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Abstract: The importance of network structures for the transmission of knowledge and the 

diffusion of technological change has been emphasized in economic geography. Since 

network structures drive the innovative and economic performance of actors in regional 

contexts, it is crucial to explain how networks form and evolve over time and how they 

facilitate inter-organizational learning and knowledge transfer. The analysis of relational 

dependent variables, however, requires specific statistical procedures. In this paper, we 

discuss four different models that have been used in economic geography to explain the 

spatial context of network structures and their dynamics. First, we review gravity models and 

their recent extensions and modifications to deal with the specific characteristics of networked 

relations. Second, we discuss the quadratic assignment procedure that has been developed in 

mathematical sociology for diminishing the bias induced by network dependencies. Third, we 

present exponential random graph models that not only allow dependence between 

observations, but also model such network dependencies explicitly. Finally, we deal with 

dynamic networks, by introducing stochastic actor oriented models. Strengths and weaknesses 

of the different approaches are discussed together with domains of applicability for the 

analysis of (knowledge) network structures and their dynamics. 
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1. Introduction  

 

Knowledge networks play a crucial role in the economic development of regions (Van Oort 

and Lambooy 2013). R&D collaborations among organizations (Hagedoorn 2002), labor 

mobility (Almeida and Kogut 1999), and personal acquaintances of inventors (Breschi and 

Lissoni 2009) drive innovation activities, technological change, and economic performance of 

organizations and regions. Beyond these iconic channels of knowledge transfer, the structure 

of knowledge networks can more generally be defined as the set of direct and indirect 

connections that individuals and organizations use to access knowledge (within and outside 

the region). Given the economic value associated with the structure of knowledge networks 

and their striking spatial dimension
1
, empirical studies of networks have attracted a growing 

interest in the geography of innovation over the last twenty years
2
 (Grabher 2006, Burger et 

al. 2009a, Maggioni and Uberti 2011, Ter Wal and Boschma 2009). 

The increased interest in the empirics of knowledge networks can be seen as a response to the 

traditional metaphorical treatment of networks in economic geography and regional science in 

general and the study of agglomeration economics in particular (Sunley, 2008). Despite over 

twenty years of research on the benefits of agglomeration, the empirical literature remains 

inconclusive about the mechanisms and processes that lead to more than proportional regional 

economic growth. Despite the fact that the micro-foundations (such as knowledge spillovers, 

labor market pooling, and input sharing) that underlie agglomeration economies have 

theoretically been specified) agglomeration is often treated as a black box in empirical studies 

(Burger et al. 2009a, Van Oort and Lambooy, 2013). This is exemplified by the fact that most 

empirical studies on agglomeration economics merely research the relationship between urban 

or cluster size and regional economic development (see Melo et al. 2009 and De Groot et al. 

2009 for meta-analyses of this literature) and do not examine the different channels through 

which the concentration of economic activities affect regional economic development.  

The analysis of networks, either formal or informal, can help us to identify these channels and 

get a glimpse of what is in the black box of agglomeration economies (Burger et al 2009a), 

hereby extending the current discourse on agglomeration externalities in which new 

conceptual and methodological approaches are needed (Van Oort and Lambooy, 2013). Over 

the past years, a large literature has developed in economic geography, regional science, 

management, and sociology that predominantly address the determinants of knowledge and 

information transfer, focusing on spinoff firms, labor mobility and R&D collaboration 

(Boschma and Frenken, 2006). One of the main findings of this literature is that firms in 

agglomerations do not profit automatically from co-location. Instead, knowledge spillovers 

                                                           
1
 A burgeoning literature starts to integrate the geographical dimension in sociology and network science: see for 

instance the special issue 34.1 in Social Networks of January 2012 on Capturing Context: Integrating Spatial and 

Social Network Analysis, edited by Jimi Adams, Katherine Faust and Gina Lovasi. 
2
 See the special issue 43.3 in The Annals of Regional Science of September 2009 on Embedding Network 

Analysis in Spatial Studies of Innovation, edited by Edward Bergman. 
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mainly take place between firms that are networked and strongly locally embedded. A second 

finding that has come out of this strand of research is that a substantial part of information and 

knowledge transfer takes place over longer distances as firms have many network relations 

outside the city or cluster they are located in. From this, it evidently follows that cities and 

clusters are not spatially isolated entities, but embedded in a system of cities. In the end, an 

explicit focus on the transfer and network mechanisms of knowledge diffusion cannot only 

help us to identify the channels through which firms benefit from agglomeration, but also help 

us to identify (1) which firms profit from knowledge spillovers and (2) the spatial extent of 

information and knowledge transfer. These are important ingredients of current innovation 

and network-based (“smart”) growth strategies in the European Union (Thissen et al 2013). In 

the European Union, knowledge networks, free movement of knowledge workers, information 

flows and knowledge-based cooperation opportunities in research and development are 

hypothesized to contribute to local innovation opportunities by academics and policymakers 

alike (Hoekman et al 2009, Scherngell et al 2013, Basile et al. 2013). Without a network 

perspective on knowledge, trade and investments, a proper assessment of place-based growth 

strategies as advocated by the European Union (Barca et al 2012) is impossible (Thissen et al 

2013). 

In this light, the increased attention for modeling the determinants of network formation is 

very much needed, especially in order to get a fully-fledged understanding of information and 

knowledge transfer in and across regions. It enables us to explain why individuals, 

organizations, and regions differ in their embeddedness in information and knowledge 

networks, why they vary in their learning and innovation capabilities, and whether this results 

in variation in their performance. Analyzing the formation and evolution of network 

structures, however, is more complex than computing structural descriptive statistics like 

degree, betweenness, clustering coefficient, or average geodesic distance. Explaining the 

structure of knowledge networks requires an inferential statistics framework, where the 

dependent variable is related to the overall structure of the network. Even when networks are 

decomposed into their smallest unit, the dyad, relational data does not fit well into traditional 

regression frameworks. A fundamental property of network structures lies in the existence of 

conditional dependencies between observations, especially between dyads that have actors in 

common (Lindgren et al. 2010). By nature, such network dependencies violate standard 

statistical inference procedures that assume independence among observations. But more than 

only correcting for such dependencies, the main challenge is to use the information included 

in these dependencies to model structural predictors of network formation.  

In this paper, we provide a discussion of the main empirical strategies that have been 

proposed recently in economic geography to explain the formation and structure of networks. 

Although these strategies are briefly mentioned in a few methodological papers (Ter Wal and 

Boschma 2009, Broekel and Hartog 2013a, Maggioni and Uberti 2011), a global discussion of 

their respective range of applicability, strengths, and weaknesses in the context of economic 

geography is still missing. We believe such a discussion to be useful for economic 

geographers and regional scientists aiming at modeling network formation, especially because 

the different models have emerged out of different scientific traditions. Moreover, they are 

often based on different assumptions, vary in terms of conceptual and empirical issues (like 
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micro-macro relations, network dynamics, and network-geography interdependencies), and 

frequently require different types of relational data. This paper provides a discussion and an 

introduction to four main types of empirical strategies: gravity models (GM), quadratic 

assignment procedures (QAP), exponential random graph models (ERGM), and stochastic 

actor-oriented models (SAOM).  

