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Abstract 
	
	
The paper analyzes links in knowledge networks that are essential for the integration and 

knowledge diffusion properties of the entire network. By focusing on critical links, as defined in 

network science, we evaluate these links’ properties from the perspective of the proximity and 

regional gatekeeper literature. We thereby gain insights into likely conditions of their emergence 

and functions. Moreover, we extend the dyadic perspective on regional gatekeeper organizations 

and link it more strongly to the network science and proximity framework literature. 

An empirical study applies these arguments and investigates the proximity characteristics of 

critical links in 132 technology-specific subsidized knowledge networks in Germany. The results 

show that critical links tend be formed between regional gatekeepers that offer related knowledge 

resources. The links bridge institutional distances by utilizing the benefits of geographic and 

social proximity. 
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1 Introduction 
	
Inter-organizational innovation networks have received considerable attention in the literature 

(Ozman, 2009; Powell et al., 1999). In the field of Economic Geography, the spatial 

configuration of knowledge networks and their development in space in particular has been in 

focus (Boschma and Ter Wal, 2007; Giuliani and Bell, 2005; Morrison, 2008). Amongst the 

most prominent theoretical frameworks for studying network emergence, evolution, and their 

effects in this literature is the proximity concept, developed by the French school of proximity 

dynamics (Torre and Gilly, 2000). Its popularity further increased through the work of Boschma 

(2005). This framework highlights the relevance of various proximity dimensions influencing 

the likelihood of knowledge link formation. In complementarity with network structural factors, 

such as triadic closure and preferential attachment, it has been shown to provide a powerful 

basis for studying network evolution and for analyzing the emergence or dissolving of links in 

general (Balland, 2012; Broekel and Hartog, 2013a). 

However, in network science it is argued that not all links in networks are of similar importance. 

While some links are essential for network wide knowledge diffusion, others are merely of local 

relevance or even a matter for individual nodes at best (Cassi and Plunket, 2013). This paper 

focuses on links in networks that are most important from a network science perspective, 

namely those frequently referred to as “bridging” or “critical” links (Burt, 2004; Granovetter, 

1973). These links are crucial for integrating the complete network by linking otherwise 

sparsely or even completely unconnected parts of the network. With the exception of Cassi and 

Plunket (2013), the network related literature in the field of Economic Geography has, however, 

exclusively focused on explaining the emergence and effects of “average links”, ignoring the 

heterogeneity in links’ network structural importance. In other words, despite their importance, 

little is still known about critical links in this literature, which is the primary motivation for this 

paper. 

We contribute to the discussion in the work of Cassi and Plunket (2013) and revise some of 

their arguments. Moreover, we add insights from the literature on regional gatekeepers, which 

discusses similar issues. However, in contrast to the dyadic concept of “critical links”, the 

regional gatekeeper literature focuses on the node/organizational level. For instance, Giuliani 

and Bell (2005) and Graf (2011) emphasize that the performance of regional innovation systems 
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crucially depends on the presence and effectiveness of a small number of “gatekeeper” 

organizations connecting the regional systems’ internal knowledge exchange processes to global 

knowledge networks. Similar to critical links, gatekeeper organizations function as bridges 

between otherwise sparsely connected parts of knowledge networks. We argue that they 

frequently achieve this by being part of a critical link. By gaining a better understanding of 

critical links and their relations to gatekeeper organizations, the paper therefore seeks to further 

integrate the network science, proximity framework, and regional gatekeeper literature. 

The theoretical discussions are complemented by an empirical study, which extends the 

empirical investigation of Cassi and Plunket (2013), which is limited to a single network in 

genomics. In contrast, we identify critical links in 132 inter-organizational technology-specific 

knowledge networks allowing for more generalizable findings. 

In accordance with the hypotheses, we find critical links to be more likely than “average links” 

to connect socially proximate organizations operating in different institutional frameworks and 

that are located in geographic proximity. Moreover, critical links provide access to related 

knowledge resources, underlining their relevance for enriching sub-networks’ and in many 

cases regional knowledge bases. 

The paper is organized as follows. Section 2 provides the theoretical discussion on critical links. 

Section 3 describes the database, which covers information on collaborative R&D used to 

construct knowledge networks. The empirical approach and the results are presented in Section 

4. Section 5 concludes the paper. 

	

2 Theoretical background 
	
2.1 Critical links in network science 
 
The concepts of “weak ties” (Granovetter, 1973) and “structural holes” (Burt, 1992) are central 

frameworks in social network theory. The idea behind strong and weak ties is that strong ties 

are formed within densely connected sub-networks and weak ties span boundaries between 

these sub-networks. In the context of knowledge networks, densely connected groups of nodes 

are frequently characterized by high degrees of redundancy and rather homogenous knowledge. 

In order to get access to non-redundant knowledge and new information, these groups need to 

establish links to other groups. In the event of two groups or sub-networks being characterized 
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by non-redundant knowledge, they are said to represent a so-called “structural hole” (Burt, 

1992). By bridging such structural holes, weak ties increase the diffusion of non-redundant 

knowledge in the network, which raises the potential for novelty creation. 

Another class of links that has received attention in network science are so-called “critical 

links”.1 Such critical links connect poorly or otherwise disconnected sub-networks (Burt, 2004; 

Granovetter, 1973). Crucially, when critical links dissolve, the network falls apart and 

knowledge diffusion among its members is severely reduced. Due to the fact that these links 

connect sparsely linked parts of the network, they represent “bottlenecks” (Sytch et al., 2012) 

or “bridges” (Glu¨ckler, 2007). While every critical link can be classified as a weak tie, the 

same is not necessarily true of the reverse. Critical links are crucial for the structure and 

integration of the complete network, while weak ties may only have local relevance. Figure 1 

visualizes the idea of critical links. 

	
Figure 1: Critical link in a network 

 
	
Contrasting their network-theoretical importance, little research exists on such critical links in 

knowledge networks. An exception is the study of Cassi and Plunket (2013). These authors 

compare the formation of “closure links” (intra-component links) with critical links on the basis 

of the French co-inventorship network in the field of genomics. Their study reveals that critical 

links have additional properties not directly related to their positions in networks.  

