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Abstract 

This paper provides a new empirical perspective for analysing the role of social networks for regional 

economic growth by constructing large-scale networks from employee-employee co-occurrences in 

plants in the entire Swedish economy 1990-2008. We calculate the probability of employee-

employee ties at plant level based on homophily-biased random network assumptions and trace the 

most probable relations of every employee over the full period. We argue that these personal 

acquaintances are important for local learning opportunities and consequently for regional growth. 

Indeed, the paper provides the first systematic evidence for a central claim in economic geography: 

social network density has positive effect on regional growth defined as productivity growth. 

Interestingly, the most robust effect of density on growth was found in a segment of the co-worker 

network in which plants have never been linked by labour mobility previously.  
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1. Introduction 

Following Marshall (1920) there is a general agreement in economic geography and related fields 

that the agglomeration of economic activities is essential for understanding regional innovation and 

growth. In this respect, face-to-face interaction is increasingly emphasized as essential for why 

proximity is still crucial for sustaining learning and innovation (Storper and Venables, 2004), and that 

more dense environments enhance the probability of “learning by seeing” (Glaeser, 2000). Human 

interaction and the social networks created thereof are thus expected to be key drivers behind 

regional economic growth. This is basically because the effectiveness of learning and co-operation of 

individuals are enhanced by personal relations and this is expected to have both direct and indirect 

effects on productivity growth since firms gain extra benefits when accessing external knowledge 

through social ties. However, despite the above theoretical claims on the role of face-to-face 

contacts and social networks for learning and growth, very little empirical work has actually been 

devoted to analysing the role of social networks on regional productivity growth. Instead, scholars 

tend to proxy the socializing potential of regions by means of population density or industrial 

structure (Ciccone and Hall, 1996, Glaeser, 1999), and almost take the relation between density and 

social interaction for granted by assuming that the mere concentration of skilled workers 

automatically will increase the probability for social interaction and thus enhance learning and 

growth.  

To address this potential shortcoming in the existing literature, the aim of this paper is to assess to 

what extent co-worker networks influence productivity growth in 72 Swedish labour market regions 

1990-2008. This is made possible by a unique longitudinal matched employer-employee database 

from which we construct a social network of employees based on their co-occurrence at workplaces 

and analyse the effect of the network on regional dynamics. These type of networks are frequently 

called co-worker networks in labour economics and scholars assume that two employees know each 

other when they have worked in the same workplace simultaneously in a certain period of their 

career (for an overview see Beaman and Jeremy, 2012). Evidence shows that information flow 

through these co-worker relations help people find better jobs and reduce unemployment time 

when dismissed (Calvo-Armengol and Jackson, 2004, Glitz, 2013, Granovetter, 1995, Hensvik and 

Nordström Skans, 2013). Given that the exchange of information and knowledge between workers 

and firms promotes the emergence and diffusion of innovation and subsequent productivity 

(Duranton and Puga, 2004), we claim that co-worker networks are important sources of regional 

economic dynamics. This is  because valuable information flows more efficiently through co-worker 

relations and employees might learn more efficiently in dense co-worker networks as compared to 

the technological externalities assumed to be residing “in the air” of agglomerations (c.f. Breschi and 

Lissoni, 2009, Eriksson and Lindgren, 2009, Huber, 2012). 

We claim to make two contributions to the existing literature. First, we develop a new probability 

measure of workplace-based acquaintance, building on the literature of homophily-biased random 

networks (Buhai and van der Lei, 2006, Currarini et al, 2009). We calculate tie probability using the 

concept of baseline homophily and rank employee co-occurrence according to this probability. Then, 

we trace a selected number of most probable individual ties of every employee. As result, we get a 

dynamically changing social network that represents the full economy but that still captures social 

ties at the micro scale. Despite that co-worker networks and labour mobility networks presumably 

are interconnected because people establish new links in the co-worker network through mobility 
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from one firm to another (Collet and Hedström, 2012), we illustrate in details that our approach 

differs from previous labour mobility studies in both conceptual and empirical concerns (e.g., Breschi 

and Lissoni, 2009, Eriksson and Lindgren, 2009).  

The second contribution is that this paper provides the first empirical evidence that the density of 

the social network has a positive effect on regional productivity growth. Interestingly, we find the 

most robust effect of density on productivity growth in a segment of the co-worker network, in 

which plants have never been linked by labour mobility previously. This finding implies that the effect 

of co-worker network density is independent of labour flow networks.  

 

2. Literature and hypotheses 

The spatial dimension of network-related learning is a core interest of economic geography (Bathelt 

and Glückler, 2003). It is well understood now that transaction costs are diminished by physical 

proximity as well as personal connections, which enhance the efficiency of mutual learning (Borgatti 

et al, 2009, Maskell and Malmberg, 1999, Sorensen, 2003). It is also claimed that most of the learning 

processes occur within certain spatial proximity despite distant, and presumably weak, ties might 

provide the region with new knowledge (Bathelt et al, 2004, Glückler, 2007). We also understand 

that not the social network per se but its’ interplay with industry structure is crucial for learning 

because cognitive, institutional, and organizational proximities are very important for mutual 

understanding (Boschma, 2005, Sorensen et al, 2006). Despite the central interest, our knowledge 

about the network effect on regional productivity growth is still limited, which is partly due to data 

access difficulties. Our paper aims to contribute to the literature in this regard by constructing and 

analysing a large-scale co-worker network. The argument stresses two points: first, the network 

density is very important for regional productivity growth as it is claimed in the first hypothesis; and 

second, the co-worker network becomes more and more independent from labour mobility 

networks over time, which is increasingly true for large regions, and provides the ground for our 

second hypothesis. 

Regional productivity growth has been repeatedly found to depend on population density. This is 

because spatial agglomeration unburdens the sharing of common facilities, increase the chances of a 

productive job-worker matching, and enhances interactive learning through the concentration of 

firms and workers (Duranton and Puga, 2004), which has a direct effect on productivity growth 

differences (Ciccone and Hall 1996, Glaeser 1999). We argue that looking at not only the co-location 

of individuals but investigating also the density of social networks will improve our understanding 

because face-to-face relations and personal acquaintance are important for knowledge sharing 

(Storper and Venables, 2004). As argued by Glaeser (2000) workers in dense environments are more 

likely to acquire human capital through learning by seeing which make dense regions more 

productive as well as more attractive for skilled workers with large potential returns for learning 

which will further increase productivity. Workplaces and consequently the co-worker networks that 

bind workplaces together are major fields of such knowledge sharing even after the termination of 

the co-worker relation because people maintain their professional contacts over time and might 

even follow the career of former colleagues in order to map out the knowledge-base they have 

potential access to (Dahl and Pedersen, 2003). Thus, co-worker networks are important for local 

learning and consequently on regional productivity growth.  
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H1: Density of the local co-worker network enhances regional productivity growth. 

The hypothesis is not only a further step in understanding spatial learning processes, it also refers to 

a central debate in the social networks literature. Network density has been considered as a major 

indicator of social capital for decades in sociology (Burt, 1992, Coleman, 1990, Walker et al, 1997, 

Wasserman and Faust, 1994) because the closure of social relations enhances trust, authority and 

sanctions among local actors, all of which supports learning from contacts. Certainly, density alone 

does not sufficiently describe the full horizon of information-flow tendencies in a network. The 

strength of social ties is a crucial factor and results in two fundamental processes (Granovetter, 

1973). On the one hand, people trace strong ties frequently, which offers the possibility of 

incremental innovation and increase in individual productivity because they learn effectively from 

each other (Balkundi and Harrison, 2006, Borgatti and Cross, 2003). On the other hand, weak ties and 

the presence of structural holes among separated sub-networks offers access to new information 

and combination of non-redundant knowledge can lead to radical innovations (Ahuja, 2000). Due to 

space limitations, we put our focus on density in paper rather than the issue of tie strengths and 

structural holes. 

Similar ideas to the network-related learning have been present in the economic geography 

literature (for an overview see Ter Wal and Boschma, 2009). For example, strong social ties within 

certain sectors in specialized industrial districts enhance incremental innovation and productivity 

growth (Amin, 2000, Asheim, 1996, Malmberg, 1997), whereas diverse networks across industries in 

urban areas are associated with potential new combinations of information, creation of new 

knowledge and radical innovation (Feldman, 1999). More recently, the emerging literature of 

evolutionary economic geography suggests that spatial learning depends on a complex combination 

of various proximity dimensions between individual firms and that regional productivity growth is the 

result of technological proximities among co-located firms (Boschma, 2005, Frenken et al, 2007). 