Section 2 discusses GM, a class of econometric models generally used in economics to 

explain the flow between geographical units as a function of supply and demand factors and 

the distance between the units. These have recently been extended to deal with the specific 

characteristics of network data. To account for more complex network dependencies, QAP 

has been developed in mathematical sociology on the principle of bootstrapping procedures. 

The class of ERGM has been developed on the basis of a Markov chain to include not only 

dyadic effects but also structural effects at the network level. Lastly, SAOM have been 

introduced again in mathematical sociology to provide a class of statistical models for 

network dynamics. This allows for treating of longitudinal rather than cross-sectional data, 

and therefore the analysis of changing network relationships.  

 

2. Gravity models  

2.1.  The History of Gravity Models 

In economic geography and regional economics, network structures are frequently predicted 

and elucidated with an analogy to Newton’s law of universal gravitation. In its most 

elementary form, the gravity model predicts that the flow or interaction intensity between two 

objects (e.g., origin and destination) is assumed to be directly correlated with the masses of 

the objects and inversely correlated with the physical distance between the objects. More 

formally, 

     
  

  
  

  

 
  
     (1) 

where Iij is the interaction intensity between object i and j, K a proportionality constant, Mi the 

mass of the object i (e.g., origin), Mj the mass of object j (e.g, destination), and dij the physical 

distance between the two objects. β1, β2, and β3 are parameters to be estimated. β1 refers to the 

potential to generate flows, β2 is related to the potential to attract flows, and β3 is an 

impedance factor reflecting the rate of increase of the friction of physical distance. 

The first appearance of the gravity model in the social sciences dates back to the mid-19th 

century when it was applied to the study of human interaction patterns (Carey 1858), who 

used the analogy to Newton’s law to answer the question why a city was more likely to attract 

people than a small town. 

The first empirical studies using the gravity model framework appeared at the end of the 19
th

 

and early 20
th

 century, when it was applied to the study of migration (Ravenstein 1885), 

railway travel (Lill 1891), and retail trade (Reilly 1931). The modern use of the gravity model 
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was popularized in the school of social physics after the Second World War and formalized 

by Stewart (1948), Isard (1956), and Tinbergen (1962).
3
  Over the course of the years, the 

model has been applied to a wide variety of spatial interaction patterns, such as international 

trade, foreign direct investment, tourism, migration, commuting, and shopping. Within the 

context of the geography of innovation and knowledge transfer, the gravity model framework 

has been used in studies on inter-alia co-inventorship and co-publishing (Maggioni et al. 

2007, Ponds et al. 2007, Hoekman et al. 2009), citation networks (Peri 2005, Fischer et al. 

2006), R&D collaboration through European programs (Scherngell and Barber 2009), 

inventor mobility (Miguelez and Moreno 2012), foreign direct investment in R&D facilities 

(Castellani et al. 2012), and trade in high-technology products (Liu and Lin 2005). In most 

empirical research using gravity models, the objects are spatial units, such as cities, regions, 

or nations. However, disaggregated data at the firm or individual level is increasingly 

employed to assess the spatial dimension of innovation networks within a gravity model 

context (see, e.g., Autant-Bernard et al. 2007, Breschi and Lissoni 2009).
4
 

 

2.2.  The Working Principles of the Gravity Model 

Unlike the later introduced QAP, ERGM, and SAOM, the gravity model is a conceptual 

model and not just a statistical method.
5
 Traditionally, the gravity model as presented in 

equation (1) has been estimated using Ordinary Least Squares (OLS). Taking logarithms of 

both sides of equation (1) and including a disturbance term, this multiplicative form can be 

transformed into a linear stochastic form. It results in a testable equation (2), in which     is 

assumed to be identical and independently distributed (i.i.d): 

                               (2) 

The model can be extended to a panel data framework, so that it becomes possible to study 

the development of relational structures over time. In addition, the empirical gravity model 

can be easily augmented to include other factors that influence network structures. 

Accordingly, in most of the above-mentioned studies rather than the Newtonian version but a 

more general form of the gravity model is used, in which the flow between two objects is 

hypothesized to be dependent on supply factors at the origin that generate flows, demand 

factors at the destination that attract flows, and by stimulating or restraining factors (e.g., 

proximity or distance) pertaining to the specific flow between the two objects. For example, it 

can be argued that the flow of knowledge in networks of R&D collaboration is not only 

dependent on the physical distance, but also on the cultural, social, and institutional distance 

between the two regions (Boschma 2005). Likewise, it is not only public investments in R&D 

that generates knowledge flows, but also the presence of human capital in a region.  

                                                           
3
 For an early overview of studies that applied the gravity model in economic geography, see Lukermann and 

Porter (1960). 
4
 However, the term “gravity model” is not often used when studies are conducted at the micro-level. Rather 

scholars research the effect of geographical proximity on network formation. 
5
 In practice, it would be possible to estimate the gravity model with these techniques. 
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However, there are also some serious problems with the traditional OLS specification of the 

gravity model. Most importantly, the OLS specification does not control for dependencies 

present in network data nor is it very well able to model network dependencies. In particular, 

the traditional equation assumes that flows between two actors are independent from other 

relationships between actors within the network. Since this strong assumption of structural 

independency is very unlikely to hold, this can lead to biased estimates of the gravity equation 

(Anderson and Van Wincoop 2003). Although the fact that the flow between two locations is 

dependent on the characteristics and the number of alternative locations is well known in the 

gravity literature (see already the work of Stouffer in 1940), this has until recently not been 

explicitly addressed in empirical gravity models. 

In the recent literature on gravity models, several extensions and modifications of the gravity 

model have been proposed to deal with this issue (Herrera, 2011). Although most of these 

originate from the spatial and international economics literature on the gravity model of trade, 

they can easily be applied to the study of innovation networks.
6
  First, researchers have tried 

to control for network structure by correcting standard errors. More specifically, use has been 

made of the sandwich style standard errors using multiway clustering on the origin and 

destination (Lindgren 2010) or a spatial error model (Fischer and Griffith 2008; Scherngell 

and Lata 2013).
7
 These procedures allow for a more careful modeling of the error structure, 

controlling for correlations that may arise in the error terms. However, as pointed out by 

Snijders (2011), such empirical strategies mainly treat the network as nuisance and do not 

modeling network dependencies explicitly. 

Second, it is possible to include an indicator for remoteness Ri to account for third party 

effects (Head and Mayer, 2000), which proxies the average transaction costs faced by a 

location:  

    
   

           
    (3) 

Where the numerator represents the bilateral distance between countries i and j, and the 

denominator is for instance the share of country j's GDP in the world’s GDP. The remoteness 

variable proxies the full range of potential destinations to a given origin, taking into account 

the importance of the respective destinations and average distance of a country to all other 

countries. The advantage of this empirical strategy is that such a remoteness variable is easy 

to construct. However, as indicated by several authors, this empirical strategy fails to capture 

other barriers than distance that may hamper interaction (e.g., national borders) (Anderson 

2001). 

