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1 
 

The visible hand of cluster policy makers:  

An analysis of Aerospace Valley (2006-2015) using a place-based network 

methodology 
 

 

Delio Lucena Piquero 

Jérôme Vicente 

LEREPS – University of Toulouse – Sciences-Po Toulouse – France 

 

 

September 2017 

 

 

Abstract: 

 

The paper focuses on cluster policies with particular attention to the role of R&D collaborative 

incentives in the structuring of knowledge networks in clusters. We disentangle the main 

network failures in regional innovation systems, and discuss the selection procedures designed 

by policy makers to enhance the production of innovation outputs. We draw evidence from the 

French Aerospace Valley cluster from 2006 to 2015. The empirical analysis relies on a dataset 

of 248 granted research consortia, from which we build 4-cohorts knowledge networks enable 

us evidencing the evolving structural properties of the cluster over time. We suggest avoiding 

the bias and limitations of 1 and 2-mode network analysis by developing an original place-

based network methodology that emphasizes on structural equivalence and groups behaviors. 

We discuss the results focusing on the convergence degree between the network statistical 

findings and the policy makers’ objectives. Finally, the methodology allows us identifying who 

are the agents of the structural and technological changes observed during the period. 
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1. Introduction 

 

One of the main reasons of the development of cluster policies relies on the growing awareness from 

academics and policy makers that network failures have to be merged with traditional market ones in the 

design of public innovation incentives (Woolthuis et al., 2005; Vicente, 2017). That is why cluster 

policies have been implemented in many countries since the end of the 1990s (Uyarra and Ramlogan, 

2012). They coexist nowadays with innovation policies based on individual incentives, such as research 

tax credit and innovation grants sponsored by public agencies (Nishimura and Okamuro, 2011). Cluster 

policies aim at designing R&D collaborative incentives to strengthen knowledge networks in order to 

stimulate the expected benefits of local knowledge spillovers and cognitive complementarities (Broekel 
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et al., 2015). Cluster policies basics broadly rely on two related network failures. First, the potentialities 

of knowledge spillovers from science to industry can be inefficiently exploited due to the cultural divide 

and the weak absorptive capabilities between the two communities. Considering that positive impacts of 

knowledge spillovers are geographically bounded, in particular over the early phase of innovation 

processes (Audretsch and Feldman, 1996; Owen-Smith and Powell, 2004), cluster policy guidelines will 

tend to favor local incentives towards networks mixing public research organizations and companies. 

Second, entrepreneurship matters in clusters (Rocha and Sternberg, 2005; Delgado et al., 2010). Their 

effectiveness can be assessed by the rate of SMEs and spinoffs birth and entry. This later is the mark of 

the degree of technological variety and renewal, and then, a significant indicator of the cluster long run 

dynamics. Here again, these births and entries are geographically bounded, and contained in the close 

perimeter of universities and big companies (Audretsch, 1995; Audretsch and Lehman, 2005). But the 

entry dynamics in not a significant condition of cluster success per se. New entrants, to upscale their 

innovation and reach mass-markets, need sometimes to benefit from collaborative opportunities, in 

particular in industries in which modularity and interoperability matter (Suire and Vicente, 2014). Then, 

collaborative incentives between SMEs and big companies are also a regular mean used in cluster 

policies to foster regional performance.  

 

The aim of this research is to go more in depth into these policy guidelines, by offering an original view 

of dealing with the links between the implementation of these public collaborative incentives and the 

resulting structuring of clusters. We will focus on a single case study: the Aerospace Valley in Toulouse 

– France from 2006 to 2015, i.e. from the start of the policy to the year for which data are available. Our 

goal is not to find causality between the policy and the innovative performance of the cluster. To be able 

to do that, systematic analysis on several places should be done, and counterfactual analysis required. 

Our goal is less ambitious but in some extent highly essential for who wants to have a better 

understanding of how policy makers influence the organization of innovation processes in regions. 

Indeed, our basic starting assumption is related to the fact that, in spite of their control on the selection 

of R&D collaborations at the micro-level, policy makers cannot have a perfect control of the structure as 

a whole. In network theories, this type of micro-macro scales problems are typical (Watts, 2004; 

Newman et al., 2006): the “macro-behavior” of the network and its structural properties, both resulting 

from the aggregation of ties, largely escape their own intention. Since clusters are foremost networks 

(Giuliani and Bell, 2005; Vicente et al., 2011), such a research can be useful to highlight the strengths 

and weaknesses of cluster policies.  
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The contribution is divided as follows: Section 2 goes back to the structuring of R&D networks in 

clusters and the design of public collaborative incentives aiming at repairing network failures. Section 3 

aims at exemplifying these incentives and their consequences in the evolving structure of a particular 

cluster. We start contextualizing the Aerospace Valley cluster in its historical and technological 

trajectories, before describing the cluster policy guideline developed in order to sustain its development. 

Section 4 presents the data collection procedure which enables us building an original and complete 

dataset of public-funded collaborative R&D projects for this cluster. Then we discuss the 

methodological issues for building networks over the period. We disentangle the problems that 

generally arise for the study of networks resulting from the simple aggregation of collaborative and 

multilateral R&D consortia. To circumvent them, we suggest a place-based network methodology that 

focuses on structurally equivalent relational behaviors. Section 5 shows how this methodology helps us 

identifying the evolving structural properties of knowledge networks in the cluster over time. Section 6 

discusses the results under a particular focus related to the convergence degree between the network 

statistical findings and the objectives stated by the policy makers, with a particular focus on who are the 

agents of the structural and technological changes observed during the period. 

 

 

2. Network failures and the design of collaborative incentives in cluster policies 

 

In spite of controversies on their economic relevance (Duranton, 2011), cluster policies have become a 

new standard of innovation policies since the 2000s (OECD, 2007). The basic idea is that an additional 

source of R&D productivity at the meso level remains hidden behind the simple aggregation of the 

innovative capabilities of each organization considered in isolation. Therefore, the expected economic 

return of cluster policies is directly related to the multiplier effect induced by network incentives and 

collaborative subsidies. This very broad objective can be broken down into a wide range of specific 

ones. Between a myopic process of general watering of collaborative subsidies and a very precise 

targeting of some particular collaborations, the spectrum of policy interventions is wide and raises the 

typical questions of selection (and self-selection) in policy design (Fontagné et al. 2013). Indeed, 

selection is the key principle as the key difficulty, due to the information asymmetries between grants 

providers and receivers. For individual as for collaborative subsidies, the problem remains the same. 

