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Abstract 

Within the smart specialisation programme, the European Commission urges regional policy-makers 

to assess their regional innovation potential and consider investing in the areas of eco-technologies 

taking into account the regions’ specific strengths and weaknesses. In evolutionary economic 

geography, several studies have shown that regional innovation is a path dependent process 

whereby new technologies develop out of the existing regional knowledge base. In this paper, we 

examine to what extent this is also the case for eco-innovation; if so, the existing technological 

structure of a region would be an important source of information for regional policymakers with 

respect to designing their eco-innovation policy agenda. Our results show that in EU-regions both 

the probability of developing eco-innovations and the number of patents in this field depends on the 

patents that have been developed in related fields in the region in prior years. 
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1. Introduction 

In line with what organisations such as the OECD, UNEP and World Bank have recently promoted1, 

the European Commission (EC) emphasises the importance to connect sustainable and economic 

goals in the Europe 2020 strategy (EC 2012a). In the EU innovation policy, this ambition to stimulate 

sustainable growth is connected to the concept of ‘smart specialisation’. The objective of smart 

specialisation is to boost regional innovation in order to achieve economic growth and prosperity by 

enabling regions to focus on their strengths2. To connect smart and sustainable growth, the EC 

explicitly encourages policymakers to assess the innovation potential of their region in areas of eco-

technologies (EC 2012b). 

The design of region-specific policies focused on developing eco-technologies requires policymakers 

to identify to what extent their region’s existing knowledge base is suitable for developing eco-

technologies. This is, however, not an easy task, in particular for eco-technologies. Not only are 

many of the eco-technologies still in an early stage of development making it highly uncertain what 

type of knowledge is required to develop innovations in this field, but eco-innovations also take 

place in a wide range of areas each building on different types of knowledge. Therefore, the 

ambition of the EU to develop smart and sustainable growth strategies for every EU-region asks for 

an analytical framework that provides insights in differences in regional capabilities to develop 

(different types of) eco-technologies. 

Recent analyses in economic geography on ‘regional branching’ can contribute to the development 

of such a framework. The main assumption of these studies is that due to the cumulative and path 

dependent nature of knowledge production regions are more likely to diversify in technologies or 

industries that are related to their existing regional knowledge base (Boschma & Frenken 2011). 

New industries grow out of the existing industrial structure in a region, either out of one existing 

industry or through the combination of knowledge from different industries present in that region 

(Hildalgo et al., 2007; Neffke et al., 2011; Boschma et al., 2013a). Several recent studies showed that 

the same goes for technological diversification of regions (Colombelli et al. 2012; Rigby 2012; 

Boschma et al. 2013b; Feldman et al. 2013; Kogler et al. 2013; Rigby 2013).  

Following these studies, it can be expected that European regions differ in their capabilities to 

develop (different kinds of) eco-technologies due to the accumulation of different types of 

knowledge in the past. Case study evidence already points in this direction (Cooke, 2012), yet the 

influence of prior technological expertise accumulated in regions on the development of eco-

technologies has not been considered in a systematic way. Therefore, this paper aims to analyse to 

what extent this is the case for a broad range of eco-technologies being developed across Europe. 

Using patent statistics, we 1) measure the accumulation of technological knowledge within 

European regions since 1978 and 2) the extent to which this previously built-up knowledge within 

regions influences the development of eco-technologies within European regions.  

We contribute to the few existing empirical studies on technological diversification of regions in two 

ways. First, we focus specifically on eco-technologies. Previous studies either studied the 

technological diversification of regions in general (Colombelli et al., 2012; Rigby, 2012; Boschma et 

                                                           
1 www.oecd.org/greengrowth, http://org/greeneconomy, www.unep.org/greeneconomy 
2 http://ec.europa.eu/research/regions/index_en.cfm?pg=smart_specialisation 

http://www.oecd.org/greengrowth
http://org/greeneconomy
http://www.unep.org/greeneconomy
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al., 2013b) or focused on one specific eco-technology (Tanner, 2011). Eco-technologies can be found 

in many areas of technology and, therefore, are not part of one dedicated section within the 

technology classification (Veefkind et al., 2012). However, a recently developed tagging system for 

new technological developments makes it possible to trace the different kinds of technological 

knowledge – as defined in the standard classification system - that are used to develop a particular 

eco-technology. This allows us to explore to what extent the general patterns in technological 

diversification also apply to these new fields of technology and, at the same time, to explore possible 

differences in this effect within the broad range of eco-technologies that can be identified.  

Second, we not only examine whether the existing knowledge base of regions affects the probability 

that a region enters a new eco-technological field, but also to what extent it influences the 

subsequent success of the region within that field. In this latter analysis, we explore the effect of 

both the presence of related technological knowledge and knowledge within the specific field of 

eco-technology under consideration. This way we compare the relevance of technological 

diversification and the built up of highly specialised knowledge for further technological 

development within regions.  

The outline of the paper is as follows. The following section describes more extensively why regional 

innovation processes tend to be path dependent and how the existing structure of a region may 

affect the likelihood of developing new technologies. Section 3 describes the data and the model 

and section 4 shows the results. We estimate both the probability that an eco-technology will be 

developed within a region and the number of patents a region may develop in the different fields of 

eco-technology. In section 5 we provide the conclusions and discussion.  

 

2. Theoretical background 

2.1 Path dependence in regional innovation 

Innovation is often viewed as either a radical process that takes place independent from an existing 

stock of knowledge or as an incremental, evolutionary process where the creation of new knowledge 

results from deepening and re-combining the existing stock of knowledge (Sahal, 1981; Dosi, 1982; 

Nelson and Winter, 1982; Abernathy and Clark, 1985; Clark, 1985). In the first case, the presence of 

an existing knowledge stock is a poor predictor for the future innovative trajectory of firms or 

regions as new technological developments are radically different from previous innovations. From a 

locational perspective, this implies that it is unpredictable where a particular radical innovation will 

be developed because it does not depend on pre-existing knowledge sources within firms and 

territories. In other words, the windows of locational opportunity are completely open (Storper and 

Walker, 1989).  

However, there is strong evidence to believe this radical nature of innovation is rather the exception 

than the rule (Simmie, 2012). Like all actors, firms are characterised by bounded rationality, not 

having the capabilities to select the best and most promising or profitable technologies. High risks 

and switching costs prevent them to build completely new technologies from scratch (Breschi et al., 

2003; Boschma et al., 2013; Makri et al., 2013), rather they focus on technology domains which 

present similarity in problem solving and knowledge bases (Nelson and Winter, 1982; Dosi, 1997). As 
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a result, new technologies generally do not emerge in virgin markets but merely are the result of an 

incremental process where new capabilities are related to pre-existing capabilities (Witt, 2003; 

Neffke et al., 2011). In essence, it is claimed that technological change is not random but path 

dependent (Perez, 2010). 

This more incremental view on innovation can be translated to a locational perspective as well.  

Numerous studies have pointed out that knowledge spillovers – i.e. through formal and informal 

networks, spin-offs or labor market mobility – are at least partly non-tradable and spatially bounded, 

thereby taking place within limited geographical place3.  As firms and other organisations depend on 

these external knowledge sources in their local environment they are often what is called ‘locally 

embedded’ (Frenken and Boschma, 2007; Buenstorf and Klepper, 2009).  

Connecting the idea of path dependency and local embeddedness, several studies have put forward 

countries as an important unit of analysis in studying the cumulative and path dependent nature of 

economic change (Hildalgo et al., 2007; Hausmann and Hildalgo, 2010). Moreover, economic 

geographers have claimed that the regional scale might be even more important for this process of 

diversification (Boschma et al., 2013a), as ‘localized capabilities’ are regional intangible assets with a 

high degree of tacitness that are difficult to replicate in other places, even within countries (Neffke, 

2009). Following this view, it can be argued that ‘the windows of locational opportunity’ are not 

completely ‘open’. Hence, we expect that the creation of new eco-technologies in regions is mostly 

related to a set of existing capabilities.  