                                                           
6
 Please note that we only discuss problems specifically pertaining to network data. Other problems related to, 

for example, the fact that the outcome is not always a continuous numeric variable and the many zeros in the 

network (e.g., Helpman et al 2008; Burger et al 2009b) and causality (e.g., Egger 2004) are discussed elsewhere 

in the literature. Although these are problems that all empirical researchers are facing, a discussion of these 

issues is beyond the scope of this paper. 
7
 Another (non-spatial) method that controls for the network structure but is not often used in the gravity model 

literature is the multiple regression quadratic assignment procedure (MRQAP). A more elaborate discussion of 

this method can be found in the next section.   
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Third, a fixed-effects specification can be employed to deal with the problem of intervening 

opportunities. In a cross-sectional setting, this implies including country-specific exporter and 

importer dummy variables in equation (2). Such specification controls for country-specific 

fixed effects related to origins and destinations, such as the supply, demand, and origin- and 

destination-specific transaction costs, which are often difficult to measure, but influence the 

structure of the network. Following Anderson and Van Wincoop (2003) and Feenstra (2004), 

such a specification of the gravity equation would be in line with the theoretical concerns 

regarding the correct specification of the model and yields consistent parameter estimates for 

the variables of interest. However, when such a strategy is employed, it is impossible to 

incorporate any origin- or destination-specific (or individual-specific) factors within a cross-

sectional setting. In addition, Behrens et al. (2012) point out that such a fixed effects 

estimation does not fully capture the spatial interdependence among flows, and hence, the 

assumption of independence of observations might still be violated. 

Third, there are a couple of other, more complex strategies to deal with structural 

dependencies in the gravity model, including estimation of multilateral resistance terms 

(Anderson and Van Wincoop 2003) and a spatial autoregressive moving average specification 

for the gravity model (Behrens et al 2012).
8
 These strategies have in common that they try to 

model dependencies present in network data directly and are becoming increasingly popular 

within the gravity modelling literature, especially within the fields of spatial and international 

economics. Focusing on trade, Anderson and Van Wincoop (2003) show that bilateral barriers 

between two countries do not determine the flow of bilateral trade only, but also how easy it 

is for these countries to trade with the rest of the world. Anderson and Van Wincoop (2003) 

try to capture these relative barriers by including country-specific price indices, called 

multilateral resistance terms, which are estimated using a multi-step nonlinear least squares 

procedure. However, since the method is computationally intensive, it has not been 

implemented by many researchers, which tend to prefer a fixed effects estimation using OLS 

or count data models. As an alternative, Behrens and co-authors introduce a spatial 

econometric estimation of the gravity model
9
, accounting for cross-sectional correlations 

between flows and controlling for possible cross-sectional correlations in the error terms.  

Focusing on trade between US and Canadian regions, the authors find that the exports of any 

region to a market negatively depend on the exports from the other regions to that market, 

which themselves depend on the whole distribution of bilateral trade barriers. In addition, the 

model can incorporate heterogeneous coefficients, allowing relationships to vary across units: 

for example, the distance decay of trade might differ across regions. Along these lines, the 

model proposed by Behrens et al. (2012) provides also a subtle link between theory and 

empirical methods when it comes to trade network research. At the same time, this empirical 

strategy can be easily extended to other types of flows to capture structural dependencies in 

general and spatial competition effects in particular. Although these approaches to model 

structural dependencies are heading into the right direction, there is, however, still no standard 

                                                           
8
 Less well known but comparable empirical strategies in this respect are provided by Bikker (2010) and Linders 

et al. (2010). 
9
 For an earlier use of spatial lag models in gravity modeling, see LeSage and Pace (2008). 
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implementation in software packages.
10

 In addition, few empirical studies have applied these 

methods and, hence, the appropriateness of these methods has to be further evaluated. 

 

3. Multiple regression quadratic assignment procedure 

The empirical strategy involving the multiple regression quadratic assignment procedure 

(MRQAP in the following) starts from a similar viewpoint as the gravity model. In the context 

of economic geography, the dependent variable of interest is the relational intensity of 

interaction between individuals, organizations, or spatial units, such as cities or regions. 

However, in contrast to the gravity model’s conceptual basis it can be seen as a purely 

statistical approach to account for structural dependencies among relational data. In principle, 

the correction procedure that is proposed can also be put into a gravity model framework, which, to 

the best of our knowledge, has however not been done so far. More precisely, the multiple 

regression quadratic assignment procedure-model is a logit or OLS regression model, which 

incorporates relational variables and considers their inherent interdependencies when 

assessing their statistical relevance.
11

 

MRQAP approaches are applied in a number of studies on inter-organizational networks. 

However, only recently it found its way into the literature of economic geography. Among the 

first is the study by Bell (2005) who uses a bivariate quadratic assignment correlation 

procedures to statistically infer about correlations between friendship, information, and advice 

networks among executives from within and outside the Toronto industry cluster.  

Subsequently, the MRQAP procedure has been used to study the intensity of co-inventing 

among patent inventors located in the region of Jena (Graf and Cantner 2006), to explore the 

relevance of cognitive, social, institutional, and geographic proximity for the knowledge 

network connecting Dutch organizations active in the field of aerospace (Broekel and 

Boschma 2012), and to study the relationship between regional flows of internet hyperlinks, 

co-patenting relations, EU-funded research collaboration, and the flow of Erasmus exchange 

students (Maggioni and Uberti 2007). Nevertheless, MRQAP is much less prominent in 

economic geography than gravity models. 

 

3.1.  The History of MRQAP 

Mantel introduced the quadratic assignment procedure in 1967, when he was working at the 

National Cancer Institute in Maryland and reviewed a number of common empirical 

approaches used to identify (non-random) time-space clustering of disease (Mantel 1967). 

The basic statistical problem was the clustering of disease cases in space and in time. While 

statistical tools were available dealing with spatial or temporal clustering, the simultaneous 

(two-dimensional) occurrence of the two clustering types remained an empirical challenge. 

                                                           
10

 The mathematical appendix and Matlab codes of the approach by Behrens et al. (2012) can be found in the 

Web Appendix of their article, available at the Journal of Applied Econometrics website. 
11

 Accordingly, MRQAP is rather a particular permutation method for hypothesis testing and not a model on its 

own. However, we will refer to it as model in the following to keep a consistent terminology. 
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Mantel proposed an uncorrected correlation coefficient estimated as the cross-product of the 

distances in the two dimensions’ empirical matrices (spatial distances and temporal 

distances). To overcome the problem of highly interrelated n
2 

values, Mantel constructed 

repetitively data sets corresponding to the null hypothesis of no correlation between the two 

matrices by permuting the rows and columns of the two matrices in the same way and such 

that the values of any row and of a column combination remain together (but change their 

positions within the matrix). If the null hypothesis is correct than these permutations “should 

be equally likely to produce a larger or a smaller coefficient” (Schneider and Borlund 2007, 

p. 7). On this basis the Mantel test was developed for estimating the correlation between any 

two distances matrices (Mantel and Valand 1970). Although Mantel’s approach was initially 

developed for the identification of disease clusters, the procedure can without any difficulties 

be applied to other contexts (Mantel, 1967). 

