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Abstract: There is consensus among scholars and policy makers that knowledge is one of the key 

drivers of long-run economic growth. It is also clear from the literature that not all knowledge has 

the same value. However, too often in economic geography and cognate fields we have been 

obsessed with counting knowledge inputs and outputs rather than assessing the quality of 

knowledge produced. In this paper we measure the complexity of knowledge across patent classes 

and we map the distribution and the evolution of knowledge complexity across U.S. cities from 

1975 to 2004. We build on the 2-mode structural network analysis proposed by Hidalgo and 

Hausmann (2009) to develop a knowledge complexity index (KCI) for Metropolitan Statistical 

Areas (MSAs). The KCI is based on more than 2 million patent records from the USPTO, and 

combines information on the technological structure of 366 MSAs with the 2-mode network that 

connects cities to the 438 primary (USPTO) technology classes in which they have Relative 

Technological Advantage (RTA). The complexity of the knowledge structure of cities is based on 

the range and ubiquity of the technologies they develop. The KCI indicates whether the knowledge 

generated in a given city can be produced in many other places, or if it is so sophisticated that it can 

be produced only in a few select locations. We find that knowledge complexity is unevenly 

distributed across the U.S. and that cities with the most complex technological structures are not 

necessarily those that produce most patents.  
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1. Introduction  

 

“What is important in knowledge is not quantity, but quality. It is important to know what 

knowledge is significant, what is less so, and what is trivial” (Leo Tolstoy; a calendar of wisdom).  

 

It has become commonplace to regard the production of knowledge and the diffusion of that 

knowledge across space as key to understanding the uneven geography of growth and development 

(Schumpeter 1942; Solow 1956; Nelson and Winter 1982; Romer 1990; Corrado and Hulten 2010; 

OECD 2013). While knowledge has always been a critical input to production, the centrality of its 

role to capitalist competition has grown recently as transport costs for a wide variety of 

commodities have been lowered and as global commodity markets have been increasingly 

integrated (Dunning 2002; Dicken 2007). This does not mean that the usual foundations of 

profitability have been flattened, that there are no longer lower cost sites of production for particular 

goods, or richer markets, but rather that a growing number of firms from around the world have 

increased access to such sites for more and more segments of their value. Within this environment, 

knowledge that is spatially “sticky”, difficult to create or to move outside the region of its 

production, has taken on added value (Lundvall and Johnson 1994; Markusen 1996; Gertler 2003). 

For many firms and regions of the industrialized world, competitive advantage hinges on the 

production of high-value, non-ubiquitous, complex and tacit knowledge (Maskell and Malmberg 

1999; Asheim and Gertler 2005). 

Why are some cities and regions more innovative or creative than others? Because of the 

importance of knowledge in contemporary capitalism, and because of the role of cities in its 

production, researchers in economics, geography, science and innovation studies as well as local 

policy makers have focused attention on this question. It is crucial to identify differences in the 

nature and the pace of innovation between cities to design efficient knowledge-based policy. 

However, too often in the literature we have been obsessed with counting knowledge outputs rather 

than assessing the quality of knowledge produced. In this paper, we separate the quantity and 

quality of knowledge production by mapping the distribution and evolution of (technological) 

knowledge complexity in U.S. cities from 1975 to 2004. We build on the 2-mode structural network 

analysis proposed by Hidalgo and Hausmann (2009) to develop a knowledge complexity index 

(KCI) for Metropolitan Statistical Areas (MSAs). The KCI is based on more than 2 million patent 

records from the United States Patent and Trademark Office (USPTO), and combines information 
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on the technological structure of 366 MSAs with the 2-mode network that connects cities to the 438 

technologies in which they have Relative Technological Advantage (RTA). Following this network 

approach, we characterize the complexity of the knowledge structure of cities based on the range 

and ubiquity of the technologies they develop. The KCI indicates whether the knowledge embodied 

in a given city can easily be (re)produced in many other MSAs, or if it is so sophisticated that it can 

only be produced by a few key cities. We find that knowledge complexity is unevenly distributed in 

the U.S. and that cities with the most complex technological structure are not necessarily the ones 

with the highest rates of patents per capita. Our results suggest that looking at knowledge quality on 

top of knowledge quantity provides insights on the distribution of knowledge production that cannot 

be captured by simply counting aggregate knowledge outputs such as patents. 

The rest of the paper is organized as follows. In section 2 a brief review of relevant literature 

is provided. Section 3 describes construction of the city-tech knowledge network from patent data, 

the analytical backbone of our methodological framework. The structural analysis of this network 

and the underlying principles of the knowledge complexity index are discussed in Section 4. Section 

5 presents empirical evidence on the geography and evolution of knowledge complexity in U.S. 

cities. Section 6 offers some preliminary conclusions and directions for future research. 

 

2. Literature review 

Economic geographers have long recognized geographical patterns of specialization in the 

distribution of industries (Scott 1996; Ellison and Glaeser 1999), in techniques of production (Rigby 

and Essletzbichler 1997; 2006), in organizational and institutional formations (Saxenian 1994; 

Storper 1997), and in research and development (Audretsch and Feldman 1996). That subsets of 

knowledge, or technological know-how, emerge in different places is strong evidence of the 

existence of localized communities of practice (Lawson and Lorenz, 1999) that reflect place-

specific sets of technological competences, capabilities and institutional relations (Storper 1993; 

Gertler 1995; Boschma and Frenken 2007).These capabilities are often built up over long periods of 

time and they shape the environment within which subsequent choices are made (Essletzbichler and 

Rigby 2007). Grabher (1993) argues that the path dependent nature of economic evolution locks 

some regions into technological regimes that yield diminishing returns, while Saxenian (1994) 

provides compelling evidence of regional variations in the capacity to maintain innovation. Long-

run creativity within regions is linked to institutional practices that foster open knowledge 
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architectures, absorptive capacity and connections to pools of knowledge generated elsewhere 

(Cohen and Levintahl 1990; Bathelt et al., 2004; Asheim and Coenen 2005).  

The persistence of regional differences in knowledge-bases suggests not only that invention 

is cumulative in nature, resulting from the recombination of existing ideas and from processes of 

search that tend to be localized, but also that knowledge subsets developed in one location are often 

difficult to replicate elsewhere. David (1975) and Nelson and Winter (1982) argue that the 

cumulative nature of much technological change is limited by the sunk costs of accumulating 

experience. These claims are reinforced by models of search in which costs of exploration rise 

steeply outside the boundaries of familiar knowledge terrain (Atkinson and Stiglitz 1969; 

Binswanger 1974; Stuart and Podolny 1996; Antonelli 2005). In turn, these ideas have helped 

popularize the image of knowledge development as a process of recombination (Evenson and 

Kislev 1976; Weitzman 1998). Olsson and Frey (2002), and many others, build on the fitness 

landscapes of Kauffman (1993) to argue that successful recombination is related to the number of 

ideas in knowledge space, the distance and the extent of the interaction between them. 

