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Abstract 

The analysis of spatial networks’ evolution has predominantly concentrated on the formation 

process of links. However, the evolution of networks is similarly shaped by the dissolution of 

links, which has thus far received considerably less attention. The paper presents separable 

temporal exponential random graph models (STERGMs) as a promising method in this context, 

which allows for the disentangling of both processes. Moreover, the applicability of the method 

to two-mode network data is demonstrated. 

We illustrate the use of these models for the R&D collaboration network of the German 

biotechnology industry as well as for testing for the relevance of different forms of proximities 

for its evolution. The results reveal proximities varying in their relative importance for link 

formation and link dissolution. 
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1 Introduction 
Network analysis has gained great popularity in many spatial disciplines (Ducruet and Beau-

guitte 2014). For instance, in urban studies, network analyses are intensively used to study city-

networks (Liu et al. 2013), while economic geography focuses on R&D networks’ facilitating 

of the flow of knowledge between cities and regions (e.g., Murphy 2003; Boschma and Ter Wal 

2007). In both fields, studies have sought to explain the evolution of inter-organizational rela-

tionships in time and space by relying on longitudinal network data (Broekel et al. 2014). Most 

of the existing research focuses on the relative importance of factors facilitating link formation. 

Crucially, network evolution consists of link formation and dissolution processes, though dif-

ferent factors might drive each process. For instance, Balland (2012) noted “[…] that the crea-

tion and dissolution of ties are not generally strictly inverse mechanisms […]” (p. 749). More-

over, Krivitsky and Handcock (2014) explained that “social processes and factors that result in 

ties being formed are not the same as those that result in ties being dissolved” (p. 35). For 

instance, in order to benefit from scale effects, firms might participate in joint R&D projects 

with other firms that have a similar technological background (i.e., they are cognitively proxi-

mate). Over the course of the project, they realize that their technological similarity stimulates 

unintended knowledge spillovers, and they end the collaboration to sustain their competitive 

advantages. Hence, cognitive proximity fostered collaboration in the first place and subse-

quently increased the likelihood of an early termination of the collaboration. However, while 

substantial empirical evidence of the first process exists, much less attention has been paid to 

the second process. 

The present paper contributes to the spatial network literature in two ways. Firstly, it demon-

strates the use of separable temporal exponential random graph models (STERGMs) as a 

method for investigating formation and dissolution processes in spatial (knowledge) networks 

(Krivitsky and Handcock 2014). We apply STERGM to a spatial network emerging from sub-

sidized R&D projects in the German biotechnology industry between the years 1998 and 2013. 

Secondly, we demonstrate STERGM’s ability to handle two-mode network data, which over-

comes the (still) common but sometimes questionable one-mode project of network data when 

constructing spatial (knowledge) networks (Scherngell and Barber 2009, 2011; Balland 2012; 

Hoekman et al. 2013; Broekel and Hartog 2013b; Buchmann and Pyka 2015). We thereby ex-

tend the work of Liu et al. (2015), who applied a cross-sectional two-mode exponential random 

graph model to analyze global city networks by presenting an application of ERGMs to longi-

tudinal data. While, alternatively, such data can be investigated with stochastic actor-oriented 
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models (SAOMs) (Liu et al. 2013), these models require specific assumptions (e.g., agency) 

that are often doubtful in the context of spatial networks (Broekel et al. 2014). In addition, 

STERGMs have been shown to be empirically similar if not preferable to SAOM models 

(Leifeld and Cranmer 2016). 

This paper is organized as follows: Section 2 discusses the process of an inter-organizational 

R&D cooperation network evolution. It addresses the relevance of organizations’ attributes, 

their relational characteristics, and structural level effects. It also considers why existing em-

pirical analyses on their relative importance might be biased, which motivates the use of 

STERGMs. The STERGM approach is introduced in Section 3. Section 4 discusses the network 

data and the empirical model specification. The analyses’ results are presented and discussed 

in Section 5. Section 6 concludes the paper.  

2 Disentangling the determinants of link formation and dissolution in inter-

organizational R&D network structures 
On the following pages, we will argue why we expect the influence of factors to vary for 

formation and dissolution processes, whereby varying effects are particularly likely for prox-

imities and the location. 

The literature on the evolution of spatial networks generally highlights three essential levels 

at which processes of network evolution occur (Glückler 2007; Ter Wal and Boschma 2009; 

Boschma and Frenken 2010). These levels are the (1) the node, (2) the dyad, and (3) the struc-

tural network.  

 

2.1 The node level 
Many organizational characteristics influence the collaboration behavior of organizations. 

Researchers have often argued that the size of organizations is of relevance: In particular, two 

of the expressed arguments are in favor of greater nodes having more links. First, larger nodes, 

i.e. organizations with more employees, may have greater capacities to establish and maintain 

more links (Tether 2002). Second, larger nodes tend to attract more requests for interacting, as 

they usually occupy more prominent positions within specific fields in general and within ex-

isting networks (Broekel and Hartog 2013a). For instance, larger organizations are more widely 

known than smaller ones and, due to their larger portfolio, provide more opportunities for in-

teracting. In case of the Dutch aviation knowledge network, Broekel and Hartog (2013a) found 

evidence for a positive relationship between size and link formation. 



4 
 

Moreover, larger firms might have more capacities to form new relationships and simulta-

neously maintain previously existing ones. Smaller firms tend to face a trade-off in this situation 

— i.e., they must decide whether to invest time in establishing new relationships and giving up 

existing ones or to opt for maintaining their relations (Tether 2002). Hence, small organizational 

size might negatively relate to link formation and dissolution, while in case of large organiza-

tions, the latter relationship might be positive. This point also highlights that link formation and 

dissolution are not necessarily independent of each other because of organizations’ potential 

constraints in their collaboration capacity.  

In the literature on spatial (knowledge) networks, organization-specific characteristics 

(nodes) are complemented by factors at the spatial level, which also impact organizations’ in-

teraction behavior. For instance, Illenberger et al. (2013) hypothesized differences in the rela-

tionship structures of individuals living in cities and those in rural areas. While they failed to 

empirically confirm this hypothesis, empirical evidence exists for organizations in urban and 

rural areas. For example, Meyer-Krahmer (1985) reported that firms in (urban) agglomerations 

are more prone to interact with other organizations than firms in rural areas. Broekel and Hartog 

(2013b) confirmed this positive relationship between population density and organizations’ 

amount of inter-regional collaboration. Moreover, Wanzenböck et al. (2015) investigated the 

centrality of regions in inter-organizational R&D networks initiated by the EU Framework Pro-

gram. Their findings clearly show urban regions being more central in these networks than rural 

regions. Hence, as an example of a spatial factor influencing organizations’ interaction behav-

ior, we focus on organizations’ location within urban regions, which is expected to facilitate 

their link formation activities.  

In regard to link dissolution, we further argue that these positive urbanization externalities 

(Boschma and Wenting 2007) will help organizations to maintain relationships. By accessing 

major train stations and airports, organizations tend to be able to lower transportations costs 

and will be able to maintain more relationships than organizations situated in more remote rural 

areas.  

 

Hypothesis 1: Organizations located in urban areas are more likely to form a link and less 

likely to dissolve a link. 
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2.2 The dyad level: How proximities shape network structures 
The dyad level refers to the properties of the relationships between nodes. In research on 

spatial networks, Boschma’s (2005) proximity framework offers an effective summary of many 

(specific) arguments made in the literature. Among others, the concept builds upon the homoph-

ily effect, which has been applied in sociology. Here, it is argued that two individuals are more 

likely to develop a trust-based relationship when they share similar attributes (e.g., the same 

age) (McPherson et al. 2001). This concept has been transferred to the organizational and re-

gional levels as well as to other types of relationships and similarities. More precisely, Boschma 

(2005) summarized the prominent arguments in the literature and proposed a distinction be-

tween five dimensions of inter-organizational proximities. These proximities describe organi-

zations’ similarity (homophily) in different dimensions and are all argued to increase the like-

lihood of two organizations to establish a (collaborative) relationship and to exchange 

knowledge. These proximities are cognitive, geographical, organizational, social, and institu-

tional.3 As our empirical analysis will focus on cognitive, institutional, and geographic proxim-

ity, we limit the theoretical discussion to these dimensions. A discussion on the other two di-

mensions can be found in Boschma (2005).  