Hubert and Schultz (1976) introduced the notion of the “quadratic assignment procedure” as 

an equivalent to the Mantel test. From there, the test statistics were refined and generalized in 

multiple ways (see for a review Hubert (1987)). In social network analysis this approach 

became popular through the works of Krackhardt (1987, 1988). He extended the QAP 

methodology to test the relationship between multiple relational matrices in a regression 

framework. Since then, the methodology has been subject to multiple refinements including 

amongst others more advanced approaches to deal with multicollinearity and certain types of 

autocorrelation (see, e.g., Dekker et al. 2007). 

 

3.2.  The Working Principles of MRQAP 

At its core, a QAP regression is a combination of the Mantel test, i.e. quadratic assignment 

procedure and a standard OLS or Logit regression. The dependent variable is hereby the 

matrix of inter-actor relations. Whether to use an OLS or a Logit model depends on the 

available network data. For a valued network OLS is appropriate while binary (0/1) network 

data requires the logit regression. As before, the independent variables are factors whose 

influence is to be tested on the structure of the network. 

To explain the MRQAP, it is best to start from all variables (dependent and independent) 

being stored in types of adjacency matrices. For the application of standard regressions, these 

need to be vectorized implying that the matrices are transformed into a column vector of n
2
 

elements by stacking the columns “on top of each other”. 

As pointed out in the previous section, network data are characterized by frequent 

row/column/block autocorrelation because on dependent observations implying that standard 

tools of inference are therefore invalid. In the style of the Mantel test, Krackhardt (1987, 

1988) therefore suggests comparing the regression statistics to the distribution of such 

statistics resulting from large numbers of simultaneous row/column permutation of the 

considered variables (before the vectorization). While still being subject to extensions and 

further developments, most of today’s studies use the multicollinearity robust “semi-

partialling plus” procedure by Dekker et al. (2007).  
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The MRQAP is nonparametric in nature implying that in comparison to standard regression 

techniques there are few crucial assumptions and issues. However, there are a couple of issues 

that deserve future research. Among these are spuriousness, multicollinearity, and skewness 

(see Dekker et al. 2007). The interpretation of the obtained parameter values depends on the 

type of regression function used (OLS or Logit). 

 

4. Exponential random graph models 

ERG-models are well known and established in many disciplines. For example in biosciences, 

Saul and Filkov (2007) use ERGM to explain the structure of cell networks. Fowler et al. 

(2009) employ ERGM to model genetic variation in human social networks in life science. 

They are also frequently used in sociology and political science, for instance to analyze the 

structure of networks of friendship networks (Lubbers and Snijders 2007) or political 

international conflicts (Cranmer and Desmarais 2011). While there are a number of studies 

that focus on the role geography plays for the formation of social networks (see, e.g., 

Daraganova et al. 2012), ERGM have rarely found their way into the analysis of networks in 

economic geography. Recent contributions to the field of economic geography that use an 

ERGM-approach include studies on inter-organizational knowledge networks in the Dutch 

aviation industry (Broekel and Hartog 2013a), networks among biotechnology organizations 

as created by participating in the EU Framework Programmes (Hazir and Autant-Bernard 

2012), and determinants of cross-regional R&D collaboration networks (Broekel and Hartog 

2013b). 

 

4.1.  The History of ERG-Models 

In contrast to the previous approaches, the roots of the exponential random graph models are 

more difficult to identify. Surely the work of Solomonoff and Rapoport (1951) on random 

graphs was fundamental. Solomonoff a physicist and Rapoport a mathematician conducted 

the “the first systematic study on what we would now call a random graph” (Newman et al. 

2006, p.12). These authors already discussed a number of important properties of such graphs 

(e.g., average component size). However, it took another ten years before Erdös and Rényi 

(1960) finally popularized the concept of random graphs. By putting forward the Bernoulli 

random graph distribution, which could be used to estimate configurations of individual links 

between actors. However, Erdös and Rényi assumed independent links among nodes, which is 

clearly problematic for many networks. The next major step in the development of ERG-

models was the introduction of p1 models by Holland and Leinhardt in 1981. These models 

are based on the work of Besag (1974, 1975) who showed that a class of probability 

distributions existed, which are consistent with the (Markovian) condition that the value of 

one node is dependent only on the values of its adjacent neighbors.
12

 Holland and Leinhardt 

(1981) proposed a family of exponential distribution (p1 distribution) that could be used as 

                                                           
12

 Besag (1974, 1975) applied this idea the context of spatial data the idea is, however, also applicable in the 

context of network data. 
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null-hypothesis for assessing real-world networks (conditional on the density of the network 

and the number of links to and from a node). In a direct comment to Holland and Leinhardt’s 

article, Fienberg and Wasserman (1981) showed that these models can also be estimated using 

log-linear modeling techniques, which significantly increased the use of p1 models. However, 

the p1 approach is troubled by the assumption of dyad-independence that is frequently found 

to be incorrect (Newman 2003). Another major breakthrough represents the work by Ove and 

Strauss. In their 1986 study they proposed the use of Markov random graphs to overcome the 

problems related to dyad-independence made in p1 models. In the context of networks, 

Markov dependence is used to model a link between node A and B being contingently 

dependent on other possible links of A and B. This marked a significant shift from dyad-

independence as two links are assumed to be conditionally (Markov) dependent (Robins et al. 

2007). This assumption “for the first time could be viewed as empirically and theoretically 

plausible” (Robins and Morris 2007 p. 170). More than ten years later, Wassermann and 

Pattison popularized these Markov random graphs in a more generalized form, which are 

known today as p* models (see, e.g., Wasserman and Pattison 1996, Pattison and Wasserman 

1999). These models are still the basic building blocks for ERGM (Snijders et al. 2010a). Park 

and Newman (2004) moreover link ERGM to kinetic mechanics and prove that they “are not 

merely an ad hoc formulation studied primarily for their mathematical convenience, but a true 

and correct extension of the statistical mechanics of Boltzmann and Gibbs to the network 

world” (Park and Newman, 2004, p. 2). 

 

4.2.  The Working Principles of ERGM 

ERGM are stochastic models that perceive link creation being a continuous process, which 

takes place over time. It implies that an empirically observed network at one particular 

moment in time can be seen as “one realization from a set of possible networks with similar 

important characteristics (at the very least, the same number of actors), that is, as the 

outcome of some (unknown) stochastic process” (Robins at al. 2007 p. 175). The basic idea of 

ERGM is to find a model of a network formation process that maximizes the likelihood of an 

observed network (x) being created at some point in time in this process. As pointed out 

above, the ERGM builds upon the ideas of exponential graphs, which show in their general 

specification as (see Robins et al. 2007): 

   (4) 

Pr(X=x) represents the probability that the network (X) created in the exponential random 

graph process is identical (in terms of a number of specific characteristics) with the 

empirically observed network (x).  is the parameter corresponding to network 

configuration A, and (x) represents the network statistic. Network configurations can be 

factors at the node level, dyad level, and structural dependencies. Their corresponding 

network statistics obtain values of 1 if the corresponding configuration is observed in the 
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network y and 0 if not. κ is a normalizing constant ensuring that the equation is a proper 

probability distribution (summing up to 1). It is defined as 

   (5) 

with χ (n) being the space of all possible networks with n nodes. Accordingly, the probability 

Pr(X=x) depends on the network statistics (x) in the network x and on the parameters 

represented by  for all considered configurations A. The value of  indicates the impact 

of the configuration on the log-odds of the appearance of a tie between two nodes.
13

  

In an ERGM estimation equation 4 is solved such that parameter values are identified for each 

configuration that maximize the probability of the resulting (simulated) network being 

identical to the one empirically observed. Preferably this is achieved with Maximum Pseudo 

Likelihood or Markov Chain Monte Carlo Maximum Likelihood Estimation. The latter is 

nowadays most preferred as it yields the most accurate results (Snijders 2002, Van Duijn et al. 

