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ABSTRACT    Significant attention has been directed to processes of knowledge production in 
a spatial context, but little consideration has been given to the type of technological 
knowledge produced within specific places.  In this paper we use patent co-classification 
data from the European Patent Office (EPO) to measure the distance between all pairs of 
629 International Patent Classification (IPC) categories.  A multi-dimensional scaling 
algorithm allows us to visualize these distances in a map of the EU15 knowledge space. We 
trace the evolution of that space from 1981 to 2005. The patent class distance data are 
combined with counts of patents by IPC categories to measure the average relatedness 
(specialization) of knowledge produced within each NUTS2 region. We show that knowledge 
specialization has increased significantly across EU15 regions over time and we report those 
regions that have the most specialized and the least specialized knowledge bases. Changes 
in the average relatedness of regional knowledge cores are decomposed to reveal the 
contributions of technological entry, exit and selection processes over space and time. In a 
final section of the paper, technological diversification and abandonment at the NUTS2 level 
are modeled as a function of proximity to the knowledge core of the region and to 
knowledge spillovers from neighboring regions that are mediated by social and spatial 
distance. 
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1. INTRODUCTION 
 
In this paper we map the changing structure of knowledge production within 15 member 
states of the European Union (EU15) over the period 1981 to 2005. We are particularly 
interested in whether European integration has led to increasing technological specialization 
at the NUTS2 regional-level. An increase in the specialization of knowledge production 
across EU regions might signal the emergence of a European market for technology, a 
deepening spatial division of labor in R&D and attendant gains in the efficiency of invention 
and innovation. Though there has been considerable interest in the relationship between 
European market integration and the geographical redistribution of economic activity 
(Krugman and Venables 1996), this has not typically focused on the production of 
knowledge. A recent related literature on “smart specialization” in the EU is more explicitly 
directed toward knowledge-based regional policy (McCann and Ortega-Argilés 2013). 
 
Our focus on the regional specialization of knowledge production reflects the central role 
that concentration plays in regulating economic performance (Marshall 1890; Duranton and 
Puga 2004), the resilience of regional economies (Hassink 2010; Martin 2012; Balland et al. 
2014) and trajectories of economic and technological development in space (Hidalgo et al. 
2007; Boschma et al. 2013; Rigby 2013; Boschma et al. 2015). We study the European Union 
because the knowledge structure of this aggregate economic space has not yet been 
mapped. At the core of our work is a relatively new method of measuring the relatedness or 
the distance between technology types. This method overcomes the failure of the 
Herfindahl Index (with categorical data) to explicitly consider variations in the “distances” 
between the categories over which specialization is computed. As we have done elsewhere, 
we urge abandonment of the Herfindahl whenever possible. 
 
The paper is divided into six following sections. Section 2 outlines our rationale for focusing 
on technological specialization. We offer a brief review of the existing literature and develop 
a series of core arguments related to specialization and knowledge production. In Section 3, 
attention shifts to the use of patents as indicators of the history and geography of invention. 
Patent co-classification data from the European Patent Office (EPO) are used to calculate 
the technological distances between all patents across the EU15 for five-year periods from 
1981 to 2005. Patents are shown to mass around different technologies over time and this 
allows us to visualize the evolution of the EU15 knowledge space. Analysis reveals that the 
technological relatedness, or specialization, of EU15 patents has been increasing since the 
early 1980s. Section 4 explores shifts in the geography of technological specialization across 
NUTS2 regions for different periods. Changes in regional technological specialization are 
driven by local variations in the relative importance of incumbent technology classes, by 
diversification into new technology classes and through technological abandonment. In 
Section 5 of the paper, we decompose changes in technological specialization within NUTS2 
regions into these components and reveal how entry and exit impact the growing 
specialization of technology across NUTS2 regions. Section 6 estimates an exploratory 
model of technological entry and exit built around the influence of technological, social and 
geographical proximity. Section 7 offers a brief conclusion. 
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2. SPECIALIZATION AND THE EVOLUTION OF THE KNOWLEDGE SPACE 
 
The spatial distributions of industries within Europe are much more dispersed compared to 
industrial location patterns in the United States (Krugman and Venables, 1996).  Historically, 
national markets and interests, reinforced by language and cultural barriers have created 
economic landscapes across member states of the European Union (EU) that are much less 
distinctive than we would anticipate within an integrated economic space. Differences in 
geographies of industrial composition are linked to the potential returns from 
agglomeration economies and to lower levels of industrial productivity across much of 
Europe in relation to the United States (Ortega-Argilés, 2012).  While the benefits of 
industrial and technological specialization on urban and regional economic growth have 
long been known (Marshall, 1890; Chinitz, 1961, Jacobs, 1969, Glaeser et al., 1992; 
Duranton and Puga, 2004), European geo-political and market forces limited pan-European 
consolidation and the emergence of specialized industry clusters similar to those of Detroit 
or Silicon Valley.  With increasing integration, Krugman (1991) and others have predicted 
increases in the geographic concentration of economic activity across the European Union. 
 
To date, evidence about levels of industrial specialization across European countries is 
mixed (Amiti, 1999). A multiplicity of scales of analysis (from countries to sub-national 
regions) and measures (absolute or relative) has made it difficult to identify a common 
signal in the data presented (Cutrini, 2010) or even the direction of change (Aiginer and 
Rossi-Hansberg, 2006). Nonetheless, some such as Greenaway and Hine (1991) have argued 
that the data indicate a gradual increase in national patterns of industrial specialization 
since the early 1980s. Midelfart-Knarvik et al. (2002) argue that we see similar trends within 
regions at the sub-national level, though De Robertis (2001) and Suedekum (2006) remain 
more agnostic. Brülhart (1998) also suggests greater geographical concentration of industry 
sectors across EU countries, though more recently noting substantial variations in the 
magnitude and even the direction of such change (Brülhart and Traeger, 2005). Ezcurra et al. 
(2006) present evidence that the spatial concentration of manufacturing industries across 
European regions accelerated as the European Single Act came into force. Ortega-Argilés 
(2012) suggests that a widening of the productivity gap between the United States and the 
EU since the mid-1990s is underpinned by a lack of specialization in Europe that limits the 
potential benefits of technological linkages and spillovers between both between sectors 
and regions. 
 
In order to close the productivity gap with the United States, and to foster a more 
innovation-friendly environment in the EU, a number of policy instruments have been put in 
place.  The European Framework programmes, part of the larger European Research Area 
(ERA) initiative, is one example.  More recently the Innovation Union programme, a Europe 
2020 project headed by the European Commission, is another attempt to enhance 
innovation in the heterogeneous economic environment of EU regions.  A key element of 
this endeavor is the smart specialization concept (Foray and Van Ark, 2007; McCann and 
Ortega-Argilés, 2013).  Promoting a logic that can be applied to a variety of regional settings, 
smart specialization emphasizes local context and structural evolution as central 
components of incremental and radical social, political and economic transformation (Foray 
et al., 2011).  A particular focus is directed towards science and technology domains and 
their properties in terms of size and connectedness (Foray et al., 2009).  In order to develop 
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a competitive innovation strategy, it is suggested that regions need to identify their core 
competencies, as well as the potential for complementarities within their respective 
knowledge base.  David et al. (2009) argue that in order to observe and implement the 
smart specialization concept there is a need for alternative indicators that provide a better 
understanding of high-technology and knowledge intensive sectors and the synergies that 
exist between them.  Patent data, capturing the development of novel products and 
processes of economic value, are particularly useful in this regard.  
 
Indeed, patent data have been used to explore patterns of specialization in invention and 
innovation using the technology codes within which patents are classified.  Thus, Paci and 
Usai (2000), Anderson and Ejermo (2008), Fleming et al. (2007) and Lobo and Strumsky 
(2008), link measures of technological concentration to the productivity of invention at a 
variety of spatial scales. Patent data also have been used to measure the connectedness 
between different technology classes using citations (Leten et al., 2007) and co-classification 
frequencies, primarily to explore the cohesion of technologies within firms (Jaffe, 1986; 
Verspagen, 1997, Breschi et al., 2003). Graf (2006), Quatraro (2010), Kogler et al. (2013) and 
Rigby (2013) extend these techniques to explore the geographical dimensions of 
technological specialization. To date, the knowledge space of the European Union and its 
constituent regions have not been mapped using patent data. A first order of business, then, 
is to explore the structure of technology in the EU15 and to measure the coherence or the 
specialization of knowledge cores across NUTS2 regions. 
 