Nooteboom et al. (2007) defined cognitive proximity as the result of organizations’ develop-

ment of an organization-specific internal “interpretation system” (Ibid: p. 1017). At its core is 

the organizations’ absorptive capacity. As learning is a cumulative process that builds upon 

existing knowledge, their absorptive capacity increases when new and previously possessed 

knowledge overlap (Cohen and Levinthal 1990). Accordingly, organizations tend to interact 

with partners who share similar knowledge bases. In this case, it is easier and more efficient for 

organizations to identify them as potential collaboration partners, absorb their knowledge, and 

jointly learn (Nooteboom et al. 2007). The positive impact of cognitive proximity on link for-

mation in spatial R&D networks has been frequently confirmed (Paier and Scherngell 2011; 

Balland 2012; Broekel and Hartog 2013b; Buchmann and Pyka 2015). 

While cognitive proximity greatly increases link formation, two cognitively similar organi-

zations are likely to be competitors because they tend to produce similar products (Boschma 

2005). This circumstance increases the risk of withholding knowledge in order to avoid unin-

tended knowledge spillover (Zander and Kogut 1995). Moreover, given their cognitive overlap, 

these organizations offer relatively little to learn from each other. In such a situation, the formed 

                                                
3 This list of proximities is not exclusive. Other types of proximities may matter as well but have received considerably less 
attention in the literature so far.  
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alliance may be unstable (Polidoro et al. 2011), as organizations tend to be reluctant to stay in 

alliances longer than necessary. Accordingly, cognitive proximity may increase the chances of 

early link dissolution. 

Geographical proximity refers to the “similarity” of organizations in terms of their geo-

graphic location. Being geographically close or within the same region fosters the formation of 

links because it makes frequent face-to-face interactions much easier (Boschma 2005). Such 

contacts facilitate the generation of mutual trust and are especially important when exchanging 

tacit knowledge (Ter Wal 2014). In spatial sciences, geographical proximity is a key interest 

and thus is often analyzed in regard to network formation. For instance, in the case of funded 

R&D networks, Paier and Scherngell (2008) and Balland (2012), among others, have found 

evidence of a positive relationship between link formation and geographical proximity.  

As geographic proximity strongly enhances the possibility of frequent face-to-face contacts 

and more insightful communication, it may contribute to the earlier completion of projects, 

which in turn will result in quicker link dissolution. It might even be the case that partners 

anticipate the higher efficiency and more effective communication when collaborating in geo-

graphic proximity and therefore opt for shorter project durations when setting-up collaborations 

with geographically proximate partners, such as when applying for joint grants. 

 

Hypothesis 2: Geographic and cognitive proximity positively influences link formation and 

dissolution. 

 

Institutional proximity is also associated with the embeddedness literature, i.e. organizations 

operating in different social subsystems (e.g., industry or academia). According to Ponds et al. 

(2007), scientific research and the development of product innovations are “conducted within 

different socio-economic structures” (p. 426). Institutionally distant organizations are more 

likely being confronted with unknown behavior and problems in mutual communication, which 

reduces the likelihood of interaction (Parkhe 1991; Boschma 2005; Balland et al. 2013).  Insti-

tutional proximity ensures that partners operate under the same or at least comparable institu-

tional (legal and societal) frameworks, which significantly aids in overcoming the risks of 

freeriding and reduces monitoring costs (Boschma 2005). Accordingly, it strongly helps with 

initiating collaborations, which is also empirically confirmed (Balland 2012). 

In contrast, its relevance for link duration might be rather minimal. It can be argued that once 

collaboration has been initiated and formalized, most legal and formal issues concerning the 

collaboration are settled and contractually fixed. While the efforts needed for this may prevent 
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the formation of interactions, the institutional frameworks may become complementary through 

the formal contract and, hence, exercise little to no effect on link duration. 

 

Hypothesis 3: Institutional proximity impacts link formation positively but does not affect 

link dissolution. 

 

2.3 Structural level determinants 
 Glückler (2007) and Liu et al. (2015) highlighted the relevance of factors at the structural 

network level.  These authors argued that a theory of network evolution focuses on the interde-

pendency of new links and the overarching structure of the network as such. Accordingly, “[…] 

this perspective explicitly moves beyond the dyadic analysis of single relationships to the anal-

ysis of entire network relations” (Glückler 2007: p. 622). Three factors have received the most 

attention so far: triadic closure, multi-connectivity, and preferential attachment (Glückler 

2007).  

Triadic closure implies that partners of a node are likely to become partners themselves. This 

is shown by so-called triangles in networks, i.e. dense cliques of strongly interconnected nodes 

(Ter Wal 2011). In spatial (knowledge) networks, such cliques are usually interpreted as a sign 

of social capital (Coleman 1988), which may enhance trust and the willingness among nodes to 

invest in mutual goals. For instance, Ter Wal (2014) confirmed the relevance of triadic closure 

for the evolution of a biotech network based on co-invented patents.  

Multi-connectivity is a consequence of organizations tending to seek a diverse portfolio of 

partners. In other words, they may connect to others in multiple ways to decrease their depend-

ency on individual links (Glückler 2007). For example, organizations may link to other organ-

izations through joint R&D projects in addition to existing buyer-supplier relations. Broekel 

and Hartog (2013a) provided empirical evidence for the relevance of such processes in the con-

text of subsidized spatial networks.  

Preferential attachment implies that the probability of creating additional links may increase 

with every new link a node possesses (Vinciguerra et al. 2010; Liu et al. 2015). Organizations 

with many relationships tend to have a greater flow of information about new activities and 

partners, and they also tend to have a stronger ability to evaluate these by means of collaborative 

behavior and appropriate resources (Polidoro et al. 2011). While Broekel and Hartog (2013b) 

hypothesized preferential attachment to play a role in networks of subsidized R&D collabora-

tion, they failed to empirically confirm this. With respect to their relevance on link formation 
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and dissolution, the literature clearly suggests a positive contribution to link formation, while 

discussions on their effects for link dissolution are largely absent. We therefore expect that their 

positive influence is also applicable to link persistence (i.e. these effects are negatively corre-

lated with link dissolution). 

 

Hypothesis 4: Network structures support link formation and suppress link dissolution. 

3 Separable temporal exponential random graph models 
A range of methods can be applied to identify factors driving networks’ evolution (see, for 

example, a recent review of the most common approaches: Broekel et al. 2014). In the context 

of dynamic spatial networks, SAOM models in particular have been used (Balland 2012; Liu 

et al. 2013). These models are convincing due to their wide range of application possibilities, 

consideration of factors at all three levels of investigation, and usability with one and two-mode 

network data. While their applicability and functionality were unmatched in the past, the devel-

opment of the TERGM (temporal exponential random graph model) and STERGM (separable 

temporal exponential random graph model) provides researchers with a legitimate modeling 

alternative. It is beyond the scope of the present paper to conduct a full review and an empirical 

comparison of the two models. For this, we refer to Broekel et al. (2014) and even more so to 

Leifeld and Cranmer (2016). The paper instead focuses on an application of the recently devel-

oped STERGM and seeks to highlight its three most prolific features that are crucial in the 

context of spatial (knowledge) networks: its nature as a tool of dynamic network analysis, its 

applicability to two-mode network data, and its ability to separate formation and dissolution 

processes. While SOAMs offer similar features, these are achieved by the fundamental assump-

tion of agency residing with the nodes. In other words, the models are built on actor-based 

behavioral assumptions (Park and Newman 2004). When applying these models to inter-organ-

izational or inter-regional networks, this assumption of agency is likely to be violated (Broekel 

et al. 2014). Moreover, recent theoretical and empirical comparisons suggest that (S)TERGMs 

outperform SOAMs (Leifeld and Cranmer 2016), which further motivates the presentation of 

STERGM for the analysis of spatial (knowledge) networks. 