2009). The procedure involves the generation of a distribution of random graphs by stochastic 

simulation from a starting set of parameter values, and subsequent refinement of those 

parameter values by comparing the obtained random graphs against the observed graph. The 

process is repeated until the parameter estimates stabilize. In case they do not, the model 

might fail to converge and hence becomes unstable (see for technical details, e.g., Hunter et 

al. 2008).  

An essential part of an analysis using ERGM is the testing of the model’s “goodness of fit”. 

This involves checking whether the parameters predict the observed network in a sufficient 

manner. The structures of the simulated networks are thereby compared to the structure of the 

observed network. According to Hunter et al. (2008) such involves a comparison of the 

networks’ degree distributions, their distribution of edgewise-shared partners, and their 

geodesic distributions. The edgewise-shared partner statistic refers to the number of those 

links in which two organizations have exactly k partners in common, for each value of k. The 

geodesic distribution represents the number of node pairs for which the shortest path in 

between is of length k, for each value of k. The more these statistics are similar for the 

estimated and empirically observed network the better the former’s fit, which implies it being 

more accurate and hence delivering more reliable parameters for the network statistics of 

interest.  

In addition to these goodness-of-fit tests, the traces of the simulated parameter values over the 

course of iteration should be relatively stable and vary more or less around the mean value 

(see for a discussion, Goodreau et al. 2008). 

The parameters of the ERGM can be interpreted as non-standardized coefficients obtained 

from logistic regression analysis, which can be transformed into odd ratios. 
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 More details can be found in in Robins et al. (2007). 
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5. Stochastic Actor-Oriented Models 

With the growing interest on network dynamics, the availability of longitudinal relational 

data, and more powerful computers, applications of Stochastic Actor-Oriented Models 

(SAOM) have started to recently emerge in economic geography. Balland (2012) analyses the 

influence of different proximity dimensions on the evolution of collaboration networks in the 

navigation by satellite industry in Europe. Balland et al. (2013) and Ter Wal (2013) test the 

changing influence of network drivers (geographical distance for instance) at different stages 

of the industry life cycle for the video games and biotech industry, respectively. SAOM are 

also used by Giuliani (2010) to explain the dynamics of networks within a wine cluster in 

Chile and by Boschma et al. (2011) to model the structural dynamics of knowledge spillovers 

(patent citations among firms) in space.  

 

5.1. The History of SAOM 

In contrast to the previously presented approaches, Stochastic Actor-Oriented Models 

(SAOM) are a class of statistical models that have been specifically developed for the analysis 

of network dynamics. The most well-known SAO-models have been proposed by Snijders 

(2001) in order to provide a statistical model able to analyze empirically the evolution of 

complex network structures. By combining random utility models, Markov processes and 

simulation (Van de Bunt and Groenewegen 2007), the SAOM has permitted to study the 

dynamic of networks and thus to provide recently new results in many fields of social science. 

A general introduction to SAOM can be found in Snijders et al. (2010), while mathematical 

foundations of these models are detailed in Snijders (2001). In this discussion, we refer to 

SAOM implemented in the RSienastatistical package (Ripley et al. 2011).
 14

   

 

5.2. Working principles of SAOM 

The main objective of this class of models is to explain observed changes in the global 

network structure by modelling choices of actors at a micro-level. More precisely, this 

statistical model simulates network evolution between observations and estimates parameters 

for underlying mechanisms of network dynamics by combining discrete choice models, 

Markov processes, and simulation (Snijders et al. 2010b). Similarly to ERGM, SAOM not 

only account for statistical dependence of observations, but also explicitly model structural 

dependencies, like triadic closure. Endogeneity of network structures, i.e. the fact that 

networks reproduce themselves over time is not perceived as an econometric issue that needs 

to be corrected, but as a rich source of information used to model the complex evolution of 

network structures. SAOM are probably the most promising class of models allowing for 

statistical inference of network dynamics. 

                                                           
14

 This class of models is often referred to directly as SIENA models. SIENA stands for "Simulation 

Investigation for Empirical Network Analysis". The RSiena package is implemented in the R language and can 

be downloaded from the CRAN website: http://cran.r-project.org/web/packages/RSiena/.  
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The dependent variable in SAOM is not a list of dyads, but the structure resulting from 

relationships between a set of actors, i.e. the particular way relationships between actors are 

organized. The dynamic nature of SAOM lies in the fact that the model explains how the 

observed structure of relations evolves from time t to time t+1. Therefore, the dependent 

variable is a set of consecutive observations of links between actors, which are organized as 

time series  for a constant set of organizations . These network 

structures are modeled as a continuous-time Markov chain . Thus,  to  are 

embedded in a continuous set of time points . As specified in 

Steglich et al (2006, p.3) the basic idea “is to take the totality of all possible network 

configurations on a given set of actors as the state space of a stochastic process, and to model 

observed network dynamics by specifying parametric models for the transition probabilities 

between these states”. Each observation is represented by a  matrix , where  

represents the link from the actor to the actor . In the simplest specification of 

the model, the links between the n actors are represented by directed dichotomous (0/1) 

linkages implying the analysis of asymmetric adjacency matrices. While the analysis of 

undirected networks is also possible (Snijders 2010), valued networks are not yet 

implemented.  

 

Assumptions of SAOM. The modelling of the evolution of network structures in SAOM is 

based on a certain number of underlying assumptions.
15

 Most of these assumptions are related 

to the fact that the evolution of network structures is modelled as a time-continuous Markov 

chain, driven by probability choices at the actor level. Therefore, this Markov chain is a 

dynamic process where the network in t+1 is generated stochastically from its architecture in 

t, which allows for the existence of statistical dependence between observations. The 

implication of this modeling strategy is that change probabilities exclusively depend on the 

current state of the network and not on past configurations. Since history, and memory of past 

configurations is important, though, it is essential to exogenously include the variables that 

capture relevant information about joint history or intensity of collaborations to make this 

assumption more realistic (Steglich et al. 2010). It is also assumed that time runs continuously 

between observations, which implies that observed change is in fact assumed to be the result 

of an unobserved sequence of micro steps. Although this assumption is very realistic, it 

implies that coordination between a set of actors is not modeled. More precisely, at each 

micro-step, actors can change only one link variable at a time, inducing that a group of actors 

cannot decide to start relationships simultaneously. If we observed the formation of a closed 

triangle between i, j and h from one period to another, we assume for instance that i has 

interacted with j, then j with h, and then h with i. Third, and more importantly, it is assumed 

that network dynamics are based on actors’ choices depending on their preferences and 

constraints, i.e. the model is "actor-oriented". This assumption is realistic for most economic 

                                                           
15

 For a discussion of these assumptions, see De Federico (2004), while for a summary the reader is referred to 

Snijders et al. (2010). 
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networks, and it allows including variables at a structural level, as well as also at a dyadic or 

individual level. Network structures change because actors develop strategies to create links 

with others (Jackson and Rogers 2007), which is based on their knowledge of the network 

configuration. This assumption is not plausible when actors are not able to elaborate their 

strategic decisions, or in the case where information about relationships of others is 

impossible to access. 