Over the relatively long period of time that we explore the technological characteristics of 
NUTS2 regions in Europe, there has been considerable change. Evolutionary accounts of 
aggregate economic dynamics rest heavily on population models (Hannan and Freeman 
1977) that decompose the movements of key variables into effects that are linked to 
processes of entry, exit and selection. There has been much recent work tracing 
technological, occupational and industrial diversification (entry) and abandonment (exit) at 
the regional level since the pioneering paper by Hidalgo et al., (2007). Although concerns 
with endogeneity in much of this work remain, industrial branching within regions is closely 
linked to the structure, or the relatedness, of local economic activity (Boschma and Frenken 
2011; Neffke et al., 2011; Boschma et al., 2013). Rigby (2013) extends these arguments to 
capture the influence of neighboring regions. 
 
Just as important as entry and exit dynamics to the evolution of technological specialization 
within regions are changes in cognitive proximity or relatedness between technology types. 
Connections between technologies emerge and wither through creative destruction, by 
invention, recombination and a continual remapping of linkages between technologies 
driven by competition (Kauffman, 1993; Weitzman, 1998; Olsson, 2000). This remapping of 
the relationships between knowledge subsets is linked to trajectories of search and 
development (Clark, 1975; Dosi, 1982), to broader ecologies of technologies (Podolny and 
Stuart, 1995; Carnabuci, 2010), to shifting recombinant possibilities (Valverde et al., 2007), 
identification of critical inventions (Martinelli and Nomaler, 2014) and branching points in 
technological evolution (Verspagen, 1997). As the topology of knowledge space changes, so 
the possibilities for smart specialization are reworked. We show how changes in the 
structure of knowledge space impact changes in technological specialization across regions 
of the EU15. 
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While this discussion highlights the role of technological proximity in shaping the dynamics 
of knowledge development within and across regions, it should be clear that such 
development occurs within a social and political order that is largely constitutive of market 
relationships and broadly shaped by them. Within economic geography, the co-evolution of 
institutions and technologies is only just beginning to receive the attention it deserves (Hall 
and Soskice 2001, Martin 2010, Boschma and Capone 2014). 
 
3. EU15 KNOWLEDGE SPACE AND PATTERNS OF TECHNOLOGICAL SPECIALIZATION 
 
The use of patent data to capture the production of knowledge dates back more than half a 
century (Schmookler, 1962, 1966; Scherer, 1965).  There has been a steady increase in the 
volume and impact of studies that utilize patent data to analyze innovation and the flow of 
knowledge (Griliches, 1984; Scherer, 1984, Jaffe et al., 1993; Jaffe and Trajtenberg, 2002). 
Though the shortcomings of patent data are reasonably well-known (Pavitt, 1985; Griliches, 
1990; Schmoch, 1999), they are increasingly used in more sophisticated ways to track the 
movement of knowledge and inventors  (Jaffe et al., 1993; Fischer et al., 2006), inventor 
collaboration (Breschi and Lissoni, 2004; Singh, 2005), the complexity of knowledge (Fleming 
and Sorenson, 2001; Balland and Rigby, 2014) and the value of inventions (Harhoff et al., 
2003). 
 
Despite these efforts very little is known about the character of knowledge produced in 
specific places and how the structure of knowledge bases move over time. Recent work has 
mapped the changing structure of the U.S. ‘knowledge space’ and explored shifts in the 
nature of knowledge generated within a small sample of U.S. cities (Kogler et al., 2013; 
Rigby, 2013). However, with the exception of early work by Graf (2007), we know very little 
about the structure of the European knowledge space. One of the main reasons for this has 
been the absence of comprehensive, standardized and disambiguated patent data for 
Europe. Fortunately, these data are now becoming available, based on European Patent 
Office (EPO) records. The data employed in the present investigation derive from the EP-INV 
database produced by CESPRI-Università Bocconi (Coffano and Tarasconi, 2014; Pezzoni et 
al., 2014)1.   
 
There are relatively few records in this database that pre-date 1980, thus our analysis begins 
in the 5-year period 1981-5 and it ends in the period 2001-05.  Five-year periods are 
employed to smooth annual fluctuations in patent applications for approximately 213 
NUTS2 regions and 629 International Patent Classification (IPC) codes. The IPC codes 
demarcate subsets of knowledge in the EPO data.  We use these codes to reference distinct 
technologies. The NUTS2 regions and IPC technology codes have changed repeatedly over 
time.  We use a consistent set of regional codes for the year 2006 along with IPC classes 
demarcated in IPC 2012.01.  We focus on regions of the EU15 rather than newer versions of 
the EU to maximize the length of the study period. 
 

1 The data employed in the present investigation were generously made available to us through Francesco 
Lissoni (GREThA, Université de Bordeaux & CRIOS – U Università L.Bocconi).  We gratefully acknowledge the 
initial help in setting up our version of the database, and then the ongoing data support throughout the 
duration of this project of both, Francesco Lissoni and Gianluca Tarasconi (KITeS – Università L.Bocconi). 
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The EPO provides information on each utility patent application including the year of 
application, the inventor or co-inventors of the patent and the knowledge (IPC) classes into 
which the patent is placed.  Our focus is on year of application, i.e. priority year, rather than 
patent grant year due to the time-lag from the date of invention and filing to grant date.  
Patents are allocated to one or more IPC classes according to the knowledge claims they 
make.  Almost all patents, more than 99%, make claims to fewer than 20 IPC classes.  We 
distribute individual patents across IPC classes on the basis of the share of knowledge claims 
within each class.  The location of inventors is used to locate a patent geographically. 
 
The EPO data are different from U.S. patent data in that a primary inventor and thus a 
primary location are not attributed to EPO patents with multiple inventors. This complicates 
identification of the geographical location of EPO patents. To geo-locate EPO patents 
produced by multiple  inventors we make use of address data for each co-inventor and 
fractionally split patents across NUTS2 regions on the basis of the share of co-inventors 
located in each of those regions. The contribution of non-EU15 co-inventors is removed in 
the first stage of analysis. Thus, if a single EPO patent has three co-inventors, one living in 
Los Angeles, a second in Dublin and a third in London, that patent is given an EU15 weight of 
two-thirds and then one-third of that patent is allocated to Dublin and one-third to London. 
Further, assume that the patent makes four knowledge claims, one in class A23B, one in 
class A23C and two in class A44C.  Unfortunately, there is no straightforward way of 
identifying the knowledge generated on a patent by individual co-inventors.  Thus, it is 
assumed here that all inventors add the same technological information on each patent.  
With our EU15 patent developed in LA, Dublin and London, the two-thirds EU15 weight of 
the patent is further divided into the three knowledge classes listed such that (1/4)(1/3) of 
the patent is assigned to knowledge class A23B in Dublin, (1/4)(1/3) to class A23C in Dublin 
and (2/4)(1/3) to class A44C in Dublin.  The same shares of the patent are also allocated to 
the same knowledge classes in London. Thus, the technology class and locational shares of 
an individual patent sum to the patent’s overall EU15 weight.  That weight is one if all co-
inventors are located in the EU15, zero if all co-inventors are located outside the EU15, and 
somewhere between these limits otherwise. In this way, as much information as possible is 
utilized from the EPO records, while all EU15 knowledge production is counted and 
weighted consistently. 
 