 

2.2 Regional knowledge structures and innovation capacity 

The economic geographic literature traditionally views the level of sectoral specialisation as one of 

the most important factors that affects the potential of regions to develop new technologies. There 

is a widespread discussion whether regions benefit mainly from a set of highly specialised 

capabilities or from a variety of capabilities, also referred to as respectively ‘Marshallian 

externalities’ (localisation economies) and ‘Jacobs’ externalities’ (urbanisation economies). In this 

line of reasoning differences in regional innovation and growth are related to qualitative differences 

in an economy’s composition at the regional level (Frenken et al., 2007). Localisation economies 

follow from a strong specialisation in specific sectors or technologies creating cost-reducing 

externalities due to the better matching of skilled labour and input-output transactions, and more 

effective learning by means of knowledge spillovers. The high degree of cognitive proximity that 

exists between actors in those regions facilitates knowledge exchange between economic agents 

(Cohen and Levinthal, 1990; Nooteboom, 2000; Boschma, 2005). Urbanisation economies, on the 

other hand, develop within regions with more variety in technological knowledge which enables the 

cross-fertilization of ideas among sectors, and in that way, generates more inventions. 

However, more recent studies argued that this distinction between localisation and urbanisation 

economies is too limited. Not an economic structure characterised by a high level of specialisation or 

                                                           
3 Mechanisms explaining why knowledge spillovers are spatially bounded are for example the necessity of 

having face-to-face contact, the importance of informal social networks and its localness for knowledge 
exchange and the limited geographical scope of labor market mobility (see Boschma (2005) for a critical 
overview on the role of spatial proximity for innovation).  
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diversity, but ‘related variety’ is the most advantageous for innovation and economic growth (e.g. 

Frenken et al., 2007; Neffke et al., 2011; Rigby, 2012; Boschma et al., 2013a and b). The high degree 

of cognitive proximity which is assumed to trigger Marshallian externalities could actually have an 

adverse effect on the innovative capacity of the region on the long run caused by a highly 

specialised, unilateral knowledge stock. To put it plainly, on the long run there is nothing new to 

learn from one another. And Jacobs’ externalities are assumed to arise from a somewhat 

spontaneous cross-fertilization between a variety of cognitive distant capabilities; a process that is 

too much dependent on serendipity and, consequently, limited in explaining economic and 

technological change.  

Related variety refers to the variety of industries present in a region that are cognitively related 

(Frenken et al., 2007). When the degree of related variety is higher in a region, more learning 

opportunities are available at the local level, and consequently, more knowledge spillovers across 

industries are likely to occur. The local presence of a wide range of technologically related industries 

provides local learning opportunities and growth potentials for existing industries as well as local 

sources of growth for new industries. In this latter respect, related variety may spur technological 

diversification and true economic renewal in regions through increasing the probability that new 

recombinations between related technologies will occur.  

 

2.3 Case study evidence for technological diversification in eco-technologies 

Some case study evidence points in the direction that also eco-technological development is the 

result of recombining existing regional capabilities. Cooke (2008; 2012) describes for example how 

the clean tech industries in northern and southern California evolved from the geographical 

convergence in agro-food, ICT and biotechnology in that region, Jutland’s wind and solar thermal 

clusters in Denmark from the specialisation in agricultural equipment and marine engineering, and 

Wales’ photovoltaic and biofuel technology development from its mining equipment and agro-food 

clusters. Using a more systematic analyses of patent data on fuel cell technology development 

within Europe, Tanner (2011) that specific technologically related knowledge fields are significantly 

co-located with the generation of fuel cell development. The higher the number of related 

technological fields present in a given region, the more likely a region is to branch into fuel cell 

technology.  

The study by Fornahl et al. (2012) takes a more critical stand. They examined the anecdotal 

assumption that the emergence of the offshore wind energy industry in northern Germany was 

strongly related to pre-existing capabilities in the shipbuilding industry. Their study showed that only 

a few offshore wind energy firms have their roots in shipbuilding. Primarily it were onshore wind 

energy firms or firms of other industries, partly from other regions, that have diversified into 

offshore wind energy. The yard crisis and shipbuilding decline did provide human capital and 

competences in steel construction, electronics in autonomous systems, maritime logistics and the 

handling of heavy weight components which could be used by offshore wind energy firms. However, 

according to Fornahl et al. (2012) similar conditions could be found in other regions with different 

industrial structures. Human capital as such cannot be seen as sufficient evidence for new path 

creation out of established paths. The development of the industry was more likely to result from 

the basic locational condition of access to seaports and related infrastructure, positive market 
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development and the reaction of national and governments on the yard crisis and shipbuilding 

decline by increased support investment schemes, R&D spending and infrastructure investments. 

 

2.4 Hypotheses on regional branching of eco-technologies 

Following the literature described above, we expect that regions in which the knowledge base is 

characterised by a high level of knowledge that is related to a certain eco-technology are (1) more 

likely to branch into developing that eco-technology and, subsequently, (2) that those regions have a 

higher innovation output in those technological fields. In other words, the emergence of  eco-

technologies in regions and the following success of regions in developing  those innovations 

depends on the existing set of technological capabilities within regions.  

 

3. Data and method 

3.1 Data 

To test whether the presence of (a combination) of technologies related to eco-technologies within 

a region affects both the emergence and success in developing eco-technologies in those regions,  

we use patent data from the OECD REGPAT databases (July 2013) including patent applications filed 

to the European Patent Office (EPO) from 1977 to 2009. Patent statistics have been widely used in 

quantitative studies to measure levels of technological competence for units of analysis ranging from 

the individual to the regional level. These statistics encompass a wealth of information to investigate 

knowledge creation and diffusion processes (Pavitt, 1985; Grilliches, 1990; Frenken et al., 2007). In 

general, three main advantages can be identified. First, patent data contain highly detailed 

information on content (title, words, abstracts and technologies involved), inventors (names), 

organisation(s) involved (institutional affiliation) and geographical location (addresses). Second, 

systematic data collection goes back a long time and, third, the current ‘stock’ of patents is extensive 

and continues to expand.  

Despite these advantages, using patent data to measure knowledge production has also been widely 

criticized. We should bear in mind that their use is subject to limitations. More specifically, three 

major drawbacks can be identified (Grilliches, 1990). First, research does not necessarily lead to 

patents. Rejection is one of the main reasons. Other reasons include the time and cost constraints of 

researchers with regard to the submission of reports for patenting, and the non-disclosure strategies 

of firms who value secrecy more highly than they value property rights. Moreover, patents are 

codified knowledge, whereas a high proportion of knowledge produced in firms, universities, and 

research institutes are tacit (Patel and Pavitt, 1997). Second, patents do not necessarily contribute to 

our knowledge. Most patents are rarely cited, if at all, suggesting that they add little value to the 

knowledge system and the commercial value of patents also varies widely. Third, patenting rates 

differ systematically across scientific disciplines and technological fields, respectively. Consequently, 

differences in technological specialisation can therefore render inter-regional comparisons 

misleading.  
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Nevertheless, for the purpose of this study, patent applications are considered to be the most 

appropriate measure given their relative homogenous, detailed, and consistent recording of 

knowledge production. Eco-technological development is an economy-wide transformation 

(Frankhauser et al., 2012), and consequently, data on firm establishments or industries are not 

useful for analysing the development of these technologies. Moreover, recently a new tagging 

system has been developed for eco-technologies (we will further elaborate on this system below) 

making patents the most suitable data for defining eco-innovation in a systematic manner.  

To analyse regional differences in technological development, we use the REGPAT database in which 

patent data has been linked to regions utilising the addresses of the applicants and inventors. Similar 

as in other studies on regional patent data, we use the link based on the inventor’s address, since 

this is considered to be closest to the place of invention. REGPAT covers more than 5,500 regions 

across OECD countries, EU27 countries, Brazil, China, India, the Russian Federation and South Africa. 