Labour flows have been used extensively to proxy technological proximities or relatedness across 

industries (Neffke and Henning, 2013); and a growing number of papers consider spatial labour 

mobility between firms as a major source of learning due to the transfer of embodied knowledge 

(Almeida and Kogut, 1999, Eriksson and Lindgren, 2009) and assess the effect of related labour flows 

on regional and firm dynamics (Boschma et al, 2009, Timmermans and Boschma, 2014). Apart from 

improving the potential regional matching of skills, Boschma et al (2014) also show that high 

concentrations of skill-related flows in a region strongly influence productivity growth in Sweden due 

to the production complementarities produced by such labour market externalities.  

Despite the methodological differences, our co-worker approach is closely connected to the labour 

mobility approach and we assume that former colleagues maintain their relations even after moving 

from one workplace to another, which is a proposition often made in labour economics and in 

evolutionary economic geography as well (Boschma and Frenken, 2011). Despite the lasting 

characteristics of co-inventors have been found important for later patenting collaborations (Agrawal 

et al, 2006, Breschi and Lissoni, 2009), this paper is the first attempt to analyze co-worker networks 

in economic geography. We aim to show that not only the transfer of embodied knowledge and 

labour flows, but also social networks that are independent from labour flows, have an effect on 

productivity growth. Therefore, we decompose the co-worker network into two segments: (1) links 

have been preceded by labour mobility and (2) links that have not been preceded by labour mobility.  
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H2: Co-worker network density enhances regional productivity growth even if the ties across 

plants have not been preceded by labour flows among the concerned plants. 

 

3. Methodology 

We propose that employee i and employee j working for in the same workplace at the same period 

of time know each other with probability Pij [0,1] and maintain a tie Lij even after the termination of 

the co-workership. For practical reasons, we select the most probable 50 co-workers of highest Pij for 

each employee in each year and trace these co-occurrences over the full period and look at those Lij 

when employee i and employee j work for two different firms. 

Probability calculation starts from the assumption of random tie formation at workplaces, which 

means that a tie between every pair of employees is established with equal probability. Intuition 

suggests that the larger workplace the less likely that employees know each other. Thus, we first set 

tie probability proportional to the size of workplace. However, this tie probability creates a large 

fraction of isolated ties in random network simulations, which is not our intention. Therefore, we use 

the probability threshold where isolated nodes tend to disappear in a random network setting (Erdős 

and Rényi, 1959, Jackson, 2008) and formulate random probability (���
� ) by 

���
� = ���

� ;       (1) 

where N is the number of employees in the workplace. 

In a second step, we consider that individual similarity increases the probability of tie formation, 

which is called homophily in the large range of social sciences (for an overview see McPherson et al, 

2001). It has been shown repeatedly that much more friendship ties are formed across those 

individuals who are similar in terms of age, gender, race, education, occupation etc. than expected by 

random tie establishment (Blau, 1977, Blau et al, 1982, Blum, 1985, Feld, 1982, Granovetter, 1995, 

Kossinets and Watts, 2006, Lincoln and Miller, 1979, McPherson and Smith-Lovin, 1987, Sias and 

Cahill, 1998). Two types of homophily are distinguished in the literature: baseline homophily and 

inbreeding homophily. Baseline homophily means that individual choice of selecting friends is 

generated by the structure of the group because the larger subgroup of similar individuals the larger 

possibility of choosing similar friends. Thus, baseline homophily (Hb) can be measured by the share of 

subgroup in the firm by 

	
 = ��
� ;       (2) 

where Nm denotes the size of the subgroup characterized by feature m. 

We will assume that Hb influences Pij because relations are more likely between those employees 

who are of similar age and sex and have the similar educational background. However, Currarini et al. 

(2009) showed that friendship ties usually exhibit larger homophily than Hb due to additional 

inbreeding homophily and individuals’ choice is even more biased towards akin. Thus, using Hb we 

will most likely underscore the real probability of the tie between co-workers. We define employee 

characteristics like age, gender, and education as those subgroup features that are expected to 

increase tie probability then we can calculate Hb in a repetitive manner as explained above. 
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In the third step, we have to realize that the size of the subgroups – defined by employee 

characteristics – has a similar effect on tie probability than the firm size itself. Thus, we have to 

diminish the probability by �
	(�� ⁄ �) in each case when employee i and j are similar.  

Finally, we simply sum the probabilities calculated from firm size, baseline homophilies and group 

size effects in order to get probability of co-worker ties (Buhai and van der Lei, 2006). Probability is 

formulated as 

��� = ���
� + ∑ �����

��
/	��

� ��
��� × ��� ;    (3) 

where G ∈  1, 2, …%& denotes those characteristics we use for similarity measurement, N denotes 

plant size, Nm denotes subgroup size according to feature m and ���  equals 1 if employee i and j are 

similar according to feature m and 0 otherwise. 

We maximize co-worker tie probability at 1, rank co-workers for every employee and follow the 50 

most probable co-workers of every employee over time.  

 

4. Data and network creation 

We use matched employer-employee data obtained from official registers from Statistics Sweden 

that –among a wide variety of data– contains age, gender, and detailed education code of individual 

employees and enables us to identify employee-employee co-occurrence at plants for the 1990-2008 

period. Data is generated on a yearly basis and if employees change workplace over the year, they 

are listed repeatedly with different plant codes in the same year. Geo-location of plants is defined by 

transforming the data from a 100m x 100m grid setting into latitudes and longitudes.  

For practical reasons, and in order to keep the size of the sample at the limit the analysis can handle, 

we exclude those without tertiary education from the data. Including all employees would 

exponentially increase computation demand without contributing much to the analysis. This is 

motivated by the fact that skilled workers (bachelors) are assumed to benefit more from learning by 

seeing and interacting (Glaeser, 2000). We therefore propose that workers without bachelor degrees 

rely to a greater extent on tacit or embodied knowledge and therefore might learn less from an 

individual level social network with colleagues at other plants. If an employee who has already been 

in the data obtains graduation at a later point in time, she will be included in our sample afterwards. 

As a result, the data contains 366.336 individuals in 1990 and 785.578 individuals in 2008 and those 

plants are excluded where none of the employees had BA degree or above (Table 1). 

Table 1. Number of employees, plants, and co-occurrence in 1990 and 2008 

  1990 2008 

All employees 
Employees 2,628,306 3,824,182 

Plants 254,445 402,610 

Employees with BA 

degree or above 

Employees 366,336 785,578 

Plants 52,872 113,441 

 



 

We first generated the list of employee 

calculated the probability of the co

characteristics of employees were used

gender (2 groups) and age (3 groups)

statistics, see Appendix 1.  

Figure 1. 

Note: distribution for 1990 in (A) and distribution for 2008 in 

Figure 1 illustrates that distribution of 

both 1990 and 2008. However, one can observe that the distribution is more left skewed in 2008 

than in 1990 because plants are larger in 2008, which produces lower probabilities. 

relatively high at 1 because we set the upper limit there. Nevertheless, the probability that the tie is 

established is very low for the vast majority of employee co

Employee co-occurrence is exponentially higher in large plants than in small plants and our aim is to 

find a reasonable number of ties per person, which 

suggestion in the literature in this regard. 

based on survey data and the number of personal ties in these networks are below ten on average 

(Brass, 1985, McPherson et al, 

labour economics tend to construct much larger co

each other in a firm not larger than 500 

(Saygin et al, 2014), while Glitz (2013) only looked at firms with between

Evidently, co-occurrences are more likely to be real social ties in small plants and are less likely in 

large plants (see reports on Pij 

Appendix 2). Since Pij distribution is similar at the first and last years of the sample, we identify the 

number of ties per person on base of 1990 network characteristics and apply that number 

consequently for upcoming years.

7 

generated the list of employee pairs as co-occurrence at plants for every year, then 

of the co-worker relation for each employee pair using Equation 

were used to generate subgroups: Direction of education (6 groups), 

(3 groups). For further information of group definitions and 

 Distribution of tie probability, 1990 and 2008 

and distribution for 2008 in (B). 