Table 1 shows the number of EU15 patent applications for the five-year periods examined. 
The simple count of patents (column 2) tracks patent applications to the EPO regardless of 
the origin of inventors. The patent counts in column 3 of the table are weighted by the 
share of EU15 co-inventors. The ratio of patent counts in columns 3 and 2 of Table 1 
illustrates the average share of EU15 inventors found on patent applications processed by 
the EPO: that share has monotonically declined from 98.6% in 1981-85 to 95.6% in 2001-05. 
Table 1 also reports the average number of knowledge claims made by patents over time. 
Knowledge claims are placed into one of 629 primary IPC classes by the EPO. The number of 
primary classes found on EPO patents increases from an average of 1.83 in 1981-85 to 1.94 
in 1996-2000. (A reduction in the average number of patent classes by 2005 is a 
consequence of changes in the International patent Classification system.)  An individual 
primary class may appear more than once on a single patent, reflecting knowledge claims in 
different sub-categories of a primary class. The total number of knowledge claims on 
patents also has increased over time, from 3.66 in 1981-85 to 4.20 in 1996-2000. 
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EU15 Knowledge Space 
 
An EU15 knowledge space is constructed for 1981-85, 1991-95 and 2001-05 using co-class 
information gathered from individual patents, following the earlier work of Jaffe (1986), 
Engelsman and van Raan (1994), Verspagen (1997), Breschi et al. (2003) and others. The 
number of primary patent classes on which we focus is considerably larger than that 
employed in most prior studies and thus the knowledge space outlined here is of higher 
resolution than those reported to date. 
 
Table 1: EPO Patent Characteristics 
 

YEARS NUMBER OF 
PATENTS (simple 

count) 

NUMBER OF 
PATENTS (EU15-

weighted) 

AVERAGE NUMBER OF 
CO-CLASSES PER PATENT 

Single count     Multiple count 
1981-85 89,533 88,268.9 1.830 3.658 
1986-90 130,746 128,222.4 1.896 3.871 
1991-95 144,249 140,265.0 1.956 4.092 
1996-00 227,326 218,848.2 1.944 4.199 
2001-05 272,072 260,188.0 1.788 3.516 

 
Note: The number of patents in any period is fixed by the number of patent applications in that period. 
The number of patents (simple count) refers to those patent applications made to the EPO by inventors 
regardless of location. The EU15 patent count only includes patents where at least one co-inventor is 
located within an EU15 member nation. Patents are weighted by the EU15 share of all inventors. Single 
count only counts a primary class once on each patent regardless of how many times a primary class 
actually appears together with different sub-classes. Multiple count records the total number of times 
each primary class appears on a single patent, indicating a patent introduces novelty into a number of sub-
classes within each of the primary classes or that makes more than one claim in a particular class. 

 
To measure the proximity, or technological relatedness, of patent classes we use the 
distribution of knowledge claims by IPC class on each patent. This is typically done by 
counting the number of patents for a given period that contain a co-class pair, say i and j, 
and then standardizing this count by the number of patents in total that record knowledge 
claims in IPC classes i and j. There are two problems with this method. First, it weights 
patents unequally, giving more weight to patents that contain a larger number of knowledge 
classes. Second, it cannot discriminate between individual patents that contain uneven 
numbers of knowledge claims across a common set of classes. For example, suppose that 
one patent records four separate knowledge claims in IPC class H02J and one knowledge 
claim in IPC class H02B (i.e. H02J, H02J, H02J, H02J, H02B). This patent would look identical 
to another that contained one knowledge claim in each class (i.e. H02J, H02B). We propose 
a method of calculating technological proximity that weights each EU15 patent uniformly 
and that distinguishes between all the knowledge characteristics/claims that are found on 
the patent record. 
 
To operationalize this method, the first step is to count the number of knowledge claims on 
each patent, 𝑛𝑛𝑝𝑝, regardless of how many knowledge classes the claims are distributed 
across. Each knowledge class claim is given the weight 1 𝑛𝑛𝑝𝑝� such that the total weight of 
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claims on an individual patent equals one. The second step is to record the IPC class of each 
of these knowledge claims. The number of knowledge claims on patent p in IPC class i, 
where i = 1, …, 629, is given as 𝑛𝑛𝑖𝑖𝑖𝑖. Then, the number of knowledge claims in technology 
(IPC) class i on all patents in a specific period is 
 
  ∑ 𝑛𝑛𝑖𝑖𝑖𝑖

1
𝑛𝑛𝑝𝑝𝑝𝑝 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖

𝑛𝑛𝑝𝑝𝑝𝑝  

 
and this is equal to the overall number of patents in technology class i (𝑃𝑃𝑖𝑖).  The total 
number of patents in the same period is 
 
  ∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖

𝑛𝑛𝑝𝑝𝑝𝑝𝑖𝑖 = ∑ 𝑃𝑃𝑖𝑖𝑖𝑖 = 𝑃𝑃. 

 
The number of pairwise co-class links across all the knowledge claims on patent p is 
 𝑙𝑙𝑝𝑝 =  �𝑛𝑛𝑖𝑖𝑖𝑖 ∗ �𝑛𝑛𝑖𝑖𝑖𝑖 − 1�� /2. The third step in this technique is to count the links that join 
knowledge claims, recording the IPC classes of the claims linked. Each pairwise link for a 
single patent is given the weight 1 𝑙𝑙𝑝𝑝�  so that the sum of link weights for patents with more 

than a single knowledge claim is one. The number of links between patent class claims i and 
j on patent p is 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖, where i and j range in value from 1 to 629. To illustrate these measures, 
take again the patent outlined above with knowledge claims H02J, H02J, H02J, H02J, H02B. 
For this patent, 𝑛𝑛𝑝𝑝 = 5,𝑛𝑛𝐻𝐻02𝐽𝐽 𝑝𝑝 = 4,𝑛𝑛𝐻𝐻02𝐵𝐵 𝑝𝑝 = 1, 𝑙𝑙𝑝𝑝 = 10, 𝑛𝑛𝐻𝐻02𝐵𝐵 𝐻𝐻02𝐽𝐽 𝑝𝑝 = 4,𝑛𝑛𝐻𝐻02𝐽𝐽 𝐻𝐻02𝐽𝐽 𝑝𝑝 =
6. 
 
Repeating these measures across all patents in a given period yields weighted counts of the 
number of co-class links between all pairs of knowledge classes ∑ ∑ ∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙𝑝𝑝
= 𝐿𝐿𝑖𝑖𝑖𝑖𝑝𝑝𝑗𝑗𝑖𝑖 . The co-

class counts are influenced by the number of patents found within each individual patent 
class. Therefore, the final step in estimating the average relatedness between two patent 
technology classes (IPCs) is to standardize the co-class link counts by the square root of the 
product of the number of patents in the respective technology classes. Different methods of 
standardization are discussed by van Eck and Waltman (2009). We prefer this simple form of 
standardization for the reasons outlined by Joo and Kim (2010). Thus, 
 
             𝑆𝑆𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖

�𝑃𝑃𝑖𝑖∗𝑃𝑃𝑗𝑗
 , 

 
where 𝑆𝑆𝑖𝑖𝑖𝑖 is an element of the standardized co-occurrence matrix (S) that indicates the 
technological proximity, or relatedness, between all pairs of patent classes in a given period. 
The elements on the principal diagonal of S are set to 1. 
 
The 629 primary technology classes reported by the EPO have been aggregated into seven 
broad technology classes on the basis of a shared core of knowledge. We anticipate that 
primary technology classes within the aggregate technology groups should exhibit relatively 
high technological relatedness measures with one another. That is, technological 
relatedness should be higher between primary technology classes that share a common 
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base of knowledge than between primary technology classes that do not share a common 
knowledge core. 
 
With the aid of UCINET (Borgatti et al. 2002), the network of technological relatedness 
across the 629 primary patent classes is mapped. The technological relatedness network is 
generated with the Gower-scaling metric, itself derived to examine patterns of similarity 
across network nodes (Gower 1971). The nodes in the network correspond to each of the 
629 distinct technological classes within the EPO. A handful of isolates are deleted. The 
relative positions of the nodes are fixed by the values in the symmetric standardized co-
occurrence matrix (S). The principal diagonal of that matrix plays no role in the relative 
locations of the nodes. The knowledge relatedness networks for 1981-85, 1991-95 and 
2001-05 are shown below (see Figure 1). 
 
