

2018). Source: Own elaboration 
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Figure 2. Evolution of the number of green patent families by Env-Tech families, 1980 

– 2009. Top panel: nominal values; bottom panel: 1980= 100. 

 

Source: Own elaboration 
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Figure 3. Quintiles of green patent families per million inhabitants over technology life 

cycle stages (average 1980-2009) 

 

(A) Emergence phase 

 

(B) Development phase 

 

(C) Diffusion phase 

 

(D) Maturity phase 

Darker colours correspond to top quintiles. 48 US federal states and District of 
Columbia are included in the maps. Alaska and Hawaii are left out from the analysis. 
The cartographic boundary shapefile is provided by the US Census Bureau (Accessed in 
2018).  
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Figure 4. Distribution of green and total patent families over quintiles of Unrelated, Semi-

Related and Related variety (average 1980-2009) 
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APPENDIX A (Online publication) – Missing inventor’s address  
Before geo-localisation we collect all the inventors’ addresses from the PATSTAT 

database. Two main issues arise in carrying out this task. First, although the European 

Patent Office (EPO) assigns an unambiguous ID to each applicant or inventor, we may 

still find multiple IDs for the same person due to misspelling, name variations, second 

names, etc. For instance, the inventor’s name may appear as John Paul Smith, J. Smith or 

J.P. Smith and be assigned to different patents. Second, address information is provided 

in PATSTAT for just some inventors. According to the first issue, address information 

for an inventor may be provided for some IDs and missing for others. For example, 

address information may be provided for John Paul Smith and not for J. Smith due to 

differences in their IDs.  

To reduce the number of inventors/applicants with a missing address we exploit the 

information on the patent family – our unit of analysis. Within each patent family we 

create a link between the multiple inventors’ IDs assuming that they are the same person 

based on a string matching indicator. We calculate the Levenshtein distance between the 

inventor name for which the address information is provided and all the other names with 

missing information within the patent family. We consider two or more inventors as the 

same person if the indicator is below three. This means that their full names differ for less 

than three characters. Then, if the address information is provided for one of these 

inventors we assign it also to the others IDs for which this information is not provided 

(even though they have different IDs). For example, we can find in the same patent family 

two inventors with different IDs, the first one with a complete address, the second one 

with a missing one: “Gehri, Martin Christian Adrian” and “GEHRI, MARTIN, 

CHRISTIAN, ADRIAN”. As the levenshtein distance between the two names is less than 

3 when both strings are converted to uppercase, we assume it is the same person and we 

use the complete address to fill the missing one. 
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APPENDIX B (Online publication) – Technology Life Cycle indicator 

Different methodologies to assess the stage of development of technologies through 

patent data have been retrieved in the literature. Haupt et al. (2007) rely on patent 

indicators and empirically test their difference along the technology life cycle stages. 

Although they do not directly use patent indicators to detect the stage of development of 

technologies, the authors show that these indicators follow specific patterns depending 

on the stage of development of the technology – whose life cycle stages are defined a 

priori by a pool of experts and literature review. Other studies directly employ patent 

indicators to identify the life cycle stages of technologies (Gao et al., 2013; Chang and 

fan, 2016). These works define life cycle stages of a benchmark technology through 

expert interviews and assess the trends of patent indicators over its technological 

evolution. Subsequently, they compare patent indicators of the technologies under 

analysis with the ones calculated on the benchmark technology assigning the life cycle 

stage of the latter to the former. Finally, stochastic techniques are also employed to 

measure technology life cycle. Lee et al. (2012; 2016) run Hidden Markov Models to 

analyse patent indicators time-series. This technique allows calculating the highest 

probability path that gives the most probable stage of development at each step of the 

time series.  

In our work we could not apply these methodologies because they strongly rely on 

benchmark technologies from which the life cycle stages are derived or focus just on the 

number of patents as in the case of Hidden Markov Models. In fact, our paper focuses on 

a broad number of heterogeneous environmental-related technologies for which a 

benchmark technology is hard to identify – even with the contribution of a pool of experts. 

In addition, we acknowledge that the stage of development of green technologies should 

take into account how technologies diffuse over time and not just the intensity of 

patenting. Moreover, it should also take into account that not all intermediate stages are 

achieved by technologies Finally, our desired indicator should be able to provide 

information on the life cycle stage of broad technological domains not just single patents.  