	

2.2 The proximity framework 
	
When assessing differences between closure and critical links, Cassi and Plunket (2013) rely on 

the so-called “proximity framework”. A range of factors influences the creation of links and 

thereby the emergence of knowledge networks. This concerns structural network properties, 

factors at the dyad and at the node level (Boschma and Frenken, 2010; Ter Wal and Boschma, 

2009). At the node level, it has been empirically shown that specific characteristics of nodes 

(i.e., organizations’ experience) determine organizations’ network embeddedness (Marín and 
																																																													
1 They are also sometimes referred to as “bridging” or “gatekeeper” links. 
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Siotis, 2008; Powell et al., 1996). The structural network level matters as well, as, for example, 

the preferential attachment argument (Baraba´si and Albert, 1999) suggests that central nodes 

are more likely to get linked to new nodes than others. 

The “proximity framework” focuses on the third level, the dyad level, which deals with the 

relationship between two nodes in the network. At this level, scholars have paid much attention 

to the proximity framework popularized by the work of Boschma (2005). He argues that five 

different proximity types crucially influence the creation of links in knowledge networks. Based 

on the French school of proximity dynamics (e.g., Torre and Rallet, 2005), the framework 

highlights that organizations are more likely to get connected when they are cognitively, 

geographically, institutionally, organizationally, or socially proximate. Hence, the proximity 

framework adopts the homophily concept from sociology (Powell et al., 2005) by explicitly 

specifying a number of relevant dimensions of similarity, i.e., the different proximity types. In 

addition to stimulating link formation, all types of proximity also play a role for the 

effectiveness of knowledge transfer and novelty generation simultaneously. 

The analytical power and empirical relevance of the proximity framework has been repeatedly 

shown. This concerns the simultaneous relevance of the different proximity dimensions for 

knowledge link creation and network evolution (Balland, 2012; Broekel and Hartog, 2013a) and 

the importance of proximity structures in knowledge links for innovation (Fornahl et al., 2011; 

Broekel and Boschma, 2012). However, the proximity framework and the empirical studies 

employing it, explain knowledge link formation and their impact in general. That is, their focus 

is on the emergence and impact of the “average” link in inter-organizational knowledge 

networks. While this is a valid strategy in most instances, it ignores the heterogeneity among 

links, which amongst others, is highlighted by Cassi and Plunket (2013). By comparing closure 

and critical links, Cassi and Plunket (2013) show that the emergence of critical links is largely 

driven by organizational and technological diversity as well as some geographic proximity. 

Without explicitly pointing it out, these authors thereby link the concept of critical links to the 

ideas of the “proximity framework” and underline that proximity structures differ significantly 

among links. Following this line of thinking, we will argue that the proximity framework can 

provide further insights into critical links: their functions as well as likely conditions of 

emergence. The same is true for the literature on regional gatekeepers, introduced next. 
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2.3 The regional gatekeeper literature 
	
Critical links connect poorly or otherwise disconnected sub-networks and bridge structural 

holes. This mirrors the role so-called “broker” organizations are argued to play in the innovation 

literature (Hargadon and Sutton, 1997). Gould and Fernandez (1989) define a “gatekeeper” as 

an actor who holds a brokering position between an actor group’s internal and external partners. 

This is analogous to the role of specific boundary spanning individuals, who link their 

organization to the external environment and are therefore called gatekeepers (Tushman and 

Katz, 1980). For instance, Allen (1977) defines “technological” gatekeeper as R&D 

professionals with the intellectual ability to absorb external information and make it accessible 

for other employees of their firm. Their intermediary position does not only impact on 

gatekeepers’ own performance (Hargadon and Sutton, 1997), but also matters for all 

organizations who rely on them for access to external knowledge (Hargadon, 1998). For the 

present paper, it is crucial that the functions attributed to gatekeepers at the node level mirror 

those of critical links on the link level. More precisely, the two concepts relate to each other as 

at least one node of the two nodes connected by a critical link is a gatekeeper node. One may 

even say that a gatekeeper node becomes a gatekeeper because of the existence of a critical link. 

The concept of gatekeeper was transferred to the spatial context by Giuliani and Bell (2005). 

These authors argue that regional gatekeepers are important for embedding regional innovation 

systems into inter-regional and global knowledge networks. They thereby serve as important 

sources for new knowledge and ideas from outside the region that are diffused into the regional 

innovation system (Gertler, 1997; Bathelt et al., 2004). Regional gatekeepers help to avoid lock-

in situations and allow organizations to exploit the advantages of strong local embeddedness 

without the negative aspects of long-term loss of diversity (Bathelt et al., 2004, Glückler, 2007). 

Due to their ability to access specific knowledge, they are also referred to as “knowledge 

gatekeepers” (Malipiero et al., 2012; Morrison et al., 2013) and play crucial roles for network 

wide knowledge diffusion. In this context, it is crucial to differentiate between gatekeepers in a 

network sense and regional gatekeepers. While the former are defined on the basis of a 

complete network, the latter are related to an organization connecting a regional network to an 

outside network. While regional gatekeepers are always gatekeepers from a network 

perspective, the same does not necessarily apply the other way around. This raises the question 
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of how critical links are related to regional gatekeepers. 

We suggest that in addition to the proximity literature, insights from the literature on regional 

gatekeepers can be helpful for understanding the emergence and function of critical links in 

networks. Crucially, in addition to enriching the analysis of critical links, we also see benefits 

from extending the strongly node-level oriented perspective on regional gatekeepers to a dyadic 

perspective. While this literature has generated a considerable amount of knowledge about the 

nodal characteristics of gatekeepers, little is known about the properties of their links. We will 

show in the following that relating critical links to the proximity framework and the regional 

gatekeeper yields benefits for all three strands of literature. 

 
2.4 An integrating perspective 
	

The network science literature defines critical links as links not located within densely linked 

parts of networks, as they are weak ties and bridge structural holes. Concerning the emergence 

of weak and strong ties, the social network literature focuses on the main determinants of 

community formation (Sytch et al., 2012). This particularly refers to the homophily effect: 

Organizations with similar characteristics are more likely to link (Powell et al., 2005). The 

homophily effect tends to reinforce the emergence of densely connected network communities; 

that is, the emergence of strong ties (McPherson et al., 2001). Accordingly, we hypothesize that 

critical links (as types of weak ties) are less likely to be characterized by homophily than 

average links. The proximity framework extends this idea and explicitly proposes a number of 

characteristics (proximities) organizations need to share in order for their link probability to 

increase. Following Boschma (2005), it is argued that geographical, cognitive, social, 

institutional, and organizational proximity in particular matter in this respect. 