The difficulties of moving certain kinds of knowledge are discussed by Kogut and Zander 

(1992), by Lundvall (1988) and Gertler (1995). Kogut and Zander (1992) offer a knowledge-based 

view of the firm as an organizational unit adapted to replicating knowledge while limiting its 

imitation by competitors. Defining knowledge as technological know-how (see also von Hippel 

1988), they envision the firm as a coherent set of organizing principles, similar to the routines of 

Cyert and March (1963) and Nelson and Winter (1982), that link and combine complex and tacit 

knowledge held by skilled workers in collective sets of procedures, that often themselves embody a 

tacit dimension. When these routines are shared across economic agents in agglomerations that are 

united by traded and untraded inter-dependencies (Marshall 1920; Storper 1995), so our conception 

of the knowledge-based region emerges (Lundvall and Johnson 1994; Tallman et al. 2004; Asheim 

and Gertler 2005). In both these visions, knowledge-based firms and knowledge-based regions are 

more than simply the sum of their (knowledge) parts. In an all too often used aphorism, adulterated 

from Polanyi (1966), regions, like firms, know more than they can tell. 

Though considerable theoretical effort has been directed towards uncovering what it takes to 

be a learning region or a knowledge economy, much less attention has been given to the character 

of knowledge produced within regions. One of the primary reasons we know so little about the 

spatial composition of knowledge is that we lack precise measures of knowledge and technology 

(Pavitt, 1982). Recent work has attempted to capture differences in the nature of knowledge cores 
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over space. Inspired by measures of the technological distance between firms (Jaffe 1986) and 

measures of technological coherence (Teece et al. 1994), Graff (2007), Kogler et al. (2013) and 

Rigby (2013) use patent data to measure distances between classes of technologies and provide 

visualizations of national and local knowledge spaces and their evolution over time. Balland et al. 

(2014) and Rigby (2013) explore how the structure of these spaces guide localized trajectories of 

knowledge development through patterns of technological abandonment and diversification 

following the product-space arguments of Hidalgo et al. (2007) and work on relatedness (Neffke 

2009). Extensions of these same ideas underpin models of knowledge flow between regions (Jaffe 

et al. 1993; Fischer et al. 2006) that is linked to geographical, social and cognitive proximity (Jaffe 

et al. 1993; Breschi et al. 2003; Feldman et al 2013). Boschma (2005) reviews these arguments. 

Patent data are also used to measure the wealth of regions from a knowledge perspective. 

Acknowledging the standard criticisms of patent data (Griliches 1990), regional knowledge stocks 

can be generated through perpetual inventory techniques, counting patents by their geography and 

using the length of patent protection as an indicator of the “service life” of knowledge. However, 

such simple accounting procedures pay little attention to the heterogeneity of the knowledge 

embodied within individual patents and thus to patent values. That inventions differ in their capacity 

to punctuate the incremental nature of much technological advance is broadly understood (Sahal 

1981, Dosi 1982; Abernathy and Clark 1985; Christensen 1997). Fortunately, there have been 

numerous attempts to assess the quality and the value of individual patents. Trajtenberg (1990) 

measures patent values through forward citations and ties those measures to social valuations of 

important innovations within the computer tomography sector. Hall et al. (2005) combine patent 

records with COMPUSTAT firm data and show the correlation between citation-weighted patent 

counts and the market value of firms. Harhoff et al. (1999) survey German patent holders and find a 

strong correlation between the citation value of patents and estimates of the price at which they 

would be willing to sell patents shortly after filing. Lerner (1994) links patent scope, the breadth of 

knowledge claims, to the value of assignee firms. Harhoff et al. (2003) and Lanjouw and 

Schankerman (2004) use citations, family-size, renewals and litigation in composite measures of 

patent value. Ejermo (2009) employs similar methods to weight patent counts across Swedish 

regions. In related research, Schoenmakers and Duysters (2010) trace the technological origins of 

blockbuster patents to the number of knowledge domains they combine. Kelley et al. (2013) use a 

similar definition in their examination of breakthrough patents in the drug and semiconductor 

sectors. Verspagen (2007) also uses patents and citation data related to fuel cells to uncover critical 
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branching points in knowledge development that steer subsequent trajectories of technological 

development. Castaldi et al. (2013) explore the geography of breakthrough patents in the United 

States. 

While patent valuations provide one indicator of the value of knowledge held by firms and 

located in different regions, another critical dimension of the competitive advantage conveyed by 

knowledge is its inimitability. Nickerson et al. (2007) argue that both value creation and capture sit 

at the core of strategic management theory and the knowledge-based view of the firm. This raises 

the question of what makes knowledge more or less difficult to replicate. For Simon (1962), the 

complexity of different knowledge architectures influence their potential exclusivity and value. He 

defines complex systems as comprising large numbers of components that interact in non-simple 

ways and that are often non-decomposable. Kauffman’s (1993) fitness landscapes are defined across 

similar dimensions. For Kauffman, the higher the interaction among a set of components, the more 

rugged the search landscape, the higher the cost of search and the more valuable the optimal 

solution. We might think about knowledge-based firms and regions in the same fashion: they 

comprise many components that interact in non-trivial ways to produce high-value solutions to 

complex problems. And, it is this complexity that aids value capture by rendering tacit much of 

what they do. Indeed, it is the tacit dimension of complex knowledge production that makes it so 

difficult to move between firms and between regions (Gertler 2003; Nickerson and Zenger 2004) 

and that makes it valuable (Maskell and Malmberg 1999). Recognition that complex and tacit 

knowledge is relatively immobile has spurred a number of papers on knowledge sourcing. Almeida 

(1996) uses field interviews and patent citation data to explore local and non-local knowledge 

sourcing in the U.S. semi-conductor industry. He reports that innovative regions act like magnets to 

foreign multi-nationals, especially when technological knowledge is perceived to be sticky. Chung 

and Alcacer (2002) confirm that in research-intensive sectors, foreign firms from both 

technologically leading and lagging nations are attracted by R&D spending in U.S. states. Cantwell 

and Piscitello (2002) reveal that foreign multi-nationals in Europe are more likely to locate their 

foreign research plants within regions that have attractive knowledge-bases. Tempering these 

claims, Singh (2008) shows that MNCs with geographically distributed R&D activities have lower 

quality innovations, and suggests that this likely results from the difficulties of integrating 

knowledge from different sources. Todtling et al. (2011), building on earlier work by Trippl et al. 

(2009), explore local knowledge sourcing within the ICT sector across a large and a small 
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metropolitan region of Austria. They report that the structure of local knowledge networks shapes 

the patterns of knowledge access and the types of knowledge acquired. 

Which regions hold the most valuable knowledge, especially knowledge that is complex and 

tacit and thus difficult to access? So far it has proven difficult to answer this question, at least in 

part because we have no readily available measures of the complexity or the tacit nature of 

knowledge located in particular places. Developing the work of Kauffman (1993) within the 

management literature, and extending the arguments of Levinthal (1997) and Rivkin (2000), 

Fleming and Sorenson (2001) offer a model of search-based, recombinant innovation that rests on 

the complexity of knowledge. Using patent data, they provide a measure of complexity using 

estimates of the difficulty of combining knowledge subsets represented by different technology sub-

classes in USPTO data. In a subsequent paper, Sorenson (2005) links measures of the complexity of 

patent classes to industries and investigates the relationship between industry agglomeration and the 

complexity of industrial knowledge. He shows that when industrial knowledge complexity 

increases, social networks play a critical role in knowledge transfer and learning and the centripetal 

forces of such networks maintain agglomeration. When knowledge complexity is lower and social 

networks less important to technology flows and learning, industries are more likely to disperse. In 

work on the product-space of countries, Hidalgo and Hausmann (2009) develop a different measure 

of product and place complexity based on the product-level diversity of national economies and the 

ubiquity (or range) of countries across which individual products are produced. To date, no one has 

used either of these techniques to examine the complexity of knowledge located in cities and 

regions of the U.S., or most anywhere else. 