Cluster policy makers have designed filtering processes in order to reduce these asymmetries and better 

deal with these selection problems. Moreover, by influencing collaborative patterns of local agents, 

policy makers also influence the collaborative structure as a whole. Each selected collaboration 

contributes to the network structuring and connectivity. Here again, a new asymmetry occurs, since 
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policy makers can have difficulties to perceive the aggregate network structure that evolves over time as 

far as new agents and new collaborations enter the network. Subsidizing a set of “good collaborations” 

does not necessarily imply shaping “good networks”. Therefore, understanding cluster policies as a 

mean to boost innovative outputs requires working both on the selection process of knowledge 

collaborations at the micro level (2.1) and on the monitoring of the connectivity properties of the 

network as a whole (2.2). 

 

2.1 Filtering and selecting knowledge collaborations in clusters 

 

For cluster public fund raisers, repairing network failures consists first in identifying the nature of these 

failures, in order to develop an oriented selection mechanism for the provision of collaborative grants. 

Not all collaborations are equally relevant to sustain. Policy makers have to grant a minimum of 

collaborations for a maximal expected economic return, by ranking strategic priorities for their 

collaborative incentive schemes. 

 

- Public knowledge dissemination and absorption 

 

One of the typical network failures at the origin of cluster policies relies on an insufficient level of 

reciprocal absorptive capabilities of knowledge between public research organizations and firms. In 

spite of the “public good” property of knowledge outputs produced by universities, the regional benefit 

from local knowledge spillovers does not only result from geographical proximity, but from the 

intentional effort of agents to interact in multiple ways in order to improve their mutual understanding 

in problem solving (Breschi and Lissoni, 2001; Bishop et al., 2011). A cultural divide and a weak social 

mobility and proximity between the two communities are often mentioned as a source of inefficiency in 

some regional contexts (Hemmert et al., 2014). Therefore, providing incentives for knowledge 

exchanges between academic and private R&D labs remains one of the main filtering mechanisms in 

cluster programs. Nevertheless, this type of support is not necessarily useful for clusters that have 

historically succeeded in overlapping academic and business networks. But because academic research 

plays a crucial role in network during the early stage of technological domains (Owen-Smith and 

Powell, 2004), this mean to foster academic knowledge dissemination is more relevant for clusters in 

which technological renewal matters. At the reverse, for clusters involved in the upstream phases of 

market development, the need for this type of public-funded collaborations is less crucial, and can be a 

source of crowding-out when implemented in an excessive myopic way. 
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- SMEs entry and connectivity 

 

Like organic systems, cluster long run performances depend on the renewing degree of firms’ 

demography. While some clusters succeed in engendering spinoffs and start-ups, others fail and tend to 

concentrate knowledge relationships between big and well-installed companies (Rocha and Sternberg, 

2005). Beyond the question of new entries, the issue for cluster policy makers is also related to the 

growth and survival rates of nascent companies. Delgado et al. (2010) and Wennberg & Lindqvist 

(2010) show that clustering effects have a higher impact on new companies birth and survival than pure 

agglomeration externalities. In industrial domains in which systemic technologies require integration 

between separated pieces of knowledge disseminated between different companies, connections to the 

main companies holding the central part of the system are often for the new entrants the opportunity to 

cross the bridge between R&D and business prospects (Suire and Vicente, 2014). Therefore, repairing 

network failures in clusters consists in building selection mechanisms that are conditional to the 

attendance of young or nascent SMEs in consortia. Designing this type of incentives can decrease the 

homophilic relational behaviors between core-companies that relegate new entrants in the network 

periphery. In terms of expected economic returns, providing this type of collaborative incentives could 

be more effective than pure individual incentives that put SMEs in as situation of public fund 

dependence, without any sufficient guarantees that they succeed in isolation in finding market 

opportunities. But at the reverse, this filtering mechanism can be a source of crowding-out for clusters in 

which social networks between new entrepreneurs and managers of well-installed firms work well and 

enable them to collaborate in the design of systemic products. 

 

- Local cohesiveness and global accessibility 

 

Clusters are not closed systems. Their success depends both of their internal structuring and their degree 

of embeddedness in global networks (Owen-Smith and Powell, 2004). Since the large fieldwork 

analysis of Storper & Harrison (1991) and Markusen (1996), it is acknowledged that clusters strongly 

differ in their balance between inward and outward knowledge relationships. Each organization 

manages its relational portfolio according to its own perception of the opportunities of voluntary 

knowledge exchanges and the risk of unintended knowledge spillovers. Geographical proximity 

increases these opportunities, but also increases these risks (Breschi and Lissoni, 2001; Boschma, 2005). 

When collaborations on knowledge open new opportunities but are likely to generate distrust and 

appropriation concerns (Gulati and Singh, 1998), building relationships with distant partners limits the 

risks of unintended spillovers. Moreover, global relationships enlarge the variety of external knowledge 
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sources (Fitjar and Rodriguez-Pose, 2011), and are particularly strategic between distant competitors 

who want to turn together separated and competing technologies into interoperable ones (Balland et al., 

2013). Therefore, network failures in clusters also refer to a lack of global connectivity, and the balance 

between local and global collaborative incentives constitutes a challenging point for cluster policy 

makers.  

 

- Technological relatedness, diversification and new growth paths  

 

Cluster dynamics are not never-ending stories of specialization, nor random processes of jump from one 

industry to another. The technologies and markets on which clusters evolve over time move along a 

gradient of related and unrelated diversification, giving rise to path renewal or path creation (Isaksen 

and Trippl, 2017). In the Silicon Valley, the photovoltaic industry in the 2000s has at a first glance 

nothing to see with the computer industry in the 1980s. Nevertheless it is noteworthy that they share 

knowledge on storage technologies for data and energy on one side, and nanostructures on the other 

side, coming both from the semiconductors industry continuously developed since the 1970s. Several 

factors explain these regional diversification processes (Boschma, 2017), from skills mobility (Neffke 

and Henning, 2013) to institutional agency (Borras and Edler, 2014). Among them, the dynamics of 

inter and intra-industry collaborations plays a critical role (Broekel and Brachert, 2015), and then 

appears as an additional source of network failures. In regions in which several clusters are identified as 

such by policy makers, the bridging between them constitutes a source of path creation potentialities. 

The debates on the superiority of related or unrelated diversification on cluster performances is far from 

being closed and empirical evidences are too contextual to enable the design of standard policy lessons. 