Nooteboom et al. (2007) highlight the prominent role of cognitive proximity in the 

establishment of successful R&D alliances. Cognitive proximity defines the technological 

overlap between two organizations. At small cognitive distances, organizations have the 

necessary absorptive capacities for efficient communication and learning from each other. 

Moreover, and in contrast to the other proximity types, cognitive proximity creates the potential 

for novel ideas resulting from two organizations’ knowledge exchange and learning 

(Nooteboom, 2000). Cognitive proximity holds an outstanding role among the proximity types 
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for these reasons (Boschma and Frenken, 2010). As argued above, critical links span ‘structural 

holes’ and enable the transfer of novel information (e.g., Burt, 1992, 2004). In this sense, 

critical links connect non-redundant knowledge pieces and establish links between groups of 

organizations with different experiences, skills, and knowledge bases (McEvily and Zaheer, 

1999). From the proximity framework perspective, it can therefore be expected that critical links 

tend to bridge significant degrees of cognitive distances. 

Nooteboom et al. (2007) and Boschma (2005) point out that large cognitive distances are 

difficult to bridge. We therefore argue that in order to be effective and relevant for knowledge 

diffusion in networks as well as providing access to novel information (Burt, 1992, 2004; Cassi 

and Plunket, 2013), critical links are unlikely to be characterized by the most unfavorable 

conditions for knowledge transfer and communication. More precisely, we hypothesize that 

either a) the cognitive distance bridged by critical links does not exceed the necessary proximity 

for communication and learning, or b) that some other conditions allow organizations to 

overcome this distance. 

With respect to a) Teece et al. (1994) emphasize the importance of related knowledge bases for 

innovation. On the one hand, it offers a basis for novel knowledge re-combinations and on the 

other, it allows for sufficient communication (Nooteboom, 2000). If the cognitive proximity 

bridged by critical links corresponds to that of related knowledge, critical links are not the most 

likely to be formed but they can still bridge structural holes and bring together non-redundant 

related knowledge. Hence, we refine the argument of Cassi and Plunket (2013) that critical links 

are likely to bridge large cognitive distances (i.e., connecting variety) inasmuch as critical links 

are more likely to connect related knowledge. 

Concerning b), among the conditions that may allow organizations to bridge large cognitive 

distances are the cases in which other proximities substitute for missing cognitive proximity 

(Boschma, 2005). Cassi and Plunket (2015) suggest that the relatively larger cognitive2 

distances of critical links may be compensated for by other types of proximity (social, 

geographic, institutional, and organizational). 

The regional gatekeeper literature offers an idea about a particular proximity type that is likely a 

																																																													
2	Cassi	and	Plunket	(2015)	also	argue	for	critical	links	being	characterized	by	large	social	distances.	However,	in	the	
context	of	inter-organizational	knowledge	networks,	we	think	that	the	relationship	between	social	proximity	and	
critical	links	is	much	less	clear.	
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substitute for a lack of cognitive proximity in this context. Giuliani and Bell (2005) and Graf 

(2011) underline the importance of regional gatekeepers’ absorptive capacity. It allows them to 

establish long-distance links, which offer knowledge that regional organizations do not provide. 

Accordingly, they bridge a cognitive gap existing between regional organizations and region-

external knowledge networks. Moreover, Morrison (2008) shows that gatekeepers primarily 

engage with region external organizations that are active in similar or complementary 

technologies. Cognitive proximity to these organizations allows them to overcome (substitute) 

the geographic distance. We therefore expect that the cognitive distance between gatekeepers 

and their regional partners is larger than their distance to their region-external partners. For our 

hypotheses on the characteristics of critical links, this observation implies the following: if 

critical links involve at least one regional gatekeeper organization and are characterized by 

significant cognitive distance, critical links are more likely to be found among a regional 

gatekeeper’s links to other regional organizations than among its links to region-external 

organizations. Put differently, critical links are likely to link geographically proximate but 

cognitive distant organizations because geographic proximity helps in dealing with the cognitive 

gap. This argument finds some empirical support in the study by Broekel (2015) who shows that 

growing cognitive distances between linked organizations tend to be correlated with decreasing 

geographic distances. Moreover, it is frequently shown that large firms and universities 

primarily act as gatekeepers (Graf, 2011). These organizations’ distinct technological profiles 

are usually unmatched by other regional organizations. 

We summarize the above discussion in a number of hypotheses that describe our expectations of 

critical links’ properties in relation to average links. 

 

Hypotheses  

(1) Critical links frequently involve regional gatekeeper organizations. 

(2) Critical links connect related knowledge bases.  

(2a) When critical links are characterized by large cognitive distances at least one other 

type of proximity (geographic, institutional, organizational, and social) will be present. 

(2b) Critical links tend to be characterized by large cognitive but small geographic 

distances.  
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Besides deriving expectations on characteristics of critical links in knowledge networks, the 

discussion presents an example of how the three different literature strands (network science, 

proximity framework, gatekeeper literature) relate to and can be used to enrich one another. In 

the remainder of the paper, we will test these hypotheses. 

	

3 Data 
	
3.1 Subsidized R&D database 
	
The database utilized in our empirical studies contains information on networks created through 

subsidized R&D collaborations. Such similar data are frequently used to model and analyze 

inter-organizational knowledge networks in the field of Economic Geography (Scherngell and 

Barber, 2009). Balland (2012), and Broekel and Hartog (2013b) show that knowledge networks 

based on subsidized R&D collaboration have similar properties and determinants as networks 

not based on subsidized collaborations. Consequently, subsidies data on joint R&D projects is 

suitable for constructing innovation networks. 

We employ data on subsidized joint R&D projects funded by the German federal government. 

