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Relatedness and Technological Change in Cities: The rise and fall of 

technological knowledge in U.S. metropolitan areas from 1981 to 2010 

 

 

 

Abstract 

This paper investigates by means of USPTO patent data whether technological relatedness was a 

crucial driving force behind technological change in 366 U.S. cities from 1981 to 2010. Based 

on a three-way fixed effects model, we find that the entry probability of a new technology in a 

city increases by 30 percent if the level of relatedness with existing technologies in the city 

increases by 10 percent, while the exit probability of an existing technology decreases by 8 

percent. 

 

Key words: relatedness, technological change, urban diversification, U.S. cities, technology 

space 
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1. Introduction 

In evolutionary thinking, knowledge production is often depicted as a cumulative, path-

dependent and interactive process (Atkinson and Stiglitz, 1969; Dosi, 1982; Nelson and Winter, 

1982). Because of uncertainty, agents draw on knowledge acquired in the past, which provides 

opportunities but also sets limits to what can be learned (Heiner, 1983; Cohen and Levinthal, 

1990). This happens at the organizational level, where knowledge accumulates within the 

boundaries of the firm, but also at the level of territories, as demonstrated by the cumulative and 
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often persistent nature of technological specialization in countries and cities (Archibugi and 

Pianta, 1992; Lundvall, 1992; Malmberg and Maskell, 1997; Cantwell and Vertova, 2004, Sonn 

and Storper, 2008). 

More recently, research efforts have been directed towards the process of geographical 

diversification. Scholars like Hidalgo et al. (2007), Hausmann and Klinger (2007) and 

Hausmann and Hidalgo (2010) have argued that the existing set of capabilities in a country 

determines which new industries will be feasible, and most likely, to develop in the future. By 

analyzing dynamics in the export portfolios of countries, Hausmann and Klinger (2007) showed 

that countries predominantly move into new export products that are related to their current 

export basket. Neffke (2009) suggests that capabilities may not move with ease also within 

countries, and therefore regions are considered to possess specific capabilities that define which 

new industries are more likely to emerge and develop in the future. Studies by Neffke et al. 

(2011) and Boschma et al. (2013) and Essletzbichler (2013) on the long-term industrial 

evolution of regions found that a new industry is more likely to enter a region when it is related 

to other industries already in place, and that an existing industry had a higher probability to exit 

a region when it was not, or poorly, related to other industries already present in the region. 

However, these studies neglect some of the important features of cities that may affect 

diversification as emphasized in the agglomeration economies literature, such as urban density 

and technological specialization. Moreover, these studies make the claim that regional 

diversification is driven by technological relatedness, but they analyze this process in terms of 

industrial dynamics (i.e. the rise and fall of industries in regions). However, analyzing related 

diversification in cities by means of technological dynamics (i.e. the rise and fall of 

technological knowledge in cities) would make a more direct link between urban diversification 

and the underlying technological nature of relatedness. 

Therefore, instead of focusing on industrial dynamics in regions, we focus in this paper on 

technological knowledge dynamics in cities, and we analyze whether the rise and fall of 
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technological knowledge is shaped by the existing knowledge base of cities. We draw on the 

agglomeration economies and the innovation studies literatures (in particular on studies that 

discuss the economic performance and technological diversification of urban centres) to explain 

technological change in cities. Our main claim is that cities are more likely to diversify into new 

technologies that are related to their existing local set of technologies. In this respect, we not 

only point out that city characteristics drive the process of diversification, but also the overall set 

of technologies that are present in cities. Based on patent data from the United States Patent and 

Trademark Office (USPTO), we investigate the long-term evolution of the patent technology 

class portfolios of 366 U.S. cities for the period 1981-2010. First, we construct a so-called 

technology space in which we measure the degree of relatedness between 438 technologies 

(main patent classes). Then, we determine the relatedness between new and disappearing 

technologies and the set of pre-existing technologies in cities. Finally, we estimate a three-way 

fixed-effects model by using linear probability OLS regression. The results indicate that 

technological relatedness was a crucial driving force behind technological change in U.S. cities 

over the last 30 years. 

The structure of the paper is as follows. Section 2 sets out the main theoretical ideas on 

technological knowledge dynamics at the urban scale. Section 3 describes the data, and Section 

4 outlines the methodology. We explain the way relatedness between patent technology classes 

was defined, and how we assess the impact of technological relatedness on the rise and fall of 

patent classes in U.S. cities. Section 5 presents the findings, and the final section provides a 

discussion and concluding remarks. 

 

2. Technological change and related diversification in cities 

Cities are engines of invention and economic growth (Hall, 1998; Bettencourt et al., 2007). In 

the last decade, scholars have been engaged in research to determine whether Jacobs’ or 

Marshallian externalities affect urban invention rates (see e.g. Feldman and Audretsch, 1999; 
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Paci and Usai, 1999; Ejermo, 2005; O’Huallachain and Lee, 2010). Concisely, Jacobs’ 

externalities are associated with an urban structure composed of a variety of technologies that 

spark creativity, enable the cross-fertilization of ideas among sectors, and thus generate more 

inventions. By contrast, Marshallian externalities are cost-reducing externalities, in which the 

technological specialization of a place enables the better matching of skilled labour and input-

output transactions, and more effective learning by means of knowledge spillovers. 

Generally, empirical studies report rather inconclusive results concerning the question whether 

technological specialization or diversity leads to higher invention rates (Beaudry and 

Schiffauerova, 2009). Paci and Usai (1999) showed in a study on 784 Italian local labour 

systems for the period 1978-1995 that patenting activity is enhanced both by industrial 

specialization and diversity. Autant-Bernard (2001) found that technological specialization 

promoted patent activity in French regions. Ejermo (2005) found a positive relationship between 

technological specialization (as proxied by patent similarity) and patent productivity in Swedish 

labour market regions, while O’hUallachain and Leslie (2007) and Lobo and Strumsky (2008) 

found a positive relationship between per capita patent rates and patent specialization in U.S. 

cities. In their study on the invention portfolios and the patenting intensity of U.S. cities, 

O’hUallachain and Lee (2010) showed that urban invention rates are affected by technological 

specialization and diversity, and that the most inventive cities have deep specializations in 

different technologies. 

While these studies on urban specialization versus diversity have led to valuable insights, they 

tend to treat the technological or industrial structure of cities as given, as if they remain the 

same, while in reality, those urban structures change over time. Moreover, most of these studies 

(the 2005 study of Ejermo being a notable exception) do not fully characterize the underlying 

knowledge stock in cities, and thus the nature of association between the technology/industry 

classes found in cities remains largely unspecified. Frenken et al. (2007) and Neffke (2009), 

among others, have argued that the technological relatedness or coherence between industries in 
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cities is crucial in this respect, as relatedness determines learning potentials between 

technologies and industries in cities. 