Nevertheless, diagnosis of the network structures of clusters can help policy makers better orienting 

their collaborative incentives on particular directions. As suggested by Suire and Vicente (2014), 

providing public incentives towards collaborations in closely related industries should be more effective 

for clusters that did not set up enough their technologies on mass markets, while collaborative 

incentives toward previously unrelated industries and skills can favor path renewal for clusters entering 

into a phase of transition.  

 

2.2 Monitoring connectivity and the structural properties of networks in clusters 

 

When cluster policy makers provide incentives for collaborations, they contribute to the circulation of 

knowledge between heterogeneous agents, like a visible hand trying to take the control of the expected 

positive effects of unintended knowledge spillovers. But having the perfect control of the evolving 
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structural properties of networks is somewhat difficult, since all the new supported collaborations but 

also the renewing and ending ones continuously modify the properties of the structure. Then, beside 

network failures at the micro-level between certain types of organizations, policy makers have also to 

take into account network failures at the level of the network as a whole. To do that, the subsidies 

providers can design selection mechanisms of knowledge ties that help shaping and achieving particular 

properties, which are identified as key properties for the long run performance of clusters.  

 

- Connectivity vs. density 

 

The first challenge for cluster policy makers is to design selection mechanisms that deal with the 

difficult balances between network connectivity and density. A high level of relational density does not 

necessarily imply a high level of connectivity. It depends on how collaborative incentives are distributed 

among the organizations in clusters (Crespo and Vicente, 2016). For a given amount of relationships, 

knowledge can always find a path to flow between any pairs of organizations, or, at the reverse, can 

meet several breaking points. In extreme cases, when incentives are oriented toward the reinforcement 

of closure into separated cliques of organizations, increasing density cannot increase connectivity. If 

closure and cohesiveness in networks are important for enhancing trust and coordination, in particular 

when systemic innovations require complex processes of knowledge integration, cluster policy makers 

have also to take care of the overall connectivity in order to favor knowledge circulation and maintain 

new collaboration opportunities. If cluster policy guidelines generally stressed on the necessity to 

increase the overall density of networks in clusters (Vicente, 2017), cluster managers and subsidizers 

who are actually involved in cluster development have also to focus more surgically on particular 

bridging and missing links between cohesive groups. 

 

- Hierarchy 

 

Knowledge networks in clusters are neither pure centralized structures of interaction nor than pure “flat” 

ones (Markusen, 1996). In between, clusters are typified by networks in which organizations differ in 

terms of degree centrality. The extent of the relational portfolio of each organization depends on their 

size and their willingness to collaborate with others. On a one side, monitoring large portfolio of 

collaborations is not within every firm’s means, since time and human resources are required for that 

purpose. On the other side, whatever their size, the need for firms to access external knowledge is also a 

critical indicator of their willingness to collaborate. Consequently, cluster will differ according to their 

degree of hierarchy in the structure of knowledge interactions. A strong hierarchy, represented by a very 
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sloping degree distribution, is generally the sign of mature clusters in which big and long-settled 

organizations have developed a large portfolio of knowledge collaborations (Brenner and Schlump, 

2011). While weak hierarchy, represented by a very flat degree distribution, is at the reverse the sign of 

a burgeoning and nascent cluster which has not yet succeed in reaching a high level of coordination in 

knowledge exchanges. For markets in which competition and industrial organization are based on 

systemic and modular products, the existence of core-organizations able to manage the convergence and 

interoperability between separated pieces of knowledge is one of the key-conditions for clusters to reach 

a leading position on markets (Balland et al., 2013). When cluster display hierarchy, they exhibit a core-

periphery structure (Borgatti and Everett, 1999) in which highly connected organizations designing 

technological standards co-exist with loosely connected ones, generally new entrants such as spinoffs 

and SMEs. In terms of industrial organization, this topological form of networks conveys a structure in 

which the growing capabilities of central organizations to manage the systemic process of innovation do 

not play against but co-exist with a dynamics of new entries (Klepper, 1996). This structure of 

knowledge interactions in clusters has been documented by Owen-Smith and Powell (2004) for the 

biotech industry in Boston, and by Cattani and Ferriani (2008) for the movie industry in Hollywood. 

Therefore, cluster policy practitioners have to pay attention on the existing structure of knowledge 

interactions. They can help some of the burgeoning organizations to become core-ones in nascent 

clusters or, at the reverse, provide incentives for entrepreneurship in mature clusters. 

 

- Assortativity 

 

Beyond the shape of the degree distribution, the shape of the degree correlation also matters. Called 

assortativity in network theories (Rivera et al., 2010; Ahuja et al., 2012), the degree correlation offers a 

formal view not only of the co-existence of highly and poorly-connected organizations in a same cluster, 

but on how both interact together. A network is strongly assortative when highly-(poorly-) connected 

organizations tend to form relationships with other highly-(poorly-) connected organizations, and 

disassortative when core-organizations tend to interact more with peripheral ones. Therefore, the 

assortativity of clusters is an indicator of the knowledge pathways between big organizations and less 

central ones, such as spinoffs and SMEs. As evidenced by Crespo et al. (2016), a too strong assortativity 

in mature clusters weakens their endogenous capabilities to renew themselves over time. The main 

challenge for successful and mature clusters is to avoid entering into decline when the markets on which 

they are well-installed also decline. Network assortativity, after a while, becomes a source of 

conformism and negative lock-in (Watts, 2004), due to an excessive redundancy of knowledge flows 

within the core-component of the network. As a corollary, fresh and explorative knowledge produced by 
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peripheral organizations have difficulties to reach and irrigate the core of the network. Accordingly, 

disassortative structures of knowledge interactions enable clusters having a higher propensity to 

continually overlap emergent and mature markets, by multiplying pathways between the burgeoning 

ideas developed by new entrants and the market experience acquired by core-organizations. Therefore, 

policy makers have to consider this network property carefully in order to provide good collaborative 

incentives at the right moment. For that, they need to pay attention both to the existing structure of 

knowledge flows and the phase of the business cycle on which clusters are situated.  

 

The concept of network failures is not only a pure and un-contextualized theoretical argument to justify 

public incentives for knowledge collaborations in clusters. It also requires an approach taking into 

account the territorial context on which these incentives are implemented. That is why the selection 

mechanism of collaborations has to rely on a diagnosis on the specificity of each cluster, in order to 

better target the potential missing links that could foster innovation at the reginal level. The actual 

network failures can be weak or strong, and depend on a wide range of critical parameters policy makers 

have to capture in order to better contextualize their intervention. 