Therefore, as described in Section 3.4 we develop our measure of technology life cycle 

based on two indicators, i.e. the geographical ubiquity and patenting intensity. We 

calculate these indicators using worldwide patent families for each macro-technology 

reported in the Env-Tech classification.  
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Figure A1 shows the life cycle of green technologies over the entire period of the analysis 

(1980-2009). We can observe that the indicator captures the heterogeneity that 

characterises green technologies allowing for non-linear transition between life cycle 

stages. For instance, ENV-TECH 7.1 “Integration of renewable energy sources in 

buildings” falls in the emergence stage until 2000 moving to the diffusing phase until 

maturity is reached in 2008. Green technologies aimed at reducing the environmental 

impact of nuclear energy follow an opposite pattern starting in the development phase 

moving to the emergence stage from 1990 onwards.  

Some illustrative examples are provided in Figure A2. Technologies related to renewable 

energy generation exhibit a fairly stable level of patenting activity since the period 1981-

1990, while geographical ubiquity reaches the highest value among all the other 

technologies. This is in line with what we expect from a set of technologies in a diffusion, 

or mature, stage (US National Academy of Sciences, 2010). On the other hand, a small 

number of countries contribute to the enabling technologies in transport (application of 

fuel cell or hydrogen technology to transportation and charging of electric vehicle) but 

patenting activity is increasing over time, meaning that these technologies are not mature 

but still in a development phase, in line with the evidence available (i.e. US Department 

of Energy, 2010). The other three technologies (air pollution abatement – 1.1, CO2 

capture and storage – 5.1 and technologies related to metal processing – 9.1) in Figure 

A2 are instances of a shift from development towards maturity in that they exhibit  

sustained growth in patenting during the whole period while geographical ubiquity 

increases only over the last two decades, and in line with prior empirical studies (Lim et 

al., 2009). This pattern differs from that of technologies related to efficiency and 

reduction of greenhouse gas emissions in metal processing (9.1): between 1981-1990 and 

1991-2000 patenting is stable and spread over a higher number of countries, while in the 

last decade, ubiquity diminishes and patenting activity grows again. This trajectory 

suggests a future change in the trend of the life cycle of these technologies (The Boston 

Consulting Group, 2015). 

All the technologies follow a similar path, but some are more advanced in the TLC than 

others. For example, even if air pollution abatement and CO2 capture or storage are 

moving toward the diffusion stage, their movements start later compared to the average 

of all the other technologies. To characterize this evolution in the broader context of all 

green technologies, we calculate the average value of ubiquity and patenting growth rate 
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for all the GT in each time period. The combination of these two characteristics gives rise 

to four different regimes (Table 1). “Emergence” technologies have patenting intensity 

and ubiquity below average; “development” technologies exhibit above average patenting 

and below average ubiquity; technologies in “diffusion” are above average in both 

intensity and ubiquity; in the “maturity” ubiquity is above average and patenting below 

the average of all the technologies in the same period. Figure A3 illustrates the 4 phases 

of TLC during the period 2001-2010 for the technologies shown in Figure A1 (dashed 

lines indicate mean values). In this example, CO2 capture or storage (5.1) and enabling 

technologies in transport (6.5) in the “emergence” phase, air pollution abatement (1.1) in 

the “development” phase, renewable energy generation (4.1) would be in the “diffusion” 

phase and technologies related to metal processing (9.1) in the “maturity” phase. 

 

 

Figure A1. The life cycle of green technologies (1980-2009) 

 

Technology names are provided in Table 2 of the paper. For the sake of space the figure 

reports the two-digit label of Env-Tech (OECD, 2016). Numbers in the y-axis correspond 
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to the technology life cycle stages: 1 “Emergence”, 2 “Development”, 3 “Diffusion” and 

4 “Maturity” (see Table 1 for a taxonomy).  

Figure A2. Selected Green Technologies by stage of life-cycle, 2001-2010 

 

Source: Own elaboration 

 

Figure A3. All green technologies by stage of life cycle, 2001 – 2010 
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Technology names are provided in Table 2 of the paper. For the sake of space the figure 

reports the two-digit label of Env-Tech (OECD, 2016). Source: Own elaboration 

 

 