Only recently, studies have taken a more dynamic approach on the technological and industrial 

structures of territories, and have combined that with a relatedness perspective. In the past, 

studies have shed light on the cumulative and persistent nature of technological specialization in 

countries (Archibugi and Pianta, 1992; Lundvall, 1992; Cantwell and Vertova, 2004), but 

recently research efforts are also frequently directed towards the process of territorial 

diversification (Kogler et al., 2013). Hidalgo et al. (2007) and Hausmann and Hidalgo (2010) 

argue that existing capabilities in countries affect their possibilities to develop new industries, 

and that these capabilities are not internationally tradable. Hausmann and Klinger (2007) 

demonstrate that countries tend to expand their export activities by moving into export products 

that are related to their present export portfolio, and that countries with a wide range of related 

export products have more opportunities to deploy their capabilities into new related export 

products. 

Economic geographers have claimed that the urban or regional scale might be even more 

important for this process of related diversification (Boschma et al., 2013), as many capabilities 

do not move easily within countries as well (Neffke 2009). In this context, Maskell and 

Malmberg (1999) point to the significance of ‘localized capabilities’, which are associated with 

a particular local knowledge base and institutional context. As regions accumulate specific 

competences, these offer additional learning opportunities for local organizations and lower 

search costs for new knowledge in similar fields. Consequently, search behavior for new 

knowledge tends to be myopic and localized, both in cognitive and geographical terms (Lawson, 

1999; Maskell and Malmberg, 2007). Such geographically localized learning is embedded in 

local institutions, like social conventions that create mutual understanding between local agents 

and make them interact and learn (Storper, 1995; Gertler, 2003). These ‘localized capabilities’ 
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are regional intangibles assets with a high degree of tacitness that are difficult to replicate in 

other places. 

Only very recently, there has been a growing awareness that these geographically localized 

capabilities also operate as a key source of technological diversification (Boschma and Frenken, 

2011). Technological diversification is accompanied with high risks and switching costs because 

the capabilities of firms and their embeddedness in the local environment clearly limit the 

possibilities to move in completely different technology sectors and markets. Therefore, usually 

when firms diversify into new technologies and products, they will stay close to their existing 

capabilities (Penrose, 1959; Teece et al., 1994; Antonelli, 1995; Breschi et al., 2003; Piscitello, 

2004), and remain in the same location where they can more easily draw on related capabilities 

(Frenken and Boschma, 2007; Buenstorf and Guenther, 2011). There is strong evidence from 

longitudinal studies on industries that many successful entrepreneurs in new industries do 

exploit regional competences they previously acquired in technologically related industries 

(Klepper, 2007; Buenstorf and Klepper, 2009), in particular during the infant stage of the 

industry (Boschma and Wenting, 2007). It is also likely that new industries recruit skilled labour 

from local related industries and benefit from that, as the local supply of related skills enables 

easier matching of labour and enhances learning processes (Eriksson, 2011). 

A large body of descriptive studies has demonstrated that new local industries are indeed rooted 

in related regional activities (see e.g. Chapman, 1991; Glaeser, 2005; Bathelt et al., 2011). 

Recently, more quantitative studies (Neffke et al., 2011; Boschma et al., 2013) have focused on 

this process of related diversification in a large number of regions in countries like Sweden and 

Spain over a long period of time. These studies found systematic evidence that new industries 

are more likely to enter a region when these are technologically related to other industries in that 

very region. Another interesting finding is that an existing industry has a lower probability to 

exit a region when that industry is technologically related to other industries in the region. This 

latter finding is as expected, considering that these industries are more centrally positioned and 
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more fully embedded in the local networks of related industries, and because they are better 

capable of securing their vested interests through their strong ties with other local stakeholders, 

including policy makers (Hassink, 2010). 

In essence, high costs prevent regions to build completely new industries from scratch and to 

abandon existing industries that are deeply rooted locally. Thus it is not surprising that empirical 

studies find that the rise and fall of industries in regions is subject to a path-dependent process, 

which is driven by the degree of technological relatedness with other local industries. This also 

explains why the industrial structure in regions is most likely technologically cohesive; 

something that tends to persist over time despite the fact that industries come and go (Rigby and 

Essletzbichler, 1997; Neffke et al., 2011; Rigby, 2012; Essletzbichler 2013). It is not the lack of 

industrial dynamics, but precisely the actual occurrence of (quite regular patterns of) industrial 

dynamics that makes the techno-industrial structure of regions rather cohesive. This is mainly 

due to the exit or loss of existing industries, which tends to lower variety but increases related 

variety in regions, as more unrelated industries are more likely to disappear. Although the entry 

of new industries injects new variety into regions, this will not concern just any industry, but 

rather industries that are technologically related to other regional industries (Neffke, 2009). 

The studies on related diversification briefly mentioned above have focused on industrial 

dynamics in regions, and how the degree of technological relatedness with existing regional 

industries impacted on the rise and fall of industries. While providing important insights, these 

studies on regional diversification also suffer from two theoretical shortcomings. First, they 

have neglected features of cities like population density and technological specialization of 

cities that may affect the diversification process, as emphasized in the agglomeration economies 

literature. Second, although these studies argue that regional diversification is driven by 

technological relatedness, they analyze this process by means of the rise and fall of industries in 

regions. However, it would be more plausible to analyze related technological diversification in 

cities by means of technological dynamics instead of industrial dynamics, as a study on the rise 
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and fall of technological knowledge in cities would establish a more direct link between related 

diversification and its underlying technological nature. 

Therefore, this paper analyzes whether the rise and fall of inventions, or more precisely, the 

entry and exit of patent technology classes in cities is conditioned by the existing set of 

technological knowledge at these metropolitan areas. It is expected that technological 

relatedness is a key driving force behind technological change in cities. In addition, it is also 

expected that also other more general features of cities such as population density and 

technological specialization might affect the process of technological diversification in cities. To 

test this, we investigate the evolution of patent portfolios in 366 U.S. cities for the period 1981-

2010. 

 

3. Constructing the dataset 

Patents and patent statistics encompass an incredible wealth of information with the potential to 

facilitate a multitude of approaches in the investigation of knowledge creation and diffusion 

processes (Scherer, 1984; Griliches, 1990; Jaffe and Trajtenberg, 2002).  Patent statistics are 

considered a ‘noisy’ indicator when utilized as an overall measure of economic and inventive 

activity mainly because patented inventions do not represent all forms of knowledge production 

with an economy and thus certainly do not capture all produced knowledge (Pavitt, 1985; 

Griliches, 1990). Nevertheless, if the focus is on economic valuable technical knowledge that 

pertains to inventions of utility, patents provide an excellent opportunity for the study of 

technological change.  For example, more recently patent data have been utilized to study the 

evolution of technologies by taking advantage of the largely unexploited information of 

technology classes that are listed in patent documents (Fleming and Sorenson, 2001; Nesta, 

2008; Quatraro, 2010; Strumsky et al., 2012).  Following this lead, the aim of our analysis is to 

extend this approach and empirically test how the presence of, and relatedness among patent 

classes shapes technological change in an urban setting. Specifically, the goal is to outline a 
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model that describes the emergence, as well as the exit, of new technologies in U.S. 

metropolitan areas from 1981 to 2010. 