 

 

3. The context of Aerospace Valley in Toulouse 

 

3.1.  Cluster context: mature markets and the need for regional diversification and relatedness 

 

Greater Toulouse (France) is a leading and historical place for aeronautics and space industries in 

Europe (Dupuy and Gilly, 1999; Niosi and Zeghu, 2005; Zuliani, 2008; Gilly et al., 2011). The main 

oligopolistic companies of these two related industries and some of their plants are located in Toulouse 

(Airbus, Airbus Defense and Space, ATR, Thales Alenia Space, Safran, among others), and the city 

hosts the main French high schools of engineering and research in this technological domain (Sup’Aero, 

ONERA, Federal University of Toulouse, among others) as well as the headquarter of the National 

Center for Spatial Studies (CNES). This cluster displays three main characteristics: (i) its maturity, since 

it leads the European aeronautics and space industries, (ii), its centrality, since it is at the center of the 

whole of European industrial and innovation networks in the technological field; (iii) its developing 

diversification, since it faces challenges related to environmental constraints and new balances between 

military and civilian market opportunities, in particular in the transversal domain of on-board and 

embedded systems, that gives rise to the emergence of new industries, such as GNSS (Global 

Navigation Satellite Systems), drones, and other related industries. 
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3.2.  Cluster policy: the two stages selection process and the changing guidelines of 

collaborative incentives over the period 

 

Aerospace Valley is a cluster governance structure born in 2005, as the result of the implementation of 

the still ongoing French Cluster Policy. The cluster has been selected by the French government as one 

of the seven “world-wide clusters” in the French cluster classification (beside the eleven “globally 

oriented clusters”, and the fifty three “national clusters”). The aim of the national policy consists in 

fostering innovation by selecting a set of 2-dimensions vectors of regions and technological domains 

that are eligible for receiving grants for R&D collaborative projects. Aerospace Valley is thus one of 

these leading selected vectors, with “greater Toulouse and its administrative NUTS2 region” and 

“aeronautic, space, and embedded systems” as vector coordinates. The governance structure of the 

cluster is appointed to provide networking activities and facilitate the emergence of R&D collaborative 

projects between the industry and the academia. In particular the structure is responsible of organizing 

the first stage of the selection process for the national calls for proposal launched by the FUI (Single 

Inter-Ministry Fund) and the ANR (French Research Agency). This first stage consists in a certification 

process of the most promising R&D research consortia that meet the strategic objectives of the cluster. 

Once this certification done, the second stage of the selection process is organized at the national level. 

The FUI and ANR regularly launch calls for proposal for R&D collaborative projects for which only 

consortia certified at the cluster level can apply. The public incentives for collaborative innovation and 

cluster development are thus organized at two levels. First, the local certification process is an incentive 

for firms and public research organizations to work together in order to expect public funds for their 

research activities. Second, the national selection is a strong incentive for cluster managers to nurture 

synergies and collaborations in order to get an increasing number of grants and maintain their position 

in the French cluster classification. 

 

The French cluster policy guideline relies on the awareness of the network failures identified in the 

literature. But this guideline is not set in stone since 2005. First, it has changed at the national level over 

the period. Second, cluster managers, in the limits of the French guideline constraints, have a degree of 

latitude to adapt their incentives for R&D collaborations. The main constraint that has not move since 

the birth of the policy concerns the necessity for R&D collaborative projects to gather private 

companies and public research organizations. At the reverse, other constraints and incentives have 

evolved over the period. First, the constraint of being located in the geographical perimeter of the cluster 

to be part of a project has been early relaxed. Too closely related to Porter’ ideas of cluster organization, 
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this constraint reduced collaborative opportunities and the influence of clusters abroad. Once relaxed, it 

became possible to apply at the national grants with projects certified by more than one cluster 

governance structures. Second, to deal with the Matthew effect according to which the selection process 

naturally allows the rich to get richer, strong incentives to include SMEs in R&D consortia has been 

designed at the national level and absorbed at the cluster level. Lately, strong incentives have been 

added in order to boost not only exploration, but also exploitation and markets, putting the concept of 

“factories of the products of future” beside the “projects factories” at the heart of the new guideline. 

Finally, with the possibility given by the national constraints to grant inter-cluster collaborative projects, 

many clusters including Aerospace Valley recently provide strong incentives toward industrial 

diversification, in order to better overlap mature and emerging markets. 

 

4. Data collection and methodology 

 

Identifying and characterizing networks in clusters using public-funded R&D collaborative projects 

requires particular cautions in terms of data collection, time window definition, and adapted 

methodologies of network analysis.  

 

4.1. Data collection and disambiguation 

 

Data collected on collaborative projects certified by Aerospace Valley and granted at the national level 

between 2006 and 2015 constitute the material used to analyze the evolving structural properties of the 

cluster. These data are extracted from Aerospace Valley website and the public national list of selected 

projects. They concern the FUI and ANR programs, both being the main national programs aiming at 

repairing network failures in innovation activities and restoring incentives to collaborate on knowledge. 

These data include project scientific abstracts, and information about the consortium members (location, 

institutional form). If the collection of projects does not suffer from limitations, that is not the case for 

the project members. Indeed, an extensive effort of identification and disambiguation was required to 

work with fine-grained data. This effort focused on an appropriate targeting of departments and plants 

actually involved in projects, in order to avoid the over representation of multi-plant companies and 

large public research organizations. Project websites, companies activity reports and scholars affiliation 

have been consulted in order to refine the database, and have an actual information on the location and 

the size of each node of the network. When contradictory information remained, e-mails to academics 

and engineers have been sent and the answers enable us reaching a sufficient fine-grained extraction.   
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Over the period, 248 projects have been granted. We split the period into four sub-periods using start 

date of projects in order to affiliate projects to cohorts with comparable time window and size. Table 1 

presents basic statistics on collaborative projects over the period. 

 

Table 1 here 

 

The nodes have been typified according to 4 categories: Big companies, SMEs (less than 100 workers), 

PROs (public research organizations), and others (including technological platforms and agencies, 

public institutions). Their location is also taken into account in a binary way by distinguishing nodes 

located into the administrative area of the cluster and the others. Figure 1 describes the evolving 

demography of nodes according to these specifications.  