 
 
 
Figure 1: EU15 Knowledge Space 

a. 1981-85 

 
Notes: Red = Electronics (1), Green = Instruments (2), Black  = Chemicals  (3), Yellow = Drugs & Medicine (4), 
Blue = Industrial Process (5), Purple = Machinery & Transport (6), Grey = Consumer Goods (7). The nodes are 
sized according to the number of patents and the sizing is consistent over time. The largest patent class in 
2001-05 (A61K = Preparations for medical, dental or toilet purposes) contains 10,360 patents. 
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b. 1991-95 

 
 
c. 2001-05 
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There is clear evidence of the clustering of individual patent categories within the aggregate 
classes of Figure 1, indicating that the relatedness measure is capturing what may be 
considered a common knowledge base within the more aggregate technology groupings. 
The size of each node illustrates the number of patents in that technology class in the given 
period. Node sizes have been scaled to allow comparison over time. Over the past twenty-
five years or so, there has been a marked increase in the relative frequency of patents in 
those classes that we associate with newer technologies such as drugs and medicine, in 
electronics and instruments. There appears to be some overlap of the knowledge bases of 
drug and medical patents with chemicals patents, and electronic patents with those in the 
instruments sector. Patents in the machinery and transport and consumer goods groups are 
somewhat more dispersed. 

To generate a better idea of the clustering of patents in the EU15 knowledge space, the 
average technological relatedness (proximity) between all pairs of patents is calculated. A 
higher average relatedness score indicates that patents are located in technology classes 
that are relatively close to one another in the EU15 knowledge space. These are the 
technology classes that tend to co-occur with relatively high frequency on individual 
patents. A lower relatedness score would indicate that patents are distributed over 
technology classes that are, on average, further apart from one another in knowledge 
space. Average relatedness provides a useful summary measure of technological 
specialization, one much more accurate than could be generated by an index such as the 
Herfindahl that ignores the variance in inter-class distances of categorical variables. 
 
The average relatedness value for all patents in time period t is calculated as: 
 

                   𝐴𝐴𝐴𝐴𝑡𝑡 =
∑ ∑ 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗𝑖𝑖 𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡

𝑃𝑃𝑡𝑡 ∗ (𝑃𝑃𝑡𝑡 − 1)  

  
where 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡  represents the technological relatedness between patents in technology classes i 
and j, 𝑃𝑃𝑡𝑡  is a count of the total number of patents in year t, and where 𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡  
 (= (𝑃𝑃𝑖𝑖𝑡𝑡+𝑃𝑃𝑗𝑗𝑡𝑡)(𝑃𝑃𝑖𝑖𝑡𝑡 + 𝑃𝑃𝑗𝑗𝑡𝑡 − 1)) counts the number of links between all pairs of patents that 
can be located in technology classes i and j in year t. This measure of average relatedness is 
easily adapted to focus on particular subsets of technology classes or regions. Table 2 
provides information on average technological relatedness, or specialization, between all 
patents in the EU15 knowledge network and between patents within each of the seven 
aggregate technology fields. Overall, average relatedness increased by approximately 35% 
during the period examined. Thus, over time, more patents are being generated that 
embody technological claims that are closer to one another in knowledge space. This is 
consistent with the growth of technological specialization, an increase in the shared 
knowledge base that underpins invention.  
 
Table 2 reports how technological specialization varies across major patent classes and how 
specialization has changed over time. Note that average relatedness values overall are not a 
simple average of those within each of the patent groupings, for this average ignores the 
lower levels of technological proximity found between individual IPCs in different aggregate 
groups. On average, technological relatedness, or proximity, is significantly higher in the 
drugs and medicine group than in the other IPC aggregates. This reflects the relatively small 
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number of individual patent classes in this group, the proximity of those classes in 
knowledge space and the clustering of patents in relatively few drug-related IPCs. The 
electronics, instruments and chemicals groups all show technological proximity higher than 
average, while industrial process, consumer, and especially the machinery and transport 
groups all report technological proximity that is lower than average. The electronics group 
of IPCs records the largest gain (56%) in technological proximity over the period examined. 
The instruments and drugs and medicine groups follow, with reported gains in proximity 
between patents of around 22%. The chemicals sector is the only aggregate group to 
register a slight decline in technological proximity over time. 
 
Table 2: Average Technological Relatedness by Major Patent Class, EU15 Total  

PATENT GROUP YEAR 
  1981-85            1986-90         1991-95           1996-00           2001-05 

ELECTRONICS 0.0451 
(14,197.0)1 

0.00453 
(20,558.4) 

0.0473 
(25,017.1) 

0.0589 
(50,860.2) 

0.0705 
(62,017.5) 

INSTRUMENTS 0.0535 
(11,988.4) 

0.0548 
(17,471.9) 

0.0544 
(18,727.3) 

0.0604 
(29,006.6) 

0.0654 
(35,954.3) 

CHEMICALS 0.0780 
(15,956.2) 

0.0719 
(21,030.0) 

0.0694 
(20,836.6) 

0.0629 
(24,843.4) 

0.0665 
(26,694.7) 

DRUGS & 
MEDICINE 

0.2899 
(4,489.3) 

0.2990 
(8,513.5) 

0.3364 
(10,788.6) 

0.3499 
(19,701.8) 

0.3474 
(25,053.8) 

INDUSTRIAL 
PROCESS 

0.0408 
(15,522.0) 

0.0421 
(23,542.8) 

0.0444 
(25,184.7) 

0.0428 
(32,811.1) 

0.0430 
(35,909.6) 

MACHINERY & 
TRANSPORT 

0.0166 
(21,647.2) 

0.0175 
(30,462.5) 

0.0181 
(32,373.0) 

0.0198 
(50,853.8) 

0.0203 
(61,721.6) 

CONSUMER 
 

0.0354 
(4,589.5) 

0.0382 
(6,822.6) 

0.0391 
(7,476.2) 

0.0402 
(10,988.8) 

0.0417 
(13,100.3) 

TOTAL 
 

0.0095 
(88,268.9) 

0.0097 
(128,222.4) 

0.0102 
(140,265.0) 

0.0115 
(218,848.2) 

0.0129 
(260,188.0) 

Note: Number of (EU15-weighted) patents are shown in parentheses. Column totals might vary because of 
rounding. 
 
4. THE GEOGRAPHY OF INVENTION AND REGIONAL SPECIALIZATION 
 
The geography of invention across NUTS2 regions within the EU15, as represented by 
patents, is highly uneven. Moreno et al. (2005) and Usai (2011) have already reported this 
geography, like us using fractional patent shares in cases where co-inventors are located in 
different regions. However, that geography is remarkably stable over time. The correlation 
coefficient between patent counts by region for the periods 1981-85 and 2001-05 is 0.93. It 
is even higher for consecutive time-periods. Table 3 provides a snapshot of the geography of 
EU15 patenting, reporting the twenty most and least inventive regions at the start and end 
of the time period we examine. We have not standardized these counts by region size. The 
median number of patents produced across EU15 regions has risen from 161 in 1981-85 to 
521 in 2001-05. There has been some tightening in the distribution of patents across the 
regions, with the coefficient of variation declining from 2.07 to 1.73 between 1981-85 and 
2001-05. 
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Table 3: Regional Inventiveness as Measured by Patent Output in 1981-1985 and 2001-
2005 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rank NUTS2 Region 1981-85 Rank NUTS2 Region 2001-05

1 FR10 Ile de France 7,745 1 FR10 Ile de France 15,312
2 DE21 Oberbayern 4,966 2 DE11 Stuttgart 13,050
3 DE71 Darmstadt 4,207 3 DE21 Oberbayern 12,198
4 DEA1 Dusseldorf 3,741 4 NL41 Noord-Brabant 9,749
5 DEA2 Koln 3,714 5 DE71 Darmstadt 7,361
6 DE11 Stuttgart 2,981 6 DEA2 Koln 7,315
7 FR71 Rhone-Alpes 2,226 7 ITC4 Lombardia 7,032
8 DE12 Karlsruhe 2,130 8 DEA1 Dusseldorf 6,961
9 NL41 Noord-Brabant 2,090 9 DE12 Karlsruhe 6,768