The analyses in this paper are limited to the European regions. Due to low numbers of patent activity 

in eastern European countries, we focus on 16 countries (EU15 countries, minus Greece and plus 

Norway and Switzerland). In total, we included 202 NUTS2 regions in the analysis (regions in all 16 

countries excluding the island regions of France, Spain, Italy, Portugal and Finland4). 

Eco-technologies are relatively new technological areas that are not (yet) included in the existing 

international patent classification (IPC) system that EPO uses to reflect the scope of the approved 

claims listed in a patent document. To still be able to identify eco-patents we used the general 

tagging system of new technological developments (Y02 codes) of the Cooperative Patent 

Classification (CPC). Appendix A provides an overview of the selected Y02 classification5.  

As we are interested in the relatedness of eco-technologies to other technological fields it is 

important to choose an appropriate level of aggregation containing enough homogeneity within one 

eco-technology. At the 5-digit level, not all Y02 classes are homogenous enough for the purpose of 

our analysis. For instance, the class Y02E1 “energy generation through renewable energy sources” 

still contains a substantial variation in technological knowledge since it consists of geothermal 

energy (Y02E1/1), hydro energy (Y02E1/2), energy from the sea (Y02E1/3), solar thermal energy 

(Y02E1/4), photovoltaic (PV) energy (Y02E1/5), thermal-PV hybrids (Y02E1/6), and wind energy 

(Y02E1/7). Therefore, we decided to define eco-technologies at the 6-digit level. We excluded 

overlapping codes such as photovoltaic technology applied in buildings (Y02B classes) and 

photovoltaic energy technology in general (Y02E classes). In this case we excluded the first one as it 

is a more detailed classification of the latter6. This results in a distinction between 35 eco-

technologies. 

 

                                                           
4 FR83, FR91, FR92, FR93, FR94, ES63, ES64, ES70, ES83, ITG1, ITG2, PT20, FI20.  
5 

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y.html. Y codes have been originally created 

by the EPO (European Classification System, ECLA) as an extension of the original classification system, to 
extend classification capabilities to new technology areas of special interest, and are usually added in addition 
to codes in the A through H series. The Y classification was created specifically to cover "General Tagging of 
New Technological Developments”. Subjects covered by ECLA Y codes originally included nanotechnology 
topics. In 2010, a new set of Y codes were added for clean energy technologies. ECLA has been replaced 

(including Y code classification) by the Cooperative Patent Classification (CPC) in 1 January 2013. This is a 
bilateral system which has been jointly developed by the EPO and the USPTO. 
6 

We measured overlap by the number of co-occurrences of Y02 codes within patents.  

http://www.uspto.gov/web/patents/classification/cpc/html/cpc-Y.html
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3.2 Composing the technology space 

Similar as Boschma et al. (2013a) for all patents in the US, we composed a technology space to 

measure to what extent eco-technologies are related to the IPC technology classes. Building on the 

method developed by Hidalgo et al. (2007), who composed a so-called product space, that is, a 

network representation of the relatedness between products traded in the global economy. In a 

similar vein, we we constructed a network-based representation of the relatedness between all the 

technologies that can be found in the patent portfolio of the EPO database7. In this one mode n*n 

(IPC*IPC) network each node i represents a specific technological class and edges connect nodes to 

each other when related. How stronger technologies (nodes) are related to one another, how closer 

they are positioned in the network.  In general, technologies with a high degree of relatedness are 

positioned more central in the network and more isolated technologies more peripheral.  

To compose this network, we computed the relatedness between each IPC class i with every other 

IPC class j at the 4-digit level by taking the normalized co-occurrence (size-effects) within all patents 

(comparable to Breschi et al., 2003). We adopted a probabilistic similarity measure - the association 

strength - as proposed by Van Eck & Waltman (2009). The probabilistic approach resulted in a 

measure of the co-occurrence of technology i and j that equals: 

(1) 
ij

ij

ij

o

e
    

Where ij stands for the relatedness between technology i and j ; ijo  for the observed co-occurrence 

between i and j ; and ije  for the expected co-occurence. This measure has a straightforward 

probabilistic interpretation: ijo / ije  >1, when i and j co-occur more frequently than would be 

expected by chance and  ijo / ije <1 when i and j co-occur less frequently than would be expected by 

chance.  We computed the expected co-occurrences as follows: 

(2) * *
ji

ij

ss
e p

p p

 
  
 

 

Where s  stands for the number of times technology i and j are occurring in the REGPAT database 

during the period in consideration and p  stands for the total number of documents (patents) in the 

same period.  

In one formula: 

(3) *
ij

ij

i j

o
p

s s


 
   
 

  

                                                           
7 We also used the patent portfolio of the selection of EU countries and found a correlation of the relatedness 

measures >0.9. We decided to include all patents to construct the technology space (not only our selection of 
EU countries) as we have no arguments to add location in this step of the analyses, as it is a place-neutral 
relatedness network.  
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Confidence intervals were constructed using a binomial test to determine which co-occurences are 

significantly lower or higher than the expected co-occurences with a p-value of 5% (see for more 

details on this method Neffke and Henning, 2009). Finally, we kept only the combinations with a 

relatedness index >1, i.e. observations which co-occur significantly more than expected. A visual 

impression of the technology space based on all patents in the period 1978-2009 is provided in 

Appendix 2.  

Since eco-technologies are not captured in the IPC, we had to separately construct the technology 

space for each eco-technological class Y (at the 6-digit level) with all other IPC-classes (at the 4-digit 

level). This resulted in a two mode m*n (Y*IPC) matrix, all the previous methods of measuring 

relatedness being the same. In some cases, this lead to problems concerning the assumption of 

statistical independence. For example, in the case of wind energy (Y02E1/1) we find a high 

relatedness with “wind motors” (F03D), that is probably not caused by a high degree of relatedness, 

but due to an overlap in the classifications, that is, almost all wind energy patents also contain the 

wind motor classification (F03D) but not all wind motor patents contain the code for wind energy. 

We dealt with this problem by counting the number of related technologies within regions after 

excluding all wind energy patents. Only those “wind motor patents” were counted which have not 

been classified as being a “wind energy patent”.  

Another deviation from the total IPC*IPC matrix is that in the Y*IPC matrix we only took into account 

IPC subclasses (4-digit level) that have a share of >1% in the total of co-occurrences with a given eco-

technology Y (6-digit level). A practical reason for this is that limited number of occurrences of a 

particular Y and IPC code, let’s say i and j, sometimes leads to a probabilistic outcome of a co-

occurrence between i and j that is significantly more than expected, even if the absolute number of 

co-occurrences is very low. Sometimes even a co-occurrence of 1 turned out to be significantly more 

than expected. In Appendix 3 we visualize in the total technology space which IPC codes are related 

to three examples of eco-technologies (average of period 1978-2009).      

Note that we used all available patents in the REGPAT database to compute the relatedness matrix, 

that is, also patents from countries outside our sample of European countries. In particular in the 

early period of observation, the number of patents in certain technology classes is very low. To avoid 

too large fluctuations in the relatedness of technologies, we, therefore, used a 9 year moving 

average to determine which technologies are related to eco-technologies starting in 1978, the 

second year of available data in the REGPAT database, thereby covering the years 1978-1986 for the 

first period. A consequence of using a moving average for measuring technological relatedness is 

that our model estimations are limited to patents in eco-technologies in the period 1982-2005. In 

1982 we used information from the relatedness matrix for the period 1978-1986 - covering 4 years 

prior and 4 years after the year of observation - and 2005 is the last possible year that can be 

included in the analyses as for that year we used information from the relatedness matrix of 2002-

2009. Furthermore, we only included eco-technologies (Y02 codes at the 6-digit level) with more 

than 100 patents in our selection of European regions during the time period of the analysis (1982-

2005). Following our selection of countries, regions and the time period, in total 1,227,621 patents 

of the REGPAT database were included in our analyses of which 31,257 in eco-technologies.  
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3.3 Measuring the variables 

Two dependent variables  

We composed two dependent variables to measure the effect of the existing regional knowledge 

base of regions on both the probability that a region starts to develop eco-technologies and how 

successful it is in this field. The first dependent variable is called ‘entry’ and has a score of 1 for the 

first year in which a region has a share of patents in one of the eco-technologies that is higher than 

the European average  and 0 for all other years8. This is called a revealed comparative advantage 

(RCA) of the region. The second dependent variable measures the success of a region in developing 

an eco-technology. This variable measures the number of patents in a certain field of eco-technology 

that each region has developed for each year of observation.  