 

Figure 1 here 

 

 

4.2. Overpassing bias and capturing groups’ behavior: the place-based network methodology 

 

Analyzing how public collaborative incentives drive network structuring in clusters requires aggregating 

collaborative projects funded in a same time window (same cohort), and reproducing the process for all 

the other time windows. Several previous empirical studies applied this methodology in the context of 

regional cluster analysis (Owen-Smith and Powell, 2004; Giuliani and Bell, 2005; Vicente et al., 2011; 

Ter Wal, 2013; Levy and Talbot, 2015; Crespo et al., 2016). When collaborative projects are 

considered, network analysis can start by the construction of a 2-mode network, i.e. an affiliation 

network drawn from a rectangular matrix and composed by one type of node (the organizations) 

connected to another type of node (the projects). In this type of networks, there are any direct ties 

connecting nodes of the same type. But at the reverse, two projects can be linked by one or several 

organizations, and two organizations can be tied by one or several projects. This type of network has 

been suggested by Uzzi and Spiro (2005) and Balland et al. (2013) since it allows having a first view of 

how projects in a same technological field can be linked together by multi-affiliated organizations. 2-

mode networks can be turned into 1-mode networks (Breiger, 1974), in order to capture the structure of 

innovative activity in clusters. 1-mode networks are drawn from a square matrix and are composed by a 

set of nodes representing organizations and a set of ties representing knowledge flows between them. 

This methodology has proven his reliability to identify critical organizations in knowledge 
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dissemination at the micro-level, and salient structural properties at the meso-level. Nevertheless, as 

pointed by Vicente et al. (2011), this network-based analysis is not exempt of bias and limitations.  

 

First, when networks are drawn from the aggregation of R&D consortia, i.e. from the aggregation of 

cliques of fully interconnected organizations, different bias can occur (Newman et al., 2001; Uzzi and 

Spiro, 2005). Most of all are related to the risk of confusion in ego-network properties such as degree 

centrality and brokerage, due to the heterogeneity in the size of cliques. They can give rise to misleading 

interpretation in the actual role of organizations in knowledge dissemination. To give an example of 

these misinterpretation risks, let us consider an organization that is affiliated to one 15-members 

consortium, and only to this one. It will have a high degree centrality, while, as shown by Bernela & 

Levy (2017), its influence and involvement in the innovation system can be very weak, in particular if 

this organization does not actually interact with all the other consortium members. Let us now consider 

another organization involved in 3 collaborative projects affiliating each one only 3 partners. Its degree 

centrality will be less significant due to a smaller relations portfolio, while one can expect a higher 

involvement in projects and a more strategic position in the network. Dealing with this issue is a 

challenge for network-based cluster analysis, in particular when the size of consortia strongly differ, as 

it is typically the case in that analysis in which the consortia size go from 2 to 32 organizations (see 

table 1 above). Therefore, methodologies that correct this bias are required. The idea is to better 

apprehend the skeleton of the network by capturing the actual influence of nodes but without 

introducing noise related to the heterogeneous size of consortia.  

 

Second, as early demonstrated by Pallotti and Lomi (2011), not only nodes position and direct ties 

explain knowledge dissemination in networks. Starting from the ideas on structural equivalence 

developed by Lorrain & White (1971) and Burt (1987), they show that groups’ behaviors also matter. 

Structural equivalent organizations have similar patterns of relations to others, and thus share and face 

same resources and constraints (Stuart and Podolny, 1996; Gnyawali and Madhavan, 2001; Aarstad et 

al., 2009). They tend to contribute to innovation communities in a same way not only because they 

influence each other by direct ties, but because they face similar dependencies and relational contexts 

(Knoke, 1983; Burt, 1987; Mizruchi and Galaskiewicz, 1993). Identifying groups’ behaviors based on 

structural equivalence enables having a complementary way to deal with the influence organizations 

have in the aggregate structure of knowledge interactions. By giving the skeleton of the network, it also 

allows better capturing the changes on the structural and relational patterns (Brieger, 1976; Borgatti and 

Everett, 1992; Doreian, 2012). 
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Rather than limiting the study to a simple 1-mode network analysis, we suggest developing an alternate 

methodology that correct the bias at the same time that it considers groups’ behaviors, without 

compromising the possibility to analyze nodes’ position in networks. We use for that the so-called 

“network of places” approach early developed in sociology by Pizarro (2007). To define a place Pi of 

structural equivalent organizations, let us start by considering a finite set of organizations 𝐼 =

{𝑖1, 𝑖2, 𝑖3, … 𝑖𝑝}, each affiliated to one or more projects belonging to the set of projects, noted C (in order 

to consider each project as a fully interconnected clique), with 𝐶 = {𝑐1, 𝑐2, 𝑐3, … 𝑐𝑛}. We can define a 

place Pi of an organization 𝑖ϵ𝐼 as a subset of C such that at least one of the organizations of I belongs to 

every one and only to the projects included in the subset Pi. Therefore, for 𝑖𝜖𝐼, 𝑃𝑖 = {𝑐𝑗 ∈ 𝐸: 𝑖𝑖 ∈ 𝑐𝑗}. If 

two organizations i, j ϵ I have the same subsets of C, they belong to the same place. Then, they are 

structurally equivalent (Borgatti and Everett, 1992). Places become the new nodes of the network, that 

are connected by a relation R when 𝑃𝑖 ∩ 𝑃𝑗 ≠ ∅. Therefore, the set P of all the places defined in C and 

the set R of their relations constitute the network of places. This set P can be also defined as a set P(k,l), 

where k represents the number of projects in which organizations are involved together, and l the 

number of organizations belonging to the place. This reduction process based on structural equivalence 

and groups’ behavior gives the skeleton of the organizational 1-mode network, without losing the 

organizations, which remain in the structure, but now as simple places’ constituents. In addition, it 

provides a simple, accurate and fast algorithm for the study of structural equivalence (Doreian, 2012). 

 

Figure 2 here 

 

Figure 2 highlights in a stylized way the process that turns a network of projects (cliques of fully 

connected nodes) into a network of places, where nodes are now places gathering structural equivalent 

organizations. Box 1 presents a structure of knowledge interactions composed of 4 collaborative 

projects, themselves each one composed (in transparency) of fully connected cliques of organizations. 

Box 2 turns this structure into a simple 1-mode network. Box 3 sorts structural equivalent organizations 

into distinct groups, while box 4 preserves in transparency the previous 1-mode network, and displays 

now the network of places, that are connected by inter-organizational ties.  

 

Table 2 here 
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We turn the 1-mode network of organizations into a 1-mode network of places in order to better focus 

on the groups’ behaviors of the Aerospace Valley network skeleton. Table 2 presents basic statistics of 

this new network.  

 

Figure 3 provides an actual illustration, limited here at the fourth cohort of the Aerospace Valley cluster, 

in order to have a better view of how this reduction process gives the skeleton of the network and 

neutralizes the bias related to the strong heterogeneity of R&D consortia size. 