There are several patent databases that are publicly available for research purposes. Two 

prominent examples, are the “Patent and Citations Data” of the National Bureau of Economic 

Research (Hall et al., 2001) and the “Patent Network Dataverse” from the Institute for 

Quantitative Social Science at Harvard University (Lai et al., 2011).  The United States Patent 

and Trademark Office (USPTO) served as original data source for both of these, and further 

provides supplement information, i.e. “the USPTO Harmonization of Names of Organizations 

Data File” (USPTO, 2010), that allowed for an extension of these databases, which are utilized 

in the present study. To facilitate an analysis pertaining to technological change in U.S. cities, 

individual patent documents were allocated to one of 949 Core Based Statistical Areas (CBSAs) 

were applicable based on the first inventor’s residency record (OMB, 2010).  For more recent 

records this was an effortless task due to the availability of ZIP codes.  However, for some of 

the older records in the available patent databases, it was necessary to use the geographical 

correspondence engine available through the Missouri Census Data Center, in order to link 

inventor records to their respective cities of residency at the time the invention was developed.  

It was then deemed to be reasonable to only focus on the 366 Metropolitan Statistical Areas 

(MSAs) rather than the whole population of cities that also includes micropolitan areas, simply 

because MSAs house well over 90% of all patented utility invention in the U.S. over the past 

three decades.  In order to produce results that reflect the real timing of inventive activity, and 

thus the entry and exit of technologies in cities, all indicators that were developed in the dataset 

subsequently are based on the application rather than on the grant dates listed in the original 

patent documents.  This is also mainly to avoid time skewed results due to the continuously 

increasing time-lag from the date of invention and filing to the grant date over 30-year time 

frame. 
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Patents are classified into one or more distinct technology classes that reflect the scope of the 

approved claims listed in a patent document.  Based on the available data, there are 438 main 

patent classes, i.e. technology codes that utility patents have been assigned to by the USPTO 

over the past three decades. It should be noted that this refers to the number of patent specific 

codes that were up to date by end of 2010 rather than all codes that the USPTO has ever utilized 

since it was established more than 200 years ago. In essence, the USPTO redefines classes, adds 

new ones, and sometimes, although rarely, even abandons existing ones, on an ongoing basis. 

All of this is documented in the monthly ‘classification orders’ that are issued by the USPTO, 

indicating changes to the definition of the classification system at a given time. The advantage 

of this continuous process is that it provides a consistent set of technology classes into which 

patents are placed, something essential in an investigation that relies on data collected over 

prolonged time period. Strumsky et al. (2012) provide a detailed account of patent technology 

codes and how these should be interpreted. The number of 438 main patent classes utilized in 

the present analysis also corresponds to the number used in other relevant studies, including 

Rigby (2012) and Kogler et al. (2013). The spatial and technology codes that have been 

constructed and identified in the patent database briefly outlined here will serve as point of 

departure for the analysis that follows. 

 

4. Indicators of relatedness and econometric model 

As explained in Section 2, we expect relatedness to be a major driving force behind 

technological change in cities over time. We argue that new technologies emerge from the 

recombination of existing technological knowledge, leading to the diversification of cities into 

technological activities that are related to their specific knowledge structure. To test these 

predictions, we follow the methodology developed and applied in recent studies by Hidalgo et 

al. (2007), Neffke et al. (2011),  Rigby (2012) and Boschma et al. (2013). First, we construct a 

so-called technology space in which we measure the degree of relatedness between all 
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technologies. Second, we determine the relatedness between new and disappearing technologies 

and the pre-existing technological knowledge structure of cities, which we define as relatedness 

density (density of related technologies). We use USPTO patent data to regress the entry and 

exit of technological activities in U.S cities during the period 1976-2010 on the degree of 

technological relatedness of these activities with the existing ones in cities.  

 

4.1. The technology space 

To measure the relatedness between technologies and draw the resulting technology space, we 

follow the product space framework proposed by Hidalgo et al. (2007). The product space is a 

network-based representation of the economy, where the nodes define product categories and 

the ties between them indicate their degree of relatedness. The main idea developed by Hidalgo 

and his colleagues to capture relatedness is to look at how often two products are exported by 

countries. Two products are then considered to be related if they are co-exported by many 

countries, because they are assumed to require the same capabilities following the reasoning 

outlined in detail above.  

Using this framework, we construct the technology space, which is a network-based 

representation of the relatedness between all the technologies that can be found in the domestic 

patent portfolio of the United States from 1976 to 2010. In this n*n network, each node i (i 

=1,…,n) represents a specific technological class. Applying the measure to the 3-digit USPTO 

main patent classes (Hall et al., 2001), we are able to map the degree of relatedness between 438 

different technological classes. For instance, one of the biggest nodes in this network represents 

the technological class 800 ("multicellular living organisms"), which is a sub-category of the 

biotechnology class
1
. To compute the degree of relatedness between all these 438 technologies 

and draw the resulting network, we focus on how often two technologies are found within the 

same U.S. city, defined as a Metropolitan Statistical Area (MSA).
2
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The relatedness tji ,,ϕ between each pair of technologies i and j is computed by taking the 

minimum of the pair-wise conditional probabilities of cities patenting in one technological class 

i given that they patent in another technological class j during the same period. To avoid the 

noise induced by negligible patenting activity, we only consider the primary technological 

classes listed on patent documents in which cities have a revealed comparative advantage 

(RCA), as proposed by Hidalgo et al. (2007).  

( ) ( ){ }
titjtjtitji RCAxRCAxPRCAxRCAxP ,,,,,, |,|min=ϕ                                          (1) 

where a city c has a RCA in technology i in time t if the share of technology i in the city's 

technological portfolio is higher than the share of technology i in the entire U.S. patent portfolio. 

More formally, 1)(, =iRCA tc  if:    

 

1
)(/)(

)(/)(

,,

,,
>
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∑

c i tcc tc

i tctc

ipatentsipatents

ipatentsipatents
                                                     (2) 

 

We compute the relatedness tji ,,ϕ between each pair of technologies i and j for 7 periods of 5-

years, from 1976 to 2010. As presented in Table 1, the correlation between these 7 matrices of 

relatedness is very high, indicating that technological change is a slow, gradual, and path 

dependent process. Figure 1 provides a visual impression of the technology space based on the 

average degree of relatedness for the entire period 1976-2010. From this graph, it is clear that 

the different technological classes tend to form interconnected groups that closely corresponds 

to the classification
3
 in six main technological areas (Mechanical, Chemical, Drugs and Medical, 

Electrical and Electronic, Computers and Communications, Others) as proposed by Hall et al. 