The Federal Ministry of Education and Research (BMBF) manages the largest share of these 

projects. To a smaller extent, other federal ministries contribute as well. The database includes 

detailed information on more than 160,000 individual funds granted since 1960, which includes 

information on the grant period, the name and postal code (location) of the receiving as well as 

executing organization, the granting sum, and the classification number. An important 

differentiation is made between the executing and receiving organization. For instance, a 

university can be the grant receiving organization, while a faculty or an institute is specified as 

the executing unit. Hence, large organizations like multinational companies, non-university 

research institutes (e.g., The Max-Planck-Society), and universities are frequently split into 

different executing units. Another important piece of information concerns the technological 

content of projects. This is reflected in a technological hierarchical classification scheme, called 

“Leistungsplansystematik”, which includes over 20 main classes. 

The classes represent different technological areas, which cover energy research, biotechnology 

etc. In addition, the main classes are split hierarchically into different sub-classes. For example, 

we can distinguish between bionic (L07534) or adaptronic (L07533). The research areas also 
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cover non-technological areas, as, for example, perspectives for rural areas (DB0300) are listed 

as well. A more detailed description of this data is carried out by Broekel and Graf (2012). It 

should be pointed out that the data has the drawback of potential policy biases (Broekel, 2015). 

	
3.2 Descriptive statistics 
	
We base the empirical analysis on all subsidized joint R&D projects running between 2003 and 

2012. This period covers 8,604 joint projects with 35,264 individual grants. In total, 8,903 

distinct receiving organizations are listed. In order to construct comparable organizations, we 

follow Broekel (2015) and combine the name of the receiving unit with the municipality code 

of the executing unit. As a result, 10,215 organizations are distinguished. These are classified 

into four types: Universities, firms, research institutes, and miscellaneous organizations. The 

left plot in Figure 2 gives an overview of the distribution of received grants as well as the 

number of funded organizations for each organizational type. More than 70 per cent of all 

subsidized organizations are firms. However, the total value of subsidies for firms (over EUR 5 

billion) is only slightly above the received grants for universities. This is mainly due to the 

higher co-financing rate for non-profit organizations. The right plot in Figure 2 highlights that 

most projects have two participants. 

 

Figure 2: Subsidies data description of the observation period 

 

To generate networks on this basis, we project this two-mode network data into a one-mode 

network by means of the method proposed by Newman (2001). That is, links emerging from 
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large projects are weighted less than links established in small projects.3 

To construct a significant number of sufficiently large technology-specific networks, we follow 

Broekel (2015) and disaggregate the data at the level of 4-digit research areas. This level 

provides acceptable network sizes and it is simultaneously a suitable level of technological 

disaggregation. We exclude small networks with less than 10 links, as network measures are not 

meaningful in their instance. Networks with a density of one are excluded from the empirical 

analysis. Moreover, we exclusively focus on the giant component of each 4-digit research area 

network since this part represents the core of the network with the most important links and 

organizations. On this basis, we are able to establish 132 networks that are observed for the 

period 2003-2012. 

Table 1 provides an insight into the descriptives of observed network structures. It shows that 

the networks are characterized by high degrees of heterogeneity in their size, centralization, 

density, and shares of organization types, as well as in the number of different industries (two-

digit NACE codes). 

Table 1: Network statistics 

n=132 Min Max Median Mean SD 

Nodes 6 1511 51 114.7 185.6 

Links 10 7709 169 484.4 894.1 

Density 0.006 0.93 0.14 0.21 0.20 

Degree centralization 0.06 0.86 0.28 0.30 0.15 

Betweenness centralization 0.03 0.86 0.39 0.38 0.16 

Projects 5 706 36 77 106.3 

Industries 2 66 13 18.24 14.4 

Share universities 0% 100% 24.6% 30.7% 22.5% 

Share firms 0% 90% 51.2% 45% 27.3% 

Share institutes 0% 75% 19.6% 22.2% 13.9% 

Share miscellaneous 0% 53% 0% 2.1% 6% 
	
	

 
 
																																																													
3 Newman (2001) suggests to account for the number of nodes related to an event when projecting from two-mode 
to one-mode networks with the following weighting: !",$ =

&

'(
− 1+  with Na being the number Na −1 of nodes 

related to an event in the two-mode network. 
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4 Empirical approach 
 

4.1 Bridging centrality 
	
Various methods have been developed in the field of social network analysis concerning the 

measurement of nodes’ importance for the overall cohesion of networks (Wasserman and Faust, 

1994). Granovetter (1973) highlights the importance of so-called bridges (i.e., critical links) for 

reducing the overall geodesic distance between organizations. However, the empirical 

identification of such links is a complex task. We employ one of the most recent approaches, 

which was developed by Hwang et al. (2008) for the identification of critical links. 

According to the definition of Hwang et al. (2008), critical links and nodes in a graph are 

characterized by being critical connectors of modular regions in the network. Consequently, in 

contrast to other links in the network, critical links will score highly on what these authors call 

“bridging centrality”. In order to estimate bridging centrality, we first computed the weighted 

betweenness centrality Φ of each link e in a network: 

Φ - =
./0(2)

./0
45678   (1) 

where σst is the quantity of shortest weighted geodesic distances between nodes t and s. σst (e) as 

a subset of σst refers to the score of shortest weighted paths passing through link e. Node 

betweenness centrality refers to nodes’ frequency of being located on the shortest paths 

(geodesic distance) between (in)directly linked nodes (Freeman, 1977)4 and may represent 

organizations’ capabilities to absorb knowledge diffusing in the network (Owen-Smith and 

Powell, 2004). 

Since betweenness centrality captures nodes’ global embeddedness, we also calculate the 

bridging coefficient Ψ of each node v, which captures nodes’ embeddedness into their local 

network surroundings: 

Ψ : =
&

;(<)

;(")

; " =&"7',; " >&  (2) 

with the degree of node v being defined as d(v). δ(i) refers to the quantity of links leaving the 

adjacent sub network of node v among the links incident to each adjacent node i of node v. Put 

simply, δ(i) is the sum of links belonging to the neighbors (nodes) of node v. The bridging 

																																																													
4 The geodesic distances in the weighted network are estimated according to the method proposed by Dijkstra 
(1959).	
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coefficient Ψ of link e is calculated on this basis by: 

Ψ : =
; " ? " @;($)?($)

; " @;($) A ",$ @&
, -(B, C)DE (3) 

where i and j are defined as the coincident nodes to link e. C (i, j) is the number of common 

adjacent nodes of node j and i. Finally, the bridging centrality CBr of link e is defined by: 

FGH - = IJ(2) + I?(2) (4) 

whereby RΦ refers to the rank betweenness of link e and RΨ defines the rank of link e with 

respect to the above bridging coefficient. Rank normalization is used to correct for potential 

scale differences between the bridging coefficient and the weighted betweenness centrality. 