 

3. The city-tech knowledge network 

The analytical backbone of this framework is the city-tech knowledge network that connects cities to 

the technological knowledge they develop. This is a 2-mode network (Borgatti, 2009), the structure 

of which emerges out of the connections between nodes of different types
1
, in this case between 

cities and technologies (see Figure 1). This type of network is also referred to as a bipartite, bimodal 

or an affiliation network in the network science literature (Opsahl, 2013). Typical examples of 2-

mode networks are individual-event networks (Davis et al., 1941), interlocking directorates (Robins 

and Alexander, 2004), predator-prey networks (Allesina and Tang, 2012) or firm-projects networks 

                                                           
1
 Connections between nodes of the same mode, i.e. city-city or technology-technology ties are not considered.    
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(Balland, 2012). Although we focus on a network of cities and technologies, the structural analysis 

of 2-mode networks formed by other types of spatial units and knowledge domains offer various 

ways for understanding geographies of innovation. Following Hidalgo and Hausmann (2009), we 

show that the particular architecture of the city-tech network reveals the relative capacity of cities to 

produce complex technological knowledge. 

 

 

Note: The connections represent the production of technological knowledge "T" by city "C". 

 

Figure 1. The (2-mode) city-tech network 

 

To construct the city-tech knowledge network we use patent documents from the United 

States Patent and Trademark Office (USPTO) from 1975 to 2004. The connections between cities 

and technologies are established over time as inventors within cities develop new knowledge 

(patents) in given technological fields
2
. Patent data provide precise and systematic information on 

the production of knowledge in different technology fields (the first set of nodes in Figure 1) over 

space (the second set of nodes in Figure 1) and time. These are crucial inputs for construction of the 

2-mode network. 

 

Since we are interested in the timing of new knowledge creation we use the application year 

of the patent and not the grant year because of the variable time-lag that the examination process 

entails. It is in the process of examination that each (granted) patent is allocated to one or more 

                                                           
2
 We only focus on the complexity of technological knowledge produced in cities. We do not consider artistic, cultural 

or other forms of knowledge. We also recognize that not all new technological knowledge is captured by patents. 
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distinct technology classes that reflect the technological characteristics of the new knowledge 

created. By the end of 2004, there were 438 primary technology classes of utility patents in use by 

the USPTO (see Strumsky et al., 2012). In this paper, we allocate individual patents to their primary 

technological class only. Patent documents also provide information on the place of knowledge 

production by referencing the home address of inventors. We only consider patents produced by 

inventors located within the United States, and in the case of co-invention, patents are located by 

the address of the first-named, primary inventor. We discard patent records if the primary inventor 

is not located in one of the 366 U.S. metropolitan areas.  

More formally, we represent the geography of technological knowledge production as an n 

by k 2-mode adjacency matrix. The resulting network involves n=366 cities (MSAs) and k=438 

technological domains or classes. In this n*k matrix, the weight of each edge xc,i  is the number of 

patents produced within city c in technological category i (c = 1,..., n; i = 1, …, k). We divide the 

years for which we have patent data, 1975-2004, into six periods of five years, and we construct a 2-

mode city-knowledge network for each of these periods. Figure 2 shows a visual representation
3
 of 

the city-tech knowledge network for the latest period. For clarity, the network visualization 

presented in Figure 2 does not show the full 2-mode network structure, but rather a summary of its 

structure using a maximum spanning tree algorithm. The maximum spanning tree T of the n*k city-

tech knowledge network is the n*k sub-graph with (n+k-1) edges which has a maximum total 

weight. This is the backbone of the network. Two rules apply: (1) the network should stay fully 

connected, i.e. no isolates (cities or technologies) should be generated while removing the links, and 

(2) the sum of the weight of the links of the sub-graph should be the highest possible. Of course, 

this graph representation only gives a general idea of the city-tech knowledge network and the 

structural analysis presented in the next section is based on the full network.   

 

                                                           
3
 This graph has been visualized using the Gephi software. 
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Figure 2. The structure of the city-tech knowledge network 

 

In Figure 2, cities are represented by white nodes, while technologies are represented by 

colored nodes. Each color corresponds to one of seven aggregate patent categories identified by 

Hall et al. (1999). The position of cities in the knowledge space reflects the technological classes in 

which they have RTA as well as the density of their patents across these classes. Figure 2 shows, for 

instance, the specialization of San-José in computers & communications and electrical & electronics 

technologies, along with the smaller ICT/electronic hub in Austin. San Francisco is pulled a little 

away from those technologies toward biotech and pharma more generally. More diversified cities 

like New York and Boston occupy the center of the knowledge space, a region where links between 

technology nodes are particularly dense and where there are strong possibilities for technological 

recombination as existing competences can be readily redeployed. Los Angeles and Chicago are 

only slightly removed from the knowledge core. Detroit occupies a more peripheral location, 

embedded in a mechanical cluster within the knowledge space, a cluster that is by now somewhat 

less well-connected to other technologies. Houston and Pittsburgh also occupy somewhat more 

peripheral parts of knowledge space. 
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As is often the case in complex networks research, the visual representation of the 2-mode 

network is limited by the number of nodes and ties that can be identified. Despite major advances in 

layout algorithms for large scale networks, visualization can only offer preliminary insights into the 

structure of the city-tech knowledge network. We turn to a more comprehensive, statistical analysis 

of that structure below. 

 

4. Knowledge complexity index 

Simultaneously combining information on (1) which cities produce specific technologies and (2) 

how common specific technologies are across cities, it is possible to construct an indicator that 

captures the level of knowledge complexity of a city's technological portfolio for a given period of 

time. This knowledge complexity index (KCI) is based on the “method of reflections” developed by 

Hidalgo and Hausmann (2009). In their pioneering work, Hidalgo and Hausmann show that the 

economic complexity of a country’s output is reflected by the particular composition of its export 

basket, taking into account the relative composition of the export baskets of all other countries. The 

main idea in their analytical framework is that more complex economies produce more exclusive 

goods, i.e. non-ubiquitous commodities that are sourced in relatively few countries in total. 

Countries with complex economic structures experience a privileged source of comparative 

advantage, a form of spatial-technological-monopoly from which they extract rents. Countries that 

produce goods that are widely imitated by others, commodities that are ubiquitous, tend to have low 

scores in terms of economic complexity. Following this approach, we analyze the particular 

architecture of the city-tech knowledge network and we show that a city has a complex 

technological composition if it produces knowledge that relatively few other cities are able to 

imitate. 