(2001).  
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Figure 1. The U.S. technology space (1976-2010) 

  

Notes: The "technology space" is constructed in a similar fashion than the "product space" proposed by Hidalgo et 

al. (2007). Each node (n=438) represents a patent technology class (see Hall et al., 2001), and the links between 

these patent classes indicate their technological relatedness.   
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Table 1. Change in relatedness between technologies (1976-2010) 

 1976-1980 1981-1985 1986-1990 1991-1995 1996-2000 2001-2005 2006-2010 

1976-1980 1.000 - - - - - - 

1981-1985 0.800 1.000 - - - - - 

1986-1990 0.750 0.798 1.000 - - - - 

1991-1995 0.725 0.768 0.836 1.000 - - - 

1996-2000 0.711 0.740 0.802 0.852 1.000 - - 

2001-2005 0.690 0.720 0.782 0.825 0.868 1.000 - 

2006-2010 0.597 0.638 0.688 0.702 0.735 0.773 1.000 

 

As a robustness check, however, we will also verify whether the econometric results hold for 

alternative measures of relatedness. First, we constructed similar network matrices of the 

technology space by measuring relatedness through normalized co-occurrences. Following i 

Cancho and Solén (2001) in the context of words co-occurence within sentences, we consider 

that technological classes are related when they co-occur more than one can expect by chance 

(under assumption of independence, i.e. when pij > pipj). Second, we constructed a relatedness 

matrix where technological classes are related if they are listed in the same (2 digits) sub-

category
4
 of the patent classification proposed by Hall et al. (2001).  

 

4.2. Relatedness density of U.S. cities 

To analyze how relatedness influence technological change within cities, we need to construct a 

city-technology level variable
5
 that indicates how close a potential new technology is to the 

existing technological portfolio of a given city. This idea is operationalized by the density index 

(Hidalgo et al., 2007), which measures in our case the proximity of a new technology to the 

existing set of technologies in a given city. More formally, the density around a given 

technology i in the city c in time t is computed from the technological relatedness
6
 of technology 

i to the technologies in which the city c has a RCA in time t, divided by the sum of 

technological relatedness of technology i to all the other technologies in the U.S. in time t : 
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                                                              (3) 

By construction, this relatedness density variable lies between 0 % and 100 %. A city-

technology level density equal to 0 % indicates that there is no technology related to technology 

i in the city c, while a value of 100 % indicates that all the technologies related to technology i 

belong to city c's technological portfolio. To take a concrete example, the density around the 

technological class "Semiconductor Devices" (class 438) in the Atlanta metropolitan area
7
 was 

equal to 52% during the period 1981-1985. In fact, the technological class "Semiconductor 

Devices" was related to 34 other classes in total, and 18 of these 34 classes belonged to Atlanta's 

technological portfolio at that time. In the next period (1986-2010), class 438 actually emerged 

in Atlanta, which follows the expectation that the density of related technologies shapes 

technological change in cities. 

As figure 2 shows, a strong and positive relationship seems to exist between relatedness density 

and the emergence of new technologies in cities. To draw figure 2, we plotted the average 

density values and the rate of entry of new technologies for each of the 366 cities. The rate of 

entry is given by the sum of entries of new technologies in a city from 1986 to 2010, divided by 

total number of possible entries during this period. For instance, one of the metropolitan area 

with the highest rate of entry is the Greater Boston area
8
. On average, at each of the six 5-year 

periods, 20 new technologies entered, while 80 could have entered. This indicates a probability 

of entry of about 25% while the average rate of entry in American cities is about 9%
9
. The 

average density around these potential technologies was also about 25%. Figure 2 shows that 

there is a very high positive correlation between the level of relatedness density and the 

probability of entry. Cities that have a more diverse technological portfolio and that have 

competences in core technologies (i.e. at the core rather than at the periphery of the 
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technological space displayed in figure 1) seems to renew themselves more quickly over time. 

But of course, the Greater Boston area is a rich metropolitan area, which hosts very productive 

research universities, and also scores high in term of human capital (Glaeser, 2005). Therefore, 

to test the relationship between relatedness and technological change, one has to control for city 

and technology time variant and time invariant characteristics. This is the purpose of the 

econometric framework presented further below.  

 

Figure 2. Relatedness and technological change in U.S. cities (1981-2010) 

 

 Notes: Each dot represents one of the 366 U.S. cities (MSA). The rate of entry represents the number 

 of new technologies that entered a city’s technology space divided by the total number of possible 

 entries. Average density is the average percentage of related technologies in the city.  

 

4.3. Econometric specifications  

We want to estimate how relatedness influences technological change at the city level. 

Therefore, we regress the emergence of new technologies on their degree of relatedness with the 

technological portfolio of cities, which is captured by the relatedness density variable. The basic 

econometric equation to be estimated can be written as follows: 
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tcitictitctcitci TechnoCityDensityEntry ,,1,31,21,,1,, εαψφβββ ++++++= −−−               (4) 

where the dependent variable 1,, =tciEntry  if a technology i that did not belong to the 

technological portfolio of city c in time t-1 enters its technological portfolio in time t, and 0 

otherwise. The key explanatory variable 1,, −tciDensity  indicates how related the potential new 

technology i is to the pre-existing technological set of capabilities of city c. 

1, −tcCity
 
is a vector that summarizes a range of observable time-varying city characteristics

10
. 

We constructed variables like the number of employees in a city (employment), the number of 

inhabitants by square meters (population density)
11

, the ratio of inventors to employees 

(inventive capacity), the growth rate of the number of inventors (MSA technological growth 

rate), and the economic wealth of a city (income per employee)
 12

. The variable technological 

specialization of city c has been measured by the average location quotient weighted by the 

number of patents: 

 

∑=
i

ci

c

ci
c LQ

P

P
tionSpecializa                                                                                                    (5) 

 

where Pci denotes the number of patents of city c in class i, Pc the total number of patents of 

city c, and LQ the location quotient of technology i in city c. 

1, −tiTechno  is a vector that summarizes a range of observable time-varying technology 

characteristics. First, we take the total number of inventors (Nb. Inventors) computed at the 

technology level to control for technology size, as technologies that involve many inventors are 

more likely to enter any city by chance. We included two variables to account for technology 

age and the expansion/extraction of technological opportunities, by using the year in which a 

technological class has been officially established by the USPTO (date established), and the 

growth rate of the number of inventors patenting in a given technology class (Tech. Class 
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growth rate). As concentration of inventive activities could be more conducive to related 

technological diversification, we also measured the average location quotient weighted by the 

number of patents (technological concentration): 

∑=
c

ci

i

ci
i LQ

P

P
ionConcentrat                                                                                                    (6) 

 

where Pci denotes the number of patents of class i in city c, Pi the total number of patents of 

class i, and LQ the location quotient of technology i in city c.  

Finally, cφ  is a city fixed effect, iψ  is a technology fixed effect, tα  is a time fixed effect, and 

tci ,,ε  is a regression residual.  