The resulting measure of bridging centrality is a suitable measure for identifying critical links in 

a network and empirically outperforms purely distance based measures like betweenness 

centrality in terms of identification, because it simultaneously considers local (bridging 

coefficient) and global network properties (betweenness centrality) (Hwang et al., 2008).5 Links 

scoring highly on this type of centrality tend to connect different sub networks and when 

removed are likely to disintegrate the network. Accordingly, they act as critical links in 

knowledge networks. 

Crucially, the measure does not allow for a binary distinction between critical and non-critical 

links. Rather, it represents a degree of “criticalness”, i.e., links obtaining large values are more 

critical than those with lower values. We therefore examine the ranks of links with respect to 

their bridging centrality in each technology-specific network. The relative nature of our 

measure has the advantage of considering each network’s specific characteristics, which allows 

for comparing critical links across various network structures.6 Alternatively, one could define 

critical links in an absolute manner by, for instance, identifying links whose removal increases 

networks’ number of components. However, it implies that one component networks will 

always lack critical links. Such definition also ignores other types of critical links, whose 

existence, for instance, doesn’t reduce network fragmentation but strongly shortens geodesic 

distances and thereby critically influences network internal knowledge diffusion. In light of our 

previous discussion, such links equally qualify as critical links. Accordingly, our relative 

																																																													
5 The measure is moreover significantly different from link betweenness. In the later empirical analyses, the 
correlation between bridging and link betweenness turns out to be just 0.281***. 
6 Note that it is our aim to identify general characteristics of critical links that apply on average in most technology-
specific networks.	
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measure of critical links is more general than alternative (absolute) definitions that ultimately 

are dependent on networks’ structures. In order to identify characteristics of critical links using 

our relative approach, we employ a number of alternative scenarios. More precisely, in the first 

scenario (I) the top one percent of links with the highest bridging centrality is defined as being 

the critical link. In the second scenario (II), we look at the ‘second-tier’ critical links that are 

defined as 2 percent percentile of links with the highest bridging centrality values. However, in 

this scenario we exclude the top 1 percent of links. In the third (III) and fourth (IV) scenarios 

we define all links being critical within the top 3 and 4 percent of bridging centrality values 

with the previous top 2 and 3 percent being excluded again. This approach allows us to get 

more detailed insights into changes in links’ characteristics along the distribution of their 

criticalness values. The variable created on this basis, which will serve as the dependent 

variable in the later regressions, has a value of one if a link qualifies as a critical link and zero 

otherwise. 

	
4.2 Characteristics of links 
	
In order to analyze the proximity structures of critical links, we construct variables capturing the 

characteristics of all realized collaborations/links. Descriptive statistics are given in Table 2. 

Geographic distance is conceptualized as pure physical distance between organizations. 

Geographically proximate organizations generally have more opportunities for interaction and 

meetings by chance, easier arrangements of face-to-face contacts, and generally benefit from 

lower transaction costs (Feldman and Florida, 1994). As a result, knowledge relations are more 

likely to be established between geographically proximate organizations (Jaffe et al., 1993; 

Breschi and Lissoni, 2001). To estimate geographic distances between organizations, we use the 

coordinates of their respective municipalities’ centroids. Due to the higher probability of large 

networks stretching over larger geographic distances than small networks, we normalize the 

geographic distance for each link by dividing the value with the maximum value in each 

network. Consequently, the variable geographic distance GEODIST varies between zero and 

one with values close to zero indicating short geographic distances. 

An alternative measure of geographic proximity is REGLINK, which captures the 

differentiation between regional and inter-regional links, with the variable being one if the 

linked organizations are located within the same region and zero otherwise. The regional 
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delineation is based on German labor market regions (141 regions) as defined by Kosfeld and 

Werner (2012). 

Organizational distance refers to the degree of autonomy and control, which can be performed 

in organizational arrangements, either between organizations or within organizations (Boschma, 

2005). Scholars frequently approximate organizational distance by means of two organizations 

belonging to the same mother organization (Balland, 2012; Broekel, 2015). The measure 

ORGDIST takes a value of one if linked organizations do not share the same (mother) 

organization and zero otherwise. 

Institutional distance defines the degree of similarity concerning formal rules and informal 

constraints (macro-level) shared by organizations. Thus, a certain level of institutional 

proximity provides a stable framework for interactive learning (Boschma, 2005). According to 

Broekel (2015), two organizations share the same institutional framework when they are of the 

same organizational type. Our data allows for distinguishing between four organizational types: 

private firms, research institutes, universities, and miscellaneous.7 Similar to Ponds et al. 

(2007), INSTDIST is defined as one if linked organizations are not of the same type and zero 

otherwise. 

Social distance refers to trust, friendship, and experience based on repeated interactions. 

Socially embedded relationships increase the likelihood of R&D collaborations among partners 

(Boschma and Frenken, 2010). In a common manner, social distance between organizations is 

approximated by their number of (joint) past collaborations. To obtain this measure, we 

construct the technology-specific networks on the basis of subsidized R&D joint projects for the 

period 1993 to 2002. To make the values comparable across networks, the number is 

normalized with the maximum number of collaborations in the corresponding network. 

Moreover, the values are multiplied by minus one in order to transform the values into 

distances. The resulting measure SOCDIST indicates large social distances when its value is 

close to minus one. 

Cognitive distance captures the degree of overlap between organizations’ knowledge bases. We 

estimate the cognitive distance between organizations on the basis of their sector membership 

given in the subsidies data. The data provides two-digit NACE codes for all subsidized 

																																																													
7 E.g., associations, ministries, and societies. 
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organizations and, in the case of universities, universities of applied science, and for some large 

service related sectors, three-digit NACE codes. The first measure is an index of technological 

(i.e., cognitive) similarity between sectors. It exploits the fact that most R&D subsidization 

programs belong to a relative narrowly defined technological field, which is represented by a 

specific research area in the technological classification scheme of the subsidies data 

(“Leistungsplansystematik”). The more frequently that two sectors are subsidized through the 

same technology oriented subsidization scheme, the more likely they draw on similar 

technological knowledge. 