Figure 1 illustrates that distribution of Pij is left skewed towards zero and decreases monotonously in 

However, one can observe that the distribution is more left skewed in 2008 

ants are larger in 2008, which produces lower probabilities. 

relatively high at 1 because we set the upper limit there. Nevertheless, the probability that the tie is 

established is very low for the vast majority of employee co-occurrences.  

is exponentially higher in large plants than in small plants and our aim is to 

ties per person, which can be handled by the analysis

suggestion in the literature in this regard. Management papers report on task-oriented ego

based on survey data and the number of personal ties in these networks are below ten on average 

 1992, Lincoln and Miller, 1979, Morrison, 2002)

construct much larger co-worker networks assuming that everyone knows 

each other in a firm not larger than 500 (Hensvik and Nordström Skans, 2013)

Glitz (2013) only looked at firms with between 5 and 50

occurrences are more likely to be real social ties in small plants and are less likely in 

 distribution according to plant size categories in 1990 and 2008 in 

ution is similar at the first and last years of the sample, we identify the 

number of ties per person on base of 1990 network characteristics and apply that number 

consequently for upcoming years. 

occurrence at plants for every year, then 

using Equation 3. Three 

irection of education (6 groups), 

definitions and descriptive 

 

is left skewed towards zero and decreases monotonously in 

However, one can observe that the distribution is more left skewed in 2008 

ants are larger in 2008, which produces lower probabilities. Density of Pij is 

relatively high at 1 because we set the upper limit there. Nevertheless, the probability that the tie is 

is exponentially higher in large plants than in small plants and our aim is to 

can be handled by the analysis. There is no clear 

oriented ego-networks 

based on survey data and the number of personal ties in these networks are below ten on average 

2002). Recent papers in 

worker networks assuming that everyone knows 

(Hensvik and Nordström Skans, 2013) or 3000 employees 

5 and 50 employees. 

occurrences are more likely to be real social ties in small plants and are less likely in 

distribution according to plant size categories in 1990 and 2008 in 

ution is similar at the first and last years of the sample, we identify the 

number of ties per person on base of 1990 network characteristics and apply that number 
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Table 2. Tie and degree distribution and isolates at Pmin thresholds, 1990 

Size 

category 

Number of 

Employees 
Plants 

Mean 

plant size 

Ties above 

P>0 

Ties 

above 

P≥0.1 

Ties 

above 

P≥0.2 

Ties 

above 

P≥0.3 

Ties 

above 

P≥0.4 

Avg. 

Degree, 

P ≥0 

Avg. 

Degree, 

P ≥0.1 

Avg. 

Degree, 

P ≥0.2 

Avg. 

Degree, 

P ≥0.3 

Avg. 

Degree, 

P ≥0.4 

Isolates, 

P≥0.2 

Isolates, 

P≥0.3 

Isolates, 

P≥0.4 

2-9 71,794 19,033 4.88 139,418 139,418 139,418 132,473 128,624 3.88 3.88 3.88 3.69 3.65 0 0 1,468 

10-19 46,249 3,420 14.10 302,931 302,931 286,457 280,517 258,711 13.10 13.10 12.38 12.13 11.19 0 2 12 

20-49 78,175 2,531 33.24 1,260,292 1,207,405 1,106,538 923,647 722,915 32.24 30.88 28.31 23.63 18.52 0 6 127 

50-99 63,102 949 69.11 2,148,933 1,952,091 1,458,559 970,228 592,219 68.11 61.87 46.23 31.01 20.81 5 525 6,172 

100-249 34,608 245 151.25 2,600,067 1,851,674 90,533 449,126 252,907 150.25 107.01 55.04 33.83 25.09 1,711 8,063 14,456 

250-499 16,831 49 355.47 2,983,041 1,101,615 29,688 156,692 101,567 354.47 133.30 60.59 43.97 35.21 7,032 9,704 11,062 

500-999 15,414 24 671.37 5,166,533 73,522 244,708 125,972 76,328 670.37 135.25 79.69 59.47 46.30 9,273 11,178 12,117 

1000- 13,553 11 1243.98 8,423,092 659,004 175,234 86,453 84,235 1242.98 182.23 92.52 65.67 65.60 9,765 10,920 10,985 

Sum 339,726 26,262 
 

23,024,307 7,287,660 3,531,135 3125108 2,217,506 
     

27,786 40,398 56,399 

Note: The high number of isolates for the smallest firms (2-9 employees) at P≥0.4 is due to those firms of two employees, in which the co-workers are not similar in any characteristics, and 

therefore Pij=ln(2) /2=0.37. 
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Table 2 shows how the number of co-occurrence changes according to plant size categories when 

excluding employee pairs under certain Pij minimum threshold. The number of co-occurrences falls 

dramatically in large plant categories but remains quite stable in small firm categories. We calculated 

average degree in order to see how many ties an employee has according to plant size categories and 

also the number of isolates that the Pij threshold generates. The average number of ties is stable until 

large Pmin values in very small plants as well as the average degree, and number of isolated 

employees are very low until the Pmin=0.4 threshold in plants smaller than 50. This is a large Pmin 

threshold and suggests that we can use a 50 best friends approach because everyone might know 

everyone in small plants. We thus simplify our task and look only at the most likely 50 co-workers of 

every employee in large plants.  

Accordingly, we rank employee pairs based on their Pij values. In case employee pairs have the same 

probability, we rank those with same educational background and smaller age difference higher, 

respectively. Pij values are calculated and relations are ranked on a yearly basis, which most likely 

make co-worker ties appear and disappear from the employees’ portfolio in large plants from year to 

year. To handle this problem, we trace all those co-worker ties that were ranked among the top 50 at 

least in one year over the full period. 

Table 3. Average degree of plants and individual in the co-worker network, 1991-2008 

Year Nodes Avg. Degr. Plants Avg. Degr. Ind. 

1991 31,391 8.15 71.20 

1992 46,445 11.89 89.72 

1993 53,599 14.46 100.37 

1994 63,299 17.87 112.28 

1995 71,513 22.03 126.23 

1996 79,499 26.04 142.92 

1997 87,072 29.96 152.50 

1998 87,950 32.77 150.82 

1999 95,080 36.89 162.19 

2000 107,423 42.71 179.18 

2001 115,948 47.69 191.51 

2002 120,026 51.25 202.81 

2003 127,355 52.86 208.32 

2004 132,791 54.02 209.27 

2005 140,042 55.77 216.89 

2006 148,318 58.27 223.65 

2007 159,529 64.12 243.35 

2008 166,109 67.12 251.09 

 

As a result of the above selection process, there are 49,630,691 employee pairs that we trace over 19 

years creating a balanced panel of pairs. From the total number of 942,983,129 rows in the panel, we 

exclude those that have not been appeared in the data yet (481,973,234 pairs), those when at least 

one employee is already above 65 years of age (42,016,069 pairs). Finally, we excluded those pairs, 

when either one or both individuals are not present in the labour market for unknown reasons 

(95,689,892 pairs) and those cases when the employees work in the same plant (167,632,360 pairs). 



 

The remaining unbalanced panel of 155,671,574 employee pairs constitute a dynamic co

network over the 1990-2008 period we look at in the analysis. This network can be analysed on the 

individual level, and ties can be aggregated on the plant and industry levels. However, we must keep 

in mind, that this is a constantly growing network

increases monotonically, which is not balanced by labour market exits.

aggregating the network on the plant level, we observe that the number of plants in the network 

increases over the full period (Table 3, Column 2).  As a result, both the number of plants an average 

plant is connected to (Table 3, Column 3) and the number of individual links from an average plant to 

any other plants (Table 3, Column 4) increases monotonically. 

 

5. Properties of the co-worker network

The analysis is based on the assumption that the co

embedded in spatial environments. In this section we show that both the degree distribution and the 

spatial dimension of the network fulfil these criteria.

5.1 Degree distribution 

We find a negative exponential degree distribution of the co

some very nice properties. For example, the expected degree can be approximated by the average 

degree in the network. Furthermore, we find that the probability of finding employees who has more 

degrees than the average decreases sharply. Thus, the mean is not only the expected value but also a 

turning point in the distribution. 

Figure 2. Degree distributio

Note: The slope of the solid line is -0.4

The histogram of degrees on a natural scale resembles a negative exponential distribution, where the 

fraction of nodes decreases monotonicall

scale from a minimum value of 1 to a maximum value of 482. The mean is larger than the median and 
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The remaining unbalanced panel of 155,671,574 employee pairs constitute a dynamic co

2008 period we look at in the analysis. This network can be analysed on the 

individual level, and ties can be aggregated on the plant and industry levels. However, we must keep 

in mind, that this is a constantly growing network, because the number of employees in the sample 

increases monotonically, which is not balanced by labour market exits. 

aggregating the network on the plant level, we observe that the number of plants in the network 

l period (Table 3, Column 2).  As a result, both the number of plants an average 

plant is connected to (Table 3, Column 3) and the number of individual links from an average plant to 

any other plants (Table 3, Column 4) increases monotonically.  

network 

The analysis is based on the assumption that the co-worker network resembles social networks 

embedded in spatial environments. In this section we show that both the degree distribution and the 

twork fulfil these criteria. 