10 DEB3 Rheinhessen-Pfalz 2,073 10 FR71 Rhone-Alpes 6,510
11 ITC4 Lombardia 1,912 11 DE13 Freiburg 4,908
12 DE25 Mittelfranken 1,497 12 DE14 Tubingen 4,387
13 DE13 Freiburg 1,426 13 DEB3 Rheinhessen-Pfalz 4,211
14 DEA5 Arnsberg 1,296 14 FI18 Etela-Suomi 4,021
15 UKJ2 Surrey, E&W Sussex 1,260 15 DE25 Mittelfranken 3,956
16 SE11 Stockholm 1,198 16 ITD5 Emilia-Romagna 3,607
17 UKJ1 Berks, Bucks & Oxon 1,120 17 DEA5 Arnsberg 3,483
18 DE14 Tubingen 1,003 18 SE11 Stockholm 3,055
19 ITC1 Piemonte 987 19 DE30 Berlin 2,982
20 UKI2 Outer London 896 20 DK01 Hovedstaden 2,860

       : :         :              :        : :         :              :
170 DED3 Leipzig 9 170 NL34 Zeeland 106
171 NL23 Flevoland 9 171 NL23 Flevoland 105
172 ITD2 Provincia Autonoma Trento 8 172 SE32 Mellersta Norrland 105
173 ES13 Cantabria 6 173 UKK3 Cornwall and Isles of Scilly 98
174 IE01 Border, Midland and Western 6 174 PT17 Lisboa 94
175 ES11 Galicia 6 175 AT11 Burgenland (A) 86
176 ES24 Aragon 5 176 PT11 Norte 78
177 ITC2 Valle d'Aosta/Vallee d'Aoste 5 177 UKM6 Highlands and Islands 74
178 UKM6 Highlands and Islands 5 178 ITG2 Sardegna 69
179 DE80 Mecklenburg-Vorpommern 4 179 ES42 Castilla-La Mancha 68

180 GR12 Kentriki Makedonia 4 180 GR12 Kentriki Makedonia 65
181 ES42 Castilla-La Mancha 4 181 ITF6 Calabria 57
182 ES41 Castilla y Leon 4 182 ES12 Principado de Asturias 52
183 ITF5 Basilicata 3 183 ES62 Region de Murcia 42
184 ES70 Canarias 2 184 ES70 Canarias 33
185 ES12 Principado de Asturias 2 185 PT16 Centro (P) 31
186 ES53 Illes Balears 2 186 ITF5 Basilicata 23
187 ES62 Region de Murcia 2 187 ES13 Cantabria 23
188 PT11 Norte 0 188 ITC2 Valle d'Aosta/Vallee d'Aoste 22
189 PT16 Centro (P) 0 189 ES53 Illes Balears 22

Note:  Inventor counts are based on fractional shares per patent.  For example, if a patent was developed by three inventors 
residing in the very same NUTS region each of these inventors will  be allocated a count of one-third.
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Although overall the geography of invention is relatively stable within the EU15, a number 
of regions have significantly shifted their rank positions over time. The regions that have 
dropped most in the patent rankings since 1981 are all located within the UK. The regions 
that have moved up in rankings most sharply since 1981 are West Finland, Catalonia and 
three German regions centered on Thüringen, Dresden and Brandenburg. 
 
Of most interest in this paper is how the different NUTS2 regions within the EU15 have 
performed in terms of the relatedness of their inventions since 1981. For all regions, we 
measure the average technological relatedness, or specialization, of patents produced using 
the methodology outlined above, computing the average distance between all pairs of 
patents generated within each region. Limiting summary statistics to regions with more than 
20 patents in the first time-period, 1981-85, technological relatedness values across the 
EU15 ranged from 0.006 to 0.127. The median (mean) regional relatedness score was 0.016 
(0.021) for this period and the coefficient of variation was 0.714. In the second time-period, 
2001-05, technological relatedness values ranged from 0.10 to 0.137. The median (mean) 
regional relatedness score was 0.023 (0.028) and the coefficient of variation remained at 
0.714.  
 
From 1981-85 to 2001-05, the average (mean) NUTS2 technological relatedness score 
increased by approximately 33% across the EU15. Overall, almost three-quarters of 
observed NUTS2 regions register gains in measures of technological specialization between 
1981-85 and 2001-05. Figures 2 and 3 provide an overview of regional technological 
specialization for these two time-periods. The NUTS2 regions with the highest levels of 
technological specialization in 1981-85 (greater than 0.05), were N.E. Scotland, Merseyside, 
E. Yorkshire, Cumbria, Luxembourg, Rheinhessen-Pfalz and Kent. Note that many of the 
most specialized regions have relatively small numbers of patents. For the UK regions just 
listed, and for Luxembourg, patent counts vary from 62 to 390. Rheinhessen-Pfalz registered 
just over 2000 patents in the period 1981-85. The N.E. Scotland region was strongly focused 
on oil and gas technologies, drilling and pipes. Mersyside patents were dominated by 
Unilever research, mostly in detergents, and by Pilkington glass. Cumbrian patent were 
mostly in vehicle fittings, while those in East Yorkshire were mostly owned by BP Chemicals.  
The patents in Kent were largely concentrated in chemicals and medical preparations 
assigned to Shell, Pfizer and a number of other companies. Patenting in Luxembourg in 
1981-85 was heavily concentrated in tyre technologies (Goodyear) and in iron and steel 
(Paul Wurth). Patents in Rheinhessen-Pfalz focused mostly in chemicals and medical 
preparations, the dominant assignee being BASF. The most diversified NUTS regions in 
terms of patents in 1981-85 were Stockholm and West Sweden, Arnsberg and Stuttgart in 
Germany and Île de France.  
 
Two decades later, technological specialization in most EU15 NUTS2 regions has increased 
significantly (see Figure 3). Relatively high relatedness scores (>0.05) are now present in 
close to twenty EU15 regions.  Most parts of the UK that were highly specialized in the 
period 1981-85 have retained their technological cohesion through 2001-05, most all in the 
same patent fields. A number of new NUTS2 regions have focused their knowledge 
production and have registered significant gains in technological relatedness.  
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Figure 2: Average Technological Relatedness in EU15 NUTS2 Regions, 1981-85 

 
 
Figure 3: Average Technological Relatedness in EU15 NUTS2 Regions, 2001-05 
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The most prominent of these places include Northern and Southern Finland where 
knowledge production is focused largely on electronic circuitry and communications, and is 
dominated by Nokia. In France, the most technologically specialized regions in 2001-05 
include Auvergne (Michelin patents), Bretagne (electronics and ICT) and Poitou-Charentes 
(automotive). In Germany, Hovedstaden is highly specialized in the development of medical 
preparations and chemical compounds. This same specialization characterizes Brabant 
Walloon in Belgium. In the Luxembourg region of Belgium most patents are found in tyre 
technologies and related automotive fields. In Portugal, the Lisbon NUTS2 region is highly 
specialized in medical preparations and organic compounds, and in Sicily, patent production 
is dominated by STMicroelectronics in the semiconductor field. The most diversified EU15 
NUTS2 regions in terms of knowledge production in 2015 are Cornwall, Shropshire and 
Staffordshire in the UK, Schwaben, Arnsberg, Oberfranken, Luneberg and Niederbeurgen in 
Germany, Pays de la Loire in France, and Liguria, Marche and Veneto in Italy. 
 
The NUTS2 regions that display the most significant increases in technological specialization 
after 1981-85 are Stockholm (+340%), Bretagne (+307%), Essex (+282%), Lansi-Suomi 
(+302%) and Provence-Alpes-Cote d’Azur and Eastern Scotland (both +240%).  The regions 
that experienced the largest decline in technological relatedness, on the order of 50%, are 
Koln (Cologne), Rheinhessen-Pfalz, and Veneto.  
 