For the estimation of the index, we rely on the index proposed by Teece et al. (1994) and Bryce 

and Winter (2009). We count the number of co-occurrences of individual subsidies grants8 

attributed to two sectors’ organizations within each of the six-digit technological classes in the 

subsidies data and compare it to the frequency that can be expected when these grants are 

randomly assigned to sectors’ organizations. We follow the estimation described in detail in 

Bryce and Winter (2009, p. 1575f.) with Jij representing the number of individual grants 

acquired by organizations in sectors i and j classified into the same six-digit technological class. 

K is the number of technological classes and ni represents the total number of individual grants 

that organizations in sector i have acquired. nj is the corresponding number for sector j. The size 

of sectors needed in the estimation is approximated by the total number of grants acquired by 

organizations in a particular sector. The expected number of grants in a technological class for i 

and j is (xij ) can be seen as hypergeometric random variable whose mean and variance can be 

derived. The final index τij is then estimated as the standardized difference between the observed 

and expected numbers of co-occurrences. In order to avoid size bias and for easier 

interpretation, it is standardized and divided by the maximum similarity score. Negative values 

imply strong dissimilarity and hence their interpretation is the same as in the case of zero 

values. They are set to zero, implying that the final similarity index ranges between 0 and 1 with 

values close to one indicating maximal technological similarity. For easier interpretation (as 

distance), the negative value of this index is used to represent the cognitive distance between 

organizations (i.e., their respective sectors). The created variable is denoted as COGDIST. 

Above, we argued that COGDIST might be related to non-linear effects: Critical links are likely 
																																																													
8 As cooperative projects might be formed on the basis of resource complementarity and not similarity, these are 
excluded. 



18 	

to be characterized by relatedness, i.e., some but not very high cognitive distance. To capture 

this effect, we include the variable in a linear and quadratic term. Multicollinearity issues are 

avoided by subtracting the mean before squaring the values. 

Regional gatekeepers are likely involved in critical links (see Section 2.4). For the identification 

of a regional gatekeeper, we use the definition of Gould and Fernandez (1989) and adopt the 

method of Graf (2011) for constructing a regional gatekeeper index. Firstly, organizations may 

qualify as regional gatekeepers if they have least one inter-regional and one regional link. 

Secondly, an index is constructed, reflecting the Euclidean distance to zero of an organization’s 

numbers of inter-regional and regional links. Similar to Graf (2011), we chose a threshold of 

two-percent and define organizations as a regional gatekeeper if their index value is among the 

highest two percent of all observed values. The variable REGGATE1 obtains a value of one if 

just one of the link’s nodes qualifies as a regional gatekeeper and zero otherwise. If both nodes 

are identified as a regional gatekeeper, REGGATE2 will be one and zero otherwise.9 

Control variables are created to account for networks’ heterogeneity. This includes network 

density (DENSITY) and size, with the latter being the number of nodes in a network (SIZE). 

The values of these variables are identical for all links belonging to the same network. 

 

Table 2: Descriptive statistics 

 Min Max Mean Median SD 

 
GEODIST 

 
0 

 
1 

 
0.440 

 
0.417 

 
0.252 

SOCDIST 0 1 0.938 1 0.231 
COGDIST 0 1 0.209 0.132 0.377 

COGDIST2 0 0.895 0.134 0.029 0.222 
INSTDIST 0 1 0.506 1 0.500 
ORGDIST 0 1 0.995 1 0.072 
REGLINK 0 1 0.123 0 0.328 
REGGATE1 0 1 0.205 0 0.404 
REGGATE2 0 1 0.013 0 0.114 
SIZE 6 1,511 444.738 273 450.701 
DENSITY 0.007 0.938 0.069 0.027 0.116 

 
 
 

																																																													
9 Note that this approach is prone to identify large organizations as regional gatekeepers. In the paper’s context, this 
has no further implications 
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4.3 Empirical set-up 
	
To identify the characteristics of critical links, we compare their proximity structures to those of 

“average” links. That is, for each network the most critical, in terms of bridging centrality, links 

are identified and their respective characteristics are compared to the properties of the other 

links in the networks. Hence, with some caution, the comparison allows for inferences to be 

made about the conditions under which critical links are formed. In any case, it allows for 

drawing conclusions on their unique characteristics and their function. 

It is our goal to identify the general characteristics of critical links applying (on average) in 

most instances. We therefore pool the links of all networks, implying that the final dataset has 

as many observations as the sum of the links of all networks. Small networks will contribute 

smaller numbers of observations (links) to the final dataset. To reduce this bias, we consider a 

dummy variable for each network in the estimations.  

Our dependent variable takes a value of 1 if a link has been identified as a critical link and zero 

otherwise. The number of identified critical links depends on the scenarios introduced in 

Section 4.1. Given the generally low thresholds (2-4 percent), their number is very small 

compared to that of all remaining links in each scenario, resulting in the dependent variable 

being characterized by an excessive number of zeros. We therefore rely on rare event logistic 

regression as specified by King and Zeng (2001). 

	
4.4 Results 
	

All models meet the necessary statistical requirements and can therefore be interpreted.10 Table 

3 shows the results. The coefficient of the regional gatekeeper variable REGGATE1 is negative 

and highly significant in the first three models. Consequently, links are less likely to be critical 

links when just one of their nodes is a regional gatekeeper. In contrast, the coefficient of 

REGGATE2, with the variable being one when both link’s nodes are regional gatekeepers and 

zero otherwise, obtains a positive and highly significant value in model I and II. In line with 

hypothesis (1), it indicates that critical links are especially formed between two regional 

gatekeepers. Notably, model I is superior to the other models in terms of fit, as indicated by 

Akaike information criterion (AIC). Hence, the most critical links (2 percent threshold) differ 
																																																													
10 The variance inflation factor (VIF) test indicates the absence of multicollinearity in each model. Maximum VIF 
scores are depicted in table 3. The use of robust standard errors also does not yield different results. 
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more significantly in their characteristics from average links than when somewhat less critical 

links are also considered (4 percent threshold). 