We find a negative exponential degree distribution of the co-worker network in year 2008, which has 

some very nice properties. For example, the expected degree can be approximated by the average 

in the network. Furthermore, we find that the probability of finding employees who has more 

degrees than the average decreases sharply. Thus, the mean is not only the expected value but also a 

 

Figure 2. Degree distribution and summary statistics of the individual level network, 2008

0.4 in (B). 

The histogram of degrees on a natural scale resembles a negative exponential distribution, where the 

fraction of nodes decreases monotonically as degree grows (Figure 2A). The degree varies on a large 

scale from a minimum value of 1 to a maximum value of 482. The mean is larger than the median and 

The remaining unbalanced panel of 155,671,574 employee pairs constitute a dynamic co-worker 

2008 period we look at in the analysis. This network can be analysed on the 

individual level, and ties can be aggregated on the plant and industry levels. However, we must keep 

, because the number of employees in the sample 

 For example, after 

aggregating the network on the plant level, we observe that the number of plants in the network 

l period (Table 3, Column 2).  As a result, both the number of plants an average 

plant is connected to (Table 3, Column 3) and the number of individual links from an average plant to 

worker network resembles social networks 

embedded in spatial environments. In this section we show that both the degree distribution and the 

worker network in year 2008, which has 

some very nice properties. For example, the expected degree can be approximated by the average 

in the network. Furthermore, we find that the probability of finding employees who has more 

degrees than the average decreases sharply. Thus, the mean is not only the expected value but also a 

individual level network, 2008 

 

The histogram of degrees on a natural scale resembles a negative exponential distribution, where the 

. The degree varies on a large 

scale from a minimum value of 1 to a maximum value of 482. The mean is larger than the median and 
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standard deviation almost equals to the mean, which are well-known properties of exponential 

distributions. Furthermore, the approximated rate parameter proxies the median quite well
1
.  

The degree distribution in 2008 illustrated on a log-log scale (Figure 2B) resembles degree 

distributions in other large-scale social networks (Adamic and Adar, 2005). The majority of 

employees have small number of connections and the probability that the employee has degree d 

decreases exponentially with an exponent -0.4 until d is around 60. This exponent is very similar to 

the exponent (-0.35) found previously in a large-scale online social network (Lengyel et al, 2015). The 

break in the distribution suggests that the probability of larger degrees than the turning point falls 

sharply as degree grows, which implies that there are very few employees with many connections 

and the number of these employees is proportional to their degree. Interestingly, the turning point 

of the distribution coincides with the mean. Cumulative degree distribution can be found in Appendix 

3. 

5.2 Geography 

The spatial level of the regional growth model will be selected on the basis of the network geography 

and here we provide information on how co-worker ties scatter across space. Not surprisingly, the 

network is spatially concentrated. More than 30% of all individual links were within municipality 

borders (the smallest administrative division in Sweden) in 2008 and this share is 60% when we look 

at functional regions (Table 4). The latter regions represent labour market areas defined by The 

Swedish Agency for Economic and Regional Growth. This regional definition covers the whole 

territory of Sweden without overlapping each other and stem from observed commuting distances 

between the 290 Swedish municipalities. When we aggregate the network on the plant level we find 

a very similar pattern.  

Table 4. Number of ties within regional borders, 2008 

 Number of links 

 Individual level Plant level 

Within municipality (N=290) 7,826,977 1,470,603 

Within functional region (N=72) 14,066,872 3,170,695 

SUM 20,855,160 5,574,879 

 

The previous observation gets further support when we look at the probability of having a tie 

between two arbitrary employees as a function of distance. We define Ld as the number of observed 

ties between employees separated from each other by distance d; and Nd the number of possible ties 

at distance d. Then, we can calculate the probability that individuals have links to others given 

distance d by the formula Pd=Ld/Nd. A 10 km resolution was used for binning distance distribution. 

The probability of a co-worker tie is close to be constant until 40-50 kilometres, after which it falls 

sharply (Figure 4). Since the average distance of commuting to another town in Sweden is 45 km, we 

find that labour market areas and thus functional regions are the proper ground for testing our 

hypothesis. 

                                                           
1
 The mean in exponential distributions is E[X]=1/λ. Approximating the rate parameter by reciprocating the 

mean gives us λ = 0.02. Then, substituting the rate parameter into m[X]=ln(2)/λ gives us 40 as median, which is 

a fair approximation. 



 

 

Figure 

Note: (A) The effect of distance on probability of ties. (B)Number of co

regions. Same coloured nodes belong to same network module; 

threshold number of links=10 are filtered out.

The spatial-base of the co-worker network across functional regions is very plausible when the 

strength of tie between two regions is the number of individual co

surprisingly, Stockholm (the capital city region) is the centre of the interregional co

meaning that the city has many individual

regions are very loosely connected with the exception of coastal towns like Umea or Lulea and the 

network is denser in the South than in the North. The Louvain community detection algorithm finds 

three modules that clearly represents a spatial divide in the co

employee in the South is more likely to know another employee in the South than in the Centre or in 

the North. Interestingly, Stockholm belongs to the Northern part in the network, which is probably 

due to a higher share of mobility from the Nor

regions to the capital (Eriksson and Lindgren, 2009). 
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Figure 3. Geography of the co-worker network, 2008

Note: (A) The effect of distance on probability of ties. (B)Number of co-worker ties across Swedish functional 

regions. Same coloured nodes belong to same network module; modularity index is 0.074. Edges below the 

threshold number of links=10 are filtered out. 

worker network across functional regions is very plausible when the 

strength of tie between two regions is the number of individual co-worker links (Figure 

surprisingly, Stockholm (the capital city region) is the centre of the interregional co

meaning that the city has many individual-level ties to other regions. One can also find that Northern 

connected with the exception of coastal towns like Umea or Lulea and the 

network is denser in the South than in the North. The Louvain community detection algorithm finds 

three modules that clearly represents a spatial divide in the co-worker network meani

employee in the South is more likely to know another employee in the South than in the Centre or in 

the North. Interestingly, Stockholm belongs to the Northern part in the network, which is probably 

due to a higher share of mobility from the North to the capital compared to mobility from Southern 

regions to the capital (Eriksson and Lindgren, 2009).  

Figure 4. Degree distribution and region size 

worker network, 2008 

 
worker ties across Swedish functional 

modularity index is 0.074. Edges below the 

worker network across functional regions is very plausible when the 

er links (Figure 3B). Not 

surprisingly, Stockholm (the capital city region) is the centre of the interregional co-worker network 

level ties to other regions. One can also find that Northern 

connected with the exception of coastal towns like Umea or Lulea and the 

network is denser in the South than in the North. The Louvain community detection algorithm finds 

worker network meaning that an 

employee in the South is more likely to know another employee in the South than in the Centre or in 

the North. Interestingly, Stockholm belongs to the Northern part in the network, which is probably 

th to the capital compared to mobility from Southern 
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The degree distribution does however not only depend on region size. We have plotted the 

minimum, median, mean, 75
th

 percentile, 90
th

 percentile and maximum values of degrees against the 

number of employees in the region. Figure 6 demonstrates that these values grow as the size of the 

region increases. However, we find that except the line connecting the maximum values, degree 

distribution in larger regions is only a little bit pushed to the right compared to smaller regions. The 

sharp increase of maximum degree in regions implies that the distribution has a longer and longer 

tail as the size of the region grows. 

 

6. Co-worker network and labour mobility 

Labour mobility is considered one of the major factors behind co-worker networks (Collet and 

Hedström, 2012). Therefore, we show in this section how labour mobility influences individual 

degree and network density. 

6.1 Labour mobility and degree 

There are three effects that might drive degree of individuals in our method. 

1. Intra-plant changes across employee categories might increase the degree, because we have 

three age categories and people gain or loose similarity to other colleagues at the same plant 

over years in their career. This might be especially true in big plants, and therefore we use 

YEARS IN CAREER (total number of years spent in work) and AVERAGE PLANT SIZE (the 

average size of plants the employee worked for weighted by the years spent at the plant) 

variables to address this problem. 

2. Labour mobility of the employee herself has an effect on her degree because the more one 

moves the more friends we count over time. Thus, we measure the effect of JOB CHANGES 

(the number of entries to new plants) on degree. 

3. Labour mobility at the plant-level might influence the degree as well, because the employee 

can get co-workers if a new colleague arrives to the plant and she gets new connections in 

the network if someone leaves. We expect that the more people come and go over time the 

more friends we count; thus, we use the MOVEMENTS variable (the aggregate number of 

mobility to and from the plant at the time when the employee was working for the plant) to 

address this issue. 