The separable temporal exponential random graph model (STERGM) is a recently devel-

oped extension of the exponential random graph model (ERGM) (Krivitsky and Handcock 

2014); as such, it is part of the ERG family (also known as p*-models (Robins et al. 2007)).  

As neither nodes (actors) nor dyads (relationships) are completely independent from each 

other, classical econometric models such as regression analysis do not effectively explain the 
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structure of observed networks (Broekel et al. 2014). For that reason, Frank and Strauss (1986) 

developed the so-called Markov dependence on which ERGMs are based. It implies that a given 

dyad between two actors impacts and is impacted by any further link of those two actors (Rob-

ins et al. 2007). Therefore, links are defined as being “conditionally dependent” (Ibid: p. 181).  

Models of the ERG family consider link creation as a continuous process, and the observed 

network structure is seen as one possibility out of a large set of potential networks with similar 

characteristics (Robins et al. 2007). This range of possible network patterns and their likelihood 

of appearance “is represented by a probability distribution on the set of all possible graphs with 

this number of nodes” (Ibid: p. 176). Hence, a good ERGM has a high probability of simulating 

the observed network by finding the correct coefficients of the determinants impacting the net-

work structure. For this purpose, a Markov chain Monte Carlo maximum likelihood estimation 

(MCMC MLE) procedure is used to simulate and evaluate the modeling process (Broekel et al. 

2014). 

Mathematically, an ERGM is defined as follows (Robins et al. 2007): 

 

!" # = % = &
' ()* +,-, %,      (1) 

 

where !" # = %  is the probability that the observed network %  equals the simulated net-

work (Y). The network configuration . is considered by +,, and the network statistics are rep-

resented by -, % . The network configurations are the determinants with which the researcher 

attempts to explain the network structure, such as cognitive proximity. ERGMs allow the in-

clusion of node, dyad, and structural determinants at the same time (Broekel et al. 2014). -, %  

is either 1 if the configuration is observed in %, or 0 if it is not. The factor / is a normalising 

constant that is implemented to ensure a proper probability distribution of the equation (Robins 

et al. 2007). 

Hanneke and Xing (2007) and Hanneke et al. (2010) extended the ERG family with a frame-

work that enables the researcher to model network dynamics over discrete time steps, called 

temporal ERGM (TERGM). In this model, a network at time t is conditional on the network at 

time t - 1. In essence, the TERGM corresponds to a stepwise ERGM approach with the steps 

corresponding to the observed time periods (Krivitsky and Handcock 2014). Recently, Kriv-

itsky and Handcock (2014) built upon this model and introduced the concept of separability. 

This allows a STERGM to independently consider the process of link formation and dissolu-
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tion. In consideration of the organizational processes underlying the establishment and mainte-

nance of cooperation, it seems legitimate to view different factors as in control of link formation 

and dissolution. A STERGM displays the transition from one time period (t) to the following 

time period (t+1) and thereby independently analyses the formation and dissolution of links. 

Accordingly, a STERGM is separated into two formulas (Ibid.). One formula considers the 

formation of links: 

 

!" #0 = %0 #1) = &
'3 ()*	{(+,0)1-, %0 }   (2) 

 

The other formula considers the dissolution of links: 

 

!" #8 = %8 #1) = &
'9 ()*	{(+,8)1-, %8 }   (3) 

 

The general aim of this method is to obtain a model with a high probability of simulating the 

observed network and that can identify the best coefficients. The success of the simulation can 

be tested by checking whether the model is degenerated and by examining the model’s good-

ness of fit. A degenerated model is often the consequence of misleading starting parameters 

and/or variables that are not able to correctly simulate the observed network. A degenerate 

model does not converge or the calculated estimates simulate a network that is either extremely 

dense or has almost no edges (Robins et al. 2007).  

A non-degenerated model has to be further tested regarding the quality of simulating the 

observed network. By comparing the network characteristics of the simulated network (e.g., the 

degree distribution) with the corresponding statistics of the observed network, the goodness of 

fit can be verified graphically (Hunter et al. 2008).  

When calculating several models of the same size but with slightly different variables, the 

Akaike information criterion (AIC) and the Bayesian information criterion (BIC) provide addi-

tional information on a model’s goodness of fit. However, by including several network con-

figurations (variables), the model becomes increasingly complex, and both AIC and BIC be-

come less precise (Goodreau 2007). Therefore, they should only be used in combination with 

the graphics mentioned above.  

We take advantage of the STERGM being capable of handling two-mode data. Accordingly, 

a one-mode projection is not necessary, but we directly analyze the two-mode structure of the 

network. In this case, the researcher must make sure that the simulation procedure does not 
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create links that are impossible, i.e. no links should be simulated among events or among par-

ticipants, only between events and participants (for practical application see Morris et al. 2008 

and Section 4.4). 

4 Empirical approach and data 

4.1 Data 
The empirical network is based on organizations’ participation in joint R&D projects subsi-

dized by the German Federal Ministry of Education and Research (BMBF), the Federal Minis-

try of Economics and Technology (BMWi), and the Federal Ministry of the Environment, Na-

ture Conservation and Nuclear Safety (BMU). Data on subsidized R&D projects are extracted 

from the so-called “Förderkatalog” (subsidies catalogue)4. Financial support for joint R&D pro-

jects is conditional on all participants agreeing to exchange knowledge with each other. More-

over, they grant access to intellectually property rights that are within the scope of the project 

but existed before project’s start (BMBF 2008). Therefore, inter-organizational relations based 

on joint participation in such subsidized projects qualify as knowledge exchange links (Broekel 

and Graf 2012). The data consist of firms, universities, and research institutes that operate in 

the German biotechnology industry and obtain subsidies for their joint projects in the period 

from 1998 to 2013.  

The industry has been chosen because it can be classified as a science-based industry in 

which scientific advancements primarily drive economic progress (Ter Wal 2014). Moreover, 

cooperation is essential for innovation in this industry, as its “locus of innovation” is located in 

the network of inter-organizational relationships rather than in a single organization (Powell et 

al. 1996: p. 119). Thus, inter-organizational R&D cooperation is an important competitive fac-

tor in the biotechnology industry because individual firms may not be able to cover all of the 

necessary capabilities to innovate (Ibid).  

Regarding the economic entities being used as nodes in the network analysis, the subsidies 

catalogue distinguishes between the beneficiary unit (“Zuwendungsempfänger“) and the exe-

cuting unit (“Ausführende Stelle“). The first refers to the receiving organization (e.g., organi-

zations’ headquarters), and the latter refers to the executing entity (e.g., a specific department 

or an institute of this organization). In accordance to the literature (Broekel and Graf 2012), we 

                                                
4  In addition to the subsidies catalogue, the websites “Biotechnologie.de,” “chemie.de,” “Life-Sciences-Ger-
many.com,” and “statista.de” and the homepages of the organizations have been used to acquire further data on 
organizational size and technological focus (cognitive proximity). 
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chose the executing units as network nodes because they actively select whom to cooperate 

with and decide when to end a project. 

 

4.2 The structure of two-mode networks 
The described data represent a two-mode (or bipartite) network, as actors are related to pro-

jects and not directly to other actors. We extracted 652 nodes at the actor level (mode 1; i.e., 

organizations) and 258 nodes at the event level (mode 2; i.e., projects). Both levels are con-

nected through 1,177 links (see Figure 1). The two-mode network structures have significant 

implications for network analysis, as, for instance, network structures such as closed triads are 

not possible.  

To account for factors’ importance varying over time (see, e.g., Balland et al. 2013), we split 

the network into four phases, with each being four years (see Figure 1 and Table 1). We defined 

a link to be formed when a project started within the observed time phase. It was maintained 

when the project had not been ended during the foregoing timespan. Otherwise, the link was 

been dissolved (see Figure 2). Pooling the data for four years caused the resulting networks to 

be sufficiently dense. We analyzed the three transitions of the networks from one period to the 

next by estimating separate models for each transition. This allowed for assessing potentially 

time-varying effects of our explanatory variables.  