 

Figure 3 here 

 

 

5. Identification of the evolving structural properties of Aerospace Valley Cluster 

 

By designing collaborative incentives and selection routines of R&D consortia, cluster policy makers 

expect reaching their objectives related to better public knowledge dissemination, SMEs entries, global 

connectedness and technological diversification. But is the visible hand of the policy maker as dexterous 

as that of the juggler to repair network failures? A detailed analysis of the skeleton of knowledge 

networks in clusters can help dealing with this question. It consists in discussing the degree-related 

structural properties of the network of places, in order to assess if selection routines meet the policy 

makers’ objectives. 

 

5.1. Degree distribution (hierarchy), degree correlation (assortativity) 

 

Figure 4 here 

 

If we stay at a pure structural level, the evolving properties of hierarchy and assortativity give a first 

overview of how the topological forms of the network of places have changed over the period. Figure 4 

summarizes these evolutions. First, hierarchy, which is measured by the gradient of the degree 

distribution, remains high but has declined over the period with a slight increase from cohort 2 to 3. It 

means that Aerospace Valley cluster is typified by a high but decreasing level of places centralization. 

Because places represent homogenous groups’ relational behaviors, this high level of centralization 

indicates the coexistence between groups of organizations with different size of relational portfolio, 

from a couple a highly connected organizations that collaborate with many others to poorly connected 

organizations. But over the period, the influence and coordination capabilities of groups have been more 
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distributed between a larger number of less central places. Second, the network of places is typified by a 

bell curve of degree correlation. It indicates a changing balance in the paths between highly and poorly 

connected places and the organizations that belong to them. Indeed, highly connected organizations in 

cohort 1 tend to collaborate more with poorly connected organizations than in cohort 2 and cohort 3. 

This pattern shows that the network tends to be more and more assortative, with an increasing tendency 

of highly connected organizations to interact together. Nevertheless, the assortativity decreases in the 

last period, showing a reverse tendency. The most noteworthy is that hierarchy and assortativity play 

together in a different way from cohort 1 to cohort 2 and from cohort 3 to cohort 4. In the first period, 

the decreasing hierarchy goes with an increasing assortativity, signifying that a more distributed 

influence in the network has engendered more paths between places that have close degree. But this is 

not the case in the last period, in which the influence has been more and more distributed in the 

network, but at this time with an increasing tendency of highly and poorly connected places to interact 

together. 

 

5.2. Connectedness and p-cohesive blocks modeling 

 

This result invites to go more in depth into the structural properties of the network of places in order to 

have a better understanding of the drivers of these changes in the matrix of knowledge flows. The idea 

is to highlight, in the line of Moody and White (2003) methodological proposal, how places connect 

together in a nested system of cohesive blocks and form a multiconnected network (Powell et al., 2005). 

For each cohort, we extract the number of p-cohesive blocks. A cohesive block is a component defined 

as a subset of the network where the associated value of connectivity p gives the strength of cohesion of 

the block. The value p is then the maximal number of places in the subset above which the block 

cohesion disappears. Strongest cohesive blocks are cliques, i.e. those in which every place is directly 

connected to every other place. Therefore, we can characterize the network by a hierarchical nesting of 

cohesive blocks. The process consists in finding by iteration a maximal number q of p-cohesive blocks, 

with q > p. Once these blocks identified, their rank-size distribution offers a relevant mean to assess the 

“multilevel embeddedness” (nestedness in the terminology of Moody and White) of places in the overall 

network. This rank-size distribution offers a relevant mean to both identify cohesive blocks and order 

them according to both nested and fragmented groups. Indeed, cohesive blocks can overlap when places 

belong to multiple groups. The more cohesive blocks overlap, the more they bring closer in the 

distribution. Therefore, the shape of the distribution offers a relevant mean to observe how high and low 

value cohesive blocks connect together, and then how hierarchy and assortativity play together in the 

overall structure of knowledge flows.  
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Figure 5 here 

 

Figure 5 describes the construction of the p-cohesive blocks and the iteration process offering the nested 

and hierarchical system of p-cohesive blocks for the cohort 1. For instance, the block B-1 is a 0-

cohesive block representing the entire network. The value is 0 since any places are able to give a 

cohesive structure. The block B-7 is one of the subset of B-1 defined as a 3-cohesive block in which at 

least 3 places offer cohesion in a subset of 87 places. The iteration process goes on until B-20, which is 

the cohesive block having the highest value of cohesion. And finally, other cohesive blocks with a 

decreasing p-value are extracted from the part of the network that does not include subsets of the 

previous ones. The shape of the distribution displays two close peaks, i.e. two highly cohesive blocks 

(B-21 and B-20). In this cohort, these two strongest cohesive blocks overlap since two central places 

belong to both, explaining why they are ranked one after the other in the distribution. Therefore, for 

cohort 1, the distribution shows the high level of centralization of the network and the weakly 

distributed control of knowledge flows. 

 

Figure 6 here 

 

We repeat this process of nested construction of p-cohesive blocks for the four cohorts. Results are 

summarized by the four distributions in the figure 6. From cohort 1 to cohort 4, the maximal p-value 

decreases while the number of blocks increases. This observation confirms the previously observed 

decreasing hierarchy over the period, but also shows that the tendency of closure between leading places 

decreases as well, explaining why the number of “pockets” of influence increases in the overall 

network. This finding supports the idea of a more distributed influence in the coordination of R&D 

activities over the period and a gradual shift in the balance between closure and bridging that can better 

explain why in the last period hierarchy decreases at the same time than assortativity. Indeed, one can 

observe in figure 6 that when the higher p-values decrease over the period, the “distance” between peaks 

in the distribution increases, which that shows that higher cohesive blocks are less and less closely 

connected each other by other highly connected places. This finding shows that more poorly connected 

places bridge highly cohesive groups, explaining the decreasing level of assortativity and a better 

connection between highly and loosely connected places. 
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6. Discussion of the findings 

 

How to turn these findings on the evolving structural properties of Aerospace Valley into more 

qualitative readings related to the role of public collaborative incentives on the cluster structural 

change? As evidenced above, the network structure has changed over time, from a highly concentrated 

to a more distributed structure of dominant cohesive blocks of places. One can expect that the cluster 

policy guideline has impacted the cluster structuring towards a more decentralized pattern of 

coordination, in which the balance between closure and bridging has changed over the period, pushing 

organizations to reorient their collaboration pattern toward more path-breaking and less assortative 

relational behaviors. A suited solution consists in looking at the organizational demography of places. In 

doing that, the composition of places and how it evolves over time can allow identifying who the agents 

of structural change actually are.  