The patents are ascribed at the regional level using a non-fractional count. Although the OECD 

REGPAT database provides fractional counts in case there are several inventors with different 

regional residences who were involved in developing the invention, we share the view of Tanner 

(2011) that knowledge is a non-divisible asset. Thus, if multiple inventors from different regions are 

involved in developing a patent we assign the patent to each region involved.  

 

Independent variables 

Relatedness density in regions 

We measured the presence of technologies related to the different eco-technologies within regions 

using the information from the ‘technology space’ as defined in section 3.2 We excluded all eco-

patents from the database before aggregating the frequency of patents within the related IPC 

classes by region, thereby calculating the number of patents in related technologies on the base of 

all patents that are not assigned as an eco-patent (see also Tanner, 2011). This is done to circumvent 

the problem of measuring the production of eco-knowledge instead of knowledge related to eco-

knowledge (we illustrated this problem before using the example of “wind energy” and the 

relatedness with “wind motors”).  We took the cumulative counts of patents in related technology 

classes for all previous years, and following Zucker et al. (2007) discounted this number by 20% 

annually to reflect deprivation of knowledge. We repeated this for every technology i and the total 

number of patents. These cumulative counts were used to calculate the revealed comparative 

advantage (RCA) for each technology class in a given region as follows: 

, ,

, ,

, ,

( ) / ( )
1

( ) / ( )

r t r ti
i r t

r t r tr r i

p i p i
RCA

p i patents i
 


  

 

 

Next, we computed the relatedness density measure as developed by Hildalgo et al. (2007) and 

recently adopted in patent statistics by Boschma et al. (2013). This measure indicates how close a 

                                                           
8
 Note that having a revealed comparative advantage (RCA) for the first time often equals entering with just 

one patent for the first time due to low numbers of patents in eco-technologies, in particular, in the earlier 
period. 
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new technology is to the existing technological portfolio of a given region. The density around a 

given technology i (in this case eco-technology y) in region r is computed from the technological 

relatedness of technology i to the technologies in which the region r has a RCA in time t, divided by 

the sum of technological relatedness of technology i to all the other technologies in the EPO patent 

portfolio:  

,

, , 100

ij

j r i j

i r t

ij

i j

RD





 



 




 

With this measure, we test whether eco-technologies are more likely to be developed in regions that 

have a knowledge base with a larger variety of technologies that are related to eco-technologies. 

This increases the likelihood of recombining the different technologies that are necessary for 

developing eco-technologies. To avoid too large year-by-year fluctuations in the relatedness density 

of a region, we took the average over the five year period prior to the year of observation. 

 

Average relatedness 

The advantage of the relatedness density measure is that we count the degree of variety around a 

given eco-technology in regions. The disadvantage is that we do not take into account the 

importance of an IPC class in terms of its degree of relatedness with a particular eco-technology. To 

test whether our findings differ when we do take those differences into account, we also calculated 

the so-called average relatedness around a given eco-technology per region. This measure is 

introduced by Feldman et al. (2013) and calculated as follows:  
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  Where  
t

ij
 represents the relatedness between an eco-technology i and IPC classes j in time t. 

, ,j r t
s stands for the number of patents in a region r in time t in related technologies j. ,r tP  is the total 

number of patents in region r in time t. Compared to the RD measure, an important disadvantage of 

this measure is that a high presence of one related IPC class can already result in a high value of AR 

even when all other related IPC classes are not or poorly at present in a given region.    

Control variables 

Regions which are generally more active in patenting than other regions are also more likely to 

develop a patent in eco-technology in a certain year. Therefore, we control for the total number of 

patents being developed by regions in every year (cumulative counts for all previous years with a 

discount factor of 20% annually). In addition, we included euros spent on research and development 

activities (R&D expenditures) to control for the general level of knowledge development in each 

region. We also included population density to control for externalities related to urbanization 

economies and the number of inhabitants (population) to control for differences in regional size. In 
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the models in which we estimated the number of eco-technologies being developed in regions every 

year, we also included a control variable to account for the effect of the number of eco-patents 

applied in the foregoing years. This variable is composed in a similar way as the count of patents in 

related technologies and total patents, i.e., cumulative counts for all previous years, and discounting 

by 20% annually to reflect depreciation of knowledge. In this way we are also able to test whether 

the relatedness density around a particular eco-technology is still important after regions 

increasingly specialize in the eco-technology itself.   

At the technology level we adopt three control variables, as suggested by Boschma et al. (2013). The 

first variable is the size of the technology measured by the number of inventors involved. One can 

expect that higher inventive activity in a particular technology increases the probability that regions 

develop patents in this technology.  The second variable is the year-by-year growth rate of patents 

to account for the expansion of technological opportunities. We expect that the growth in patenting 

will enhance the probability of regions to start developing patents in that technology as well and in 

the number of patents being developed. The third variable is the concentration of a technology. The 

more the patenting activity in a technology is regionally concentrated, the less likely it will that other 

regions develop patents9. Finally, we included regional, technology and time fixed effects by 

including dummy variables for each of these three groups. The first two groups are included to 

control for any time-independent regional and technological characteristics that may correlate with 

the two main explanatory variables. Time fixed effects are used to control for yearly differences in 

patenting activity that are not region or technology specific. 

 

3.4 Models 

We used two types of models to examine how the regional knowledge base affects regional 

patenting in eco-technologies: a discrete time duration model to estimate the event that a region 

develops an above average share of patents in an eco-technology in a certain year (RCA > 1) and a 

count model to estimate the number of patents that a region develops once this technology 

emerged in this region.  

Discrete time duration models are used to model time-to-event data when the event may take place 

at any point in time but no information is available on the exact moment of the event (Jenkins, 

2005). The REGPAT database reports the number of patents per region on a yearly basis and, 

consequently, it is only possible to observe changes in the development of eco-technologies from 

one year to another while the actual event could have taken place at any moment during that year. 

The dependent variable, the time spell from 1982 to the first time that a region develops an above 

average share of patents in any of the eco-technologies defined is left censored, as for most eco-

technologies, several regions already developed a patent before 1982. For data with such a 

structure, duration analysis is the most appropriate methodology (Guo, 1993).  

The methodology that was adopted to model the event of developing a RCA in eco-technology is the 

complementary log-logistic (cloglog) function which is the most commonly-used discrete time 

representation of a continuous time proportional hazards model (Jenkins, 2005). This model 

                                                           
9 See for formulas Boschma et al. (2013) 
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essentially tells you how likely it is that a region will develop an above average share of patents in an 

eco-technology in a certain year, given that it has not yet done so until that year. By specifying 

dummy variables to represent each year, the baseline hazard rate has been modeled as a step 

function that describes the evolution of the baseline hazard between censored intervals. For further 

technical details regarding discrete time duration models and, more specific, the complementary 

log-logistic function, see Jenkins (2005). 

We included all regions in the entry model, but a region is dropped from the panel database once it 

enters the field of eco-technologies by developing a RCA larger than 1 in that field. Four regions not 

yet developed any patents in eco-technologies in 200510. These regions were dropped from the 

analyses once we included regional fixed effects in the model.  

In the second model, we estimated the number of patents in eco-technologies that has been 

developed in a region in a certain year. This variable consists of integers which never have negative 

values and our data is clearly characterized by overdispersion. Since many regions also did not 

develop any eco-patents in particular years of the observed time period, a zero inflated negative 

binominal model is the most appropriate11. This regression equation has two components: a regime 

selection equation (inflate) and a count data component. The regime selection equation estimates 

how likely it is that there will be any patent developed at all in the region, that is, the probability of 

regions to have a value of zero. Next, the count data component estimates the number of patents 

developed, assuming that a non-zero regime is selected. In these models, we only included those 

regions that have at least developed once a patent in one of the selected eco-technologies as this 

allows us to include fixed effects on the regional level. 