Therefore, the baseline econometric model used is a three-way fixed-effects model, to take into 

account omitted variable bias at the city and technology levels, assuming that these omitted 

variables are constant over time. We estimate equation (4) by using a linear probability (OLS) 

regression
13

. cφ  , iψ  and tα  fixed effects are directly estimated by including dummy variables 

for each city, technology and time period that compose our panel. As extensively discussed by 

Wooldridge (2003) and Cameron et al. (2011) standard errors should be adjusted for clustering 

when the errors are correlated within groups of observations, such as cities and technologies in 

our case. Therefore, all the regression results presented in this paper are clustered at the city and 

technology level
14

. 

Our panel consists of data for 366 cities (MSAs), 438 technologies (patent technological classes 

at the 3-digits level) over the period 1976-2010. We average the data
15

 over non-overlapping 

five-year periods (1976-1980,..., 2006-2010), denoted by t. To avoid potential endogeneity 

issues, all the independent variables are lagged by one period
16

, so that we have 6 observations 

per city-technology pair, resulting in a balanced panel with 961,848 observations
17

. Table 2 

provides some summary statistics of the variables used in the econometric analysis
18

.  

Table 2. Summary statistics 
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Variables Obs Mean Std. Dev. Min Max 

Entry 748,458 .092585 .2898502 0 1 

Exit 213,390 .3654717 .4815633 0 1 

Relatedness density                              [Hidalgo et al.] 961,848 21.58084 29.81881 0 100 

Relatedness density                            [Co-occurrence] 961,848 32.84199 28.20259 0 100 

Relatedness density                                    [Hall et al.] 961,848 29.96201 28.47284 0 100 

Employment                                                        [city] 961,848 269896 648163.6 2630.2 8538557 

Population density                                               [city] 961,848 239.9645 289.9026 3.59798 2790.44 

Inventive capacity                                                [city] 961,848 .19754 .21342 0 3.5763 

Technological specialization                               [city] 913,668 15.80558 13.30246 1.30188 63.62291 

MSA technological growth rate                          [city] 904,376 .0794336 .3963024 -.8743017 .962963 

Income per employee                                          [city] 956,592 29.05074 10.86576 10.374 93.57 

Nb. Inventors                                                  [techno] 961,848 1542.409 2484.688 0 27984 

Technological concentration                           [techno] 913,902 9.756013 11.46718 1.388236 68.73915 

Date established                                              [techno] 961,848 1955.249 32.97904 1899 2009 

Tech. Class growth rate                                  [techno] 896,700 .0948035 .4865253 -.9944946 2.333333 

Note: In the econometric estimations presented in the paper, employment, income per employee 

and Nb. Inventors have been log-transformed. 

 

5. Empirical results 

In this section we present the econometric results of the impact of relatedness on technological 

change in U.S. cities from 1981 to 2010. We analyze the probability of entry, but also the 

probability of exit of patent technology classes in metropolitan areas. 

5.1. Do cities diversify into related technologies? 

Table 3 presents the results for the estimation of equation 4. The baseline model (model 1) 

regresses the entry of a given technology in a given city on the density of links around this 

technology in this city (lagged by one period). Column 1 presents estimation results from pooled 

OLS
19

, while column 5 provides coefficient estimates from the three-way fixed effects model 

(F.E.) with all the city and technology variables. In all the different specifications, relatedness 

density has a positive and significant effect. It indicates that relatedness density has been a 

crucial driving force behind technological change in U.S. cities for the last 30 years. Relatedness 

density is not only statistically, but also economically significant. If the level of density for a 

given technology in a given city increases by 10 percent
20

, the probability of entry of this 

technology in this city during the next period increases by about 55 percent (0.051/0.092) in the 
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simplest specification (Table 3; column 1). The economic impact of relatedness density remains 

stable across the different econometric specifications.  

Table 3. Emergence of new technologies in U.S. cities (1981-2010) 

Dependent variable is:    

Entry t 

Model 1 

Rel. density 

Model 2 

City variables 

Model 3 

Tech. variables 

Model 4 

Full model 

Model 5 

Full model (F.E.) 

Relatedness density t-1 
0.00515979 **   0.00373407 ** 0.00271463 ** 

(0.00012770)   (0.00014135) (0.00016884) 

      

Log (Employment) t-1 
 0.04934166 **  0.03611889 ** 0.04633250 ** 

 (0.00286818)  (0.00247147) (0.00782869) 

      

Population density t-1 
 0.00001106  0.00002520 ** -0.00021341 ** 

 (0.00000997)  (0.00000843) (0.00003836) 
      

Inventive capacity t-1 
 0.07718815 **  0.03883926 ** -0.08487966 ** 

 (0.01294204)  (0.0078352020) (0.01505564) 
      

Tech. Specialization t-1 
 -0.00089296 **  -0.00047160 ** 0.00005120 

 (0.00011548)  (0.00009315) (0.00011022) 
      

MSA growth rate t-1 
 0.04443962 **  0.04032813 ** 0.00865397 ** 

 (0.00355534)  (0.00353667) (0.00298386) 

      

Log (Income per employee) 

t-1 

 -0.07584685 **  -0.10127439 ** 0.00368879 

 (0.00441610)  (0.00538561) (0.01663469) 

      

Log (Nb. Inventors) t-1 
  0.02658895 ** 0.02324554 ** 0.00159990 

  (0.00197752) (0.00183672) (0.00246612) 
      

Tech. concentration t-1 
  -0.00102840 ** -0.00010693 0.00041990 * 

  (0.00014936) (0.00011541) (0.00016760) 
      

Date established t-1 
  -0.00056684 ** -0.00042520 ** -0.00330620 ** 

  (0.00007012) (0.00005456) (0.00017699) 
      

Tech. growth rate t-1 
  0.01423964 ** 0.02183910 ** 0.01141729 ** 

  (0.00233334) (0.00285492) (0.00260757) 

      

Constant 
0.09258502 ** 0.09296771 ** 0.09019069 ** 0.08909252 ** 0.11108572 ** 

(0.00194271) (0.00378306) (0.00398429) (0.00183778) (0.01040890) 

      

City F.E.           No No No No Yes 

Technology F.E. No No No No Yes 

Period F.E.          No No No No Yes 

R2 0.11 0.04 0.02 0.13 0.16 

N 748,458 653,660 656,618 572,550 572,550 

Notes: The dependent variable entry = 1 if a given technology (n = 438) enters in the technological portfolio of a 

given city (n = 366) during the corresponding 5-years window (n = 6), and 0 otherwise. The independent 

variables are centered around their mean. Coefficients are statistically significant at the ∗p <0.05; and ∗∗p <0.01 

level. Heteroskedasticity-robust standard errors (clustered at the city and technology level) in parentheses. 

 

 

In order to verify that our results are not affected by omitted variables bias, we control for 

important city and technology characteristics. A second model (model 2), reported in column 3 

includes variables that capture the heterogeneity of cities and that might influence technological 

change. As expected, the economic size of cities (employment), the ratio of inventors to 

employees (inventive capacity) and the growth rate of the number of inventors (MSA 
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technological growth rate) play a positive and significant role on the entry of new technologies. 