To construct our index of knowledge complexity, we only consider cities that are significant 

producer of a particular technological knowledge. As a result, it should be noted that the city-tech 

knowledge network that is used to compute the KCI is based only on technological classes in which 

a city has a relative technological advantage (RTA) in terms of patenting activity. The network can 

be represented as a n*k 2-mode adjacency matrix          , where      reflects whether or not 

city c has RTA in the production of technological knowledge i (c = 1,..., n; i = 1, …, k). A city c has 

RTA in technology i at time t if the share of technology i in the city's technological portfolio is 

higher than the share of technology i in the entire U.S. patent portfolio. More formally,       
  

  if:    



12 
 

 

          
             

 
 

           
              

 
   

   

 

Following the method of reflections, the KCI sequentially combines two variables: the diversity of 

cities and the ubiquity of technological classes. These two variables correspond to the 2-mode 

degree centrality of both sets of nodes in the city-tech knowledge network. The degree centrality of 

cities (kc,0) is given by the number of technological classes in which each city has  RTA (diversity): 

 

                          (1) 

 

where      is defined above. Similarly, the degree centrality of technological classes (ki,0) is given 

by the number of cities that exhibit RTA in a particular class (ubiquity):  

 

                          (2) 

 

The knowledge complexity index combines information on both the 2-mode degree 

distribution of cities (diversity) and the 2-mode degree distribution of the technologies produced 

(ubiquity). We follow Hidalgo and Hausmann (2009) and sequentially combine the diversity of 

cities and ubiquity of technological classes computing simultaneously the following 2 equations 

over a series of n iterations:  

 

                  
 

    
               (3) 

 

              
 

    
                (4) 

 

To provide some further interpretation of this method, in a second iteration, for n = 1,       in 

equation (3) represents the average ubiquity of the technologies in which city c has RTA. In similar 

fashion,      in equation (4) measures the average diversity of cities that have RTA in technology i. 

In the next iteration, for            captures the average diversity of cities that have export baskets 

similar to city c, and      reveals the average ubiquity of the technologies developed in cities that 
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have RTA in technology class i. Each additional step in            yields a finer-grained estimate of 

the knowledge complexity of a city using information on the complexity of the technologies in 

which the city exhibits RTA. Each additional step in          provides a finer-grained estimate of 

the knowledge complexity of a technology using information on the complexity of cities that have 

RTA in that technology. While higher order iterations in this technique become progressively more 

difficult to define, the method of reflections provides more and more precise measures of the KCI of 

cities and technologies, as noise and size effects are eliminated. The iterations are stopped when the 

ranking of cities and technologies is stable from one step to another (i.e. no further information can 

be extracted from the structure of the city-tech network). The KCI of cities presented in this paper is 

based on n = 20 iterations
4
.  

 A reformulation of the ‘method of reflections’ as a fixed-point theorem based on Markov 

chain analysis
5
 is provided by Caldarelli et al. (2012). Note that application of this alternative 

methodology does not substantially alter our results. New metrics derived from this mathematical 

reformulation are outlined in Tacchella et al. (2012). 

 

5. The geography and evolution of complex knowledge  

In this section, we present results of the structural analysis of the city-tech knowledge network with 

a particular focus on cities
6
. Some of the results are displayed for the 5-year period 2000-2004, 

though the patterns we describe are robust across all periods of observation.  

An essential statistical indicator of global network structure is the degree distribution of 

nodes. As specified above, the degree of cities in the 2-mode network is simply given by the 

number of technologies in which a city has a relative technological advantage (kc,0). The degree 

distribution gives the fraction of cities in the city-tech knowledge network with a given degree k. 

Figure 3 plots the cumulative degree distribution of cities for the period 2000-2004 and fits 

exponential (in black), power law (in red) and truncated power law (in light grey) functions to the 

data
7
. As it is often the case in 2-mode networks, the distribution is characterized by a power law 

                                                           
4
 The correlation between Kc,18 and Kc, 20 is 0.99.  

5
 We would like to thank Bernhard Truffer for pointing out the limitation of the method of reflections and suggesting an 

alternative algebraic solution. Vanessa Bouaroudj helped us write the R code that implements this mathematical 

reformulation.   

6
 Following this approach, we could analyze the complexity of technological classes, but this is beyond the scope of the 

present paper. 

7
 This figure has been plotted using the "bipartite" package, part of the R environment for statistical computing and 

graphics.  
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(β=0.48; R
2
=0.80), with a better fit of the truncated power law (β=-0.37; R

2
=0.99). This feature 

indicates a scale-free network (Barabási and Albert, 1999), in which only a few cities have RTA in 

many technological classes (hubs), while most cities have relatively low diversity scores. The 

MSAs with a high RTA tend to be large, such as Chicago, Los Angeles and Miami. However, some 

cities have a relatively low 2-mode degree despite a high patenting rate, such as San José, San 

Francisco and Boston. This indicates specialization of knowledge production in a small number of 

technology classes. The degree distribution of technologies, i.e. their ubiquity, follows a similar 

scale-free pattern characterized by a power law (β=0.34; R
2
=0.76).  

 

 

Figure 3. 2-mode degree distribution of cities (diversity) 2000-2004 

 

In the next step of our structural analysis, we follow the approach of Hidalgo and Hausmann 

(2009) and analyze the relationship between (1) the diversity of the technologies produced by a city 

and (2) the average ubiquity of these technologies. In Figure 4, we plot the diversity of cities 

     against the average ubiquity of technologies they produce      for the period 2000-2004
8
. A 

high value of      means that the technological structure of the city is highly diversified, while a 

low value of      means that the city produces sophisticated, or non-ubiquitous, technologies on 

                                                           
8
 The relationship represented in Figure 4 holds for other time periods.  
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average. We find a strong negative relationship between these two indicators. This indicates that 

there is a strong tendency for cities with a more diversified technological structure to produce more 

exclusive (i.e. less ubiquitous) technologies.  

 

 

Figure 4. Diversity and average ubiquity of technologies produced (2000-2004) 

 

Plotting the mean of diversity (vertical line) and the mean of average ubiquity (horizontal 

line) we divide the graph in four quadrants. In the bottom left quadrant we find cities that have RTA 

in relatively few technological classes that are non-ubiquitous. These are cities such as San José, 

Austin and Poughkeepsie. In the top left quadrant of the graph we also find cities that have RTA in 

only a few technological classes, but these cities (such as Anchorage, Springfield and Carson City) 

produce relatively ubiquitous technologies. On the right-hand side of the graph, we find larger, 

more diversified cities, producing sophisticated technologies in the bottom quadrant (Chicago, Los 

Angeles and New York for example), and cities producing more ubiquitous technologies in the 

upper quadrant (Columbia, Oklahoma City, New Orleans).  

Looking at the diversity and average ubiquity of technologies produced provide interesting 

preliminary insights on the distribution of knowledge production in the United States that cannot be 

captured by simply counting aggregate knowledge outputs such as patent applications. These 

indicators, however, are based only on a small fraction of the entire structure of the city-tech 

knowledge network. Exploiting all information in this network, following the methodology of 
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Hidalgo and Hausmann (2009), we are able to characterize the complexity of the (technological) 

knowledge structure of the 366 Metropolitan Statistical Areas of the United States.  

 

 

Notes: based on 20 iterations of the KCI. 

Figure 5. Technological knowledge complexity in U.S. cities (average all years) 

 

The knowledge complexity index for U.S. cities is quite heterogeneous as Figure 5 reveals. 