The STERGM demands the network to have the same set of nodes in both time periods. This 

gave us two opportunities: First, we could have included all nodes in the networks, regardless 

of whether they have a link in that period. However, this would have led to more complex 

models and would have decreased the chances of a converging model. Moreover, nodes only 

participating in the first transition are irrelevant for the following transitions. Therefore, we 

went with the second possibility: In the first STERGM, we only considered nodes that partici-

pate in the first and second periods. In the second STERGM, we then only included nodes 

participating in the second and third periods. Finally, in the third model, we only considered 

nodes that had a link in the third or fourth period. Eventually, we had two slightly different 

networks for the second period and the third period (see Table 7 in the appendix for an overview 

of the networks). 
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Fig. 1: Network visualization for all four time periods (grey = projects, orange = organizations) 

 

 
Fig. 2: Link formation, maintenance and dissolution (a = organization, b = project) 
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Network Period Links		
present 

Links	
formed 

Links	
maintained 

Links	
dissolved 

No.	1 1998	–	2001 236 236 - - 

No.	2 2002	–	2005 494 275 219 17 

No.	3 2006	–	2009	 689 465 224 270 

No.	4 2010	–	2013	 530 145 385 304 
Table 1: Link development from 1998 – 2013. 

In the case of publicly subsidized project data, multiple reasons may exist for the dissolution 

of links. First, if participants successfully complete the project within the subsidized time pe-

riod, the network link(s) will disappear. Second, if organizations apply for and receive a second 

funding within the project run-time, the link will be extended without a break, and we would 

not observe the dissolution of a link. Interestingly, we did not find a single instance in which 

this took place. We speculated that a policy discriminates against immediately reoccurring pro-

ject partnerships when awarding new grants. Third, a policy could artificially induce the termi-

nation of joint projects and the according dissolution of network links, thus setting a maximum 

project duration. While this motivated Balland (2012) to argue that “analyzing why links are 

dissolved […] in the case of projects whose length is fixed from the beginning seems less rele-

vant” (p. 749), we argue that partners know about fixed project durations ex-ante. Hence, they 

will apply for a grant only if its duration meets the (foreseeable) requirements of the planned 

project, which includes the consideration of the scope, complexity, and partner characteristics. 

Each of these considerations is usually known ex-ante to some extent. Similar to Makino et al. 

(2007), we therefore expected the initial conditions of partner selection to influence the pro-

jects’ length. For instance, we expected more complex (and therefore longer) projects to more 

likely involve geographically proximate partners, as the complexity requires more frequent 

face-to-face contacts (see, e.g., Balland and Rigby 2017). Similarities can be expected for pro-

jects involving actors at greater cognitive distances, which also tend to demand increased and 

closer interaction (Boschma 2005). Two processes are likely to support this. Firstly, when de-

signing subsidization programs, a policy is probable to consider the task’s complexity and de-

fines longer project durations. Secondly, applicants may look for programs with maximal pro-

ject durations that fit the complexity of the expected task. We assumed project-lengths are (in-

directly) related to the type of partners and consortia applying. Significant results in the disso-

lution models will show the extent to which this assumption is valid. 

Based on these arguments and secondary data, we constructed the following variables at the 

node, dyad, and structural network levels. 



15 
 

 

4.3 Dyad level variables 
Categorical and binary dyad-level effects are considered in the STERGM by evaluating how 

frequently two-paths are created between two organizations sharing the same characteristics 

(see Figure 3). We were thereby particularly interested in their characteristics concerning cog-

nitive, geographical, and institutional proximity. We did not consider social and organizational 

proximity because of missing data.5  

In the biotechnology industry, organizations are commonly assigned to a technological sub-

field: medicine and pharmacy, industrial processes, agriculture, and (bio)informatics (DaSilva 

2012). These fields represent distinct technological foci and systematic differences in the way 

R&D is conducted (Herrmann et al. 2012).  We constructed a simple measure of cognitive 

proximity based on this assignment. If two partners were assigned to the same category, they 

were perceived of as being cognitively more proximate than in the case they were active in 

different technological subfields. The variable COG PROX was given a value from 1 to 4 ac-

cording to the assigned subfields6. 

 

 

Fig. 3: Homophilous two-path of organization 1 and 2 via Project 1 

The measure of geographic proximity (GEO PROX) is a categorical variable corresponding 

to the NUTS 3 region in which organizations are co-located. In Germany, NUTS3 regions cor-

respond to 429 districts (Kreise), which are administrative areas ranging from cities such as 

Munich or Berlin to rural areas such as the Uckermark in East Germany (for additional figures, 

see Table 2).  

Moreover, organizations were classified as being profit orientated (private firms) and as non-

profit organizations (universities, research institutes, and associations). This difference was 

                                                
5 In general, the data allowed us to compute organizational proximity because of the distinction between benefi-
ciary and executing entity. If two collaborating entities were departments of the same beneficiary, they would have 
a higher organizational proximity. However, in the data set at hand, this setting is extremely rare (around 1%) and, 
thus, very likely to be insignificant anyway. 
6 Unfortunately, we could not assign a biotech subfield to every organization (see Table 6 in the appendix). Fortu-
nately, the STERGM allows for excluding categories from the calculation, which we made use of when calculating 
the effect of cognitive proximity. 
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captured by our measure of institutional proximity (INST PROX), which is categorical and 

distinguishes between firms (0), universities (1), and research institutes (2). 
 

	 Average	 Minimum	 Maximum	

Area	(km²)	 907	 35	 5,470	

Population	 203,589	 34,260	 3,520,031	

Population	density	(per	km²)	 504	 36	 4,668	

Table 2: Figures of German districts (NUTS 3) (DeStatis 2016) 

 

4.4 Organizational node level variables 
Potential location effects of organizations situated in urban areas were approximated using 

data of the Federal Institute for Research on Building, Urban Affairs and Spatial Development. 

It classifies each German NUTS 3 regions as “urban,” “increasing urbanization,” or “rural.” 

The classification is based on the total population and population density (BBSR 2015). We 

constructed the categorical variable (URBAN) as 0 for rural, 1 for increased urbanization, or 2 

for urban regions.  

The second variable at the node level approximated the size of organizations. As it was im-

possible to acquire the number of employees for each organization and year, we created a cat-

egorical variable (SIZE) indicating membership in different size classes. SIZE consisted of the 

categories utilized by the Reconstruction Credit Institute (KFW (2012) as well as Buchmann 

and Pyka (2015):   

 

Category 0: organizations with fewer than 50 employees. 

Category 1: organizations with 51 to 250 employees. 

Category 2: organizations with more than 250 employees. 

 

The third node level variable is EAST, which distinguishes organizations located in West 

(Category: 0) and East Germany (Category: 1). To the catching-up process of the East German 

economy, a large share of European and German subsidies is allocated there to facilitate this 

process. Thus, there might be a propensity to favor applications from organizations being lo-
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cated in cities formerly belonging to the German Democratic Republic (GDR). Moreover, Cant-

ner and Meder (2008) discovered that East German organizations participate more actively in 

R&D collaborations. 

As we sought to model interactions between specific variables (see Section 4.3.), we also 

considered the corresponding main effects at the node level. We therefore included node-level 

variables consisting of the categories of cognitive proximity (i.e., MEDICINE and AGRICUL-

TURE with base INDUSTRIAL7) and the differentiation between types of organizations (i.e., 

UNI and RESEARCH INST with base FIRM)8. While surely being interesting on their own, 

due to the scope of the study, we primarily included these variables as control variables. 

 

4.5 Structural level variables 
At the structural level, four variables were considered.9 The effect of multi-connectivity was 

captured by the so-called geometrically weighted dyad shared partner statistic (GWDSP). A 

positive coefficient of this statistic suggests that actors tend to link in multiple ways (i.e., via 

multiple projects) to each other (Hunter et al. 2008). 

The second structural determinant is preferential attachment. We modeled this by making 

use of the variable GWDEGREE, which represents the geometrically weighted degree statistic. 