The control variables at the regional level have the same score for all 35 eco-technologies and the 

control variables at the technology level have the same score for all 202 regions - only the 

relatedness density measure is region and technology specific. To avoid a bias from estimating the 

effects of those aggregated explanatory variables, models were estimated with cluster-robust 

standard errors on the regional level (Steenbergen and Jones, 2002)12.  

Table 1 presents the summary statistics. The variance inflation factors show that multicollinearity did 

not pose a problem. 

 

  

                                                           
10

 ES23, ES43, PT15, PT18 
11 We tested whether our data is characterized by zero inflation using fit statistics (Voung, BIC, AIC) to 

compare the fit of a negative binomial model with that of a zero inflated negative binomial model. All fit 
statistics showed that the latter regression model has a better fit.   
12

 Since the central question of this paper is how relatedness density affects the development of eco-

technologies in regions after controlling for other regional characteristics, it was considered to be more 
important to estimate the model with cluster robust standard errors on the regional level. Tests with clustering 
on technology level showed that such a control does not change our results. 
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Table 1 Descriptive statistics and variance inflation factors (VIF) 

Entry 
       Variable Level** N Min Max Mean S.D VIF 

Entry RCA in eco-patents REG 121,992.00 0.00 1 0.03 0.16 

 Relatedness Density (% t-1) † REG 121,992.00 0.00 100 22.17 18.22 1.17 

Average Relatedness (% t-1) † REG 121,992.00 0.00 97.77 2.5 2.71 1.00 

R&D expenditure (€ mil. t-1) * REG 121,992.00 0.00 14,670.77 354.34 543.05 1.93 

Total patents ( t-1) *† REG 121,992.00 0.00 33,306.63 965.69 1,647.45 1.78 

Population (1.000 t-1) * REG 121,992.00 106.96 11,319.97 1,555.08 1,244.53 1.52 

Population Density  REG 121,992.00 0.00 9.13 0.32 0.76 1.07 

Geographical concentration  TECH 121,992.00 0.00 27.96 0.59 1.52 1.02 

Number of inventors* TECH 121,992.00 0.00 2,478.00 137.04 215.51 1.15 

Technological growth rate TECH 121,992.00 -1.00 0.99 0.08 0.23 1.11 

        Count 
 

      Variable Level** N Min Max Mean S.D VIF 

Number of eco-patents REG 84,696.00 0.00 57.00 0.33 1.34 
 

# eco-patents previous yrs. (t-1) † REG 84,696.00 0.00 158.32 1.11 3.75 1.77 

Relatedness Density (% t-1) † REG 84,696.00 0.00 100.00 32.05 20.92 1.07 

Average Relatedness (% t-1) † REG 84,696.00 0.00 36.45 2.99 2.47 1.01 

R&D expenditure (€ mil. t-1) * REG 84,696.00 0.00 14,670.77 856.40 1,382.94 1.77 

Total patents (disc.fact t-1) *† REG 84,696.00 0.00 33,306.63 2,661.17 4,037.78 1.66 

Population (1.000 t-1) * REG 84,696.00 106.96 11,319.97 2,126.73 1,620.86 1.67 

Population Density  REG 84,696.00 0.00 9.13 0.48 1.01 1.04 

Geographical concentration  TECH 84,696.00 0.00 27.96 0.63 1.02 1.02 

Number of inventors* TECH 84,696.00 0.00 2,478.00 245.23 341.67 1.11 

Technological growth rate TECH 84,696.00 -1.00 0.99 0.10 0.20 1.05 

*= log-transformed in model estimations. Variance inflation factor (VIF) based on log-transformed variables.  
** =REG are variables measured on the regional level, TECH on the technological level 
†= Based on cumulative patent counts discounted 20% annually to reflect deprivation of knowledge. 
 

Finally, we run several models as a robustness check. First, we tested whether our results change 

when we replace relatedness density by the alternative measure average relatedness. Second, we 

excluded the top and bottom 10 regions in patent activity from the sample to test whether our 

results are sensitive for extreme cases. Finally, we run models for each eco-technology separately to 

test whether the effect of relatedness density in eco-innovations differs per eco-technology. There is 

a wide range of eco-technologies and possibly some innovations are more radical making 

relatedness density less relevant in those cases. In these models, we included fixed effects on the 

country instead of the regional level, because many regions never developed any patents in one of 

those fields during the time of observation. We did include country level fixed effects because large 

differences exist between European countries in the extent to which the development of these three 

eco-technologies are stimulated which may cause country level differences in the number of patents 

in those fields. 
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4. Empirical results 

Table 2 shows the results of the complementary log-log models that we used to estimate the 

probability that a region developed a share of patents in a certain eco-technological field in a certain 

year that is higher than the European average for that technology at that time, given that it has not 

yet developed a RCA larger than one in the years before. Model 1 shows that the relatedness density 

of a region in a prior period indeed increases the entry probability of that region in an eco-

technology, as shown by the positive and statistically significant effect of this variable. In other 

words, regions that already have developed a RCA in fields that are related to the specific eco-

technology are more likely to also develop a RCA in that eco-technology. 

The positive and statistically significant effect of relatedness density does not change when we add 

control variables at the regional and technological level in model 2. Two of the four control variables 

at the regional level have the expected sign: regions are more likely to enter in a certain field of eco-

technology when the general patenting activity within the region is higher (total patents) and when 

more investments in R&D take place within the region. The effect of population density and the 

number of inhabitants (population) is not statistically significant indicating that the size and level of 

urbanisation of regions has no specific effect on the probability that regions start developing patents 

in eco-technologies. The three control variables on the technology level show that an overall higher 

number of inventors active in the technological field under consideration and a higher growth rate of 

patents in that field both increase the probability that a region develops an above average share of 

patents in that technological class. The effect of the geographical concentration of patenting activity 

in a technological field has a negative effect on the probability of entry, suggesting that geographical 

concentration of technological development decreases the probability that a technology will be 

developed in a region. However, this effect is not statistically significant13.  

 

Table 2 Results of complementary log-log model  of probability to have a RCA in an eco-technology in 

a certain year (robust standard errors in parentheses – clustered on NUTS-2  level) 

 1 2 3 
   <=1995 

Relatedness Density (RD) 0.015*** 0.016*** 0.019*** 
 (0.001) (0.001) (0.002) 
Ln(R&D expenditure t-1)  0.109* -0.113 

   (0.063) (0.109) 

Ln(Total patents t-1)  0.508*** 0.376* 

   (0.109) (0.204) 

Ln(Population t-1)  -0.115 -0.921 

   (0.659) (1.304) 

Population Density t-1  0.024 -0.797 

  (0.314) (0.523) 
Geographical concentration t-1  -0.002 -0.011 

   (0.022) (0.036) 

                                                           
13 To control for overestimation of the effect of the variables on the technology level we also estimated a 

model with robust standard errors at this level. This caused no changes in the significance levels of the all 
variables.  
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Ln(Number of inventors t-1)  0.358*** 0.370*** 

   (0.042) (0.067) 

Technological growth rate t-1  0.443*** 0.221 

  (0.099) (0.139) 
Constant -4.830*** -9.458* -1.284 
 (0.158) (4.918) (9.670) 

Regional fixed effects YES YES YES 
Technology fixed effects YES YES YES 
Time fixed effects YES YES YES 
    
Observations 118,632 118,632 73,340 
Nonzero observations 3,057 3,057 1,571 
Wald ^2 3,817*** 3,994*** 2,536*** 
Log Likelihood -12294 -12206 -6328 
*** p<0.01, ** p<0.05, * p<0.1 

 

To provide further insights in the relevance of relatedness density of the regional knowledge base 

for developing patents in eco-technologies, we calculated by which percentage the base hazard rate 

will increase when moving from the 50th to the 75th percentile which is an increase of about 15% in 

relatedness density. If the level of relatedness density for a given eco-technological field in a given 

region would change to such an extent, the probability that this region will develop an above 

average share of patents in this field increases by 24 percent. This is a substantial effect, although it 

is somewhat lower than what Boschma et al. (2013b) found for technologies in general in the US14.  