Knowledge complexity, averaged over our study period, is relatively high in San Jose, Austin, 

Poughkeepsie, San Francisco and Boston. These metropolitan areas tend to develop a number of 

technologies that can only be replicated in a small number of other U.S. cities (KCI > 70). 

Knowledge production is of moderately high complexity (60 < KCI < 70) in Rochester (MN), 

Burlington (VT), Trenton-Ewing, the Research Triangle cities of North Carolina, Colorado Springs, 

Fort Collins and Boulder, Binghampton, Dallas-Fort Worth and Portland (OR). The cities rounding 
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out the top 10% in terms of average knowledge complexity since 1980 include Washington DC and 

New York City, Boise, Corvallis, Santa Cruz, Seattle, Phoenix and Tucson, Albany, Ithaca, 

Kingston and Rochester (NY), Manchester, Greeley, Worcester and Philadelphia. 

Table 1 shows the KCI ranking of the 100 largest U.S. metropolitan areas in terms of 

employment (the KCI of the 366 MSAs is provided in Table A.1 of the Appendix). Interestingly, 

cities with the most complex technological knowledge structure are not necessarily the ones with 

the highest rates of patenting. Washington, for instance, ranks #134 in terms of patents per 

employee, but ranks #17 in terms of KCI. Thus, even though Washington produces relatively few 

patents, those patents tend to be concentrated in relatively sophisticated technological classes. A 

similar situation applies to cities such as Durham and Dallas. Conversely, we find at the bottom of 

the KCI ranking cities that tend to produce relatively large volumes of relatively ubiquitous 

technological knowledge (low KCI, approaching 0), such as Anchorage, Grand Rapids or Des 

Moines. One of the most striking results when we look at the drop in terms of ranking between KCI 

and the general rate of patenting is Detroit. Detroit ranks #45 in terms of the number of patents per 

employee over the period 1975-2010, but only #150 in terms of the knowledge complexity index. 

This indicates that Detroit is producing a substantial number of patents that could easily be 

produced by other cities. A similar portrait emerges of many other “rust-belt” cities like Akron, 

Minneapolis, Milwaukee and Toledo. These results suggest that looking at knowledge quality as 

well as knowledge quantity provides a somewhat different picture of the distribution of knowledge 

production in the United States.  

 

MSA State KCI 

Rank 

(KCI) 

Rank 

(patents) MSA State KCI 

Rank 

(KCI) 

Rank 

(patents) 

San Jose-Sunnyvale-Santa Clara CA 99 1 1 
Providence-New 
Bedford-Fall River RI 33 94 113 

Austin-Round Rock-San 
Marcos TX 94 2 10 

Orlando-Kissimmee-
Sanford FL 32 96 264 

Poughkeepsie-Newburgh-

Middletown NY 78 3 12 

Denver-Aurora-

Broomfield CO 32 97 119 

San Francisco-Oakland-

Fremont CA 77 4 19 Akron OH 32 100 27 

Boston-Cambridge-Quincy MA 73 5 31 
San Antonio-New 
Braunfels TX 31 103 233 

Trenton-Ewing NJ 65 8 5 Columbus OH 31 106 126 

Colorado Springs CO 64 9 75 El Paso TX 31 107 317 

Portland-Vancouver-Hillsboro OR 64 10 47 Buffalo-Niagara Falls NY 31 108 93 

Raleigh-Cary NC 62 11 25 Honolulu HI 31 109 325 

Dallas-Fort Worth-Arlington TX 61 13 82 

Portland-South 

Portland-Biddeford ME 30 111 172 

Durham-Chapel Hill NC 60 16 44 Harrisburg-Carlisle PA 30 114 118 

Washington-Arlington- DC 58 17 134 Springfield MA 29 115 139 
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Alexandria 

New York-Northern New 

Jersey-Long Island NY 58 18 80 

Tampa-St. Petersburg-

Clearwater FL 29 117 178 
San Diego-Carlsbad-San 

Marcos CA 58 19 29 Columbia SC 29 123 253 

Rochester NY 57 20 4 Richmond VA 29 124 179 

Boise City-Nampa ID 57 21 3 
Virginia Beach-
Norfolk-Newport News VA 28 128 277 

Seattle-Tacoma-Bellevue WA 56 24 51 Bakersfield-Delano CA 28 129 173 

Albany-Schenectady-Troy NY 53 26 17 Kansas City MO 28 131 196 

Phoenix-Mesa-Glendale AZ 52 28 66 

Milwaukee-Waukesha-

West Allis WI 27 135 83 

Worcester MA 50 31 41 

Charlotte-Gastonia-

Rock Hill NC 27 141 183 

Philadelphia-Camden-
Wilmington PA 50 32 62 

New Orleans-Metairie-
Kenner LA 27 142 243 

Tucson AZ 50 33 61 Greensboro-High Point NC 26 145 198 

Oxnard-Thousand Oaks-

Ventura CA 46 39 22 Detroit-Warren-Livonia MI 26 150 45 

Bridgeport-Stamford-Norwalk CT 45 40 16 

Riverside-San 

Bernardino-Ontario CA 26 151 167 

Albuquerque NM 45 41 111 Jacksonville FL 26 152 270 

Allentown-Bethlehem-Easton PA 44 42 42 Lansing-East Lansing MI 26 153 181 

Indianapolis-Carmel IN 42 44 85 Scranton-Wilkes-Barre PA 26 156 249 

Sacramento-Arden-Arcade-
Roseville CA 42 45 146 Birmingham-Hoover AL 26 157 298 

Los Angeles-Long Beach-Santa 

Ana CA 42 46 76 Toledo OH 25 159 91 

New Haven-Milford CT 42 48 37 Las Vegas-Paradise NV 25 160 247 

Lexington-Fayette KY 41 50 101 Oklahoma City OK 25 161 211 

Baltimore-Towson MD 40 52 128 

Charleston-North 

Charleston-Summerville SC 25 164 240 

Houston-Sugar Land-Baytown TX 40 53 53 Fort Wayne IN 25 172 92 

Miami-Fort Lauderdale-
Pompano Beach FL 39 56 136 Wichita KS 25 173 187 

Ann Arbor MI 38 61 13 Memphis TN 24 176 245 

Knoxville TN 37 64 109 

Nashville-Davidson-

Murfreesboro-Franklin TN 24 179 259 

Syracuse NY 37 66 96 

Greenville-Mauldin-

Easley SC 24 181 162 

Pittsburgh PA 36 68 64 
Little Rock-North Little 
Rock-Conway AR 24 182 309 

Minneapolis-St. Paul-

Bloomington MN 36 70 30 Winston-Salem NC 23 184 144 

Salt Lake City UT 35 73 89 Omaha-Council Bluffs NE 22 198 257 

Chicago-Joliet-Naperville IL 35 74 72 

North Port-Bradenton-

Sarasota FL 22 205 135 

Atlanta-Sandy Springs-Marietta GA 34 79 143 Tulsa OK 22 207 122 

Madison WI 34 81 69 

Louisville-Jefferson 

County KY 22 209 197 

Lancaster PA 34 83 33 

Augusta-Richmond 

County GA 22 213 282 
Hartford-West Hartford-East 

Hartford CT 34 85 54 Jackson MS 21 220 341 

Dayton OH 34 88 70 
Youngstown-Warren-
Boardman OH 21 228 200 

Baton Rouge LA 33 89 110 Chattanooga TN 20 234 226 

Cincinnati-Middletown OH 33 90 55 

Des Moines-West Des 

Moines IA 19 254 155 

St. Louis MO 33 91 124 

Grand Rapids-

Wyoming MI 19 256 138 

Cleveland-Elyria-Mentor OH 33 92 73 Fresno CA 17 296 308 
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Table 1. Knowledge complexity index of the 100 largest MSAs (1975-2010) 

 

So far, we have presented the knowledge complexity index for the entire 1975-2004 period. 