The variable is seen “as a sort of anti-preferential attachment model term” (Hunter 2007: p. 7). 

If its coefficient is negatively significant at the actor level10, preferential attachment is a likely 

driver of network evolution. In contrast, there is no clear interpretation of a significant coeffi-

cient of GWDEGREE at the event level. It means that preferential attachment works at the 

project level, which lacks a theoretical foundation. Nevertheless, the effect was included to help 

the simulating of the network. 

The observed networks are characterized by high numbers of projects with three participants 

(see Figure 2). We considered this by including the variable B2DEG3, which added a statistic 

to the model counting how frequently B2-nodes (projects) have three links, i.e. three partici-

pants (Morris et al. 2008).  

                                                
7 Bioinformatics was excluded as only 25 organizations are assigned to this category over the complete timespan. 
8 As the categories of GEO PROX consist of approximately 80 regions, we excluded them as well, as it would have made the 
models too complex to calculate. 
9 Our two-mode network has no triads and STERGM currently does not support the consideration of a two-mode clustering 
coefficient as, e.g., described by Opsahl (2013). We will therefore not further elaborate on triadic closure, which does not mean 
that it is of no relevance. 
10 STERGM allows for calculating GWDEGREE for both levels (actor and event). A significantly negative coefficient will be 
obtained if the network shows a power law degree distribution. It means that at the actor mode, few organizations participate 
in many projects. At the event mode, few projects have many participants in this case. 
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The final structural network variable is EDGES. This variable should always be included 

when modeling a network with any ERG method. It equals the number of observed edges and 

helps in modeling the density of the observed network in the simulations (Broekel and Hartog 

2013b). 

In the appendix, Table 6 presents the descriptives of all node and dyad level variables.  

5 Results and Discussion 
5.1 Verifying the model  

Before presenting the empirical results, it is important to address a number of issues that 

have to be taken into consideration before interpreting the results. For instance, there might be 

a potential bias connected to our data. For historic reasons, subsidized R&D projects frequently 

(but not exclusively) have a length of 36 months (see Figure 4). 

 
Fig. 4: Frequencies of project length in months, n = 750 

 

Accordingly, project lengths are not fully flexible, and organizations do not have full free-

dom in choosing a support scheme allowing for project lengths that meet their requirements 

(also see Section 2). In other words, this precondition dominates link dissolution. To evaluate 

the significance of this, we created a second network that eliminated all links of projects that 

terminated immediately after 36 months. Projects and participants that became isolates because 

of this circumstance were also deleted. The corresponding network consisted of 144 projects 

and 476 actors.  

There are two implications. Firstly, due to the predefined project lengths, we were less likely 

to obtain significant coefficients in the dissolution model, as project endogenous processes and 

conditions are “overruled” by these externally imposed conditions. In other words, link disso-

lution becomes an external event and hence cannot be explained by endogenous processes. 
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Secondly, if significant coefficients are obtained or differences between the models for the full 

set of projects and those excluding links of 36 months are observed, these should be primarily 

interpreted as selection effects — i.e., partners choose specific support schemes considering the 

maximal time of subsidization when applying for grants.  

In general, the results do not change significantly when excluding the 36-month projects, 

which indicates, similar processes drive both networks’ evolution. A major difference is related 

to geographic proximity. It was not possible to find a converging model when considering the 

full set of projects. However, when excluding the 36-month projects, convergence was 

achieved, and we obtained reliable results. 
Besides convergence, STERGM involves finding the best model in a manual iterative trial-

and-error process (Broekel and Hartog 2013b). Usually, a first estimation is used to calculate 

starting values entering the second estimation (similar to Goodreau 2007). The models’ good-

ness of fit is assessed via the degree distribution. Figures 5 and 6 plot the observed network’s 

degree distribution as a solid line and the 95% confidence interval of the distribution for the 

corresponding simulated networks as box-plots and light-grey lines. A solid line within the 

light-grey lines represents a model with a satisfying goodness of fit (Krivitsky and Goodreau 

2015). The figures reveal our models as being of sufficient overall quality because only small 

parts of the simulated degree distribution exist outside of the observed one (Krivitsky and 

Goodreau 2015). 

The coefficients of the formation and dissolution model can be understood as odd ratios by 

taking the exponential. In the case of the formation model, a positive coefficient means that the 

establishment of a link is more likely. In contrast, in the dissolution model, a positive sign 

signals persistence of a link, i.e. the lower likelihood of dissolving (c.f. Krivitsky and Goodreau 

2015). 
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Fig. 5: Degree distribution of all the initial models 

 

 
Fig. 6: Degree distribution of all the refined models 

 

5.2 Factors driving the formation of links 
The results of the formation model are presented in Table 3. The model with all links (initial) 

and the model excluding the 36-month links (refined) are very similar and do not contain con-

flicting results. However, the initial model contains more significant coefficients and therefore 

serves as a basis for the interpretation. 

At the node level, INCR URBAN, and URBAN are significantly negative in Model 2, which 

indicates that in the second period (2002-2005), rural organizations participate in more joint 
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projects than urban ones. The variable is insignificant in the other models. The results are not 

in line with Hypothesis 1, which suggests urban organizations being more likely to form links 

due to urbanization externalities. We suspect an effect similar to what Illenberger et al. (2013) 

found for individuals. Organizations might compensate for the lower accessibility of partners 

with the higher acceptance of partners in rural areas. Alternatively, after the BioRegio initiative 

ended in 2005 (see, e.g., Dohse 2000), support became less focused on urban regions, and rural 

regions gained importance in subsidization schemes. In any case, Hypothesis 1 is not con-

firmed, as organizations in urban regions are not more actively engaging in subsidized R&D 

collaboration than rural organizations. 

SIZE1 and SIZE2 obtain significantly positive coefficients in Model 1 and Model 2, respec-

tively. Accordingly, medium-sized and large-sized firms have higher probabilities of link es-

tablishment in comparison to small firms (fewer than 50 employees). This fits with our line of 

argumentation in Section 2.1 regarding larger firms having more capabilities and opportunities 

to establish links. Our findings are in line with the results of Tether (2002), who argued that 

larger firms might benefit from their size in two ways: First, they are more attractive for coop-

eration partners (e.g., universities), and, second, they might force their suppliers into coopera-

tion projects.   

The coefficient of EAST is significantly positive in Model 1. This supports the findings of 

Cantner and Meder (2008) — specifically, that East German organizations are more active in 

subsidized R&D-cooperation, which corresponds to the idea of a policy’s stronger support for 

these regions. 

At the dyad level, we found that COG PROX was significantly positive in all models. Or-

ganizations operating in the same subfields of biotechnology are more inclined to conduct joint 

R&D. Accordingly, Hypothesis 2 is confirmed, and our results add to the findings of Noote-

boom et al. (2007) and Balland et al. (2013), showing that cognitive proximity is an important 

driver of R&D network formation.  

In addition to cognitive proximity, geographic proximity also plays a significant role in the 

formation of R&D cooperation. GEO PROX obtained a significant coefficient in the second 

refined model but remained insignificant in the first and third models11. Thus, in the second 

period, organizations tend to work together with partners located nearby, which supports Hy-

pothesis 2. 

                                                
11 Including GEO PROX in Models 1 and 3 led to degenerated results. Thus, we decided to exclude it. Nevertheless, degeneracy 
itself is an interesting topic and needs further research.  
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Institutional proximity (INST PROX) is significantly positive in the first formation model, 

suggesting that organizations with the same institutional background are more likely to work 

together. Hypothesis 3 is thereby confirmed. Due to less uncertainty regarding partner goals 

and behavior, organizations tend to select cooperation partners from the same institutional back-

ground (Ponds et al. 2007). 

Only one of the findings on variables at the structural level is in line with our expectations. 

All other factors excluded, the variable EDGES represents the density of the network and can 

be interpreted similar to an intercept. As the observed network is the consequence of a social 

process, it is typically less dense than exponential random networks leading to the negative 

coefficient of EDGES (Varas 2007). 