 

6.1. The changing structural role of SMEs 

 

One first way to assess the changing structural properties of Aerospace Valley over the period is to focus 

on the so-called elite component (Powell et al., 2005) of the 4-cohorts networks. The elite-component is 

composed by the places belonging to the two highest levels of p-cohesive blocks. This elite component 

corresponds to the peaks of the multi-component distribution. Figure 7 provides simple statistics of this 

component and how its demography evolves over time. 

 

Figure 7 here 

 

The first observation, as regard the organizational demography of the whole network (see figure 1), 

reveals that the compared shares of each organizational category in the whole network and in the elite 

one evolve according to a particular pattern. For big companies, as expected due to their intrinsic high 

relational capabilities, their presence in the elite network is largely superior to their presence in the 

entire network, but slightly decreases in the fourth period. SMEs at the reverse are less than 

proportionally present in the elite network than in the entire one in the two first periods, start to fill the 

gap during the third one, and succeed in reversing the pattern during the fourth one, with a presence in 

the elite network slightly superior as regard the entire network. Considering that the extent of relational 

portfolio is generally strongly correlated to the organization size, this pattern raises the question not 

only of the SMEs entries, but also the question of their evolving structural role in the cluster. Finally, 
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becoming victim of the fast growing entry of SMEs in the elite network, the share of public research 

organizations decreased over the two last periods. 

 

How to explain such a structural pattern? As mentioned in the presentation of the changing guidelines of 

collaborative incentives, a first trivial answer relies on the fact that policy makers have offered stronger 

incentives to involve SMEs in the R&D consortia. These incentives have produced visible and not 

surprising effects on the fourth period, with a jump in the number of SMEs involved in the entire 

network. But this answer does not suffice to explain why SMEs have succeeded in entering more than 

proportionally the higher p-cohesive blocks of the network of places, which was a neither intentional 

nor possible objective from policy makers.  

 

The decreasing values of p and the changing distribution of p-cohesive blocks over the period find 

explanations in the relational capabilities and behaviors of SMEs as regard big companies. By entering 

step by step the elite network, SMEs have changed the pattern of the more central cohesive groups. 

First, SMEs being more constrained in the extent of their relational portfolio than big companies (Street 

and Cameron, 2007), the network hierarchy has decreased, giving rise to a core of the network less and 

less focused on a couple of highly connected monopolistic companies. From the start to the end of the 

period, SMEs have progressively reinforced their role in the connectedness and cohesiveness of the 

network, being less and less peripheral, and more involved in the overall coordination of technological 

dynamics. Their stronger presence in the highest cohesive groups, where triadic closure is higher than 

elsewhere in the network, shows that they are not only purveyors of fresh knowledge at the margin. At 

the reverse, they increasingly tend to attend the design of technological standards that drive the future 

market exploitation. Second, SMEs displays an alternate pattern of collaborations as regard big 

companies. Literature in Geography of Innovation has early shown that SMEs and big companies in 

some extent differ in terms of innovation strategies. Audretsch and Lehman (2005) have evidenced that 

nascent and big companies have different perceptions about the opportunities to turn knowledge 

exploration into markets. New entrepreneurs and R&D managers of well-installed companies differ in 

their timorousness facing uncertainties and risks in market-oriented researches, the former being 

steadily less conformist than the later. These consistent differences in innovation management also find 

their counterparts in the relational behaviors and strategies. Since they may be willing to absorb more 

risks than big companies managers, new entrepreneurs tend to favor weak ties over strong ones in order 

to explore new windows of technological opportunities. Considering the well-known inverted U-shaped 

relationship between tie strength and new knowledge creation (McFadyen and Cannella, 2004; Lowik et 

al., 2012), these differences in relational behaviors might suggest that new firms are certainly more 
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numerous on the left-hand side of the curve, while big companies monopolize a large part of its right-

hand side. Therefore, between under and over-embeddedness, the evolving composition of elite places 

can explain why, as far as SMEs enter the elite part of the network, p decreases at the same time that the 

distance between the higher p-cohesive blocks increases. The tendency of SMEs to adopt bridging 

strategies over closure deconcentrates the nested systems of cohesive blocks observed when the elite 

groups were dominated by big companies, giving over time a more and more decentralized structure in 

the distribution of influential places. 

 

6.2. cluster/pipeline structure as a driver of diversification and less assortative knowledge 

networks 

 

A second way to assess the changing structural properties of Aerospace Valley over the period also 

consists in starting again by the demography of the network, but this time in relation with the inter-

clustering dimension of selected R&D consortia. The public incentives to apply to multi-cluster 

projects, which have been implemented early after the initial policy guideline, have increased the extent 

of possible knowledge interactions for the organizations located in the Aerospace Valley area. The 

evolving structural properties of knowledge network probably find explanations in the way with which 

the different organizations of the cluster have benefited from these incentives.  

 

Figure 8 here 

 

Figure 8 displays over the period the shares between single and multi-granted collaborative projects, 

taking into account that the shares between the organizations affiliated to the Aerospace Valley cluster 

and others affiliated in other clusters remains roughly stable over the period (see Figure 1 above). The 

more salient observation is related to the strongly decreasing share of single-granted R&D consortia 

over time, with stabilization at the last period. Less than half of the projects are supported only by the 

cluster association, while the others are sustained by at least another French cluster. A small part 

concerns projects supported by other aerospace clusters, this part being stable over the three last cohorts. 

But the most noteworthy evolution is related to the growing technological diversification of the 

network. Firstly, we observe a growing share of collaborative projects conjointly supported by French 

IT clusters during the three first cohorts. These pipelines are typical of many clusters and industries that 

invest in digitalization. For Aerospace Valley, these pipelines mainly concern both embedded systems 

and space industries, around the development of GNSS (Global Navigation Satellite Systems), which 

require technological convergence between telecommunications and spatial data transmission (Vicente 
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et al., 2011). Secondly, the same occurs for projects conjointly supported by other clusters specialized in 

many other industries, over time and with a particular growth during the last cohort. Therefore, 

knowledge pipelines also exist between different places and industries
1
, and their recent development 

seems to be the sign of a structural change in the long run technological dynamics of the cluster.  

 

Figure 9 here 

 

How to explain the parallel between this growing technological diversification and the evolving 

structural properties of the Aerospace Valley network skeleton? Figure 9 allows understanding this 

changing pattern during the last period. Indeed, if we consider all the places of the 4-cohorts network in 

which organizations connect at least two collaborative projects among which one of them is granted by 

a cluster out of the aeronautics and the IT industry, we observe that the share of SMEs has strongly 

increased from the three first periods to the last one, while big companies prevail in the first one and the 

public research organizations in the second and third ones. Here again, SMEs appear as the main agents 

of the cluster structural change, and not only at the topological level of the network, but also at the 

cognitive level. Their tendency to be less conformist than big companies in their search from partners at 

the relational level is also reflected in their higher willingness to break the industrial frontiers. The 

decreasing assortativity of the network during the last period is then supported also by technological 

bridging and relatedness, increasing the potential of diversification of Aerospace Valley over time. 