In model 3, we excluded all years after 1995. After this year patenting activity in most eco-

technologies grew rapidly and, therefore, the period up to 1995 can be considered as the early stage 

of development. For this period, the effect of relatedness density is also positive and statistically 

significant and considerably higher: moving from the 50th to the 75th percentile in relatedness 

density in a given technology and region increases the probability of developing an above average 

share of patents in that field by 34 percent. The effect of R&D expenditures and technological 

growth both turn statistically insignificant in model 3. 

The second question we raise in this paper is whether relatedness density of the regional knowledge 

base affects the success of European regions in patenting in the different eco-technology fields once 

patenting activity in that field took off in the region. Table 3 shows the results of the zero inflated 

negative binomial models that we used to estimate the number of patents in eco-technologies being 

developed in European regions in a year between 1982 and 2005. In the model, we included all 

regions where at least once patenting in eco-technology has taken place during the period of 

observation15.  

In the regime selection equation (inflate), we included relatedness density and regional control 

variables.  We find a negative and statistically significant effect of relatedness density (see model 2 

in Table 3). This confirms our expectation about the effect of this indicator because a negative effect 

here indicates that a higher relatedness density decreases the probability that a region belongs to 

                                                           
14 When Boschma et al. (2013b) included fixed effects in the models, the rate of entry increased by 

approximately 30 percent for a 10 percent increase in the level of density in city-technology pairs. 
15 While the exclusion of ES23, ES43, PT15, PT18 in the entry model was because these region developed no 

patents in any of the eco-technologies, we now judge per technology if they have developed any patent and if 
not, we exclude these regions for these technologies (for other technologies they are kept in the analyses).  
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the zero-regime, that is, that the region is unlikely to develop any patents in the eco-technology 

under consideration. We also find a negative and statistically significant effect of the total patent 

activity within the region and the region’s population; the more populated and the higher the 

general patenting rate in regions, the higher the number of patents in eco-technologies developed 

there. R&D expenditures and population density, on the contrary, both have a positive effect in this 

part of the model, however, this effect is in both cases not statistically significant.  

The count data component of model 1 in Table 3 shows that, similar as in the entry model, 

relatedness density of European regions has a positive and statistically significant effect on the 

number of patents in eco-technologies being developed in a certain year. In other words, regions 

that have developed a RCA in more technological fields that are related to the different eco-

technologies are not only more likely to develop an above average patenting activity in that field but 

those regions are also more likely to continue to develop more patents in that eco-technology.  

When we add the control variables on the regional and technological level in model 2 in Table 3, the 

coefficient of relatedness density becomes smaller, but the effect remains positive and statistically 

significant. Model 2 shows that the number of patents in an eco-technology being developed in a 

region also depends on how many patents that region has developed in previous years, both in 

general (total patents) and specific in that eco-technological field. This is shown by the positive and 

statistically significant effect of those two regional level variables. Regions that were already more 

active in the field and in patenting in general are more likely to stay active in this field later on. In 

line with the results of the entry model, the number of inventors and the growth rate of patenting in 

the different technological fields has a positive effect on the number of eco-patents developed in 

European regions, while technological concentration has a negative but not statistically significant 

effect.  

 

Table 3 Results of the zero-inflated negative binomial model estimating the number of patents 

developed in each field of eco-technology and in each region, per year (robust standard errors in 

parentheses – clustered on NUTS-2  level) 

 1 2 3 
   >=1995 

Relatedness Density (RD) 0.017*** 0.007*** 0.010*** 
 (0.002) (0.001) (0.002) 
Ln(Patents in eco-tech t-1)  0.768*** 0.734*** 
  (0.022) (0.033) 
Ln(R&D expenditure t-1)  0.020 -0.335** 

   (0.029) (0.166) 

Ln(Total patents t-1)  0.323*** 0.594*** 

   (0.097) (0.186) 

Ln(Population t-1)  -0.458 -1.173 

   (0.493) (1.433) 

Population Density t-1  0.304* -0.532 

  (0.181) (0.509) 
Geographical concentration t-1  -0.024 -0.024 

   (0.020) (0.037) 

Ln(Number of inventors t-1)  0.282*** 0.251*** 
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   (0.030) (0.043) 

Technological growth rate t-1  0.781*** 0.576*** 

  (0.071) (0.106) 
Constant -2.795*** -2.774 2.462 
 (0.187) (3.719) (10.508) 
    
Regional fixed effects YES YES YES 
Technology fixed effects YES YES YES 
Time fixed effects YES YES YES 
    

Inflate     

Relatedness Density (RD) -0.007 -0.018*** -0.025 
 (0.008) (0.005) (0.027) 
Ln(R&D expenditure t-1) 0.093 0.023 0.021 

  (0.093) (0.060) (0.493) 

Ln(Total patents t-1) -0.625*** -0.539*** -0.244 

  (0.118) (0.094) (0.249) 

Ln(Population t-1) -0.611* -0.632** -0.763 

  (0.337) (0.252) (0.872) 

Population Density t-1 0.097 0.080 -0.824 

 (0.129) (0.073) (3.590) 
Constant 6.886*** 7.349*** 6.145 
 (1.684) (1.184) (4.574) 

LnAlpha 0.277*** -0.394*** -0.485*** 
 (0.089) (0.116) (0.183) 
    
Observations 84,696 84,696 45,877 
Wald ^2 12,757*** 17,177*** 5,830*** 
Log Likelihood -46790 -44580 -15824 

*** p<0.01, ** p<0.05, * p<0.1 

 

The results in table 3 raise the question whether the patenting activity of a region in a certain field of 

technology depends more on the  development of technological knowledge in the related fields of 

technology or in the eco-technological field itself. To test this we calculated for both variables how 

an increase comparable to a move from the 50th to the 75th percentile affects the number of patents 

being developed in a given eco-technological field and given region. Such an increase in the number 

of patents already developed in the field of eco-technology within the region during previous years 

raises the number of patents being developed later on by 54%, while a similar increase in 

relatedness density leads to 11% more patents in that eco-technological field. The strong effect of 

the number of patents in eco-technology developed in the past suggests a learning effect: once 

regions are active in that field of eco-technology they are likely to continue developing more patents 

in the same field.  When we limit our analysis to the period 1995-2005, both variables still have a 

positive and statistically significant effect (see model 3 in Table 3). During that time period, the 

effect of the number of patents in the own eco-technological field is somewhat smaller (44% by an 

increase from the 50th to the 75th percentile), but still substantially larger than the effect of 

relatedness density by a similar increase (16%).  
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Robustness check 

As a robustness check (Table 4) we first replaced relatedness density by average density, the 

alternative measure of relatedness used by Feldman et al. (2013). Similar as what we found for 

relatedness density, average density has a positive and statistically significant in both the entry and 

the count model (model 1 and 2 respectively in Table 4). However, the effect of average density in 

the regime selection equation of the count model is positive instead of negative. In other words, 

regions with a  higher average density are less likely to develop any patents in the eco-technology 

under consideration, but if they do start developing these patents they develop more patents in this 

field.   

In models 3 to 6 shown in Table 4, we tested whether our results where not driven by extreme 

cases. We do so by excluding the upper top 10 regions in total patent activity in model 3 (entry) and 

4 (count) and the bottom 10 regions in model 5 (entry) and 6 (count). Excluding these cases does not 

influence the direction and significance of the coefficients in the entry (model 3 and 5) and the count 

equation of the zero inflated negative binominal model (model 4 and 6). Only in the regime selection 

of model 4, the negative coefficient of relatedness density becomes statistically insignificant.   