Modeling change opportunities. SAOM are built upon the idea that actors can change their 

relations with other actors by deciding to create, maintain or dissolve links at stochastically 

determined moments. These opportunities are determined by the so-called rate function 

(Snijders et al. 2010b), and opportunities to change a link occur according to a Poisson 

process with rate λi for each actor i. In its simplest specification, all the actors have the same 

opportunity of change, i.e. equal to a constant parameter . In more complex models, 

heterogeneity in change opportunities can be introduced, in order to consider that actor 

characteristics (attributes or network positions) may considerably influence opportunities to 

change relationships. Thus, when individual attribute  and degree are considered 

for instance, the rate function is given by the following logarithmic link function:  

  (6) 

The set of permitted new states of the Markov chain, following on a current state , is 

and the product of the two model components  and  (
 
defines the probability 

distribution of choices, see equation 6) determines the transition rate matrix (Q-matrix) of 

which the elements are given by (Snijders 2008): 

   (7) 

where  whenever   for more than one element and 

for digraphs  and , which differ from each other only in 

the element with index . 

Since the rate function sets the frequency of opportunities to change relationships, it models 

the speed of change of the dependent variable, i.e. network structures with high values 

implying strong dynamics.  

Modeling choice opportunities. Given that an actor  has the opportunity to make a relational 

change, the choice for this actor is to change one of the link variables , because actors can 

only change one link variable at a time. Changing the link variables  will lead to a new 

state . In order to model choice probabilities, a traditional multinomial logistic 

regression specified by an objective function  is used (Snijders et al. 2010b): 
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  (8)

 When actors have the opportunity to change their relations, they choose their partners by 

trying to maximize their objective function . This objective function describes preferences 

and constraints of actors. More formally, collaboration choices are then determined by a linear 

combination of effects, depending on the current state , the potential new state , 

individual attributes  and attributes at a dyadic level . Effects related to the current state 

of the network are endogenous implying a self-reproduction of network structures, like 

transitive closure. Individual attributes are effects modeling the propensity of certain types of 

actors to form or to receive more linkages. Dyadic effects express the tendency of actors with 

similar attributes to form relationships, like actors that are located in the same region. 

Including these different types of effects, one can then disentangle the effect of geographical 

proximity from structural, individual other forms of proximity. 

   (9)

 

Parameter estimates. The estimation of the different parameters  of the objective function 

is based on simulation procedures. More precisely, as proposed by Snijders (2001), the 

estimation of the effects  is achieved by the mean of an iterative Markov chain Monte Carlo 

algorithm based on the method of moments. The stochastic approximation algorithm 

simulates the evolution of the network and estimates the parameters 
 
that minimize the 

deviation between observed and simulated networks. Over the iteration procedure, the 

provisional parameters of the probability model are progressively adjusted in a way that the 

simulated networks fit the observed networks. The parameter is then held constant to its final 

value, in order to evaluate the goodness of fit of the model and the standards errors. 

Lospinoso and Snijders (2011) provide detailed procedures to assess the goodness of fit. The 

different parameter estimates of SAOM can be interpreted as non-standardized coefficients 

obtained from logistic regression analysis (Steglich et al. 2010). Therefore, the parameter 

estimates are log-odds ratio, and they can be directly interpreted as how the log-odds of link 

formation change with one unit change in the corresponding independent variable.  

 

6. Discussion 

Above, we have briefly presented the four different statistical models and we now turn 

towards comparing their strengths and weaknesses. Moreover, we propose a guideline for the 

decision to use one model or another in empirical research. The guideline involves seven 

dimensions: (I) the type of relational data dealt with, (II) the type of network to be analyzed, 

(III) the size, (IV) the dynamic of the network, (V) the complex interplay between geography 

and networks, (VI) the main (independent) variables of interest and last but not least (VII) 

practical considerations. 
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(I) The type of relational data to be analyzed.  

The first point concerns the difference between purely relational and network data. For the 

first, the independence assumption among links can safely be assumed to hold. For instance, 

one might argue that when analyzing cross-regional labor flows, the flow between region A 

and B is independent of the flow between regions B and C or C and D. The content of 

exchange between actors does not “travel” further than one link in some cases. For instance, 

while the “diffusion” of bread from the bakery store to the consumer represents a type of 

relational event, i.e. link, one might reasonably assume that there is no “network” of bread 

transmission because the consumer will eat the bread and no further transmission takes place. 

Hence, the object of exchange exclusively “travels” geodesic distances of length one. When 

such type of relational data is present, one obviously does not need to account for network 

dependencies and network autocorrelation implying that gravity models are the preferred 

empirical strategy. 

 

(II) The type of network to be analyzed.  

Two types of knowledge networks are often analyzed in economic geography: networks 

constructed from links between actors (firms, individuals) and networks constructed from 

links between geographical units (regions, countries). A fundamental assumption of SAOM 

(Markov models) is that nodes are actors, and that they control the formation of links, while 

GM-MRQAP are not built on this assumption. In the case of ERGM this issue is somewhat 

more complicated, as in general the modeling process seeks to mimic actors’ link formation 

behavior. However, no actor-based behavioral assumptions are necessarily required in the 

estimation (Park and Newman, 2004). In case of using SAOM to model knowledge networks 

between regions with Markov models would hence first require a discussion on the agency of 

the geographical unit or the reason for aggregating individual and organizational networks to 

a spatial level. GM and MRQAP do not impose these assumptions and hence, are better 

choices.
16

 As pointed out above, ERGM are somewhat in between. 

Related to this issue is whether the observed networks are one-mode or two-mode (bipartite) 

in nature. The observation of direct interactions between actors (cooperation, trading of 

goods, etc.) allows for constructing “standard” one-mode networks. In practice, however, so-

called two-mode network data are more common. In their case, no direct interactions between 

actors are observed. Rather it is known that actors participate in the same event. Co-

publication is a classic example in this respect. While it is frequently assumed that authors 

directly interact when writing a paper, all that is actually known is that they participate in the 

event of “writing a paper”. The actual contributions and interaction intensities remain 

unobserved and are frequently subject to heavy assumptions. This issue is far from trivial, as 

it means that on the basis of such assumptions, two-mode network data are commonly 

projected into one-mode data. However, this can strongly alter the structure of networks, as it 
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 See e.g. Liu et al. (2013) for an example of how GM can be used to model regional networks.  
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tends to increase the cliqueness of the network
17

 (see for further discussions Opsahl 2013). If 

one wishes to avoid all problems associated to the one-mode projects, ERGM and SAOM
18

 

are preferred because they offer possibilities to directly handle two-mode network data (cf. 