Population density has also a positive impact, but the coefficient is not statistically significant. 

Our results also confirm the idea that cities characterized by a very specialized technological 

structure (technological specialization) are less prone to technological change. A more 

counterintuitive finding, however, is the negative role played by the economic wealth of the city 

(income per employee). It might be explained by the fact that once one included the variables 

discussed above, income per employee does not reflect the inventive capacity of cities. A third 

model (model 3), reported in column 4 includes variables that capture the heterogeneity of 

technological classes that might influence their general entry in cities. It is not surprising that 

large technological classes, i.e. with a large pool of inventors are more likely to enter in any 

U.S. metropolitan area (Nb. Inventors), especially if the production of knowledge in this 

technological class is growing (Tech. Class growth rate). On the contrary, older technologies 

(date established) and technologies that are very much concentrated in space are significantly 

less likely to be developed by many different cities in the future. Overall, almost all the 

variables explain an important part of the variation in terms of entry of new technologies, and 

therefore they are important predictors of technological change.  

In the full model specification (model 4) we tested whether the effect of relatedness density was 

affected by these important features of technologies and cities. Column 5 presents estimation 

results from a pooled OLS, while column 6 presents the complete estimations results from 

equation 4, i.e. including relatedness density, city and technology time-varying variables, and 

fixed effects for cities, technologies and time. Interestingly, the coefficient for density remains 

highly significant, but its magnitude slightly decreases with the addition of these control 

variables. When fixed effects are included, the rate of entry increases by approximately 30 

percent for a 10 percent increase in the level of density in city-technology pairs
21

 (0.027/0.089).  

5.2. Robustness analysis  
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In Table 4, we present alternative econometric specifications to test the robustness of the 

relationship of interest, i.e. the effect of relatedness density on technological change in cities. 

We run three different sets of robustness checks: (i) using alternative measures of technological 

relatedness as independent variables, (ii) excluding observations with extreme values (i.e. 

outliers), and (iii) using alternative econometric methods to the linear probability model. The 

results reported in Table 4 shows that the positive and significant impact of relatedness density 

on the probability of entry is robust to these alternative specifications.  

First, we verify that our results are not driven by the technological relatedness measure we used 

(Table 4.; col. 1 to col. 2). Therefore, we estimated equation 4 (see specification in Table. 3; col. 

5) by using the Hall et al. (2001) patent classification, and a normalized co-occurrence analysis. 

The coefficient
22

 on relatedness density is smaller in those alternative specifications, but remains 

statistically and economically significant. When density increases by 10 percent, the probability 

of entry raises by approximately 15 percent using the Hall et al. (2001) classification, and 20 

percent using co-occurrences analysis.  

 

Table 4. Entry of new technologies in U.S. cities - Robustness check 

Dependent 

variable is:                 

Entry t 

Alternative relatedness 

measures 
Outliers analysis GLM specifications 

Model COOC      

[Fixed Effects] 

Model USPTO   

[Fixed Effects] 

w/o                          

top density#   

w/o                          

top cities†  

w/o                           

top techno‡ 

Logistic         

regression 

Probit           

regression 

Density t-1   0.00224635 ** 0.00264742 ** 0.00239119 ** 0.0216442 ** 0.0125646 ** 

[baseline]   (0.00016733) (0.00018286) (0.00017202) (0.0002433) (0.0001334) 

Density t-1 0.00184525 **       

[COOC] (0.00016940)       

Density t-1  0.00142651 **      

[USPTO]  (0.00014815)      

City controls Yes Yes Yes Yes Yes Yes Yes 

Tech. controls Yes Yes Yes Yes Yes Yes Yes 

City F.E.           Yes Yes Yes Yes Yes No No 

Technology F.E. Yes Yes Yes Yes Yes No No 

Period F.E.          Yes Yes Yes Yes Yes Yes Yes 

R2/Pseudo R2 0.15 0.15 0.11 0.15 0.14 0.19 0.19 

N 572,550 572,550 495,077 515,350 514,091 572,550 572,550 

Notes: The dependent variable entry = 1 if a given technology (n = 438) enters in the technological portfolio of a 

given city (n = 366) during the corresponding 5-years window (n = 6), and 0 otherwise. Coefficients are 
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statistically significant at the ∗p < 0.05; and ∗∗p <0.01 level. Heteroskedasticity-robust standard errors (clustered 

at the city-technology level for the logistic and probit regression; clustered at the city and technology level in all 

other regressions) in parentheses. 
#  

The top 10% of the city-technology pairs with the highest density are dropped.  
†   

The top 10% of the cities that experienced the highest number of technology entry are dropped.  
‡   

The top 10% of the technologies that entered cities the most frequently are dropped. 

 

Second, we check that our results were not driven by extreme values at the top decile level (tab 

4.; col. 3 to col. 5). Using our baseline measure of technological relatedness (Hidalgo et al., 

2007) we estimated equation 4 (see specification in tab. 3; col. 5) by removing the top 10% of 

the city-technology pairs with the highest density (tab 4.; col. 3), by removing the top 10% of 

the cities that experienced the highest number of technology entry (tab 4.; col. 4) and finally by 

removing the top 10% of the technologies that entered cities the most frequently (tab 4.; col. 5). 

None of these alternative specifications with altered data samples seem to substantially affect 

the statistical or economic effect of relatedness density.  

Third, we estimated equation 4 with generalized linear models, i.e. logit and probit (tab. 4; col. 6 

and col. 7). In the paper, we focused on linear probability models but since the dependent 

variable (entry) is dichotomous, we also check that our results are robust to traditional GLM 

specifications. The last two columns in Table 4 show results from logistic and probit regressions 

and they confirm the positive and significant impact of density of related technologies on the 

probability of entry.    

The alternative measures of technological relatedness, but also estimates from data samples 

without extreme values and alternative econometric models all support our key findings. On top 

of that we also estimated models by using density from weighted relatedness matrices, by 

extending the entry events to the secondary classes listed on patents, and by constraining the 

entry events to technologies in which cities have a comparative advantage
23

. These additional 

analyses do not affect the results presented here and suggest that our statistically and 

economically significant positive relationship between relatedness density and the probability of 

entry is robust to several key econometric specifications.  
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5.3. Does relatedness density prevent the exit of technologies? 

But technological change is not only about entry of new technologies within cities. In fact, 

technological change can be understood as a process of creative destruction in which the exit of 

existing technologies also contributes to change the technological landscape of cities. Table 5 

reports estimation results where the dependent variable "exit" is used instead of the dependent 

variable "entry". The results indicate that relatedness density has a negative and significant 

impact on the exit of technologies. If the level of density for a given technology in a given city 

increases by 10 percent, the probability of exit of this technology in this city during the next 

period decreases by about 8 to 17 percent, depending on the econometric specifications. The 

results concerning city and technology characteristics are also consistent with our expectations. 