Finally, we estimated separate entry and count models for each of the 35 eco-technologies to see 

whether relatedness density has a positive effect on patenting in each of those fields, as these 

technologies differ quite substantially in both patenting activity and required technology. The results 

are shown in appendix 4. The table shows that indeed for the majority of the 35 eco-technologies 

relatedness density has a positive effect on both the probability that a region develops an above 

average patenting rate in that field (entry) and the number of patents that a region develops in that 

field (count). Nevertheless, in some cases, relatedness density has no statistically significant effect 

on the probability of entry (e.g., energy from sea, solar thermal energy, PV energy, fuel from waste 

and energy storage). The same goes for the count models. Case study research such as the study by 

Fornahl et al. (2013) would be very helpful in developing a better understanding of why this is the 

case.  

Table 4 Robustness check (robust standard errors in parentheses – clustered on NUTS-2  level) 

 1 2 3 4 5 6 
 ENTRY 

 
COUNT 

 
ENTRY 
<top10 

COUNT 
<top10 

ENTRY 
>bottom10 

COUNT 
>bottom10 

       
Average Density (AD t-1) 0.103*** 0.104*** - - - - 
 (0.010) (0.008)     
Relatedness Density (RD t-1) - - 0.017*** 0.010*** 0.016*** 0.007*** 
   (0.001) (0.002) (0.001) (0.001) 
Ln(patents in eco-tech t-1) - 0.783*** - 0.740*** - 0.769*** 
  (0.021)  (0.026)  (0.022) 
Ln(R&D expenditure t-1) 0.127* 0.009 0.076 0.014 0.105* 0.013 

  (0.066) (0.028) (0.058) (0.036) (0.064) (0.028) 

Ln(total patents t-1) 0.588*** 0.283*** 0.453*** 0.400*** 0.529*** 0.302*** 

  (0.098) (0.098) (0.108) (0.114) (0.115) (0.100) 

Ln(population t-1) -0.340 -0.483 -0.023 -0.540 -0.130 -0.407 

  (0.609) (0.480) (0.660) (0.535) (0.671) (0.495) 

Population Density t-1 -0.103 0.115 0.006 0.272 0.014 0.301* 
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 (0.363) (0.218) (0.322) (0.183) (0.316) (0.179) 
Geographical concentration t-1 0.009 -0.021 0.004 -0.005 -0.002 -0.024 

  (0.021) (0.020) (0.023) (0.023) (0.022) (0.020) 

Ln(Number of inventors t-1) 0.344*** 0.264*** 0.388*** 0.381*** 0.360*** 0.281*** 

  (0.041) (0.028) (0.045) (0.035) (0.043) (0.030) 

Technological growth rate t-1 0.472*** 0.786*** 0.460*** 0.776*** 0.423*** 0.784*** 

 (0.100) (0.071) (0.110) (0.102) (0.101) (0.072) 
Constant -8.013* -2.165 -9.764** -3.394 -9.466* -2.905 
 (4.595) (3.635) (4.936) (4.100) (5.027) (3.734) 

       
Regional fixed effects YES YES YES YES YES YES 
Technology fixed effects YES YES YES YES YES YES 
Time fixed effects YES YES YES YES YES YES 
       

inflate       
Average Density (AD t-1)  0.079***  -  - 
  (0.023)     
Relatedness Density (RD t-1)  -  -0.017  -0.020*** 
    (0.029)  (0.005) 
Ln(R&D expenditure t-1)  -0.033  0.054  0.028 

   (0.050)  (0.093)  (0.062) 

Ln(total patents t-1)  -0.772***  -0.450  -0.626*** 

   (0.097)  (0.278)  (0.103) 

Ln(population t-1)  -0.457  -1.218  -0.531** 

   (0.299)  (0.824)  (0.265) 

Population Density t-1  0.237***  -0.186  0.059 

  (0.051)  (0.698)  (0.078) 
Constant  6.802***  9.300*  7.317*** 
  (1.470)  (5.029)  (1.266) 
LnAlpha  -0.353***  0.163**  -0.397*** 
  (0.111)  (0.079)  (0.116) 
       

Observations 118,632 84,696 113,237 70,128 105,900 82,968 
Nonzero observations 3,057  2,982  9,068  
Wald ^2 3,931*** 3,427*** 3,568*** 17,745*** 8,421*** 16,880*** 
Log Likelihood -12237 -44598 -10834 -30700 -11801 -44148 

*** p<0.01, ** p<0.05, * p<0.1 

 

5. Conclusions and discussion 

This paper investigated the effect of the presence of (a variety of) eco-technology related 

technologies in European regions on the development of eco-technologies in those regions between 

1982 and 2005. In general, the results show that regions with a knowledge base in technological 

fields that are related to different kinds of eco-technologies are 1) more likely to entry in eco-

technologies and, subsequently, 2) more successful in developing patents in those eco-technologies. 

In other words, this study confirms the assumption of the literature on related variety and regional 

branching that technological development within regions depends on the existing set of capabilities 

in those regions, not only in general (Boschma et al., 2013a), but also in particular for eco-

technologies.  
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These results show that information about the relatedness between technologies can be an 

important input for the design of regional policies aimed at stimulating smart and sustainable 

growth within regions, as it provides a better understanding of the potential within regions for 

innovation and technological diversification. Similar as what has been shown for new industries 

(Neffke et al., 2011), new technologies also grow out of the existing technological structure in a 

region, either out of one existing technology or through the combination of knowledge from 

different technologies present in that region. Consequently, which eco-technologies are most likely 

to successfully develop within a region largely depends on the type of technologies being developed 

in that region until now, as regional economic structures tend to develop through a process of 

related diversification (Boschma & Frenken, 2011). Following this idea, it is useless to pursue ‘one-

size-fits-all’ policies or try to develop new economic structures from scratch (Boschma, 2013).  

Although the analyses in this paper provide a clear indication of the relevance of the existing set of 

regional capabilities for developing eco-technologies, there are several options to further extend our 

insights in this process. First, it is important to further test whether our findings depend on the way 

we measure technological relatedness. Leten et al. (2007) and Rigby (2012), for instance, have used 

alternative indicators to measure the relatedness between patent classes, such as patent citations.  

Second, it would be good to add an institutional perspective. We only included technological 

variables in our models to explain eco-technological development within regions and did not pay any 

attention to institutional factors such as differences in environmental policies and regulations 

(Porter and Van der Linde, 1996), policies about the internalization of environmental costs 

(Acemogle et al., 2012; Naoily and Smeets, 2012), subsidies, differences in attitudes towards climate 

change or in entrepreneurial attitudes, innovation policies and the spatial scale they are at play 

(country or region). Such factors can results in substantial differences between countries and regions 

in the probability and number of patents in eco-technologies being developed.  

A third recommendation is to add information on interregional connections. The analyses in this 

paper are limited to characteristics of the region itself, while links with other regions may also affect 

the probability and subsequent success of regions in developing new technologies. While the 

presence of related knowledge is highly important for the absorptive capacity of regions, besides 

cognitive proximity also geographical or social proximity may contribute to the diffusion of new 

technologies across regions (for empirical evidence see for instance Feldman et al., 2013). Also from 

a policy perspective, insights in the importance of such interregional links are interesting. Possibly, 

such links could offer regions with limited related variety in certain technologies the opportunity to 

circumvent their lack of knowledge through establishing (long distance) interregional networks.  

Fourth, as it is very hard to distinguish between incremental and radical innovations, we were not 

able to test whether the development of some eco-technologies may be the result of crossovers 

between unrelated technologies. This is an interesting question for further research as it is a highly 

relevant question from a policy perspective. Policies which focus on stimulating breakthrough 

innovation probably need a different design than policies focusing on exploiting related 

diversification. Policy concepts like the smart specialization strategy may be blind to the potential of 

unrelated diversifications, while it could be argued that regions might need to make a jump into 

more unrelated activities now and then (Boschma, 2013). It might be fruitful to connect such 

regional policies to other policy concepts with more focus on stimulating breakthrough innovations 
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like a strategic niche management (SNM) approach which aims to create a niche environment 

outside the context of the existing technological regime (Simmie, 2012).  