But of course, cities are continuously changing their technological portfolio as they diversify into 

new technological classes (Colombelli et al., 2012 Essleztbichler, 2013; Rigby 2013; Boschma et 

al., 2014). As a result the complexity of technological knowledge is also evolving over time. Figure 

6 plots a standardized version of the knowledge complexity index of cities for the periods 1975-

1984 and 1995-2004 against each other, so we can observe if the KCI of individual cities has 

improved/declined over time. 

 

 

Figure 6. Evolution of the knowledge complexity index over time 

 

Cities that are located above the 45° red line have improved the complexity of their technological 

knowledge structures, while the cities located below the line have experienced a decline in their 

KCI (relatively to other cities). Boise, Seattle and Austin have registered strong gains in the 

complexity of their knowledge structure. At the same time, cities such as Philadelphia, Baton Rouge 

and New Orleans now have a significantly lower KCI than in the mid-1970s. What is interesting 

about this graph is that, for most cities, the knowledge complexity index is relative stable over time. 

This provides some indication of strong path dependence in the evolution of technological structure. 
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If we focus exclusively on newly added technological classes, a similar pattern emerges. The 

average complexity of the newly added technological classes in a city, from one period to the next, 

is strongly correlated to lagged KCI. These data support the arguments about knowledge 

development being a cumulative process of recombining existing skills and competencies. 

 The geography of shifts in knowledge complexity by metropolitan area is shown more 

clearly in Figure 7. The red shading in this figure indicates those metropolitan areas that have 

experienced increases in KCI from the period 1975-1984 to 1995-2004, while the blue shading 

indicates declining KCI. The legend reports changes in normalized values of KCI over the two 

periods. Figure 7 shows the general decline in the complexity of knowledge produced across much 

of the snow-belt of the United States, along with some cities from the South. The most significant 

gains in knowledge complexity are recorded by Boise and Sioux City over the 30-year period 

examined. Relatively strong gains in KCI are also registered by Portland and Seattle, Fort Collins 

and Colorado Springs, Austin, Santa Cruz and Merced, by Burlington (VT) and Fairbanks.  
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Figure 7: Changes in KCI 1975-1984 to 1995-2004 

 

The largest declines in KCI are registered by Kalamazoo, Charleston (WV), Philadelphia and 

Trenton-Ewing, Kingsport-Bristol (TN-VA), Albany and New York City, Lawrence and Baton 

Rouge.  

 

6. Conclusion and discussion  

Knowledge is an increasingly critical dimension of competitive advantage. While past work has 

explored the geography of patenting, this work largely treats individual patents as homogeneous, 

assuming that each patent adds only as much technological potential to a region’s economy as the 

next. However, not all patents hold the same value. Recent work has shown how the knowledge 

cores of countries and regions might be differentiated using patent data and measures of the 

technological relatedness between patents in different classes. In this paper we extend the method of 

reflections of Hidalgo and Hausmann (2009) to generate measures of the knowledge complexity of 

patents generated across U.S. metropolitan areas since 1975. 

 Our analysis reveals that there are wide geographical variations in knowledge complexity, 

with only a few metro regions producing the most complex new technologies at any one time. There 

is considerable rank stability in the positions of most cities in terms of the complexity of knowledge 

embodied in patents across the five-year periods that we examined. However, many snow-belt 

cities, and cities in the South, have witnessed a slow decline in the complexity of the knowledge 

that they are producing. Across a number of metropolitan areas in the West, and a few selected 

cities in the East, the complexity of knowledge produced has generally increased over the last thirty 

years or so. These shifts in knowledge complexity are connected to cross-sectional differences in 

gross metropolitan product per capita and thus to average income levels, as well as to rates of 

economic growth.  

The cities producing the most complex new technologies appear to be capturing a growing 

share of all new knowledge generated within the United States. There is evidence that networks of 

inventors across the U.S. are being reconfigured and growing in density around the complex 

knowledge hubs that we identify. Of course, not all knowledge is spatially sticky. Low complexity, 

more routinized, forms of knowledge are still being produced across many U.S. metropolitan areas. 

However, the development of low complexity knowledge is increasingly footloose and provides an 
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insecure foundation of competitive advantage. Much more work remains to be done on these issues 

and what they imply for the future of U.S. cities.  
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Appendix 

MSA State KCI 

Rank 

(KCI) Rank (patents) 

San Jose-Sunnyvale-Santa Clara CA 99 1 1 

Austin-Round Rock-San Marcos TX 94 2 10 

Poughkeepsie-Newburgh-Middletown NY 78 3 12 

San Francisco-Oakland-Fremont CA 77 4 19 

Boston-Cambridge-Quincy MA 73 5 31 

Rochester MN 73 6 11 

Burlington-South Burlington VT 68 7 8 

Trenton-Ewing NJ 65 8 5 

Colorado Springs CO 64 9 75 

Portland-Vancouver-Hillsboro OR 64 10 47 

Raleigh-Cary NC 62 11 25 

Binghamton NY 62 12 24 

Dallas-Fort Worth-Arlington TX 61 13 82 

Fort Collins-Loveland CO 61 14 7 

Boulder CO 61 15 6 

Durham-Chapel Hill NC 60 16 44 

Washington-Arlington-Alexandria DC 58 17 134 

New York-Northern New Jersey-Long Island NY 58 18 80 

San Diego-Carlsbad-San Marcos CA 58 19 29 

Rochester NY 57 20 4 

Boise City-Nampa ID 57 21 3 

Kingston NY 57 22 43 

Santa Cruz-Watsonville CA 57 23 14 

Seattle-Tacoma-Bellevue WA 56 24 51 

Corvallis OR 55 25 2 

Albany-Schenectady-Troy NY 53 26 17 

Manchester-Nashua NH 53 27 28 

Phoenix-Mesa-Glendale AZ 52 28 66 

Ithaca NY 51 29 15 

Greeley CO 50 30 9 

Worcester MA 50 31 41 

Philadelphia-Camden-Wilmington PA 50 32 62 

Tucson AZ 50 33 61 
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Palm Bay-Melbourne-Titusville FL 48 34 18 