 

 

7. Conclusion 

 

Cluster policies have been often assessed in the literature, with a focus on their final objective, i.e. their 

ability to increase regional innovative outputs, employment or export aggregates (Falck et al., 2010; 

Martin et al., 2011, Brossard and Moussa, 2014), with sometimes opposite results. But few works have 

investigated their specific and intermediary dimension, i.e. their influence on the structuring of 

knowledge networks. This dimension is probably one of the critical factors of the performance of 

clusters, or at least the one that differentiates cluster policies from other individual incentives to 

innovate (Nishimura and Okamuro, 2011). Expecting high economic returns of cluster policies involves 

first shaping networks with good properties, so that the causality between cluster policies and regional 

performances also relies more on the topological properties of networks than on the existence networks 

per se. The paper was aiming at dealing with that challenge, by going in depth, prior to evaluation, into 

                                                           
1
 15 industrial sectors are listed by the French cluster policy, each cluster being affiliated to one of them. 
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the links between the public micro-incentives to join R&D consortia and the evolving structural 

properties of knowledge networks in a particular cluster. 

 

At the methodological level, searching from the structural properties of networks composed of R&D 

consortia has required avoiding the bias and overpassing the limitations of classical 1 and 2-modes 

networks. The place-based network methodology has enabled us suggesting a new way to capture the 

evolving structure of the network skeleton, centered on a clear cut identification of structurally 

equivalent relational behaviors. This way to proceed has highlighted the evolving structural properties 

of the cluster over time. The evolving indexes of degree distribution and correlation show that the 

structure of knowledge interactions has changed over the period, from a highly hierarchical structure, 

centralized around a couple of long-installed oligopolistic companies, to a more democratic, less 

assortative, and multipolar structure of knowledge flows. The analysis of the evolving composition of 

places has allowed better understanding who the agents of the structural change in the cluster actually 

are. Indeed, one of the salient findings relates to the continuing entries of SMEs in the elite part of the 

network, which has changed the relational behavior of the agents of the core-component of the network, 

with a stronger tendency to favor bridging strategies over closure, at the relational as well as the 

cognitive levels. If we follow previous theoretical (Rivera et al., 2010; Crespo et al., 2014) and 

empirical findings (Uzzi and Spiro, 2005, Breschi and Lenzi, 2016; Crespo et al., 2016) on the efficient 

properties of local knowledge networks, this changing pattern in the Aerospace Valley network may 

involve the possibility of a more adaptive and innovative cluster. 

 

At the policy level, even if the contribution is restricted to a single case study among the whole of 

clusters supported by the French policy, some lessons about the effects of public incentives developed 

in clusters can be drawn. At first glance, the broad objective of helping clusters to turn mature industry 

into diversified markets seems to have been achieved. Under the growing constraint to apply to inter-

cluster projects, Aerospace Valley has reached a threshold in technological relatedness and 

transversality during the last period of the study. The cluster association staff has succeeded in nurturing 

less and less conformist collaborative projects, which afterward have been selected and granted at the 

national level. But did the local staff as well as the national experts actually control this new pattern of 

knowledge interactions? It is not sure. Or at least a part of this pattern has probably escaped them. 

Indeed, the growing incentives oriented to SMEs were at the origin merely dedicated to repair a network 

failure related to their difficulty to connect knowledge networks. For policy makers, nothing could have 

predicted that SMEs would enter the elite network more than the network per se, nor than they would 

have a stronger tendency to have non assortative behaviors and capabilities to blur technological 
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frontiers. Therefore, the visible hand of cluster policy makers does not control all the process that shapes 

the structural properties of knowledge networks. The changing pattern of Aerospace Valley network 

took a long time. SMEs were first relegated at the network periphery, without any significant influence 

on the network structuring. They succeeded after a while in positioning themselves in the elite part of 

the network, without any more incentives, but with their own growing experience in the attendance at 

collaborative projects. But an open question still remains, which also probably escapes the intentions of 

cluster policy makers. The pressures to increase the attendance of SMEs at projects have strongly 

evinced public research organizations from the elite network. It could weaken the cluster in the near 

future, limiting the diffusion of fundamental and explorative knowledge through the entire network, and 

the long run dynamics of the cluster. 

 

Following this research, a last question also remains open and is related to the challenging 

systematization of the place-based network methodology to improve the assessment of cluster policies. 

As it is mostly the case, cluster policies are designed at the national level and applied in a couple of 

selected regions (Uyarra and Ramlogan, 2012; Fontagné et al., 2013). Considering that, the 

methodology developed in this research can help having a better understanding of why some clusters 

perform better than others when they receive the same incentive scheme but present different network 

failures, and different social and industrial contexts. 
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Tables 

 

 #nodes #projects Mean size projects Min size projects Max size projects 

Cohort#1 313 56 7,84 2 32 

Cohort#2 314 52 7,88 2 22 

Cohort#3 395 78 6,79 2 25 

Cohort#4 323 62 6,65 2 13 

Table 1: network descriptive statistics 

 

 
 #places Mean k per 

place 

Min k per 

place 

Max k per 

place 

Mean l per 

place 

Min l per 

place 

Max l per 

place 

Cohort#1 118 2 1 18 2,65 1 18 

Cohort#2 104 1,88 1 14 3,02 1 12 

Cohort#3 150 1,85 1 14 2,63 1 17 

Cohort#4 112 1,71 1 7 2,88 1 10 

Table 2: descriptive statistics (network of places) 
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Figures 

 

 
Figure 1: evolving demography of Aerospace Valley network 

 

 

 

 
Figure 2: a stylized construction of a network of places 
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Figure 3: 1-mode network and network of places (Aerospace Valley cluster, cohort#4) 

 

 

 

 
Figure 4: Degree distribution and correlation over time 
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Figure 5: the construction process of the p-cohesive blocks of the cohort 1 
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Figure 6: p-cohesive blocks (4 cohorts) 

 

 

 

 

 
Figure 7: The elite component of the Aerospace Valley network 
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Figure 8: Single & multi-granted projects and diversification 

 

 

 

 

 
Figure 9: Organizations linking aerospace industry and other technological fields 
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