While measures of average technological relatedness across EU15 NUTS2 regions provide 
some insights into geographies of specialized knowledge production and how these have 
shifted over the last two decades it does not account for the changes observed.  In the 
following two sections of the paper the evolution of regional technological specialization 
across the EU15 is decomposed into a number of components, notably technological entry, 
exit, selection and incumbent effects. Models of technological entry and exit are then linked 
to various forms of proximity within EU15 regions. 
 
5.  DECOMPOSING REGIONAL CHANGES IN TECHNOLOGICAL SPECIALIZATION 
 
Between 1981 and 2005, European regions experienced considerable growth and turnover 
in their knowledge bases. Out of a total of 133,977 (213x629) possible region-technology 
combinations, 34,005 (25.4%) existed in the period 1981-1985, increasing to 53,606 (40%) 
by 2001-05. In other words, regions started to fill a lot of empty technology niches over the 
period examined. Of the 34,005 region-technology combinations in existence in 1981-85, 
about 80% were still generating patents twenty years later. However, only 50% of the 
technology class-region pairings found in 2001-05 existed in 1981-1985. The results from the 
last section suggest that this general increase in the number of technology classes in which 
patents were developed within individual regions was not based on random assignment but 
rather reflected a growing specialization of invention at the regional level. So while most 
regions began to patent across a larger number of technology classes after 1981, on average 
those classes were located closer to one another in the EU15 knowledge space. 
 
Evolutionary accounts of aggregate change suggest a series of processes - entry, exit, 
selection - through which resources are distributed across micro-level units. Though the 
individual technology classes of the International Patent Classification system might be 
imagined as the micro-units in our evolutionary analysis, it should be clear that those classes 

16 
 



are not in competition with one another. However, economic agents distribute their 
resources across these patent classes in the hope of developing new knowledge subsets and 
generating technological rents. We imagine technological entry as a process through which 
economic agents move into patent classes that have not yet been explored within a region. 
Technological exit is conceived as a process where economic agents in a region abandon 
exploration within patent classes in which they were previously active. Selection, or 
differential growth, occurs when the relative level of activity within established patent 
classes of a particular region change over (Nelson and Winter 1982; Metcalfe 1998). In this 
section of the paper we explore how technological entry, exit and selection have impacted 
aggregate measures of technological specialization across the NUTS2 regions of the EU15 
since 1981. 
 
More formally, changes in average regional relatedness (technological specialization), can 
be depicted as follows. In each period t, technological relatedness in region r is given as 
𝐴𝐴𝐴𝐴𝑟𝑟𝑡𝑡 = ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗𝑖𝑖 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡  , where 𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡  is the relatedness (proximity) value between technology 
classes i and j at the EU-15 level and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡  represents the share of all possible patent to 
patent links within region r at time t that link technology classes i and j.  In other words, 

                    𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 =
(𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑃𝑃𝑗𝑗𝑗𝑗𝑡𝑡 )(𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑃𝑃𝑗𝑗𝑗𝑗𝑡𝑡 − 1)

∑ 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡 (𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 − 1)
 

where 𝑃𝑃𝑖𝑖  indicates the number of patents in technology class i. Then, the change in 
technological relatedness within a region over time is given as 

        𝐴𝐴𝐴𝐴𝑟𝑟𝑡𝑡+1 − 𝐴𝐴𝐴𝐴𝑟𝑟𝑡𝑡 = ∑ ∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+1𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 )𝑗𝑗𝑖𝑖 . 
 
Following the literature on productivity decompositions2 (Foster et al., 1998), the change in 
aggregate technological relatedness in region r between times t and t+1 can then be 
decomposed as 

 𝐴𝐴𝐴𝐴𝑟𝑟𝑡𝑡+1 − 𝐴𝐴𝐴𝐴𝑟𝑟𝑡𝑡 = � �𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+1 − 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + � �𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗𝑡𝑡+1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ��𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 − 𝐴𝐴𝐴𝐴𝑟𝑟𝑡𝑡� +
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼𝐼𝐼

 

      � �𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+1 − 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ��𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+1 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 � + ��𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+1 − 𝐴𝐴𝐴𝐴𝑟𝑟𝑡𝑡�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+1 − �(𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 − 𝐴𝐴𝐴𝐴𝑟𝑟𝑡𝑡)𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

𝑖𝑖𝑖𝑖∈𝑋𝑋𝑖𝑖𝑖𝑖∈𝑁𝑁𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼𝐼𝐼

        

In the equation immediately above, the subscript INC denotes incumbent links, links 
between patents in technology classes that exist in year t and t+1, N represent new links to 
technology classes that exist in t+1 but were not part of the regional patent portfolio in year 
t, and X denotes links to technology classes that exit the region between periods t and t+1.  

Aggregate change in technological specialization within a region can then be understood as 
the sum of five components. The first three components in equation 1 represent changes 
related to incumbent technology classes within a region, the fourth component capturing 

2 There are a number of different ways to decompose aggregate productivity changes (Griliches and Regev 
1995; Caves 1997), but we choose the Foster et al. (1998) version because it measures explicitly the distance of 
entering and exiting technology classes from the regional cores and because the selection effect can be 
interpreted in a meaningful way.  
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the influence of entry into new technology classes within a region and the fifth term 
representing the impact of a region’s exit from technology classes. Of the incumbent terms 
in equation 1, the first measures the influence of changes in technology relatedness values 
over time on the aggregate measure of regional technological specialization. If two 
technology classes move closer together in the EU15 technology space over time, then 
ceteris paribus, the average relatedness values of regions that contain patents in those two 
classes will increase. The second incumbent term represents a selection effect. This term is 
positive (negative) if technology classes with relatedness values higher (lower) than the 
regional average expand their shares of the region’s overall patents. The third incumbent 
term is a covariance effect that is positive if technology classes characterized by increasing 
relatedness values over time also expand their shares of the region’s patent stock. The entry 
term in equation 1 is positive (negative) if a region begins patenting in technology classes 
that are more (less) closely related to its technology portfolio than average. The exit term in 
equation 1 is negative (positive) if patenting in the region ends within technology classes 
that are more (less) closely related to the region’s technology portfolio than average. 

Table 4 depicts the average contributions of each component of equation 1 to changes in 
regional technological relatedness (specialization) across each of the four periods. Those 5-
year periods are indicated by their mid-points. The percentages (in parentheses) are based 
on the share of each component on the sum of the absolute values of the five components 
and offer an indication of the relative strength of the factors shaping changes in aggregate 
regional technological relatedness values. The final row of the table averages the relative 
contributions of the different components to technological relatedness over the four sub-
periods. Although there are differences over time periods and there is considerable 
heterogeneity in the contributions of components for changes in individual regions, a 
number of regularities emerge. With the exception of the first period, technological 
specialization increases on average as the patent portfolios of most regions become more 
related. The increase in incumbent specialization is driven largely by selection, by increases 
in regional shares of patents that are located in technology classes that are relatively close 
to one another. Indeed, over the period as a whole, there is a slight decrease in the overall 
proximity of patent classes to one another that is captured by the negative sign on the 
incumbent effect. As expected, exit and selection tend to increase technological relatedness 
over time, while entry into new patent classes within regions tends to reduce specialization.  
Although the relative importance of the components changes over time, entry tends to 
exert the biggest impact on aggregate change, with the exception of the third period when 
selection is slightly higher. The contribution of entry is highest in the first period, due to 
rapid growth in the number of technology classes occupied by many regions. Exit tends to 
be the second most important component in three of the four periods, and selection is the 
third most important individual component. In most periods, the combined effects of 
selection and exit result in positive change in technological specialization, overcoming the 
negative effects of entry. 
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Table 4: Components of Change in Regional Technological Specialization 
 
Period Regional 

change 
Incumbent Selection Covariance Entry Exit 

1981-90 -0.00003 -0.00031 -0.00008 0.00092 -0.00247 0.00191 
 % -5.42 -1.42 16.16 -43.44 33.56 
1986-95 0.00177 -0.00027 0.00136 0.00076 -0.00191 0.00183 
 % -4.39 22.22 12.46 -31.14 29.79 
1991-00 0.00232 -0.00031 0.00235 0.00085 -0.00216 0.00159 
 % -4.29 32.35 11.73 -29.73 21.90 
1996-05 0.00103 -0.00047 0.00096 0.00060 -0.00176 0.00169 
 % -8.50 17.53 10.96 -32.11 30.90 
1981-05 
Average % 

 
-5.57 

 
18.38 

 
12.83 

 
-34.17 

 
29.04 

Note:  The values are weighted means for all regions with more than 50 patents. The weights are the number 
of patents at the beginning of each period. The percentages reflect the share of each component divided by 
the sum of their absolute values.  