Cedar Rapids IA 48 35 56 

Huntsville AL 47 36 71 

Kokomo IN 47 37 50 

Champaign-Urbana IL 46 38 98 

Oxnard-Thousand Oaks-Ventura CA 46 39 22 

Bridgeport-Stamford-Norwalk CT 45 40 16 

Albuquerque NM 45 41 111 

Allentown-Bethlehem-Easton PA 44 42 42 

Santa Barbara-Santa Maria-Goleta CA 43 43 35 

Indianapolis-Carmel IN 42 44 85 

Sacramento-Arden-Arcade-Roseville CA 42 45 146 

Los Angeles-Long Beach-Santa Ana CA 42 46 76 

Sherman-Denison TX 42 47 140 

New Haven-Milford CT 42 48 37 

Charlottesville VA 41 49 104 

Lexington-Fayette KY 41 50 101 

Lawrence KS 40 51 107 

Baltimore-Towson MD 40 52 128 

Houston-Sugar Land-Baytown TX 40 53 53 

Norwich-New London CT 40 54 34 

State College PA 40 55 86 

Miami-Fort Lauderdale-Pompano Beach FL 39 56 136 

Provo-Orem UT 39 57 68 

Gainesville FL 39 58 65 

Eau Claire WI 39 59 154 

Blacksburg-Christiansburg-Radford VA 38 60 84 

Ann Arbor MI 38 61 13 

Santa Rosa-Petaluma CA 38 62 63 

Iowa City IA 37 63 114 

Knoxville TN 37 64 109 

College Station-Bryan TX 37 65 117 

Syracuse NY 37 66 96 

Lynchburg VA 37 67 130 

Pittsburgh PA 36 68 64 

Pocatello ID 36 69 209 

Minneapolis-St. Paul-Bloomington MN 36 70 30 

Kennewick-Pasco-Richland WA 36 71 60 

Ames IA 36 72 23 

Salt Lake City UT 35 73 89 

Chicago-Joliet-Naperville IL 35 74 72 

Las Cruces NM 35 75 224 

Utica-Rome NY 35 76 223 

Santa Fe NM 35 77 120 
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Kalamazoo-Portage MI 34 78 32 

Atlanta-Sandy Springs-Marietta GA 34 79 143 

Charleston WV 34 80 150 

Madison WI 34 81 69 

Salinas CA 34 82 207 

Lancaster PA 34 83 33 

Kingsport-Bristol-Bristol TN 34 84 59 

Hartford-West Hartford-East Hartford CT 34 85 54 

Lafayette IN 34 86 57 

Ocean City NJ 34 87 279 

Dayton OH 34 88 70 

Baton Rouge LA 33 89 110 

Cincinnati-Middletown OH 33 90 55 

St. Louis MO 33 91 124 

Cleveland-Elyria-Mentor OH 33 92 73 

Elmira NY 33 93 21 

Providence-New Bedford-Fall River RI 33 94 113 

Johnson City TN 32 95 193 

Orlando-Kissimmee-Sanford FL 32 96 264 

Denver-Aurora-Broomfield CO 32 97 119 

Roanoke VA 32 98 177 

Tuscaloosa AL 32 99 321 

Akron OH 32 100 27 

Reading PA 32 101 125 

Pittsfield MA 31 102 81 

San Antonio-New Braunfels TX 31 103 233 

Ogden-Clearfield UT 31 104 87 

Athens-Clarke County GA 31 105 149 

Columbus OH 31 106 126 

El Paso TX 31 107 317 

Buffalo-Niagara Falls NY 31 108 93 

Honolulu HI 31 109 325 

Hattiesburg MS 30 110 296 

Portland-South Portland-Biddeford ME 30 111 172 

Bloomington IN 30 112 170 

Reno-Sparks NV 30 113 94 

Harrisburg-Carlisle PA 30 114 118 

Springfield MA 29 115 139 

El Centro CA 29 116 215 

Tampa-St. Petersburg-Clearwater FL 29 117 178 

Bremerton-Silverdale WA 29 118 157 

Crestview-Fort Walton Beach-Destin FL 29 119 314 

Lebanon PA 29 120 158 

Sebastian-Vero Beach FL 29 121 156 



31 
 

Morgantown WV 29 122 165 

Columbia SC 29 123 253 

Richmond VA 29 124 179 

Lubbock TX 29 125 230 

Stockton CA 28 126 244 

Spokane WA 28 127 202 

Virginia Beach-Norfolk-Newport News VA 28 128 277 

Bakersfield-Delano CA 28 129 173 

Evansville IN 28 130 116 

Kansas City MO 28 131 196 

Olympia WA 28 132 238 

Idaho Falls ID 27 133 67 

Decatur AL 27 134 222 

Milwaukee-Waukesha-West Allis WI 27 135 83 

South Bend-Mishawaka IN 27 136 78 

Killeen-Temple-Fort Hood TX 27 137 345 

Harrisonburg VA 27 138 327 

Eugene-Springfield OR 27 139 127 

Modesto CA 27 140 201 

Charlotte-Gastonia-Rock Hill NC 27 141 183 

New Orleans-Metairie-Kenner LA 27 142 243 

Columbia MO 27 143 180 

Cumberland MD 26 144 312 

Greensboro-High Point NC 26 145 198 

Bend OR 26 146 95 

Auburn-Opelika AL 26 147 153 

Barnstable Town MA 26 148 108 

Tallahassee FL 26 149 261 

Detroit-Warren-Livonia MI 26 150 45 

Riverside-San Bernardino-Ontario CA 26 151 167 

Jacksonville FL 26 152 270 

Lansing-East Lansing MI 26 153 181 

Salem OR 26 154 219 

Burlington NC 26 155 218 

Scranton-Wilkes-Barre PA 26 156 249 

Birmingham-Hoover AL 26 157 298 

Vallejo-Fairfield CA 25 158 199 

Toledo OH 25 159 91 

Las Vegas-Paradise NV 25 160 247 

Oklahoma City OK 25 161 211 

Danville IL 25 162 248 

York-Hanover PA 25 163 115 

Charleston-North Charleston-Summerville SC 25 164 240 

Manhattan KS 25 165 254 
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Terre Haute IN 25 166 225 

Niles-Benton Harbor MI 25 167 52 

San Luis Obispo-Paso Robles CA 25 168 106 

Mobile AL 25 169 295 

Danville VA 25 170 351 

Napa CA 25 171 164 

Fort Wayne IN 25 172 92 

Wichita KS 25 173 187 

Spartanburg SC 25 174 36 

Asheville NC 24 175 133 

Memphis TN 24 176 245 

Panama City-Lynn Haven-Panama City Beach FL 24 177 169 

Logan UT 24 178 46 

Nashville-Davidson-Murfreesboro-Franklin TN 24 179 259 

Deltona-Daytona Beach-Ormond Beach FL 24 180 190 

Greenville-Mauldin-Easley SC 24 181 162 

Little Rock-North Little Rock-Conway AR 24 182 309 

Lincoln NE 24 183 166 

Winston-Salem NC 23 184 144 

Springfield OH 23 185 189 

Elkhart-Goshen IN 23 186 103 

Wheeling WV 23 187 297 

Carson City NV 23 188 77 

Wilmington NC 23 189 176 

Coeur d'Alene ID 23 190 186 

Appleton WI 23 191 38 

Bellingham WA 23 192 105 

Corpus Christi TX 23 193.5 242 

Bowling Green KY 23 193.5 311 

Canton-Massillon OH 23 195 100 

Williamsport PA 23 196 102 

Pueblo CO 23 197 322 

Omaha-Council Bluffs NE 22 198 257 

Hagerstown-Martinsburg MD 22 199 301 

Bay City MI 22 200 79 

Holland-Grand Haven MI 22 201 20 

Dover DE 22 202 287 

Peoria IL 22 203 39 

Rockford IL 22 204 58 

North Port-Bradenton-Sarasota FL 22 205 135 

Hot Springs AR 22 206 310 

Tulsa OK 22 207 122 

Bangor ME 22 208 340 

Louisville-Jefferson County KY 22 209 197 
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Savannah GA 22 210 323 