In fact, if we project degree distribution on any of the above variables, we find that degree grows as 

years in career, average plant size, job changes and movements increase (Appendix 4). In order to 

control for drivers of the co-worker network density in the region, we have to understand which 

factor is the most influential. Therefore, we carry out a multivariate analysis, in which the degree of 

employees is the dependent variable and the indicators introduced above are used as explanatory 

variables. We include the size of the region into the analysis (Employment in the region) in order to 

double check its’ effect on individual degree. 
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Table 5. Descriptives of degree drivers and correlation, logarithmic scale, 2008 

Variable Min Max Mean St. D. Pairwise Pearson correlation 

Degree 0 2.683 1.517 0.568 1     

Years in career 0 1.255 0.915 0.372 0.536* 1    

Avg. plant size 0.022 3.679 1.799 0.789 0.492* -0.028* 1   

Job changes 0 1.204 0.360 0.261 0.528* 0.460* -0.070* 1  

Movements 0.301 4.422 2.465 0.787 0.629* 0.235* 0.944* 0.110* 1 

Employment in the region 2.861 6.013 5.398 0.611 0.153* 0.021* 0.115* 0.144* 0.154* 

Note: *denotes that coefficients of the pair-wise correlation are significant at the 1% level  

We transform all the above variables to the logarithm of base 10. Pairwise Pearson correlation co-

efficients are highly significant and depict a positive and strong relation of degree to all indicators 

(Table 5). Since Average plant size and Movements are highly correlated (0.94) they have been 

inserted separately. 

Table 6. Drivers of degree (log) in the co-worker network, cross-sectional OLS regression, 2008 

 
Model 1 Model 2 Model 3 

Years in career (log) 0.566*** 0.379***  

 (0.001) (0.001)  

Average plant size (log) 0.380***   

 (0.001)   

Job changes (log) 0.850*** 0.769*** 1.010*** 

 (0.002) (0.002) (0.001) 

Movements (log)  0.382*** 0.417*** 

  (0.001) (0.001) 

Employment in the region (log) 0.026*** 0.014***  

 
(0.001) (0.001)  

Constant -0.131*** -0.125*** 0.125*** 

 
(0.004) (0.004) (0.001) 

N 696,354 696,354 696,354 

R2 0.669 0.655 0.609 

F 373,634.071 355,138.141 543,257.6 

Note: Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001 

Results of the cross-sectional OLS regression, in which Degree was set as dependent variable, imply 

the higher values of factors the higher degree. Nevertheless, Job changes and Movements are found 

to have the strongest effects on degree. These two variables together explain 61% of the variation of 

individual degree in the co-worker network (Model 3). Therefore, labour mobility needs to be 

considered explicitly when estimating the effect of the co-worker network on regional dynamics. 

6.2 Labour mobility and co-worker ties 

Labour mobility has an influential effect on the co-worker network, because an employee establishes 

co-worker ties to distinct plants if she moves or if one of her colleagues moves across plants. Due to 



 

the above fact, labour mobility ties across plants 

worker ties across plants in the region.

However, co-worker ties can be independent from 

ties can be established between plants with no previous 

not necessarily mean subsisting co

at least three employees out of which employee 
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moves from plant B to plant D in time t+1, then the link between A and B will disappear despite the 

previous labour flow.  

Figure 5. Labour

Note: the solid arrow denotes actual mobility of 1 employee, the 

dashed arrow denotes previous mobility and 

co-worker ties across plants.

To address how labour mobility across plants

calculated the share of those plant

mobility between the certain plants

calculation for the individual level co

Table 7 illustrates that, on the one hand, the share of links between plants without being preceded 

by labour mobility was 57.6% in 1991 and grew monotonously above 90% by year 2000. Thus, there 

was no labour flow between the vast majority

On the other hand, one can observe most of the individual co

among which labour mobility was observed before. 

correlation between the number of individual co

mobility across plants (ranging between 0.6 and 0.85 over the studied years).

the ratio of links without being preceded by mobility increases 

33% by year 1996 and almost reaches 50% by year 2008

ties suggests that the co-worker network becomes increasingly independent of previous labour

mobility. 
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Table 7. The share of individual 

Year Plant level

 

Only co-worker 

link (%) 

Co-worker link 

preceded by 

mobility (%)

1991 57.6 42.4

1992 70.2 29.8

1993 75.1 24.9

1994 79.8 20.2

1995 83.3 16.7

1996 85.4 14.6

1997 87.1 12.9

1998 88.7 11.3

1999 89.8 10.2

2000 90.8 9.2 

2001 91.6 8.4 

2002 92.0 8.0 

2003 92.3 7.7 

2004 92.5 7.5 

2005 99.2 0.8 

2006 99.2 0.8 

2007 93.0 7.0 

2008 93.6 6.4 

 

If we zoom into regions and look at the share of those individual co

preceded by mobility, we find that

the rate at three points in time and observe that the above rate increased over time in the case of 

most regions irrespective of the size of regions. However, the effect of region size on the rate of co

worker links without being preceded by 

both the co-efficient and R
2
 of the linear fit increases.

Figure 6. Mobility-independent 

Note: (A) Region size and share of co

region was captured by the maximum number of employees in the region over the full period.

density decomposition by size of the region

16 

are of individual ties with or without labour mobility links across plants, 1990

Plant level Individual level

worker link 

preceded by 

mobility (%) 

Number of links 
Only co-worker 

link (%) 

Co-worker link 

preceded by 

mobility (%)

42.4 63,016 8.8 91.2

29.8 160,299 16.9 83.1

24.9 241,860 21.7 78.3

20.2 379,556 26.1 73.9

16.7 560,507 29.8 70.2

14.6 761,416 32.9 67.1

12.9 986,641 35.4 64.6

11.3 1,111,434 39.1 60.9

10.2 1,378,353 41.6 58.4

 1,838,224 43.2 56.8

 2,237,292 45.5 54.5

 2,498,506 46.6 53.4

 2,744,254 47.0 53.0

 2,935,742 47.9 52.1

 2,995,758 47.7 52.3

 3,332,845 47.4 52.6

 4,232,703 47.7 52.3

 4,623,753 49.0 51.0

If we zoom into regions and look at the share of those individual co-worker links that were not 

that the bigger the region the larger the share (Figure 

the rate at three points in time and observe that the above rate increased over time in the case of 

most regions irrespective of the size of regions. However, the effect of region size on the rate of co

eing preceded by labour mobility becomes stronger and clearer over time: 

of the linear fit increases. 

independent co-worker links and density by size of the region

Region size and share of co-worker links not preceded by labour mobility, 1996

region was captured by the maximum number of employees in the region over the full period.

density decomposition by size of the region in 2008 as described in Section 6.3. 

mobility links across plants, 1990-2008 

Individual level 

worker link 

preceded by 

mobility (%) 

Number of links 

91.2 1,119,684 

83.1 2,084,934 

78.3 2,691,104 

73.9 3,554,774 

70.2 4,514,635 

67.1 5,682,175 

64.6 6,640,262 

60.9 6,633,685 

58.4 7,711,355 

56.8 9,624,640 

54.5 11,103,743 

53.4 12,172,480 

53.0 13,266,549 

52.1 13,895,050 

52.3 15,187,785 

52.6 16,586,603 

52.3 19,411,643 

51.0 20,855,161 

worker links that were not 

share (Figure 6A). We plotted 

the rate at three points in time and observe that the above rate increased over time in the case of 

most regions irrespective of the size of regions. However, the effect of region size on the rate of co-

mobility becomes stronger and clearer over time: 

size of the region 

 

, 1996-2002-2008. Size of the 

region was captured by the maximum number of employees in the region over the full period. (B) Density and 
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6.3 Labour mobility and network density 

The widely known formula that gives us the density of a network is the following 

   ' =	 (×)
�×(�*�) 		 ;      (4) 

where L is the number of observed links and N is the number of nodes. However, the above formula 

handles intra-plant ties as observable, which is not the case in the co-worker network because we 

only observe inter-plant ties. Therefore, we have to reduce the nominator with the number of 

potential employee-employee pairs at same plants. Thus, density of the co-worker network in the 

region (Dc) is 

   ', =	 (×)
�×(�*�)*∑ �-×(�-*�)-

;	    (5) 

where Nk is the number of employees at plant k and	∑ �..  equals N. 

Then, we can decompose Dc into two segments: (1) in which inter-plant links have been preceded by 

labour mobility, and (2) in which links are present between plants without previous labour mobility. 

The formula for that is  

   ', = ∑ 	 (×)/0
�/×�0

× �/×�0
�×(�*�)*∑ �/×(�/*�)/

1
2
 × �2


1 	;  (6) 

where 32
 is the number of observed links between plants a and b and ∑ 32
2
 	equals L; Na and Nb 

are number of employees at plants a and b; l denotes the different network segments described 

above and �2

1  equals 1 if the ab link belongs to the respective segment and 0 otherwise. Consult 

Appendix 5 for a visual explanation of density decomposition. 