Unexpectedly, GWDSP was significantly negative in all of the models. This contradicts the 

multi-connectivity proposition of organizations’ tendency to connect through several ways in 

order to decrease link dependencies. In our case, organizations rarely engaged with the same 

organizations in multiple subsidized R&D research projects, which appears to be a valid, but 

still unexpected, strategy to maximize learning and inter-organizational knowledge diffusion. 

While a potential explanation might be a policy penalizing collaborations of the same organi-

zations in its subsidization programs, we are not aware of such a rule. 

GWDEGREEB1’s coefficient gained a significantly sign; however, its sign is positive, which 

contradicts the preferential attachment process (Hunter 2007): Organizations are less likely to 

gain additional links when they are already well connected. We clearly must reject Hypothesis 

4 with respect to the link formation model. There are three potential reasons for this: Firstly, 

organizations are limited in their collaboration capacities, thus implying that they constantly 

face a trade-off between maintaining and acquiring new links through projects. Similarly, they 

might not have the capacity or willingness to apply to multiple subsidization programs within 

the same time period. Secondly, subsidization programs are more focused, and there is only a 

limited overlap between organizations’ activity portfolios and support programs. Thirdly, a pol-

icy might favor subsidizing a broad range of organizations and therefore penalizes organiza-

tions already active in a large number of projects. 
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 Initial	models¥ Refined	models¥ 

	
	
 

Model	1	
1998	–	2001	
2002	–	2005 

Model	2	
2002	–	2005	
2006	–	2009 

Model	3	
2006	–	2009	
2010	-	2013 

Model	1	
1998	–	2001	
2002	–	2005 

Model	2	
2002	–	2005	
2006	–	2009 

Model	3	
2006	–	2009	
2010	–	2013 

Variables	 Estimate	(SE) Estimate	(SE) Estimate	(SE) Estimate	(SE) Estimate	(SE) Estimate	(SE) 

Node	level	
MEDICINE	
(base:	INDUSTRIAL) 

0.514	
(0.392) 

-0.209	
(0.238) 

-0.128	
(0.365) 

-0.0005	
(0.663) 

-0.298	
(0.417) 

-0.165	
(0.617) 

AGRICULTURE	
(base:	INDUSTRIAL) 

1.124***	
(0.411) 

1.208***	
(0.240) 

-0.065	
(0.399) 

0.506	
(0.677) 

1.306***	
(0.425) 

-0.517	
(0.726) 

UNI	
(base:	FIRM) 

0.003	
(0.286) 

-0.068	
(0.185) 

-0.183	
(0.302) 

0.159	
(0.512) 

0.468	
(0.326) 

0.152	
(0.549) 

RESEARCH	INST	
(base:	FIRM) 

0.658**	
(0.273) 

-0.029	
(0.185) 

-0.013	
(0.327) 

0.646	
(0.486) 

0.237		
(0.351) 

-0.034	
(0.675) 

SIZE1	
(base:	SIZE0) 

0.349	
(0.269) 

0.543***	
(0.183) 

0.588**	
(0.293) 

-0.013	
(0.471) 

0.340	
(0.331) 

0.056	
(0.586) 

SIZE2	
(base:	SIZE0) 

0.896***	
(0.295) 

0.795***	
(0.207) 

-0.065	
(0.378) 

0.506	
(0.512) 

1.084***	
(0.377) 

-1.073	
(1.096) 

EAST	
(base:	WEST) 

0.565*	
(0.308) 

-0.317	
(0.214) 

-0.611	
(0.421) 

1.263**		
(0.518) 

0.226	
(0.387) 

-0.320	
(0.809) 

INCR	URBAN		
(base:	rural) 

0.269	
(0.361) 

-0.483**	
(0.230) 

0.052	
(0.434) 

0.209	
	(0.572) 

-0.933**	
(0.428) 

-0.196	
(0.774) 

URBAN	
(base:	rural) 

0.141	
(0.359) 

-0.777***	
(0.222) 

-0.269	
(0.411) 

0.492	
(0.639) 

-0.954**	
(0.409) 

-0.929	
(0.929) 

Dyad	level	
COG	PROX 

	
0.226***	
(0.045) 

	
0.185***	
(0.032) 

	
0.290***	
(0.071) 

	
0.344***	
(0.073) 

	
0.422***	
(0.069) 

	
0.389***	
(0.149) 

INST	PROX 0.115*	
(0.062) 

0.021	
(0.049) 

0.063	
(0.096) 

0.326***	
(0.074) 

0.216***	
(0.081) 

0.303	
(0.184) 

GEO	PROX     0.782***	
(0.153)  

Structural	level	
EDGES 

	
-7.166***	
(0.629) 

	
-6.444***	
(0.366) 

	
-7.202***	
(0.610) 

	
-6.804***	
(1.103) 

	
-4.691***	
(0.745) 

	
-6.264***	
(1.119) 

GWDSP,	0.3,	fix -0.262***	
(0.052) 

-0.130***	
(0.031) 

-0.294***	
(0.065) 

-0.579***	
(0.099) 

-0.837***	
(0.101) 

-0.551	
(0.149) 

GWDEGREEB1,	0.5,	fix 4.187***	
(0.451) 

3.663***	
(0.322) 

3.748***	
(0.363) 

6.278***	
(0.856) 

4.998***	
(0.561) 

3.462***	
(0.686) 

B2DEG3 1.721***	
(0.236) 

1.674***	
(0.166) 

2.315***	
(0.266) 

1.431***	
(0.314) 

1.274***	
(0.236) 

1.817***	
(0.413) 

Null	deviance: 57,320	on		
41,348	df 

179,014	on	
129,131	df 

168,117	on	
121,271df 

23,338	on	
16,385	df 

73,062	on	
52,703	df 

46,680	on		
3,367	df 

Residual	Deviance: 2,533	on		
41,331	df 

4,996	on		
129,114	df 

881	on		
121,254	df 

1,064	on		
16,818	df 

2,147	on		
52,685	df 

-76	on		
33,656	df 

AIC 2,567 5,030 915 1,064 2,183 -42 

BIC 2,713 5,196 1,081 1,230 2,343 100 

NAs have been excluded. 
* significant at the 90% level, ** significant at 95% level, *** significant at 99 % level 
¥ Initial models including the whole network, refined models without links of 36-months length. 

Table 3: Results of the two-mode STERGM, formation. 
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5.3 The dissolution models 
As expected (see Section 5.1), we found fewer significant coefficients for the dissolution 

models (see Table 4). We believe that this is due to the relatively low variance in link duration, 

which is strongly constrained by the design of the underlying policies (5.1). Nevertheless, as 

argued in Sections 4.1 and 5.1, significant results are still possible and interesting. 

The coefficient of RESEARCH INST is significant and negative in Model 3. This finding 

implies that research institutes are either leaving projects earlier (unlikely) or initially opting 

for shorter projects (more likely) than firms. As research institutes are inclined to exchange 

knowledge with diverse sources (Ponds et al. 2007), shorter collaboration appear to be more 

attractive to these organizations. This also allows for the establishment of a diverse network of 

collaboration partners and for the maximizing of access to knowledge from different subfields. 

The same argument can be brought forward regarding universities. However, it might also be 

the case that both types of organizations relate their R&D projects to the completion of PhD 

theses (which usually require about three years) and therefore target the 36-month projects. In 

the case of universities, some support for this can be found in period 3, in which the coefficient 

is positively significant. In other words, once the 36-month projects are excluded (which are 

likely to relate to PhD projects), universities are less likely to be engaged in shorter projects 

and collaboration. 

In the Model 3, INCR URBAN is significantly negative, meaning that organizations located 

in urban areas are more likely to dissolve links in comparison to organizations in rural areas. 