Cities with a high economic potential are more likely to prevent the exit of technologies, while 

economically important technologies are less likely to exit in all the cities. What should be 

noticed, however, is that the relative economic importance of relatedness density compared to 

city and technology characteristics seems to be smaller to explain variations in the exit than the 

entry of technologies.  

 

Table 5. Exit of technologies in U.S. cities (1981-2010) 

Dependent variable is:    

Exit t 

Model 1 

Rel. density 

Model 2 

City variables 

Model 3 

Tech. variables 

Model 4 

Full model 

Model 5 

Full model (F.E.) 

Relatedness density t-1 
-0.00646272 **   -0.00384300 ** -0.00287999 ** 
(0.00013398)   (0.00022311) (0.00021200) 

      

Log (Employment) t-1 
 -0.10857437 **  -0.06943327 ** -0.08359852 ** 

 (0.00614202)  (0.00626204) (0.01651044) 

      

Population density t-1 
 -0.00003837 *  -0.00006553 ** -0.00011335 * 

 (0.00001950)  (0.00001364) (0.00004718) 

      

Inventive capacity t-1 
 -0.16931248 **  -0.11188970 ** -0.02739567 ** 
 (.05336078)  (.02941733) (.00841076) 

      

Tech. Specialization t-1 
 0.00437970 **  0.00180088 ** -0.00056492 
 (0.00061919)  (0.00040634) (0.00042826) 

      

MSA growth rate t-1 
 -0.16187457 **  -0.15036339 ** -0.01352593 
 (0.00828661)  (0.00882790) (0.00966971) 

      

Log (Income per 

employee) t-1 

 0.22689471 **  0.31767021 ** 0.04962913 

 (0.01306891)  (0.01236049) (0.03082188) 

      

Log (Nb. Inventors) t-1 
  -0.04660531 ** -0.09098814 ** -0.05541312 ** 

  (0.00593058) (0.00406299) (0.00624571) 
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Tech. concentration t-1 
  0.00418752 ** -0.00137922 ** -0.00200006 ** 

  (0.00047497) (0.00043938) (0.00058743) 

      

Date established t-1 
  -0.00018739 0.00022470 * 0.00233776 ** 

  (0.00011545) (0.00010297) (0.00022809) 

      

Tech. growth rate t-1 
  -0.06741134 ** -0.05102216 ** -0.01451667 * 
  (0.00590281) (0.00701074) (0.00652948) 

      

Constant 0.36547167 ** 0.36534949 ** 0.36590647 ** 0.36470402 ** 0.54798934 ** 
 (0.00609779) (0.00841466) (0.01460965) (0.00426248) (0.03747886) 

City F.E.           No No No No Yes 

Technology F.E. No No No No Yes 

Period F.E.          No No No No Yes 

R2 0.19 0.15 0.03 0.25 0.30 

N 213,390 202,584 201,286 191,313 191,313 

Notes: The dependent variable entry = 1 if a given technology (n = 438) exits the technological portfolio of a given 

city (n = 366) during the corresponding 5-years window (n = 6), and 0 otherwise. The independent variables are 

centered around their mean. Coefficients are statistically significant at the ∗p < 0.05; and ∗∗p <0.01 level. 

Heteroskedasticity-robust standard errors (clustered at the city and technology level) in parentheses. 

 

6. Discussion and Concluding Remarks  

In this paper, we found evidence that the rise and fall of technological knowledge, as proxied by 

the entry and exit of patent technology classes in cities, is conditioned by the existing 

technological knowledge base of cities. Analyzing the long-term evolution of patent portfolios 

of 366 U.S. cities during the period 1976-2010, we found that a new technology is more likely 

to enter a city when technologically related to other technologies in that city, and an existing 

technology had a higher probability to exit a city when it was not, or poorly related, to other 

technologies in that city. These results indicate that technological relatedness was a driving 

force behind technological change in U.S. cities in the last 30 years, and that the long-term 

evolution of the technological urban landscape is subject to path dependency. 

These findings call for further research. As new technologies emerge systematically in cities 

with related technologies, this suggests that new technologies are all recombinations of existing 

technologies. While this might be true for a large fraction of new technologies, it is not 

necessarily true for all of them. In fact, some new technologies (patents) are truly novel, with 

few or no related technologies on which these built during their time of emergence (Dahlin and 

Behrens, 2005; Castaldi and Los, 2007; Krafft et al., 2011). From a geographical perspective, it 

would be interesting to investigate where radical technologies and new technological trajectories 
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come into being. For instance, do these need highly diversified cities, instead of technologically 

specialized cities (Duranton and Puga, 2000)? 

Another issue to be taken up in future research is whether new patents actually build on related 

patents in cities. By looking at the set of (related) patents at the city level, we did not investigate 

the extent to which a new patent that is new for a city actually cites other patents in related 

technology classes from the same city. This would provide evidence at the level of patents 

(rather than at the level of cities) that invention activity actually builds on related knowledge at 

the city level. This would also shed light on the importance of knowledge flows from other 

cities, as patents might draw on and cite related patents from other cities. 

Another issue is the selection of the relatedness indicator to study urban diversification. We 

made use of co-occurrence analysis based on the frequency of combinations of patent classes 

within the same cities. Other scholars like Leten et al. (2007), Rigby (2012) and Van der 

Wouden (2012) have used alternative indicators to measure relatedness between patent classes, 

such as patent citations. It would be important to see whether our findings would still hold when 

using such alternative measures of technological relatedness. As a robustness check, we made 

use of two alternative measures of relatedness (i.e. normalized co-occurrences and patent classes 

belonging to the same 2 digit category), and our findings with respect to relatedness density 

remained statistically significant. Other studies on regional diversification have used other 

measures of relatedness, based on the intensity of input-output linkages between industries 

(Essletzbichler 2013), or based on co-occurrence analysis of product categories either within 

plants (Neffke et al., 2011) or within countries (Boschma et al., 2013). Although these studies 

are very different in terms of their relatedness measure, the use of spatial units and 

methodologies, the time period covered, and the selection/measurement of the dependent and 

independent variables, they also found evidence of relatedness driving regional diversification. 