We find that the log of network density is proportional to the log of the size of the region: the larger 

region the smaller density (Figure 6B). This is an important finding because it suggests that the vast 

majority of possible regional links are actually not observed and that this share increases as the size 

of the region grows. Thus, the frequently accepted intuition that social networks are denser in 

densely populated areas than in sparsely populated areas is not true. Density is higher in small 

regions because there are less people and less possible links. Although there are much more 

observed links in big regions than in small regions, the number of possible links is higher with 

magnitudes, which produces low network density. Therefore, other indicators (e.g. diversity, 

structural holes etc.) might better describe the characteristics of social networks in urban 

environments. 

The network segment in which co-worker ties have been preceded by labour mobility prevails in 

terms of contribution to overall density. However, the co-worker network segment without previous 

mobility is more and more apparent as the size of the region grows.  

 

7. Network density and productivity growth 

To test whether our constructed social networks indicators have an actual influence on learning and 

growth, as claimed in the literature (Ciccone and Hall, 1996, Glaeser, 1999), we construct a panel 
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dataset containing all network variables at regional level 1992-2005 to estimate their relation with 

productivity growth. Regional productivity is defined as regional per capita value added in each of the 

72 functional labour markets defined by The Swedish Agency for Economic and Regional Growth. 

Apart from reflecting commuting areas also historical economic trends likely to determine future 

development is accounted for to reflect past and predicted future regional preconditions, which 

make them consistent over time and suitable for longitudinal analyses without disturbance of spatial 

dependencies.  

Our dependent variable (ProdG) is measured as the relative difference in regional log per capita 

productivity between t0 and t+3 which implies that 2005 is the latest observation of our left hand 

side variables (we have no observations on productivity after 2008). As a robustness-check, we also 

estimated productivity growth between t0 and t+1, which did not change our results significantly. 

Apart from the two network variables discussed above – NetDensMob (i.e., density preceded by 

mobility) and NetDensIndep (i.e., density independent of previous mobility) – we also include an 

indicator of population density (PopDens) since previous literature tend to proxy the socialising 

potential based on concentrations of people per se (e.g., Ciccone and Hall, 1996; Glaeser, 1999; 

Storper and Venables, 2004). The interaction term of PopDens and respective NetDens indicators will 

be also introduced to check if the co-worker network has indirect effect on growth.  

Since regional productivity growth also tends to be influenced by the degree of regional 

specialization (e.g., Frenken et al, 2007) as well as the initial level of productivity due to catch-up 

effects (Boschma et al, 2014) we include a specialization indicator (Spec) defined as the inverted 

entropy of 4-digit industries in each region and the initial level of productivity (RegProd). Finally, a 

controller for average plant size (AvgPlantSize) is included since regions with many larger plants 

could be assumed to not exhibit the same relative growth rates as regions with a higher degree of 

small plants due to both competition effects as well as higher relative growth potential among 

smaller plants (larger plants tend to have higher levels while smaller plants are expected to change 

faster).
2
 

All independent variables are measured in t-1 to reduce the risk of reversed causality and all 

variables but AvgPlantSize has been logged due to skewed distributions. Variable definitions and 

descriptives are displayed in Table 8 together with the pairwise correlations. As noticed in Table 8  

our three different density variables are correlated (between 0.61 and 0.79) which is expected given 

the findings in previous sections. Therefore, we estimate them step-wise before assessing them 

jointly in the regressions. Moreover, specialization is also correlated with population density 

(negative) and network density preceded by mobility (positive) which also is expected since the 

larger and more dense the Swedish regions are the more diverse their economic activities tend to be 

(Boschma et al, 2014). Moreover, previous findings indicate that specialized regions tend to have 

higher mobility rates due to matching effects which motivate the relation between specialization and 

mobility induced networks (Eriksson et al, 2008). To remedy the potential multicollinearity caused by 

including specialization in the models we also ran the models without specialization. That did not 

influence the estimates on our network variables but lowered the overall explanatory power of the 

models. 

                                                           
2
 The rate of bachelors among all employees was also introduced as a control variable of human capital. 

However, the co-efficient of the variable turned to be insignificant with the introduction of other controllers.  
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Table 8. Variable description and correlation values (N=1008) 

Variable Description Mean St. Dev. Min Max Correlation coefficients 

ProdG 
Relative (%) growth of the natural logarithm of 

value added per capita at t+3 compared to t. 
0.199 0.356 -.989 3.720 1 

     

PopDens 
Natural logarithm of population density in the 

region (t-1). 
2.297 1.478 -1.422 4.995 -0.121* 1 

    

NetDensMob 

Natural logarithm of co-worker network density in 

the region across plants that have had labour 

mobility connections previously (t-1). 

-5.056 1.477 -9.579 0.154 0.083* -0.793* 1 
   

NetDensIndep 

Natural logarithm of co-worker network density in 

the region across plants that have not had labour 

mobility connections previously (t-1). 

-6.523 1.789 -12.037 0 0.033 -0.609* 0.763* 1 
  

Spec 

Natural logarithm of the inverse of the entropy 

measured in the employee distribution across NACE 

4-digit industries in the region (t-1). 

-1.379 .2127 -1.822 -0.742 0.226* -0.766* 0.858* 0.631* 1 
 

RegProd Natural logarithm of value added per capita (t-1). 5.675 0.511 2.299 7.160 -0.709* 0.303* -0.297* -0.179* -0.515* 1 

AvgPlantSize 
The number of BAs over the number of plants in the 

region (t-1). 
10.011 3.149 0 27.5 0.179* 0.217* -0.333* -0.470* -0.059* -0.267* 

 
           

Note:  *denotes that coefficients of the pooled pair-wise Pearson correlation are significant at the 5% level. 
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A fixed effect (FE) panel model was applied to estimate the influence of our network indicators on 

regional productivity growth 1992-2005. In simple form, the equation could be specified as:  

4�,567/4�,5 = 89:�,5*� + ;�,5;  (7) 

where y denotes productivity growth, t denotes one-year intervals from 1992 to 2005, i denotes the 

region, X stands for the set of explanatory variables, and ε is the case- and time-specific error term. 

The rationale for using this type of model is that it allows us to control explicitly for unobserved 

institutional differences across regions such as local labour market conditions not captured by the 

controllers or by the definition of functional regions, which in itself may help reduce the impact of 

endogeneity. This is highly relevant in the Swedish case due to the great variety of local labour 

markets in terms of size, population, economic structure and the predominant tradition of local wage 

setting. By including a full set of time dummies and having all explanatory variables measured the 

year before the change in the growth indicators as explained above, the risk of unobserved time- 

specific heterogeneity and reversed causality influencing the results was also reduced.  

However, since the models still may be affected from endogeneity, difference-generalized method of 

moments (GMM) (Arellano and Bond, 1991) with robust standard errors were also estimated as a 

general robustness check of the full models. In brief, this model first differences all variables to 

remove the unobserved region effect and then use internal instruments (lags of all variables in levels 

for the first differences variables) to solve potential endogeneity problems
3
. Thus, while both 

handling potential endogeneity and omitted variable bias, such a model approach also overcomes 

the problem of having a version of the dependent variable included in the right-hand-side of the 

equation, something that otherwise risks producing inconsistent estimates on especially the lagged 

dependent (Boschma et al., 2014). It should however be noted that we are not estimating a proper 

productivity model since that would require information on fixed regional assets (e.g., capital or 

investments), which is not available over the full period. However, our primary aim is not to fully 

estimate the geography of productivity growth but to discern whether the so often stated link 

between network density and regional growth actually holds when controlling for a number of 

relevant regional features.  

The estimation results are shown in Table 9. The table contains seven models where models 1-3 

estimate each type of density separately while models 4 and 5 estimate population density and the 

respective network indicator together, which then is repeated in a GMM setting in models 6 and 7. 

The interaction term of population density and the respective network density indicators are 

introduced into the GMM models 8 and 9. 