Again, there might be multiple explanations for this. Organizations in urban regions are known 

to have a large selection of (nearby) potential collaboration partners, which organizations in 

rural regions lack (Meyer-Kramer 1985). Accordingly, they might be more interested in shorter 

projects in order to exploit and thereby make use of this potential. Organizations in rural regions 

might also be less attractive collaboration partners because of lower reachability, less prestig-

ious names, etc. This lack of attractiveness has to be compensated by larger subsidies, i.e. larger 

and longer R&D projects. Additionally, organizations in urban and rural regions might have 

different technology foci. Shorter projects are more attractive for organizations seeking to re-

main at the technology frontier, which implies making quick progress and constantly exploring 

new developments on a short-term basis. However, organizations in rural regions are less likely 

to be active in the most recent and most complex technologies (Hägerstrand 1967; Rigby and 

Balland 2017). Hence, shorter projects are not as attractive for them, thus leading to lower link 
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dissolution probabilities. Future research should more thoroughly address this issue, such as by 

applying qualitative methods. 

We also determined that the dyad-level variable INST PROX was negatively significant in 

the second model. This contradicts Hypothesis 3, in which we argued that institutional proxim-

ity is unlikely to influence link dissolution. Here, the negative sign inclines partnerships be-

tween profit and non-profit organizations to last longer than between profit and profit organi-

zations and non-profit and non-profit organizations. A straightforward explanation is that pro-

jects involving partners with different institutional backgrounds require more time (and hence 

apply for longer projects) than partners operating within the same institutional framework 

(Boschma 2005). 

At the structural level, EDGES and GWDEGREEB1 were highly significant in all the models. 

EDGES is interpreted as in the formation model with its significantly positive coefficient 

pointed toward higher network density than in a random network. The effect of preferential 

attachment is also present in the duration of links. The significantly positive coefficient of 

GWDEGREEB1 implies links established between new organizations and projects that are al-

ready well embedded in the network are less persistent. We interpret this as being primarily a 

technical effect. Projects and organization in the network that hold central positions do so be-

cause they are participating in large projects. Note that we established earlier that few organi-

zations are active in multiple projects at the same time. Hence, when the project is completed, 

they will lose most if not all their links at the same time. This number will naturally be larger 

than in case of less central organizations and projects (because otherwise their centrality would 

not be lower). Accordingly, prominence in the network caused by participation in larger pro-

jects (in terms of the number of participants) tends to imply larger dissolution rates of links. 

The results for the other structural network variable GWDSP are inconclusive as its coefficient 

alters between the models. Again, we have to reject Hypothesis 4, network structural effects do 

not relate in the expected way to the evolution of the network. This is most likely, partly caused 

by the endogenous dissolution processes, which are strongly impacted by the (externally fixed) 

conditions of the support programs. 
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 Initial	models¥ Refined	models¥ 

	
	
 

Model	1	
1998	–	2001	
2002	–	2005 

Model	2	
2002	–	2005		
2006	–	2009 

Model	3	
2006	–	2009	
2010	-	2013 

Model	1	
1998	–	2001	
2002	–	2005 

Model	2	
2002	–	2005		
2006	–	2009 

Model	3	
2006	–	2009	
2010	-	2013 

Variables Estimate	(SE) Estimate	(SE)	 Estimate	(SE) Estimate	(SE) Estimate	(SE) Estimate	(SE) 

Node	level	
MEDICINE	
(base:	INDUSTRIAL) 

0.054	
(1.671) 

-	0.103	
(0.407) 

-0.880**	
(0.310) 

0.417	
(1.151) 

-0.393	
(0.515) 

-0.433	
(0.403) 

AGRICULTURE	
(base:	INDUSTRIAL) 

0.454	
(1.665) 

-0.129	
(0.419) 

-0.167	
(0.328) 

0.706	
(1.338) 

-0.090	
(0.523) 

-0.578	
(0.419) 

UNI	
(base:	FIRM) 

0.203	
(1.177) 

-0.692**	
(0.289) 

0.136	
(0.259) 

0.568	
(0.998) 

-0.370	
(0.359) 

0.688**	
(0.344) 

RESEARCH	INST	
(base:	FIRM) 

-0.157	
(1.043) 

0.175	
(0.298) 

-0.817***	
(0.271) 

1.387	
(1.154) 

0.257	
(0.408) 

-1.570***	
(0.434) 

SIZE1	
(base:	SIZE0) 

-0.987	
(1.102) 

0.262	
(0.293) 

-0.196	
(0.269) 

-0.758	
(0.981) 

-0.356	
(0.372) 

-0.342	
(0.358) 

SIZE2	
(base:	SIZE0) 

-0.485	
(1.116) 

-0.036	
(0.317) 

-0.388	
(0.295) 

-0.884	
(1.050) 

-0.042	
(0.429) 

0.078	
(0.295) 

EAST	
(base:	WEST) 

-1.354	
(1.063) 

0.197	
(0.349) 

-0.102	
(0.316) 

-1.747	
(1.056) 

0.027	
(0.442) 

0.201	
(0.436) 

INCR	URBAN		
(base:	RURAL) 

-0.664	
(1.399) 

0.604	
(0.391) 

-0.842**	
(0.452) 

-0.859	
(1.222) 

-0.541	
(0.529) 

-2.040***	
(0.523) 

URBAN	
(base:	RURAL) 

-0.788	
(1.455) 

0.197	
(0.402) 

-0.476	
(0.336) 

-0.689	
(1.281) 

-0.713	
(0.512) 

-1.154**	
(0.485) 

Dyad	level	
COG	PROX 

	
0.03	

(0.349) 

	
0.039	
(0.102) 

	
-0.129	
(0.083) 

	
-0.259	
(0.361) 

	
-0.161	
(0.170) 

	
-0.195	
(0.161) 

INST	PROX 0.109	
(0.366) 

-0.248*	
(0.126) 

-0.152	
(0.095) 

0.070	
(0.348) 

0.086	
(0.149) 

-0.415**	
(0.196) 

GEO	PROX 0.32	
(0.848) 

0.148	
(0.231) 

0.335	
(0.257) 

0.128	
(0.840) 

0.213	
(0.278) 

0.375	
(0.44) 

Structural	level	
EDGES 

	
5.295**	
(2.638) 

	
1.943***	
(0.715) 

	
2.675***	
(0.582) 

	
2.606	
(2.631) 

	
3.261**	
(1.151) 

	
3.537***	
(0.992) 

GWDSP,	0.3,	fix -0.003	
(0.267) 

-0.029	
(0.074) 

0.115**	
(0.051) 

0.354	
(0.375) 

-0.302**	
(0.139) 

0.187	
(0.164) 

GWDEGREEB1,	0.3,	fix -0.384	
(1.127) 

-0.446	
(0.316) 

-0.465	
(0.283) 

0.137	
(1.488) 

-0.405	
(0.579) 

-0.459	
(0.505) 

GWDEGREEB2,	0.3,	fix -6.800***	
(1.860) 

-4.865***	
(0.540) 

-5.208***	
(0.445) 

-3.978**	
(1.621) 

-5.398***	
(0.862) 

-5.911***	
(0.161) 

Null	deviance:	 327	on	
236	df 

650	on	
469	df 

952	on	
687	df 

228.7	on	
165	df 

400	on	
289	df 

952	on	
687	df 

Residual	deviance:	 48	on	
218	df 

467	on	
451	df 

568	on	
669	df 

47	on	
147df 

-72,559	on	
271	df 

568	on	
669	df 

AIC:	 84 503 604 83 -72,523 604 

BIC:	 146 578 686 139 -72,457 686 

NAs have been excluded. 
* significant at the 90% level, ** significant at 95% level, *** significant at 99 % level 
¥ Initial models including the whole network, refined models without links of 36-months length. 

 
Table 4: Results of the two-mode STERGM, dissolution. 
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6 Conclusion 
In urban studies and related fields, dynamic network analysis has become a crucial tool to 

understand the evolution of different types of networks in time and space. In particular, studies 

analyzing spatial knowledge networks have increasingly relied on dynamic network analysis 

(Boschma and Martin 2010; Glückler 2007, 2016; Ducruet and Beauguitte 2014). Interestingly, 

most existing studies have thereby focused on the formation of links. However, as Glückler 

(2007) put forward, network evolution is a twofold procedure that “should be conceived as the 

result of endogenous mechanisms of network formation and dissolution” (Ibid: p. 627). Ac-

cordingly, in order to fully understand the evolution of spatial networks, both processes need 

to be considered in empirical investigations.  