Beaumont-Port Arthur TX 22 211 237 

Hickory-Lenoir-Morganton NC 22 212 204 

Augusta-Richmond County GA 22 213 282 

Fairbanks AK 22 214 331 

Cleveland TN 22 215.5 121 

Huntington-Ashland WV 22 215.5 251 

Erie PA 22 217 90 

Parkersburg-Marietta-Vienna WV 22 218 141 

Anderson IN 21 219 123 

Jackson MS 21 220 341 

Ocala FL 21 221 235 

Gainesville GA 21 222 205 

Fayetteville-Springdale-Rogers AR 21 223 252 

Muncie IN 21 224 231 

Lewiston-Auburn ME 21 225 294 

Sioux Falls SD 21 226 281 

Vineland-Millville-Bridgeton NJ 21 227 292 

Youngstown-Warren-Boardman OH 21 228 200 

Pensacola-Ferry Pass-Brent FL 21 229 234 

Cape Girardeau-Jackson MO 21 230 246 

Rapid City SD 21 231 305 

Flagstaff AZ 20 232 151 

Springfield IL 20 233 250 

Chattanooga TN 20 234 226 

Amarillo TX 20 235 303 

Sioux City IA 20 236 210 

Atlantic City-Hammonton NJ 20 237 320 

Naples-Marco Island FL 20 238 148 

Lake Charles LA 20 239 289 

Redding CA 20 240 216 

Merced CA 20 241 343 

Glens Falls NY 20 242 99 

Gadsden AL 20 243 354 

Anderson SC 20 244 174 

Lakeland-Winter Haven FL 20 245 236 

La Crosse WI 20 246 192 

Anniston-Oxford AL 20 247 356 

Sumter SC 20 248 352 

Racine WI 20 249 40 

Port St. Lucie FL 19 250 112 

Prescott AZ 19 251 147 

Kankakee-Bradley IL 19 252 213 

Waco TX 19 253 313 
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Des Moines-West Des Moines IA 19 254 155 

Mansfield OH 19 255 229 

Grand Rapids-Wyoming MI 19 256 138 

Lima OH 19 257 293 

Greenville NC 19 258 263 

Chico CA 19 259 239 

Davenport-Moline-Rock Island IA 19 260 160 

Medford OR 19 261 195 

Columbus GA 19 262 350 

Altoona PA 19 263 307 

Montgomery AL 19 264 339 

Flint MI 19 265 131 

Topeka KS 19 266 336 

Grand Junction CO 19 267 185 

Florence SC 19 268 206 

Myrtle Beach-North Myrtle Beach-Conway SC 19 269 329 

Decatur IL 19 270 145 

Rome GA 19 271 260 

Mankato-North Mankato MN 19 272 194 

Janesville WI 19 273 132 

Macon GA 19 274 288 

Florence-Muscle Shoals AL 19 275 203 

Monroe MI 18 276 49 

Missoula MT 18 277 232 

Longview TX 18 278 175 

Cape Coral-Fort Myers FL 18 279 191 

Midland TX 18 280 171 

Saginaw-Saginaw Township North MI 18 281 129 

Cheyenne WY 18 282 318 

Dalton GA 18 283 275 

Morristown TN 18 284 255 

Fond du Lac WI 18 285 88 

Fargo ND 18 286 212 

Steubenville-Weirton OH 18 287 274 

Joplin MO 18 288 184 

Oshkosh-Neenah WI 18 289 26 

Valdosta GA 18 290 353 

Gulfport-Biloxi MS 17 291 316 

Elizabethtown KY 17 292 334 

Dothan AL 17 293 347 

Brownsville-Harlingen TX 17 294 360 

Yuma AZ 17 295 332 

Fresno CA 17 296 308 

Owensboro KY 17 297 283 
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Bloomington-Normal IL 17 298 241 

Columbus IN 17 299 48 

Visalia-Porterville CA 17 300 324 

Green Bay WI 17 301 208 

Duluth MN 17 302 285 

Yuba City CA 16 303 268 

Longview WA 16 304 221 

Punta Gorda FL 16 305 168 

Lewiston ID 16 306 315 

Muskegon-Norton Shores MI 16 307 137 

McAllen-Edinburg-Mission TX 16 308 363 

Springfield MO 16 309 217 

Johnstown PA 16 310 306 

Wichita Falls TX 16 311 269 

Lake Havasu City-Kingman AZ 16 312 265 

Jefferson City MO 16 313 338 

Goldsboro NC 16 314 358 

Odessa TX 16 315 188 

St. George UT 16 316 220 

Anchorage AK 16 317 280 

St. Cloud MN 16 318 262 

Lafayette LA 16 319 161 

Tyler TX 15 320 258 

Sandusky OH 15 321 142 

Fayetteville NC 15 322 362 

Grand Forks ND 15 323 284 

Lawton OK 15 324 361 

Jackson MI 15 325 97 

Sheboygan WI 15 326 74 

Hinesville-Fort Stewart GA 15 327 366 

Winchester VA 15 328 266 

Abilene TX 15 329 337 

Albany GA 15 330 346 

Shreveport-Bossier City LA 15 331 302 

Warner Robins GA 15 332 355 

Monroe LA 15 333 256 

Great Falls MT 14 334 333 

Madera-Chowchilla CA 14 335 271 

Wausau WI 14 336 182 

Pascagoula MS 14 337 330 

St. Joseph MO 14 338 286 

Laredo TX 14 339 364 

Pine Bluff AR 13 340 357 

Michigan City-La Porte IN 13 341 159 
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Jonesboro AR 13 342 304 

Wenatchee-East Wenatchee WA 13 343 326 

Billings MT 13 344 300 

Farmington NM 13 345 276 

Battle Creek MI 13 346 278 

Salisbury MD 13 347 290 

Waterloo-Cedar Falls IA 13 348 152 

Victoria TX 13 349 335 

Yakima WA 12 350 272 

Fort Smith AR 12 351 319 

Palm Coast FL 12 352 214 

Rocky Mount NC 12 353 349 

Hanford-Corcoran CA 12 354 359 

Clarksville TN 12 355 344 

Mount Vernon-Anacortes WA 12 356 273 

Jacksonville NC 12 357 365 

Jackson TN 11 358 227 

Alexandria LA 11 359 328 

Brunswick GA 11 360 299 

Casper WY 11 361 291 

Dubuque IA 10 362 163 

San Angelo TX 10 363 348 

Houma-Bayou Cane-Thibodaux LA 10 364 228 

Bismarck ND 9 365 267 

Texarkana TX 6 366 342 

Note: This table indicates the KCI of all 366 metros). The KCI presented in column 3 is a rounded average of 

the KCI of cities over the 6 time periods. Column 4 gives the corresponding ranking while column 5 indicates 

the ranking of MSA based on the patents/employees ratio. 

 

Table A.1. Knowledge complexity index of the 100 biggest U.S. cities 