Wang et al. 2009). 

 

(III) Size of networks. 

Another, rather practical, issue is the size of the network of interest. While GM can be used to 

analyze large networks, MRQAP-ERGM-SAOM are computationally intensive and generally 

limited to a few thousands nodes.  

 

(IV) Static or dynamic? 

From the above presentation, SAOM seem to be the natural choice for studying network 

dynamics, as they were the only approach introduced for dynamic network data. However, 

GM is frequently extended to deal with longitudinal relational data within a panel data setting. 

We refrain from discussing this approach in more detail as all arguments in favor or against 

its application in the cross-sectional case also apply to the longitudinal case.  

This is somewhat different in the case of ERGM. Very recently, Hanneke and Xing (2007) 

and Desmarais and Cranmer (2011) put forward the so-called “temporal ERGM” (TERGM), 

which has been extended by Krivitsky and Handcock (2013) to the “separable temporal 

ERGM” (STERGM) model, which allows for considering longitudinal network data in the 

context of ERGM. STERGM is a fascinating new approach that brings the strength of ERGM 

to longitudinal network analysis. Krivitsky and Handcock (2013) formulate an ERGM for 

discrete-time network evolution by distinguishing between two processes: the first concerns 

factors that matter for rate of new link formation. The second process describes the duration 

of link existence. In essence a STERM involves formulating two ERGM formulas. Both 

processes are assumed to be independent of each other within the same time step but might be 

dependent across time steps. While also two sets of parameters are obtained (one for the 

formation and one for the dissolution) the two processes are jointly estimated. This method 

seems to be very promising. However, sound information on how it compares (in particular in 

practice) to SAOM are still missing. In comparison to SAOM, STERGM particularly 

circumvents the assumption of actors controlling the formation (and dissolution) of links, 

which makes it particularly attractive when network nodes are territorial units and alike. 

However, at the heart of STERGM approach is the separability (of formation and dissolution) 

assumption, which might become problematic when time steps involve longer time periods or 

specific types of two-mode network data is used (see for a discussion: Krivitsky and 
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 As pointed out by one of the referee, it is possible to avoid complete cliquishness or to go beyond assuming 

symmetric ties in two mode networks if researchers have detailed data on the level of involvement/learning of 

actors in a given event.  
18

 In SAOM, it is assumed that all agency ruling the dynamics of the network comes from the actors of the first 

mode of the two-mode network (Snijders et al. 2013). As a result, the second mode is passive and cannot decide 

to establish a link with the first mode. Besides, no coordination is possible between the first and second mode.  
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Goodreau, 2012). So far tests on the separability assumption are missing. Currently, 

STERGM also do require fixed node counts and node attributes. In light of these (in 

comparison to SOAM) shortcomings and the larger number of existing studies using SOAM, 

SOAM might still be the better choice when studying network dynamics in the field of 

Economic Geography. Given the tremendous speed of development in the according research 

areas, this recommendation needs to be regularly evaluated. 

 

 (V) The main variables of interest.  

When analyzing the geography of knowledge networks, one of the main hypotheses to be 

tested is the impact of geographical distance on the formation of knowledge links between 

nodes. All four models can be used for this purpose, and it is also possible to test the influence 

of other forms of distance, since distance is a dyadic variable (an attribute of a pair of nodes). 

However, the models primarily differ in their possibilities to consider factors at the node and 

structural network level. The MRQAP is the most restricted model in this respect as it only 

allows considering dyad level variables. This means that factors at the node and structural 

network level can be incorporated only if translated into dyad level factors. For instance, it 

might be interesting to test the impact of the regions’ sizes on the structure of a network. In a 

MRQAP model, it will be tested if the probability of two large regions being linked is higher 

than that of two small regions. Such is similar but still distinct from an argument at the node-

level, which might rather be that large regions are generally better embedded. In contrast to 

the MRQAP, such node-level factors can directly be included in GM, ERGM, and SAOM. 

However, only ERGM and SAOM are able to simultaneously incorporate node, dyad, and 

structural network level factors. In order to include factors at the structural network level in 

MRQAP and Gravity models, these need to be translated to the node or dyad level. An 

example could be triadic closure. Triadic closure implies that a link between region A and B 

is more likely if both are also linked to region C. Translating such to the dyadic level is often 

impossible, even in an approximate fashion. Triadic closure is a good example in this respect 

because its dyadic representation would have to be based on the dependent variable (the 

existence of a link between A and C as well as B and C), which raises serious concerns 

regarding the independence of the independent variables. 

Tendencies towards triadic closure and multi-connectivity are frequently argued to be relevant 

to explain the structure of inter-organizational networks in economic geography (see, e.g., 

Glückler 2007, Ter Wal 2013). This clearly favors the application of ERGM and SAOM with 

their abilities to explicitly consider these structural dependencies. 

In addition, if the dependent variables concern simultaneously the structure of a network and a 

node attribute (innovation performance for instance) and longitudinal network data is 

available, SAOM are to be used because they offer a co-evolution model (to deal with the 

causality issues between network structure and node attribute). 

 

(VI) More complex interplay between geography and networks 
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Some recent features of these network models can be exploited to better understand the 

complex interplay between geography and networks. Especially in the case of SAOM, it is 

possible to separate partner selection from social influence, which is a key question in social 

science more broadly (Van der Leij 2011). In a geographical context, it means that SAOM 

offers the opportunity to understand whether actors co-locate (dynamics of geographical 

proximity) because they already have knowledge ties (or if they start to build relationships 

because they are already spatially close (network dynamics). SAOM therefore allows 

analyzing the co-evolutionary dynamics between geography and networks.  

The empirical strategy requires an important level of dynamics both in terms of spatial 

choices and network ties. We would have to favor a disaggregated level of analysis where 

actors are spatially mobile (engineers, scientists movements rather than location choices for 

firms' headquarter). Instead of looking at the (dyadic) physical distance among actors, it is 

possible to represent choices of actors as a bimodal network (when actor i move to city C we 

draw a spatial ties between i and C), and relation choices as a traditional one-mode network 

(between i and j). This idea fits with the recent statistical framework proposed by Snijders et 

al. (2013) and SAOM can be used to analyze the co-evolution of the (spatial) two-mode 

network and the (knowledge) one-mode networks to disentangle the effects of selection and 

influence. Similar seems to be possible in light of the new developments in ERGM techniques 

(TERGM, STERGM). However, these methods still require fixed node counts and node 

attributes, which do not allow for analyzing the co-evolution of nodes and networks. 

The Markov random graphs used in ERGM moreover imply that links between two nodes are 

assumed to be contingent on their links to other nodes (conditional dependence). Accordingly, 

ERGM are very appropriate for modeling, for instance, processes involving gatekeeper 

organizations whose attractiveness as collaboration partner is primarily caused by their 

(specific) links to other (region external) organizations (cf. Graf, 2010). However, in these 

models it is also possible to drop all link dependencies and rather assume links being 

independent of each other. In this case, the model is based on Bernoulli graphs. The empirical 

strategies presented by Anderson and Van Wincoop (2003) and Behrens et al. (2012) for GM 

also allow researchers to deal with structural dependencies. Here, especially the approach of 

Behrens et al. (2012), which uses spatial econometric techniques to account for cross-

sectional correlations between flows and cross-sectional correlations in the error terms seems 

to be highly promising. However, future research is needed to evaluate the appropriateness of 

this empirical strategy. These aspects represent just some aspects that are possible with 

advanced models like SAOM, ERGM, and GM using spatial econometric techniques, which 

will surely be exploited in more detail in future studies in the field. 