The paper contributes to the literature by discussing the separable temporal exponential ran-

dom graph model (STERGM) as a novel and interesting tool in this context. We demonstrate 

its use for the analysis of the evolution of spatial (knowledge) networks by presenting a case 

study on the (subsidized) R&D collaboration network of the German biotechnology industry. 

In particular, we highlight the STERGM’s capacity to directly analyze two-mode networks, 

which avoids the sometimes questionable one-mode projection (see also Liu et al. 2015). In 

addition to the dynamic analysis and the possibility of disentangling formation and dissolution, 

this feature was frequently argued to be the primary benefit of using stochastic actor-oriented 

models (see, e.g., Liu et al. 2013). 

Besides advocating the use of the STERGM, the paper also aimed at exploring the roles 

played by location (urban – rural) and different types of proximities (cognitive, institutional, 

geographic) for the formation and dissolution of spatial knowledge links, with the latter having 

received little attention in the past. 

Table 5 provides an overview of the main results. Overall, the results of the formation mod-

els are in line with the theoretical expectations. Interestingly, the same cannot be said for the 

dissolution models. In these cases, we were not able to find solid evidence for location and the 

proximities to strongly impact link dissolution.  

However, we observed that these factors seem to vary in their influence on formation and 

dissolution. If we expand our view beyond our relatively narrow hypotheses, we find confir-

mation for variations in the relative importance of factors for link formation and dissolution; 

some factors are more crucial for the formation while others impact link dissolution to a greater 

extent. For instance, institutional proximity, i.e. whether organizations cooperate within the 

same (university, applied research, or profit) framework, makes link formation more likely. At 
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the same time, it also facilitates link dissolution. Accordingly, simply inferring from knowledge 

on formation processes on dissolution dynamics is invalid, and we need to analyze both pro-

cesses separately.  
 

 Formation Dissolution 

Hypothesis Variable Result Supporting		
hypothesis? Result Supporting	

hypothesis? 

Node	level      

H1 URBAN Negative	relationship No Insignificant No 

Dyad	level 	     

H2 COG	PROX Positive	relationship Yes Insignificant No 

H2 GEO	PROX Positive	relationship Yes Insignificant No 

H3 INST	PROX Positive	relationship Yes Negative	relationship No 

Structural	
level	 	 	 	 	 	

H4	 GWDEGREEB1	 Positive	relationship	 No	 Negative	relationship		 No	

H4	 GWDSP	 Negative	relationship	 No	 Inconclusive	 No	

 
Table 5: Summary of the main results 

 

Our results also show that factors’ influence on network evolution is not time-invariant but is 

instead conditional on the current framework in which an industry operates. While previous 

studies argued for the relevance of industry life-cycle phase and thereby endogenous conditions 

(Balland et al. 2013; Ter Wal 2014), our analysis (due to the nature of the employed data) 

highlights the relevance of external circumstances — in this case, variations in the R&D policy. 

As is typical for empirical studies, our case study used for demonstrating the applicability of 

STERGM is subject to certain limitations. First, the STERGM was only recently developed, 

which implies some shortcomings that will certainly be addressed in the future. Currently, con-

tinuous variables at the dyad level are difficult to implement. This is particularly relevant in the 

context of spatial networks as geographic proximity is usually modeled in a continuous way. 

As of now, researchers working with the STERGM need to work with categorical definitions. 

Second, the robustness of the simulated networks, i.e. of the model converges, depends on a 

variety of factors that are hard to isolate (e.g., network size and continuous variables such as 

the amount of funding). This implies considerable difficulties in terms of finding the best-fitting 

model. Third, the discrepancy between methodological possibilities and data availability is the 
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most apparent shortcoming of our study. Our study highlights and promotes the STERGM’s 

feature of disentangling link formation and dissolution processes. However, when looking at 

the most commonly used data for constructing spatial networks (such as that in the present 

paper), it turns out that most of the data encounter the same issues: either there is no (precise) 

available information on the duration of links (e.g., patent data, co-authorship data) or, if this 

information does exist, it might be subject to external conditions (e.g., relations established on 

the basis of the subsidization of joint R&D projects). Accordingly, while the methodological 

precision and possibilities to explore (spatial) network evolution continuously increase, the 

same cannot necessarily be said about the available data. Hence, researchers need to be aware 

of the gap existing regarding the methodological possibilities and what can actual been done 

with the data at hand. The opportunity to explore longitudinal two-mode network data with 

dynamic network analyses is hence a step in the right direction as it moves the methodological 

side closer to the type of data available. Nevertheless, we clearly pledge for more efforts to be 

directed toward the collection of data on link dissolution, as otherwise our understanding of 

knowledge network evolution will remain constrained. 

Despite these shortcomings, some policy implications can be derived from the present study. 

Firstly, our results indicate that institutional proximity is still an important determinant of link 

formation. Given the wide belief in the necessity to involve heterogeneous sets of actors in 

R&D projects and that spillovers between the non-profit and profit sectors are to be increased 

(see, e.g., triple helix literature (Etzkowitz and Leydesdorff 2000)), these goals are not yet vis-

ible in our results. Profit organizations still seem to prefer to work with other profit organiza-

tions, and non-profit organizations are more frequently engaged with other non-profit organi-

zations.  

Secondly, as with other related studies, we found that proximities are important drivers of 

subsidized network formation. One can argue that these represent the “natural” way in which 

networks evolve without external influences. This is confirmed in many analyses on non-sub-

sidized knowledge networks (Glückler 2010; Balland et al. 2013; Ter Wal 2014). Hence, net-

works influenced by a policy and those that are not influenced by such evolve in the same 

manner — i.e., they have the same factors driving their evolution. If this is the case, it may lead 

one to wonder why policy is providing subsidies for collaboration in the first place. When a 

policy supports the same kind of interactions that evolve independently of it, in the best of all 

cases, it merely increases the general magnitude of collaborations. However, it does not impact 

their structural composition. This particularly concerns cognitive proximity, which makes the 

establishment of projects generating significant novelty less likely (Boschma 2005; Nooteboom 
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et al. 2007). In this respect, our study calls for a reconfiguration of the R&D subsidization 

policy. 
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Appendix 
 

Variable Category Category	Name Description Observations 

COG	PROX 1 MEDICINE Medicine 272 

 2 AGRICULTURE Agriculture 175 

 3 INDUSTRIAL Industrial	processes 86 

	 4 BIOINFORMATICS Bioinformatics 25 

 NA   94 

INST	PROX 0 FIRM Private 191 

 1 UNI Universities 283 

	 2 REASEARCH	INST Research	Institutes 178 

SIZE 0 0 <	50	employees 289 

 1 1 <	250	employees 134 

 2 2 >	250	employees 229 

EAST 0 WEST West	German	region 548 

	 1 EAST East	German	region 104 

GEO	PROX 83	different	
categories  Organization	sharing	a	

NUTS	3	region 

Max:	30	
Min:	1	

Average:	3.6	

URBAN 0 RURAL Rural	region 98 

 1 INCR	URBAN Increasing	Urbanization 175 

 2 URBAN Urban	region 379 
Table 6: Variable descriptives (initial network). 
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Model Networks All	
nodes 

Project	
nodes 

Organizational	
nodes Links Density 

Initial	networks	 	 	 	 	 	 	

1 No.	1 481 113 368 236 0.0020 

 No.	2a 481 113 368 494 0.0040 

2 No.	2b 816 216 600 494 0.0014 

 No.	3a 816 216 600 687 0.0021 

3 No.	3b 789 211 578 687 0.0022 

 No	4 789 211 578 530 0.0017 

Refined	networks       

4 No.	1 318 68 250 165 0.0032 

 No.	2a 318 68 250 295 0.0059 

5 No.	2b 542 128 414 289 0.0019 

 No.	3a 542 128 414 353 0.0024 

6 No.	3b 425 107 318 353 0.0039 

 No	4 425 107 318 226 0.0025 

Table 7: Network characteristics 