 

                                                           
3
 All variables but the year dummies are regarded endogenous. For the endogenous variables, the second lag is 

used as instrument. Due to the relatively large number of instruments in comparison with the number of 

observations, deeper lags than the second could not be included since that would risk causing inconsistent 

estimates. It also makes the system-GMM less appropriate to use since it requires more instruments. Using up 

to five lags as instruments however produce similar estimates while employing a system-GMM in this case 

failed to produce any significant estimates. 
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Table 9. Panel regressions on regional productivity growth (ProdG) 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

 
FE FE FE FE FE GMM GMM GMM GMM 

PopDens -0.851*** -0.803*** -0.964*** -1.336* -1.797** -1.488* -1.898** 

(0.286) (0.287) (0.289) (0.716) (0.718) (0.766) (0.811) 

NetDensMob 0.048** 0.043** 0.004 -0.095 

(0.021) (0.021) (0.063) (0.077) 

NetDensIndep 0.012* 0.015** 0.039*** 0.027* 

(0.006) (0.006) (0.013) (0.015) 

PopDens x 

NetDensMob 

0.096** 

(0.045) 

PopDens x 

NetDensIndep 

0.018 

(0.016) 

Spec 0.584*** 0.423*** 0.449*** 0.515*** 0.537*** 1.161* 1.036 1.242* 1.022 

(0.146) (0.147) (0.146) (0.150) (0.147) (0.696) (0.720) (0.695) (0.765) 

RegProd -0.435*** -0.432*** -0.429*** -0.433*** -0.429*** -0.406*** -0.374*** -0.393*** -0.345*** 

(0.031) (0.031) (0.031) (0.030) (0.031) (0.102) (0.094) (0.097) (0.088) 

AvgPlantSize -0.029*** -0.020*** -0.024*** -0.023*** -0.026*** -0.023** -0.018* -0.022* -0.011 

(0.005) (0.005) (0.005) (0.005) (0.005) (0.011) (0.010) (0.012) (0.009) 

Constant 5.713*** 3.707*** 3.587*** 5.670*** 5.943*** 

(0.745) (0.253) (0.251) (0.744) (0.750) 

Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Region FE Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-sq 0.602 0.601 0.600 0.604 0.605 

adj. R-sq 0.564 0.563 0.562 0.566 0.567 

AR(1) 0.002 0.003 0.003 0.004 

AR(2) 0.151 0.197 0.185 0.231 

Hansen J 0.555 0.487 0.680 0.531 

Instruments 78 78 91 91 

N 1008 1008 1008 1008 1008 936 936 936 936 

Time frame 1992-2005 1992-2005 1992-2005 1992-2005 1992-2005 1992-2004 1992-2004 1992-2004 1992-2004 

Note: standard errors in parentheses; *, **, *** sign the level of significance at the 0.1, 0.05 and 0.01 levels, respectively. 
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Based on the regression results it is possible to conclude that co-worker network density is positively 

associated with productivity growth, both when preceded by mobility (Model 2) and when not 

preceded by mobility (Model 3), while population density is not (Model 1). Thus, together with the 

descriptives in Table 8 showing a negative correlation between both network indicators and 

population density, it is possible to say that population density is a poor proxy of social interaction 

leading to learning and growth despite so frequently used in previous studies (Ciccone and Hall, 

1996). Rather than relying on somewhat esoteric notions that knowledge is “in the air” (Marshall, 

1920) or in the “buzz of urban life” (Storper and Venables, 2004) these results point to the fact that 

knowledge is always and everywhere peopled which emphasize the importance of studying the 

micro-processes at play (Breschi and Lissoni, 2009; Eriksson and Lindgren, 2009). These findings are 

robust when also estimating population density together with network density in models 4 and 5. 

The GMM models however indicate that the original models may suffer slightly from endogeneity or 

omitted variable bias since only the positive association between growth and network density not 

preceded by mobility remains significant (Model 7) while network density preceded by mobility loses 

significance (Model 6). This is expected since previous studies on the relation between productivity 

growth and mobility of workers with university degrees in Sweden neither find any significant effects 

if not distinguishing the type of experience of the workers (Boschma et al, 2014). The interaction 

term between network density preceded by mobility and population density however has a positive 

and significant effect on growth (Model 8). This term has the largest coefficient we found for the 

network indicators, which suggests that the co-worker network based on labour mobility operates as 

the engine of growth in densely populated areas but having an indirect effect only. However, the 

direct effect of co-worker network independent of mobility is robust against the introduction of the 

interaction term. 

The test statistics for the GMM models are satisfying. AR(1), which tests the null hypothesis of no 

first-order correlation in the differenced residuals, is rejected while the null hypothesis of no second-

order autocorrelation in levels, AR(2), is confirmed. This significant AR(1) is expected since first 

differences in errors share an error level component and together with outcome from the AR(2) test 

and the non-significant Hansen statistic, which under the null hypothesis tests that the instruments 

as a group are exogenous, indicates that the instruments fulfil their purpose. Moreover, all 

controllers show expected signs. Specialization trigger productivity, regions with high initial 

productivity is not as fast growing as those with lower productivity and many small firms tend to 

grow relatively faster than large firms. The controllers are, except from specialization in the GMM-

models, robust throughout all models. This non-significant estimate on specialization together with 

the relatively high standard errors may be a sign of multicollinearity due to the rather strong 

correlation between population density and specialization. 

In a robustness check (not reported) we estimate models 6 and 7 when excluding the period prior to 

1995 since that (i) was a turbulent period due to a big recession causing many involuntary job moves, 

and (ii) because the average degree of plants and individuals included in the network is saturated in 

1995 after having had some initial years to develop (see Table 3). This did however not influence any 

of the results on the density indicators reported from models 6 and 7. Further, we also estimated 

Models 4-7 for the period 1992-1999 since that was a period when population density was positively 

correlated with growth in a univariate setting. It however turns insignificant when introducing further 

variables while NetDensMob has positive and significant effect in the FE model but has a negative 
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and insignificant effect in the GMM model. NetDensIndep however turns to have a positive effect 

that is only significant in the GMM model.  

 

8. Conclusion and discussion 

The paper provides the first systematic evidence that social networks are important for regional 

productivity growth. In order to establish that argument, a new way of constructing social networks 

(e.g. co-worker networks) from employee-employer co-occurrence databases was introduced. Then, 

we described the steps of the co-worker network construction for the entire economy of Sweden for 

the period 1990-2008 and demonstrated that this network can be considered as a spatially 

embedded social network, indeed. As a next step, we showed how labour mobility influences the co-

worker network, and calculated decomposed network densities for those links that have been 

preceded by labour mobility and those that are independent from labour mobility. We find that 

network density is negatively correlated with population density, suggesting that while the potential 

for social networks are high in dense regions, the strength of these interactions are higher in smaller 

regions. We also find a robust positive effect of the density of the co-worker network on regional 

productivity growth, which remains significant in different model specifications only for those links 

that have never been preceded by labour mobility previously. 

A crucial finding implies that the constructed co-worker network is similar to other large-scale social 

networks. This makes us believe that the approach introduced in this paper can offer a wide variety 

of new answers for questions addressing the role of social networks in regional economic 

development. The current paper focused on two issues: (1) the effect of co-worker network density 

on productivity growth; (2) the independence of co-worker network density from labour mobility 

networks. 

People might learn more efficiently from those they have been in a co-worker relation with 

previously rather than from co-location per se. Thus, learning through the co-worker network is 

expected to enhance the productivity of the region. Indeed, in contrast to previous studies 

advocating the immense role of density (e.g., Ciccone and Hall 1996, Glaeser 1999) our empirical 

analysis indicates that it is not population density per se but the density of the co-worker network 

that is important for regional productivity growth. This finding verifies our first hypothesis claiming 

that network density triggers productivity growth, and underlines the importance of related policy 

implications. For example, productivity gains shall motivate public authorities to develop such 

environments that encourage employees to establish more professional connections at workplaces 

and also trace them over their career. 

In relation to our second hypothesis we do find that network density is triggering productivity, 

despite that it is not preceded by mobility. In fact, density of the co-worker network not driven by 

mobility is the most robust network indicator. This finding confirms previous studies showing that 

regional job flows per se is not an economic blessing for regions since that may produce sunk-costs 

for both the involved firms and individuals unless the flows are between skill-related industries 

characterised by cognitive proximity (e.g., Boschma et al, 2014). These findings do however indicate 

the indirect influence of mobility since weak ties are indirectly driven by mobility. In this respect 

future studies could pay more attention to the different ties that are established between 
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technologically related industries and whether the degree of social proximity may influence to what 

extent learning across related industries are present. It shall be noted in policy implications as well 

that recent attempts to make the labour market more flexible to facilitate mobility are not hitting the 

target since mobility only has an indirect effect. 

Since our methodology opens up the possibility of employing a micro perspective, one can analyse 

networks aggregated on various levels including individuals, plants, firms or industries. Further 

research might devote attention to the effects of co-worker network’s structure on other aspects of 

regional dynamics like firm entry, investment flows, entrepreneurship or employment growth 

introducing sector-specific characteristics into the analysis. For example, employees might learn 

more in those co-worker networks where the industry-specific knowledge is easier to transfer. 