Our results give some insights on the proximity characteristics of critical links. The coefficient 

of organizational (ORGDIST) distance is insignificant in all models. No particularity of critical 

links is found with regard to this proximity type. 

This is different for cognitive proximity. In the first, second and third model, the coefficients of 

COGDIST become significant when the squared version of COGDIST is included. In this case, 

the linear term obtains a significant positive value and COGDIST2 is negatively significant. The 

AIC values suggest preferring three models including COGDIST2 over those excluding this 

variable. Accordingly, we find an inverted U-shaped relationship between cognitive distance 

and the probability of observing a critical link. The finding suggests that critical links are 

characterized by positive but not too large values of technological similarity. In other words, 

they link technologically related organizations and potentially yield significant benefits for 

innovation (Frenken et al., 2007). It confirms our hypothesis (2) regarding critical links 

connecting related knowledge and supports the findings of Cassi and Plunket (2015) for a larger 

set of knowledge networks. 

A positive significant coefficient is also observed for INSTDIST. Consequently, critical links 

bridge institutional borders by connecting organizations embedded into distinct institutional 

frameworks. The finding corresponds with the results for cognitive proximity as institutional 

borders frequently go along with cognitive differences. Critical links bring together related 

knowledge separated by institutional boundaries. Given the way INSTDIST is empirically 

constructed, critical links particularly bridge institutional boundaries between public (basic) 

research and (application-oriented) R&D in the private sector. This finding is consistent with 

Petruzzelli et al. (2010) who, in three case studies, especially observe knowledge gatekeepers 

(universities) as establishing weak ties to private organizations, when these organizations aim at 

diversifying their technological competencies. Moreover, the finding suggests that institutional 

proximity is an unlikely substitute for a lack of cognitive proximity, which is in line with 

Broekel (2015), who finds cognitive and institutional proximity to be positively correlated. 

Geographic distance (GEODIST) obtains significant negative coefficients in the first and 

second model. Hence, critical links tend to cross shorter geographic distances than average 
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links. Interestingly, the alternative measure of geographic proximity REGLINK (two 

organizations being co-located in the same region) remains insignificant in most models. Taken 

together, critical links do not tend to connect organizations in the same, but rather in 

neighboring regions. Critical links appear to be characterized by a certain degree of 

geographical proximity, which, however, exceeds the average radius of German labor market 

regions. 

The variable measuring social distance, SOCDIST, is characterized by significantly negative 

coefficients in the first two models. That is, critical links are more likely established between 

organizations which have a shared past of collaborating. This finding adds support to 

hypothesis 2a and 2b regarding proximities other than cognitive easing the establishment of 

critical links. However, we detect such an effect exclusively for geographic and social, but not 

for institutional and organizational, proximity. 

In summary, our results clearly support our expectations on the characteristics of critical links: 

Critical links in technology-specific networks connect socially proximate regional gatekeeper 

organizations that are located in relative geographic vicinity, offering each other access to 

related knowledge. 

 

5 Discussion and Conclusion 
	
Research on network evolution is still at an early stage (Powell et al., 2005). This also concerns 

research from a geographical perspective. For instance, Ter Wal and Boschma (2009, p.741) 

stress that “[...] particularly in the application to regional issues, network research is still in its 

infancy.” In the field of Economic Geography, prominent research seeks to understand the 

formation of networks from the perspective of the proximity framework. Studies particularly 

compare the relative relevance of different types of proximity for the creation of network links. 

Another flourishing research strand analyzes the roles, characteristics, and importance of 

regional gatekeeper organizations in, and for, regional innovation networks. While both 

literature strands deal with knowledge networks, they are still relatively unconnected, as the 

first focuses on the link (dyadic) and the second on the node level. 

 

 



	

Table 3: Rare event logistic regression results for predicting critical links 

 
DEPENDENT VAR. 

Model I 
1 % Top-links 

Model II 
2 % Top-links 

Model III 
3 % Top-links 

Model IV 
4 % Top-links 

VIF 
(max) 

 
GEODIST 

 
-0.392** 

 
-0.392** 

 
-0.170** 

 
-0.167** 

 
-0.213* 

 
-0.210* 

 
-0.081 

 
-0.081 

 

 (0.194) (0.1954) (0.140) (0.140) (0.115) (0.115) (0.100) (0.100) 1.376 
SOCDIST -0.642** -0.641** -0.286** -0.290** -0.133 -0.137 -0.096 -0.096  

 (0.147) (0.147) (0.117) (0.118) (0.101) (0.101) (0.088) (0.088) 1.053 
COGDIST -0.106 0.375** -0.084 0.300*** 0.078 0.51** 0.064 0.100  

 
COGDIST2 

(0.125) (0.215) 
-0.322** 

(0.092) (0.240) 
-0.686** 

(0.079) (0.206) 
-0.780** 

(0.069) (0.176) 
-0.066 

2.718 

  (0.122)  (0.392)  (0.338)  (0.294) 2.621 
INSTDIST 0.487*** 0.488*** 0.494*** 0.492*** 0.538*** 0.536*** 0.507*** 0.507***  

 (0.094) (0.094) (0.068) (0.068) (0.056) (0.056) (0.049) (0.049) 1.351 
ORGDIST -0.408 -0.409 -0.424 -0.416 -0.634* -0.624* -0.586* -0.585*  

 (0.511) (0.510) (0.363) (0.363) (0.278) (0.278) (0.247) (0.247) 1.016 
REGLINK 0.112 0.112 0.172* 0.170* 0.195** 0.194** 0.092 0.092  

 (0.132) (0.132) (0.097) (0.097) (0.079) (0.079) (0.071) (0.071) 1.364 
REGGATE1 -1.031*** -1.032*** -0.604*** -0.600*** -0.324*** -0.319*** -0.036 -0.036  

 (0.138) (0.138) (0.086) (0.086) (0.064) (0.064) (0.052) (0.052) 1.261 
REGGATE2 0.685** 0.686** 0.391** 0.381** 0.419* 0.408* 0.44* 0.439*  

 (0.386) (0.386) (0.296) (0.296) (0.227) (0.227) (0.182) (0.182) 1.252 
SIZE -0.017 -0.018 -0.007 -0.007 -0.006 -0.006 -0.003 -0.003  

 (0.012) (0.012) (0.010) (0.010) (0.008) (0.008) (0.007) (0.007) 1.233 
DENSITY 0.461 0.460 0.449 0.451 -0.256 -0.236 -0.693 -0.692  

 (1.478) (1.479) (1.371) (1.368) (1.194) (1.193) (1.091) (1.091) 1.224 
NETW. DUMMIES .... ... ... ... ... ... ... ...  