 

(VII) Practical considerations.  

The greater applicability and power of ERGM and SAOM, and to a lesser extent GM, comes 

at a price of complexity. In this respect the MRQAP has the advantage of its “simplicity and 

accessibility” (Dekker et al. 2007 p. 564). Moreover, while being advanced in many ways, 
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ERGM and SAOM are still limited in seemingly simple issues. For instance, SAOM only 

account for valued links using multiple dependent networks of a binary nature. For ERGM 

only recently extensions have been put forward that also allow considering valued network 

data (see, e.g., Krivitsky 2012), which are by now also available in specific software 

packages. 

Another example in this respect is the way researchers can identify the most accurate model. 

GM and MRQAP offer a wide range of goodness-of-fit statistics. In addition, they can easily 

be compared across varying parameter specifications and sets of considered independent 

variables. Despite recent efforts in this direction, similar cannot be said about ERGM and 

SAOM without restrictions. For instance, ERGMs offer goodness-of-fit, AIC, and BIC 

statistics, which provide a good assessment of the final model’s quality, i.e. the model which 

converges and represents the observed network well. However, they are of limited value in 

the process of finding the best parameter combinations and set of explanatory factors to be 

considered. This is particularly the case when node and dyadic factors as well as structural 

dependencies correlate, and when (for some reason), the model fail to converge. In this case, 

researchers have to rely on a manual iterative trail-and-error process of estimating varying 

model specifications. Given the procedure’s substantial computational requirements (in 

particular in cases of large networks) this frequently turns out to be very cumbersome. The 

problem is moreover intensified by the necessity of specifying decay parameters for certain 

structural dependencies such as the geometrically weighted shared partner statistic (see, e.g., 

Snijders et al. 2006), which can be used to evaluate the importance of triadic closure. The 

recent development of curved exponential family models may provide some relieve to the 

latter issue (Hunter, 2007). 

Table 1a-b summarizes the main characteristics of the four network modeling strategies, 

indicating the respective strengths and weaknesses and suggesting the degree of applicability 

in geography of innovation studies. We also name some software packages that include the 

according procedures. This list does not however make a claim to be complete.  

 

7. Conclusion 

We have discussed the scientific roots and the working principles of four main statistical 

models that are increasingly used to analyze and explicitly model the geography of knowledge 

networks: gravity models (GM), multiple regression quadratic assignment procedure 

(MRQAP), exponential random graph models (ERGM), and stochastic actor-oriented models 

(SAOM). All four research strategies and models turn out to have advantages and 

disadvantages. They are embedded in their respective epistemic communities of practice – 

explaining why four varying modeling techniques exist next to each other. GM and MRQAP 

are more conventional modeling types that require less information and computational efforts 

– but consequently exploit also less information on the structure of networks than ERGM and 

SAOM. Also, GM and MRQAP are only implicitly linked to knowledge transmission 

mechanisms, although gravity modeling (GM) develops into more advanced network analysis 

applying individual level effects and using spatial econometric techniques. These differences 
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influence their range of applicability in economic geography. We also derive a guideline 

helping researchers in this field to decide which model to use in what situations. 

All four modeling types bring geography and network structures together in explaining the 

web of knowledge links between nodes (actors or regions). The reverse relationship – network 

positions partly determining local and regional development opportunities – constitutes an 

interesting research direction in economic geography. In such a conceptualization, local 

development is determined by hub positions in key networks next to hotspot characteristics in 

regions. Although the models discussed mainly focus in bringing (exogenous) geography into 

(endogenous) networks, analyzing endogenous regional development from (also endogenous) 

networks seems to be a major challenge for future research. For this relationship to be studied, 

additional (spatial) econometric modeling techniques are required, in which networked 

interactions between regions and actors function as carriers of knowledge and innovation 

diffusion.  
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Characteristics 
Gravity Models 

(GM) 

Quadratic 

Assignment 

Procedure  (QAP) 

Exponential Random 

Graph Models (ERGM) 

Stochastic Actor-Oriented 

Models (SAOM) 

Error type 1 (underestimation 

of standard errors) 
Can be corrected Corrected Corrected Corrected 

Structural dependencies (i.e. 

triadic closure) 

Can be controlled for 

to some extent, but 

additional 

econometric 

modeling needed 

Not modeled Modeled Modeled 

Proximity (geographical or 

other dyadic variables) 
Available Available Available Available 

Node level variables (i.e. R&D 

expenditures) 
Available Not available Available Available 

Computational time Low 
High 

High High 

Flexibility of assumptions High 
High High 

Low 

Type of nodes All 
All All Actors (firms, 

individuals…) 

Distribution assumption Parametric 
Non Parametric Parametric 

Parametric 

Type of β (interpretation of 

estimated coefficients) 

Flexible, large range 

of interpretation 

possible 

Flexible, large range 

of interpretation 

possible 

Non standardized  

Log-odds ratio 

Non standardized  

Log-odds ratio 

Type of data 

Cross sectional and 

longitudinal 
Cross sectional 

Cross sectional and 

longitudinal 
Longitudinal  

Table 1a: Statistical models for the formation of knowledge networks in economic geography 
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Characteristics 
Gravity Models 

(GM) 

Quadratic 

Assignment 

Procedure  (QAP) 

Exponential Random 

Graph Models (ERGM) 

Stochastic Actor-Oriented 

Models (SAOM) 

Type of relations One-mode One-mode One and two-mode One and two-mode 

Goodness of fit 
Available Available Available 

Available 

Multiple dependent variables 

(node attribute, other network) 
Not available Not available 

Not available, however two 

networks as dependent 

variables possible 
Available 

Statistical Programs Stata, SPSS, SAS, R 
Stata, Ucinet, R 

R, PNET (and variants of 

PNET) R, Stocnet 

Valued Networks Available Available Available Available 

Directed Networks Available Available Available Available 

Conceptualizing knowledge 

transfer 
Implicit 

Implicit, due to lack 

of individual effects 

modeling 

Explicit, modeling of access 

to external knowledge 

Explicit, modeling of access 

to external knowledge 

Geography > Network 

interaction 

Suitable, static and 

increasingly dynamic 
Suitable, static 

Suitable, static, (STERGM 

for dynamics) 
Suitable, dynamic 

Network > regional 

development interaction 

Limited possibility, 

additional 

econometric 

modeling needed 

Limited possibility, 

additional 

econometric 

modeling needed 

Possible, additional 

econometric modeling 

needed 

Can be implemented at the 

actor level, in a co-evolution 

model 

Note that some options may constrain the availability of others. For instance, currently ERGM can only model two-mode networks for cross-

sectional data. Similar holds for other modeling options and other models as well. 

Table 1b: Statistical models for the formation of knowledge networks in economic geography 
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