A final issue deserves attention in future research. In this paper, we explored the extent to which 

the entry of a new technology depends on other technologies to which it is related. However, we 
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did not explore other dimensions that might be crucial in the process of technological 

diversification, such as institutional preconditions (Strambach, 2010). In fact, such a study 

would shed light on the extent to which related technologies draw on and require similar sets of 

institutions, which could provide an additional explanation for the fact that related technologies 

tend to benefit from each other’s co-presence in cities. 
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Table A.1. Correlation matrix 

 Entry Exit Rel. D1 Rel. D2 Rel. D3 Emp. Pop. Dens Inv. Cap. Spe. TGR Income Nb. Inv Conc. Date TGR 

Entry 1.0000               

Exit . 1.0000              

Relatedness density        [Hidalgo et al.] 0.3346 -0.4395 1.0000             

Relatedness density      [Co-occurrence] 0.1933 -0.3922 0.6206 1.0000            

Relatedness density              [Hall et al.] 0.2049 -0.3686 0.6311 0.8212 1.0000           

Employment                                  [city] 0.1751 -0.3441 0.5978 0.7820 0.7388 1.0000          

Population density                         [city] 0.1052 -0.2301 0.4417 0.5504 0.5265 0.6457 1.0000         

Inventive capacity                          [city] 0.0848 -0.1147 0.3414 0.4604 0.4306 0.2587 0.2656 1.0000        

Technological specialization         [city] -0.1394 0.2807 -0.4162 -0.5813 -0.5421 -0.5682 -0.3619 -0.3565 1.0000       

MSA Technological growth rate   [city] 0.0522 -0.0755 0.1115 0.1627 0.1484 0.1415 0.0564 0.2608 -0.1329 1.0000      

Income per capita                          [city] -0.0170 0.0060 0.1514 0.2067 0.1861 0.2348 0.2028 0.3401 -0.0952 0.4873 1.0000     

Nb. Inventors                            [techno] 0.1436 -0.1652 0.3454 0.0051 0.0506 0.0219 0.0107 0.0404 -0.0034 0.0617 0.1396 1.0000    

Technological concentration     [techno] -0.1115 0.1275 -0.2715 0.0440 -0.0333 0.0060 0.0030 0.0096 0.0001 0.0232 0.0430 -0.5216 1.0000   

Date established                        [techno] -0.0124 -0.0524 -0.0150 -0.0456 0.0004 -0.0000 -0.0000 -0.0000 -0.0000 -0.0010 -0.0000 0.2026 -0.1216 1.0000  

Tech. Class growth rate            [techno] 0.0622 -0.1055 0.0969 0.0050 0.0417 0.0354 0.0141 0.0428 -0.0118 0.3242 0.2561 0.3244 -0.1613 0.1529 1.0000 

Note: To correspond with the variables used in the econometric estimations presented in the paper, employment, income per capita and Nb. Inventors have been log-

transformed before computation of the correlation matrix (Pearson correlation coefficient). 
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Endnotes 

                                                             
1
 Class 33 listed in Hall et al. (2001). 

2
 Patents were assigned to each MSA according to the residency information provided by the primary inventor of a 

patent; see section 3 for further information regarding the spatial allocation of patent documents applied in the 

present study. 

3
 Rigby (2012) also found a strong correlation between the classification of Hall et al. (2001) and a relatedness 

graph constructed from patent citations.  This is somewhat expected considering that the search process of prior art 

and the assignment of technology classes, both of which are carried out by patent examiners, are interrelated tasks; 

see Alcácer and Gittelman (2006: 778). 

4
 Hall et al. (2001) proposed 36 patent categories at 2 digits level.   

5
 In the econometric models presented in this paper, the unit of observation refers to city-technology pairs, over 

several periods of time. 

6
 To ease the interpretation of the econometric results, we dichotomize the relatedness index. In the present paper, 

we use a 5% threshold, which means that the top 5% of all technology-pairs that have the highest ji ,ϕ  are 

considered as related, while the remaining 95% are considered as unrelated. The results presented in this paper, 

however, are robust to numerous other specifications: using the valued relatedness index, but also to the 

dichotomized index when we change the threshold to 1%, 10% and 20%.  

7 Atlanta-Sandy Springs-Marietta Metropolitan Statistical Area 

8
 Boston–Cambridge–Quincy Metropolitan Statistical Area. 

9 See the mean of entry in Table 2. 

10
 We would like to thank one of the referees for pointing out important control variables at the city and technology 

level.  

11
 The original data source for county population data was the NBER (http://www.nber.org/data/census-intercensal-

county-population.html). The country land area was obtained from the 2010 Gazetteer File (see US Census at 

http://www.census.gov/geo/maps-data/data/gazetteer.html). All of these data are on the county level.  Thus we had 

to allocate counties to MSAs subsequently.  This was done by means of a table that was obtained from the Bureau 

of Economic Analysis (see: http://www.bea.gov/regional/docs/msalist.cfm). After aligning all the county data, it 

then was possible to generate population density at the MSA level for all the different time periods. 
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12

 The data source for table “CA30 Regional Economic Profiles – Earnings by place of work (thousands of dollars)” 

was the Bureau of Economic Analysis.  In order to get a per capita measure we applied the table “CA30 Regional 

Economic Profiles – Wage and salary jobs (number of jobs) from the same agency.   

13
 There is an on-going debate on whether one should use linear probability model (OLS) or non linear 

specifications (logit, probit). Our preferred specification is based on the linear probability model because it has been 

shown that the parameter estimates of non linear models might not be consistent when there are too many "0" in the 

dependent variable (King and Zeng, 2001), which is the case in this paper. Furthermore, we want to control of 

unobserved time-invariant heterogeneity using a three-way fixed effects model. Unfortunately, the statistical 

properties of the coefficients estimated from fixed effects logit models are still largely unknown in a panel with a 

small number of periods (Papke and Wooldridge, 2008). The results, however, are robust to econometric 

specifications using generalized linear models. Logit and probit specifications can be found in table 4. 

14
 To compute the adjusted standard errors, we use multi-way clustering regression techniques implemented in Stata 

with the "cgmreg" code for the linear probability model, and the "cgmlogit" command for logistic regression 

(Cameron et al., 2011). 

15
 The dummy variables, such as entry, are not averaged.  

16
 The first period is only used to construct the independent variables. 

17
 In the regression where entry is the dependent variables, we extracted a subsample from this panel based on the 

condition that the technology should not belong to the technological portfolio of the city in t-1, resulting in 748,458 

observations. 

18
 The correlation matrix is provided in Table 6. 

19
 In all pooled OLS specifications, the independent variables are mean-centered, in order to facilitate the direct 

interpretation of the results that are proposed in the text. In these specifications, the constant term reflects then the 

expected probability of entry/exit when the independent variables are set to their mean (the intercept is equal to the 

mean of the dependent variable presented in Table 2).  

20
 The coefficients provided in the table indicate the impact of a 1 unit change on the probability of entry, and the 

density variable is expressed in percentage. Therefore, when we write that the density variable increases by 10%, 

we mean by 10 points, i.e. from a level of 25% to a level of 35 % for instance. 

21
 One of the referees interestingly pointed out that the impact of density might not be equally important for small, 

medium sized and/or large cities. To explore this question, we divided the cities in our sample into 3 equal groups 

based on their number of employees. Computing standardized coefficients, we found that the impact of density is 
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equally important for medium and large cities, but slightly lower for small cities. It suggests that relatedness still 

requires some critical mass to lead to technological diversification. 

22
 We computed the standardized coefficient for the three different density measures and the coefficients are smaller 

in magnitude when using the Hall et al. (2001) classification and co-occurrence analysis than when using the 

Hidalgo et al. (2007) method.  

23
 Not reported in the paper but available upon request from the authors. 