Another potential in the co-worker approach is calculating the tie strength and one might be 

interested how the strength of weak ties – as Granovetter put it – applies to the effect of co-worker 

networks on innovation performance. Another aspect related to this study is whether these 

processes are shaped by the Swedish context or are more generalizable. For example, population 

density at the regional scale may not be a perfect indicator in the Swedish case due to the relatively 

sparse population distribution. Analysing the performance of industries or plants instead would not 

only open up for greater heteregoneity in terms of density but also allows controlling for further 

aspects influencing performance which are industry- or plant-specific. Last but not least, we shall 

further develop our homophily-biased random network approach by introducing the effect of group 

diversity, time and triadic closure and fit the model to real social networks in firms, which might open 

a new horizon for creating social networks from co-occurrence data.  
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Appendix 1a. Categories of employee education by direction of studies 

 1990 2008 1990 2008 

 code N % N % % % 

1 Pedagogy and teaching 14 107,853 29,441 168,497 21,44879 29,44 21,45 

 Arts and media 21 5.100 1.392165 12.018 1.529829 

6.91 5.84 2 Journalism and media 32 3.491 0.95295 11.053 1.40699 

 Humanities 22 16.725 4.565481 22.825 2.905504 

 Social sciences 31 27.273 7.444805 47.950 6.103786 

22.43 21.40 3 Business. trade and administration 34 40.262 10.99046 92.489 11.77337 

 Law 38 14.640 3.996331 27.662 3.521229 

 Biology and environment 42 1.821 0.497085 9.571 1.218339 

4.54 6.08 
 Physics and chemistry 44 3.191 0.871058 10.265 1.306681 

4 Mathematics 46 9.381 2.560764 10.637 1.354035 

 Data 48 2.256 0.615828 17.288 2.200673 

 Engineering 52 36.910 10.07545 105.734 13.45939 

14.68 18.09 

 Manufacturing 54 1.476 0.402909 4.072 0.518344 

5 Construction 58 10.915 2.979505 23.481 2.989009 

 Agriculture and forestry 62 2.835 0.77388 5.767 0.734109 

 Environmental protection 85 467 0.127479 1.828 0.232695 

 Transport services 84 1.175 0.320744 1.265 0.161028 

 Animal care 64 807 0.22029 1.865 0.237405 

21.00 24.37 
6 Health care 72 58.451 15.95557 151.420 19.27498 

 Social work 76 17.647 4.817162 36.679 4.669046 

 Personal services 81 42 0.011465 1.472 0.187378 

 Security and military 86 52 0.014195 3.634 0.462589 
0.99 2.77 

0 Unknown 99 3.566 0.973423 18.106 2.3048 

 SUM 366.336 100 785.578 100 100.00 100.00 

Note: Employees with educational background code 0 are excluded from the analysis. 

Appendix 1b. Number of employees by gender categories 

Gender 1990 2008 

0 182874 451303 

1 183462 334275 

SUM 366336 785578 

 

Appendix 1c. Number of employees by age categories 

Age 1990 2008 

-34 79437 217813 

35-49 201334 317635 

50- 85565 250130 

SUM 366336 785578 

 

 

  



 

Appendix 2. Tie probability distribution and firm size categories

Note: Distributions for 1990 in the left and for 2008 in the right. 
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Appendix 3. Cumulative degree distribution in 2008, individual level network

Degree 

< 10 

< 20 

< 40 

< 60 

< 80 

< 100 

< 200 

SUM 

 

The distribution implies that almost two

average degree; 80% of employees have less than 100 connections and only 2.5% of employees have 

more than 200 connections. 
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Tie probability distribution and firm size categories. 1990 and 2008

Note: Distributions for 1990 in the left and for 2008 in the right. We excluded those large number of 

outlier observations that are below or above the whiskers. 

Appendix 3. Cumulative degree distribution in 2008, individual level network

Number of employees Rate (%) 

133,967 19.2 

208,255 29.9 

323,033 46.4 

423,128 60.8 

500,711 71.2 

558,777 80.2 

678,637 97.5 

696,354 100 

The distribution implies that almost two-third of the employees have less connections than the 

average degree; 80% of employees have less than 100 connections and only 2.5% of employees have 
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Appendix 4

Note: We have eliminated 15 and 16 job changes from the illustration (based on the

Average plant size and Movements variables were grouped into 14 bins with equal number of observations.

The median, the 75
th

 percentile, and the upper adjacent value of the degree distribution grow 

monotonically until 15 years spent

similar trend in terms of average plant size and degree distribution: the distribution is pushed to the 

right until the 307-643 range of average plant size. Similar trend is observed in terms of

median degree and 75
th

 percentile grow until the 807

changes seems to have a monotone effect on degree: the higher number of job changes over the 

career of the employees the higher median, upper and
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Appendix 4. Degree distribution against drivers, 2008 

Note: We have eliminated 15 and 16 job changes from the illustration (based on their very low frequencies). 

Average plant size and Movements variables were grouped into 14 bins with equal number of observations.

percentile, and the upper adjacent value of the degree distribution grow 

monotonically until 15 years spent in career, after which these values remain constant. We find 

similar trend in terms of average plant size and degree distribution: the distribution is pushed to the 

643 range of average plant size. Similar trend is observed in terms of

percentile grow until the 807-1436 range of movements.  The variable of job 

changes seems to have a monotone effect on degree: the higher number of job changes over the 

career of the employees the higher median, upper and lower hinge. 

 

very low frequencies). 

Average plant size and Movements variables were grouped into 14 bins with equal number of observations. 

percentile, and the upper adjacent value of the degree distribution grow 

in career, after which these values remain constant. We find 

similar trend in terms of average plant size and degree distribution: the distribution is pushed to the 

643 range of average plant size. Similar trend is observed in terms of movements: 

1436 range of movements.  The variable of job 

changes seems to have a monotone effect on degree: the higher number of job changes over the 

 



 

Consider an adjacency matrix of 12 employees working for plants 

there is a connection between employees. Because co

the same pattern on both size of the matrix diagonal. Then, the density of the network is twice the 

observed number of connections over the number of possible connections. In this case it equals: 

2*10/12*11=0.152. 

However, because only inter-plant ties can be obser

eliminate those employee-employee pairs that are within plant borders. Thus, the number of 

possible ties decreases and density grows:  2*10/(12*11)

Density of the matrix can be decomp

the proportion of the submatrix size to the full matrix size. We can write the decomposition of 

density in the sequence of a×b, a×c

0.213 = {(2*3)/(4*3)*(4*3)/ 94} + {(2*2)/(

6/94+4/94+10/94 = 0.064+0.043+0.106 

Let us assume (in accordance with Figure 5) that 

a and b, between a and c, but there was no mobility between 

the mobility-dependent segment is 0.107 (aggregate of 

density of the mobility-independent segment is 0.106 (density of 
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Appendix 5. Density decomposition 

Consider an adjacency matrix of 12 employees working for plants a, b, and c, in which X denotes if 

there is a connection between employees. Because co-worker ties are non-directed, we see exactly 

pattern on both size of the matrix diagonal. Then, the density of the network is twice the 

observed number of connections over the number of possible connections. In this case it equals: 

plant ties can be observed in the co-worker network and one has to 

employee pairs that are within plant borders. Thus, the number of 

possible ties decreases and density grows:  2*10/(12*11)-(3*2+4*3+5*4)=20/94=0.213.

Density of the matrix can be decomposed to the sum of the densities in its submatrices weighted by 

the proportion of the submatrix size to the full matrix size. We can write the decomposition of 

a×c, b×c submatrices: 

0.213 = {(2*3)/(4*3)*(4*3)/ 94} + {(2*2)/(5*3)*(5*3)/ 94}+ {(2*5)/(4*5)* (4*5)/ 94} = 

6/94+4/94+10/94 = 0.064+0.043+0.106  

Let us assume (in accordance with Figure 5) that labour mobility occurred previously between plants 

, but there was no mobility between b and c. Consequently, the density of 

dependent segment is 0.107 (aggregate of a×b and a×c submatrix densities) and the 

independent segment is 0.106 (density of b×c submatrix).

, in which X denotes if 

directed, we see exactly 

pattern on both size of the matrix diagonal. Then, the density of the network is twice the 

observed number of connections over the number of possible connections. In this case it equals: 

worker network and one has to 

employee pairs that are within plant borders. Thus, the number of 

(3*2+4*3+5*4)=20/94=0.213. 

 

osed to the sum of the densities in its submatrices weighted by 

the proportion of the submatrix size to the full matrix size. We can write the decomposition of 

5*3)*(5*3)/ 94}+ {(2*5)/(4*5)* (4*5)/ 94} = 

mobility occurred previously between plants 

uently, the density of 

submatrix densities) and the 

. 