While the results of Table 4 are indicative of the drivers of change in technological 
relatedness as a whole, they obscure considerable heterogeneity between regions. In order 
to get an idea of the relative importance of the individual components of shifts in regional 
technological specialization, Figures 4-6 map the relative sizes of the overall incumbent 
effect (incumbent, selection and covariance variables from Table 4), entry and exit 
components on technological relatedness over the NUTS2 regions of the EU15. The overall 
incumbent effect in Figure 4 is dominated by selection and mirrors to some extent the 
overall changes in technological specialization. The correlation between the selection effect 
and the change in regional relatedness is 0.61. Regions recording the most marked decline 
in technological specialization are those with strong negative selection effects. These 
negative selection effects are particularly strong in the regions of the German Ruhr and 
northern Italy. A negative selection effect indicates that incumbent technologies close to a 
region’s knowledge core are declining as a share of the region’s overall knowledge base. 
This is consistent with a process of technological restructuring in old industrial regions that 
are shifting resources away from technologies that are perhaps past their prime. Positive 
selection effects are particularly strong in southern Germany, around London and segments 
of the UK technology corridor, throughout the core of the Dutch economy, across southern 
France and parts of Italy. All these regions are expanding invention in technology classes 
close to their knowledge core.  

Figures 5 and 6 report geographical variations in the impact of technological entry and exit 
on changes over time in technological relatedness. Figure 5 shows that technological 
diversification has reduced specialization in many regions since 1981. However, in Finland, 
the influence of entry has been large and positive. This likely represents a dramatic shift of 
the country into new technological classes that are themselves relatively concentrated in 
technology space. This is, perhaps, a Nokia effect. Technological entry has also increased 
specialization in a number of neighboring regions of the former East Germany. Figure 6 
shows the influence of exit across EU15 regions. When regions stop patenting in technology 
classes that are relatively far from their knowledge cores, the average relatedness of 
technology increases. If regions stop patenting in core technology classes this would reduce  
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Figure 4: Incumbent Component of Decomposition Analysis, 1981-2005 

 
 
Figure 5: Entry Component of Decomposition Analysis, 1981-2005 
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Figure 6: Exit Component of Decomposition Analysis, 1981-2005 

 
 
technological specialization. Overall, exit increases specialization and the exit effect has 
been particularly large in several U.K. regions, in Antwerp, Lisbon, Mecklenberg, Dresden 
and Leipzig, in Nordjylland, Lorraine and Languedoc-Roussillon and Kentriki Makedonia. 

We know that changes in the knowledge production practices of regions are shaped not 
only by processes operating within the region, but also by processes that flow across space. 
The influence of neighbors on knowledge production practices is left to the next section. 
 
6.  MODELING TECHNOLOGICAL ENTRY AND EXIT – THE ROLE OF TECHNOLOGICAL 
PROXIMITY, SOCIAL PROXIMITY AND GEOGRAPHICAL PROXIMITY 
 
The decomposition of technological specialization across EU15 NUTS2 regions suggests that, 
at least for some areas, processes of technological diversification (entry) and technological 
abandonment (exit) play a strong role influencing the concentration or dispersion of 
knowledge across space. In this section of the paper we explore how existing configurations 
of technological capabilities within NUTS2 regions shape future trajectories of invention 
over space. The basic idea is that the technological competence of a region at some time t, 
measured by the region’s stock of patents in different technology classes and by the average 
relatedness between those patents, is likely to influence technological competence in the 
region at some future time t+n. That is, there is some level of persistence or inertia in the 
technological capacity of a region that guides processes of search and knowledge 
development and that works to channel effort from older technologies to newer ones. 
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A simple model assumes that technological diversification builds incrementally upon the 
existing knowledge base of the region. Thus, diversification to new technology classes, or 
gaining specialization in such classes, should be a function of their technological distance 
from the existing structure of knowledge within a region. In Hausmann and Klinger (2007), 
diversification rests on the density of current practice within a product space and the value 
of that density around product classes that have yet to be exploited. Boschma et al. (2015) 
adopt similar claims. We follow a similar logic and hypothesize that the probability of a 
NUTS2 region diversifying into a technology class is a positive function of the overall 
proximity (in knowledge space) of that class to all technology nodes in which the region is 
already specialized (see also Rigby 2013). Along the same lines, it follows that regions will 
most likely abandon those technologies that are furthest from the core of their knowledge 
base. 

We add to these simple claims measures of the interaction between regions and inventors. 
Cities and regions do not operate as independent economic units, rather they are connected 
in more or less dense webs of interaction that link economic agents across different 
locations. Information flows through these interactions perhaps signaling technological 
possibilities as yet untried in particular places, as well as the obsolescence of current 
practice. The greater the flow of information to a region, the more likely it is that the 
region’s knowledge base will be shaped by ideas developed elsewhere. There is some 
disagreement in the innovation literature regarding the flow of technological knowledge 
and whether that flow is guided more by spatial or social relationships (Jaffe et al. 1993; 
Breschi and Lissoni 2005). Thus, we attempt to capture the linkages between regions both in 
terms of the social and geographical distances between them. While we cannot readily 
isolate spatial and social relations, for they influence one another in complex ways, our 
methodology may hint at their relative strength perhaps suggesting pathways for future 
analysis. 

To capture the influence of geographical relationships, we assume that the probability of 
technological change within a region is influenced by the knowledge bases (structure of 
knowledge) of other regions. The influence of a region’s neighbors is expected to be 
positively related to their geographical separation. These ideas are operationalized in the 
following way. First, an inter-regional inverse distance matrix (213x213) is created based on 
the geographical centroids of each NUTS2 region. The principal diagonal of this matrix 
contains zeros by convention. Near neighbors in this matrix have higher proximity (inverse 
distance) values than distant neighbors. Second, for each of the five-year periods examined, 
a (213x629) matrix of binary location quotients (0/1 values) is constructed that reveals 
patterns of relative technological advantage (location quotient greater than 1) across the 
213 NUTS2 regions and the 629 technological classes of the IPC. A given cell (𝑖𝑖, 𝑗𝑗)  in the 
resulting (213x629) product matrix is the inverse distance weighted sum of the number of 
region i’s neighbors that exhibit relative technological advantage in technology class j. 
Whether or not geographical spillovers of knowledge should exhibit a positive or negative 
influence on technological diversification and abandonment in a specific region is unclear to 
us. 
 
In a second measure of inter-regional relationships, we replace the inverse-distance matrix 
with matrices of co-inventor linkages between all pairs of NUTS2 regions, built separately 
for each of the 629 IPC technology classes. Thus, we shift from a purely geographical 
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measure of proximity to measures of proximity built around social connections between 
economic agents in different places. We recognize that the strength of those social ties 
might still be influenced by geography. To build the square (213x213) matrices of co-
inventor relations between all NUTS2 regions for each technology class requires 
identification of individual inventors. The EPO does not provide such data. Fortunately, 
Lissoni and colleagues have developed an inventor disambiguation algorithm for EPO data 
(Lissoni et al. 2006). From these data, we take all patent applications in a given 5-year 
period and a specific IPC class that list co-inventors and record the NUTS2 regions within 
which co-inventors are located. We do not exploit the density of co-inventor linkages within 
the same region in this analysis. Many patents make knowledge claims in several IPC classes. 
In this case, the co-inventor connections on an individual patent are counted more than 
once. 