Finally, future research should further explore which mechanisms are underlying the process of 

technological diversification and regional branching. In this paper, we examined these processes on 

the regional level, while they actually follow from micro-level behavior such as firm diversification, 

the establishment of spin-offs, labor mobility or knowledge exchange between firms, universities or 

other research institutes (see Breschi & Lissoni, 2004; Tanner, 2014). Those microlevel processes 

should be further studied to get a good understanding of how technological diversification within 

regions actually takes place and how policies can stimulate those processes.  
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Appendix 1: Y02E-CLASSIFICATION 

 

Cooperative patent classification (CPC), system for tagging new technological development for 

mitigation or adaptation against climate change. See for detailed information:  

http://www.epo.org/news-issues/issues/classification/classification.html 

 

Table Selection of CPC patent classification system for tagging new technological development for 

mitigation or adaptation against climate change (Y02) 

 CPC code Description 

  
Y02B CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS 

1 Y02B  20/1 Energy saving technologies for incandescent lamps 

2 Y02B  20/2 High pressure [UHP] or high intensity discharge lamps [HID] 

3 Y02B  20/3 Semiconductor lamps 

4 Y02B  30/1 Energy efficient heating, using boilers and heat pumps 

5 Y02B  30/5 Systems profiting of external/internal conditions (e.g. heat recovery) 

6 Y02B  30/6 Other technologies for heating or cooling 

7 Y02B  30/7 Efficient control or regulation technologies 

8 Y02B  60/1 Energy efficient computing 

9 Y02B  60/3 Techniques for reducing energy-consumption in wire-line communication networks 

10 Y02B  70/1 Technologies improving the efficiency by using switched-mode power supplies [SMPS] 

11 Y02B  90/2 Smart grids in building environment 

  
 
Y02C CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG] 

12 Y02C  10/0 CO2 Capture by biological and chemical separation and adsorption 

13 Y02C  20/1 Capture of nitrous oxide (N2O) 

  
 
Y02E 

REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, 
TRANSMISSION OR DISTRIBUTION 

14 Y02E  10/2 Hydro energy 

15 Y02E  10/3 Energy from sea 

16 Y02E  10/4 Solar thermal energy 

17 Y02E  10/5 Photovoltaic [PV] energy 

18 Y02E  10/7 Wind energy 

19 Y02E  20/1 Combined combustion 

20 Y02E  20/3 Technologies for a more efficient combustion or heat usage 

21 Y02E  40/6 Superconducting electric elements 

22 Y02E  50/1 Biofuels 

23 Y02E  50/3 Fuel from waste 

24 Y02E  60/1 Energy storage 

25 Y02E  60/3 Hydrogen technology 

26 Y02E  60/5 Fuel cells 

 
Y02T 

 
CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TOTRANSPORTATION 

http://www.epo.org/news-issues/issues/classification/classification.html
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27 Y02T  10/1 Internal combustion engine [ICE] based vehicles 

28 Y02T  10/4  Engine management systems 

29 Y02T  10/6 Other road transportation technologies with climate change mitigation effect 

30 Y02T  10/7 Energy storage for electromobility 

31 Y02T  10/8 Reduce green house gasses emissions in road transportation 

32 Y02T  50/1 Drag reduction 

33 Y02T  50/4 Weight reduction 

34 Y02T  50/6 Efficient propulsion technologies 

35 Y02T  90/3 Application of fuel cell technology to transportation 
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Appendix 2: Technology space  1978-2009 (IPC 4-digit technologies) 

 

Legend  

 Electrical engineering 

 Instruments 

 Chemistry 

 Mechanical engineering 

 Other fields 
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Appendix 3: Three examples of related IPC4 codes to eco-technologies visualized in total 

technology space 1978-2009

 

 

WIND ENERGY Y02E 10/7 

PV ENERGY Y02E10/5 

BIOFUELS Y02E50/1 
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Appendix 4: Coefficients and standard errors of Relatedness Density measure for sample models 

 ENTRY (FE**) COUNT (FE**) 

 
Relatedness Density Relatedness density Ln(patents in eco-tech t-1) 

   
Count  inflate count 

TECH* coef. S.E. coef. S.E. coef. S.E. coef. S.E. 

1 0.021*** -0.006 0.008 -0.005 -0.038*** -0.013 0.659*** -0.192 

2 0.017** -0.009 -0.003 -0.004 -0.027** -0.011 1.308*** -0.145 

3 0.013** -0.006 -0.004 -0.005 -0.028*** -0.008 0.967*** -0.145 

4 0.017*** -0.006 0.008* -0.004 -0.077 -0.097 0.757*** -0.076 

5 0.012* -0.006 -0.002 -0.009 -0.031* -0.017 1.212*** -0.315 

6 0.005 -0.008 -0.008 -0.01 -0.023 -0.018 1.336*** -0.174 

7 0.011* -0.006 0.009 -0.009 -0.019 -0.019 0.653*** -0.185 

8 0.028*** -0.007 0.013*** -0.005 -0.017 -0.012 1.142*** -0.172 

9 0.015*** -0.005 0.003 -0.004 -0.016** -0.007 0.391*** -0.141 

10 0.024*** -0.004 0.004 -0.004 -0.026*** -0.009 0.897*** -0.086 

11 0.024*** -0.005 0.001 -0.004 -0.037*** -0.007 0.746*** -0.103 

12 0.022*** -0.007 0.007 -0.005 -0.031*** -0.009 1.102*** -0.083 

13 0.017** -0.007 -0.003 -0.008 -0.025 -0.035 0.840*** -0.206 

14 0.018*** -0.006 0.002 -0.006 -0.036 -0.052 1.218*** -0.135 

15 0.001 -0.01 -0.027*** -0.01 -0.038* -0.022 1.723*** -0.246 

16 0 -0.007 0.001 -0.003 -0.02 -0.017 0.942*** -0.057 

17 0.005 -0.008 -0.005* -0.003 -0.029** -0.012 0.945*** -0.046 

18 0.020*** -0.006 0.005 -0.003 -0.089*** -0.034 1.316*** -0.058 

19 0.023*** -0.007 0.008** -0.004 -0.043*** -0.011 0.732*** -0.079 

20 0.020*** -0.006 -0.002 -0.005 -0.038** -0.016 0.909*** -0.125 

21 0.014 -0.01 0 -0.004 -0.049*** -0.016 1.412*** -0.253 

22 0.026*** -0.006 0.017*** -0.006 -0.007 -0.012 0.558*** -0.112 

23 -0.003 -0.007 0.001 -0.004 -0.016 -0.01 0.940*** -0.102 

24 0.005 -0.009 -0.001 -0.002 -0.045** -0.019 0.900*** -0.035 

25 0.018** -0.007 -0.006*** -0.002 -0.032*** -0.009 0.783*** -0.093 

26 0.005 -0.006 0.002** -0.001 -0.003 -0.007 0.940*** -0.037 

27 0.011* -0.006 0.003** -0.001 -0.031*** -0.005 0.907*** -0.046 

28 0.036*** -0.007 0.003 -0.004 -0.051*** -0.013 1.033*** -0.11 

29 0.023*** -0.006 0.002 -0.003 -0.036*** -0.007 0.742*** -0.098 

30 0.018*** -0.006 0.004 -0.003 -0.040*** -0.007 0.549*** -0.076 

31 0.039*** -0.008 0.008 -0.006 -0.034** -0.015 0.793*** -0.096 

32 0.030*** -0.007 0.005 -0.006 -0.048* -0.025 1.607*** -0.193 

33 0.014** -0.007 -0.001 -0.007 -0.091 -0.066 1.761*** -0.131 

34 0.022*** -0.006 0.005 -0.004 -0.038*** -0.01 1.107*** -0.081 

35 0.006 -0.011 0.01 -0.012 0.004 -0.027 1.359*** -0.14 

* See Appendix 1 for technology codes and corresponding names.  

** Country and time fixed effects. We control for regional and technology variables likewise other models in this paper.  