 

INTERCEPT 
 

-2.355** 
 

-2.352** 
 

-2.933*** 
 

-2.933*** 
 

-2.402*** 
 

-2.422*** 
 

-2.325*** 
 

-2.326***  

 (0.985) (0.985) (0.832) (0.831) (0.692) (0.692) (0.619) (0.619)  
 

Log-Likelihood 
 

-3,624 
 

-3,424 
 

-6,215 
 

-6,014 
 

-8,511 
 

-8,108 
 

-10,575 
 

-10,874 
 

AIC 7,491 7,093 12,673 12,272 17,264 16,861 21,393 21,995  
N 63,941 63,941 63,276 63,276 62,653 62,653 62,018 62,018  

* refers to a significance level of 0.1, ** to a significance of 0.05, and *** to 0.01., standard errors in parentheses 
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The present paper concentrated on so-called “critical links”, which are crucial for network wide 

knowledge diffusion by integrating the whole network and connecting parts of networks that are 

otherwise relatively distant. We applied the proximity framework in the analysis of these links’ 

characteristics, which (with the exception of Cassi and Plunket (2015)) have been exclusively 

studied from a network structural perspective. In doing so, the paper contributes to the existing 

literature in three ways. 

Firstly, the paper has shown that the proximity approach, which has primarily been employed to 

investigate the creation and dissolving of “average links”, provides a powerful basis for 

studying the heterogeneity of links’ importance in knowledge networks as well. By focusing on 

inter-organizational knowledge networks, we were able to revise some of the arguments by 

Cassi and Plunket (2015).  

Secondly, we extended the discussion on links’ structural importance in general and that of 

critical links in particular, by considering insights from the regional gatekeeper literature. The 

paper therefore not only contributes to the ongoing integration of network science and proximity 

framework, it also presents links to the literature on (regional) gatekeeper. In particular, it 

connects the proximity framework to research on gatekeeper organizations by extending the 

analysis of the latter with a dyadic perspective.  

Thirdly, we presented an empirical study on the proximity structures of critical links in 132 

technology-specific inter-organizational knowledge networks emerging from the subsidization 

of joint R&D projects in Germany. The empirical results confirm that regional gatekeeper 

organizations are the most likely creators of critical links. Critical links connect regional 

gatekeepers that tend to be located in relatively short geographic distances (however in different 

regions), which offer related knowledge resources. The establishment of critical links that 

bridge cognitive and institutional distances is further stimulated by geographic and social 

proximity. While geographic proximity’s impact on network formation is well-established, the 

findings suggest that geographic proximity is particularly relevant in the formation of critical 

links and hence shapes the knowledge diffusion efficiency of networks. 

Our empirical findings substantiate our discussion on relating gatekeeper and proximity 

literature to each other. Regional gatekeeper organizations were shown to be especially capable 

of utilizing their proximate surroundings. They are more prone to establish and maintain 
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relations with other gatekeeper organizations offering related knowledge. That is, they take 

advantage of geographic and social proximities’ benefits for tapping into knowledge bases that 

are cognitively non-redundant with sufficient overlap allowing for efficient knowledge transfer 

and learning. Accordingly, regional gatekeeper organizations structure their knowledge relations 

in a more beneficial way than other organizations in their geographical surroundings. 

These findings have to be seen in the light of a number of empirical limitations. First, the 

empirical analysis exclusively focuses on intra-national networks and ignores long-distance and 

international relations. Second, networks are based on subsidized R&D collaboration. While we 

control for potential biases related to this, we cannot completely rule out the potential effects of 

subsidization policy. Third, we identify the proximity structures of critical links in a cross-

sectional set-up. Therefore, any inference of the conditions of their emergence has to be done 

with severe reservations. Only future research using dynamic approaches might show whether 

our interpretations are fully justified. 

The paper suggests a number of policy implications. Our empirical findings support the 

promotion of R&D collaboration between public and private organizations located in adjacent 

regions. Collaborating organizations should further be related in their knowledge bases. 

Crucially, strengthening collaboration among organizations with related knowledge in 

neighboring regions will not only facilitate their own innovation activities, but will also yield 

benefits for all other organizations embedded in these organizations’ knowledge networks by 

increasing these networks’ cohesion and knowledge diffusion efficiency. 
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Appendix 

Table 4: Correlation matrix Model I 
  1 2 3 4 5 6 7 8 9 10 11 
(1) 
(1) 

INSTDIST 
INSTDIST 

1.0 
1.0 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- (2) ORGDIST 0.068 1.0 - - - - - - - - - 

(3) COGDIST 0.437 0.085 1.0 - - - - - - - - 
(4) COGDIST2 0.408 0.084 0.623 1.0 - - - - - - - 
(5) GEODIST -0.027 0.026 -0.032 -0.021 1.0 - - - - - - 
(6) SOCDIST 0.023 0.034 0.114 0.100 -0.022 1.0 - - - - - 
(7) REGLINK 0.064 -0.050 0.035 0.025 -0.484 0.012 1.0 - - - - 
(8) REGGATE1 0.165 -0.016 0.033 0.039 0.021 -0.108 0.016 1.0 - - - 
(9) REGGATE2 0.015 -0.025 -0.0167 -0.015 0.041 -0.114 -0.015 0.227 1.0 - - 
(10) DENSITY 0.016 -0.015 -0.061 -0.033 0.117 -0.043 -0.054 -0.022 0.121 1.0 - 
(11) SIZE -0.069 0.017 0.058 0.034 -0.059 0.042 0.019 0.109 -0.005 -0.403 1.0 

 