 
The processes of technological diversification and abandonment within EU15 regions are 
examined using a panel version of a fixed effects logit model. The observational units are 
the 629 IPC technology classes within each of 213 NUTS2 regions over the five-year time 
periods that we examine. The values of the dependent variable are 0 or 1, so the regression 
model is predicting the probability that Y = 1, or that a region exhibits relative technological 
specialization in a particular technology class in a given period. The binary nature of the 
dependent variable suggests use of a probit or logit model extended to panel form to take 
advantage of the time dimension in the data. This is not straightforward, for a probit model 
cannot be run with a fixed effects panel specification that is suggested by a simple Hausman 
test as preferable to a random effects model. Thus, we make use of the fixed effects panel 
version of the logit model. We stress that this is an exploratory model of technological 
diversification and abandonment that we employ to examine whether the broad logic of the 
claims made above finds some empirical support. We do not offer a richer causal model 
with additional covariates for that is well beyond our aims. 

 
The model to be estimated is 

 
                   𝑌𝑌�𝑖𝑖𝑟𝑟𝑟𝑟 = 𝛼𝛼 + 𝛽𝛽1𝑇𝑇�𝑒𝑒𝑒𝑒ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑟𝑟𝑟𝑟−1 +  𝛽𝛽2𝐺𝐺�𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑟𝑟𝑟𝑟−1 + 𝛽𝛽3𝑆̃𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑟𝑟𝑟𝑟−1 +
                                       𝜷𝜷𝑪𝑪�𝒐𝒐𝒐𝒐𝒊𝒊𝒓𝒓𝒓𝒓−𝟏𝟏 + 𝜷𝜷𝜷𝜷 + 𝜀𝜀𝑖̃𝑖𝑟𝑟𝑟𝑟        
 
where the binary dependent variable assumes the value 0 or 1, and represents the 
probability of region r in year t exhibiting relative technological specialization in technology 
class i. On the right hand-side of the model, TechProx is the time-lagged value of the total 
distance (in units of technological relatedness) between each technology class i and all other 
technology classes where the city exhibits relative technological specialization. GeogProx is 
a time-lagged and spatially weighted measure of knowledge flows to region r from all NUTS2 
regions that have relative technological specialization in technology class i. SocialProx is a 
time-lagged measure of the strength of co-inventor linkages between a region and its 
neighbors within each technology class. Cov is a matrix of region and time specific 
covariates (inventor count) and T is a time fixed effect. The final term is an error assumed to 
possess the usual properties. In equation the ~ indicates that each of the variables have 
been demeaned with respect to time. This model specification has the major advantage of 
eliminating omitted variable bias of a form that is fixed over time. 
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Results from estimating equation with maximum likelihood statistics are displayed in Table 
5. Note that the models for entry restrict the observations to those region-technology pairs 
in which the lagged value of the dependent variable is zero. The models for exit restrict 
observations to those region-technology pairs in which the lagged value of the dependent 
variable is 1. The conditional logits drop all region-technology observations for which the 
value of the dependent variable is fixed over time. 
 
Table 5: Technological Entry and Exit in NUTS2 Regions 
 
 ENTRY EXIT 

 
Independent 
Variables 

FE Logit FE Logit FE Logit FE Logit 

L. Tech Proximity 
 

2.5180*** 
(0.0969) 

2.3278*** 
(0.0978) 

-1.5073*** 
(0.1310) 

-1.1095*** 
(0.1340) 

L. Geog 
Proximity 
 

 0.0670*** 
(0.0027) 

 -0.0990*** 
(0.0055) 

L. Social 
Proximity 
 

 0.0405*** 
(0.0080) 

 0.0041 
(0.0063) 

L. Inventor Count 
 

0.0039 
(0.0047) 

-0.0031 
(0.0046) 

-0.0650*** 
(0.0071) 

-0.0647*** 
(0.0077) 

No. observations 
LL 

88449 88449 31360 31360 

Notes: FE is fixed effects. * represents significant at the 0.1 level, ** significant at the 0.05 level, *** significant 
at the 0.01 level. The L prefix shows that the independent variables are lagged one time period. Time fixed 
effects are included but not shown. 
 
The first column of Table 5 shows that regions are more likely to move into technology 
classes where they do not yet possess regional comparative advantage (a location quotient 
greater than 1), when those technology classes are close to the knowledge core of the 
region. This suggests that the process of technological diversification is dependent on the 
existing technological competence of the region. As the inventor count in potential new 
technology classes gets larger, the probability of gaining comparative advantage in those 
classes does not change. Column 2 of Table 5 suggests that extra-regional linkages play an 
important role in technological diversification. Diversifying into new IPCs is boosted through 
building collaborative linkages to inventors in other regions that are active within those 
same IPCs. Diversification is also assisted through geographic knowledge spillovers. 
Unfortunately, it is impossible to disentangle which of the independent variables exerts the 
largest effects in the fixed effects conditional logit model. 
 
Turning to technology exit, column 3 reveals that it is more likely for remote technologies 
within a region to be abandoned before those technology classes that are close to the 
knowledge core of the region. Interestingly, a larger pool of inventors in a technology class 
reduces the probability of technology exit. So while increasing the pool of inventors in 
technology classes does not encourage entry, it does limit exit.  Turning to extra-regional 
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influences in column 4 shows that geographical spillovers of knowledge within the same 
technology class reduces the probability of exit. Social proximity through region-to-region 
collaboration within class has no significant impact on technological abandonment.  
 
7. CONCLUSION 
 
We use EPO patent data and co-classification statistics to measure the technological 
distance between all pairs of IPC knowledge classes. These distances are visualized in a 2-D 
EU15 knowledge space using Gower’s (1971) similarity based multi-dimensional scaling 
algorithm.  The knowledge space reveals the relative proximity (relatedness) of the different 
patent classes and how the structure of knowledge space has shifted since 1981. The 
growth of drug and medicine technologies, of information and electronics technologies over 
the same time period is clear. 
 
Technological relatedness between EU15 patents increased between 1981 and 2005. In 
other words, the distribution of patents within the EU15 knowledge space has become more 
compact. This reflects growth in technological relatedness within all aggregate patent 
technology classes, and even faster growth in the share of patents produced in those 
aggregate technology classes where individual knowledge subsets are closer to one another 
than on average. Alongside the growing compactness of the EU15 knowledge space, we 
show that technological relatedness, or specialization, within individual NUTS2 regions of 
the EU15 increased on average by 33% between 1981 and 2015. 
 
Changes in technological specialization within EU15 NUTS2 regions were decomposed to 
examine the influence of technological diversification (entry) and abandonment (exit), along 
with selection (differential growth within incumbent classes) and an incumbent effect that 
captures changes in average relatedness between patent classes. Averaged over all time-
periods, entry and exit exert the largest influence on shifts in regional technological 
specialization, responsible for about 34% and 29% of changes, respectively. The exit of 
regions from technology classes increases specialization, suggesting that technologies 
remote from the knowledge core of each region are being abandoned. Entry tends to 
reduce technological specialization within regions, as the process of diversification adds 
patents to regional knowledge portfolios that are on average further from the core of those 
portfolios than existing patents.  An exploratory regression model links technological entry 
and exit across the EU15 to the existing knowledge base of regions. The model confirms that 
patterns of technological diversification and technological abandonment are strongly 
conditioned by the proximity of technology classes to the knowledge cores of regions. 
Further, model results suggest that technological choice within regions is also influenced by 
the knowledge cores of other regions. That influence is mediated both by spatial proximity 
and social proximity, with the former, perhaps, playing the larger role. 
 
The increase in technological specialization across the EU15 might be taken as additional 
evidence of the impact of cohesion policy and efforts to better integrate knowledge 
production sub-systems across the European Union. Further work is required to show 
whether regional specialization in technological know-how across Europe drives greater 
returns to knowledge production inputs, and to explore how the institutional structures of 
regions might be related to the changing technology patterns that we document.  
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