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The influence of cognitive, geographical and social proximity on the spatial diffusion of rDNA 

knowledge is explored using event history and panel models. 

 

 

JEL Codes: M13, O31, O32, and O34  

 

 

Keywords:  Evolutionary Economic Geography, Technology Evolution, Knowledge 

Recombination and Diffusion, Patent Analysis, General Purpose Technology, rDNA Method. 

 

 

 

 

 

 

 

 

Correspondence Address: Maryann P. Feldman, Department of Public Policy, 209 Abernethy 

Hall, University of North Carolina, Chapel Hill, United States. Email: 

maryann.feldman@unc.edu.  Authors are listed alphabetically. 

  

mailto:maryann.feldman@unc.edu


 2 

Introduction 

In December 1980, the United States Patent and Trademark Office (USPTO) issued a 

patent entitled Process for Producing Biologically Functional Chimeras (#4237224).  The patent 

covered the recombinant DNA (rDNA) technique developed by Dr. Stanley Cohen of Stanford 

University, California and Dr. Herbert Boyer of the University of California, San Francisco.  In 

the evaluation of the patent the USPTO introduced a new technology sub-class to the patent 

classification system – a relatively rare occurrence signaling the birth of a new technology. 

While most new technological innovation is incremental, certain discoveries provide 

fundamental breakthroughs that transform industrial activity and provide a platform for increased 

productivity throughout the economy.  rDNA has characteristics of a general-purpose technology 

in its ability to be incorporated with a variety of other technologies and sectors in subsequent 

discoveries (Feldman and Yoon, 2012).  Theory argues that innovative activity tends to cluster in 

regions where resources relevant to the performance and survival of firms are most abundant, 

including the presence of skilled labor and access to transportation (Krugman, 1991), proximity 

to markets and input suppliers (Baum and Haveman, 1997; Storper and Christopherson, 1987), 

the presence of universities and research organizations (Zucker et al., 1998), and cultural and 

institutional supports for entrepreneurial activity (Saxenian, 1994; Sorenson and Audia, 2000).  

Yet the influence of prior technological expertise and the ways in which information is 

incorporated into existing expertise has not been considered in a systematic way. 

This paper begins to fill an empirical gap in the understanding of both innovative clusters 

and technological change by examining one technology and its diffusion over time and 

geographic space.  Working from an evolutionary economic geography framework, we explore 

the influence of geographical proximity, social proximity and cognitive proximity on the 

diffusion of new knowledge across U.S. cities.  Our focus on Cohen-Boyer’s rDNA technology 

has the advantage that the boundaries of the technology are well defined.  The analysis is based 

on approximately 9,000 patents in the USPTO class 435/69.1, which was created in 1989 as a 

new technology class.  Since the patent for rDNA was granted to Cohen and Boyer in 1980, 

rDNA technology diffused across the United States, spawning new biotechnology firms, new 

specializations within emerging firms, and new regional clusters of biotechnology research and 

economic development.  Our results suggest that geographical proximity had little impact on the 

flow of rDNA knowledge.  Diffusion of the Cohen-Boyer technology was directed mainly by 
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social contacts developed among co-inventors and by the absorptive capacity of host cities, 

captured in the form of their knowledge cores and the cognitive proximity of those cores to the 

knowledge in class 435/69.1. 

 

Technology Evolution and Diffusion in an Evolutionary Framework 

It has become convention to characterize the history of technological change as 

comprising long periods of more or less constant incremental improvement punctuated by 

aperiodic bursts of basic discovery and innovation that usher in new knowledge systems and that 

shift parts of the economy to new planes of development (Nelson and Winter, 1982; Schumpeter, 

1911).  The temporal lumpiness of basic innovation is mirrored by its uneven geography, with 

islands of innovation emerging from the economic landscape, sometimes remote and sometimes 

connected via heterogeneous social and economic networks, that bloom and wither as economic 

agents compete within, and simultaneously shape the evolution of, the capitalist space economy. 

Schumpeter (1942) recognized that basic innovation created surges of investment activity that 

generated long cycles of economic growth and resulted in the simultaneous creative and 

destructive effects associated with innovation.  These creative gales change the technological and 

economic advantage both within, and between, places. 

Over the course of history there have been many attempts to identify and define 

technologies that are radical and to separate them from innovations that are more incremental 

(Sahal, 1981; Dosi, 1982; Nelson and Winter, 1982; Abernathy and Clark, 1985; Clark, 1985).  

Interest in breakthrough inventions focuses on their role in creating private wealth (Harhoff et 

al., 1999) while at the same time generating social benefits (Trajtenberg, 1990), but more 

fundamentally on the way in which they hold the potential to transform the economic landscape 

(Christensen 1997).  Helpman (1998) and Lipsey et al. (2005) argue that these transformative 

powers reside in the broad applicability of many breakthrough innovations that they characterize 

as General Purpose Technologies (GPT). Although the history of development of some GPT is 

well-known (see for example, Fogel, 1964; Fishlow 1965), isolating the introduction of a GPT to 

the economy and studying its subsequent diffusion across the economy has proven difficult 

(Phene et al., 2006; Kerr, 2010).  Feldman and Yoon (2012) argue that the Cohen-Boyer class of 

patents provides an example of a GPT in routine science.  To date, the factors that influenced the 

diffusion of this breakthrough technology remain largely unexplored. 
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How do we explain the inconstant geography and history of technological advance?  A 

starting point is acknowledging the difficulty of knowledge creation.  Ideas and knowledge are 

complex goods and Edison’s aphorism aside, a precise recipe for their production is unknown.  

However, with the advent of intellectual property rights protection, knowledge production has 

become increasingly commodified (Lamoreaux and Sokoloff 1996), and a critical dimension of 

competition (Lichtenberg and Philipson, 2002).  Nonetheless, the risk and the attendant high cost 

of knowledge creation cannot be borne by all firms (Audretsch et al., 2002).  The search for new 

technology is highly specialized reflecting the resources and knowledge capabilities of individual 

economic agents and their partners (Wenerfelt 1984; Barney 1991; Kogut and Zander 1992), the 

maturity of the industries within which they compete (Abernathy and Utterback 1978; Klepper 

1997), and the broader ecology of the places where they are located (Cooke et al. 1997; Morgan 

1997; Storper 1997; Gertler 2003; Asheim and Gertler, 2005). 

Spatial variations in the creation of knowledge and competitive advantage are well-

known (Feldman 1994; Maskell and Malmberg, 1999, Feldman and Kogler, 2010).  This 

heterogeneity reflects the pool of private assets and capabilities created by distinct assemblages 

of firms, workers and institutions in different locations, and by the capacity of these assemblages 

to develop localized forms of social capital (Saxenian 1994; Storper 1997; Feldman and Zoller 

2012).  In relatively thin geographical extensions of these claims the region is viewed as little 

more than the spatial analog of the strategic firm partnership.  More robust geographical models 

examine the ways in which spatial proximity increases the flow of tacit knowledge directly 

through face-to-face contact (Malmberg and Maskell 2002; Asheim and Gertler, 2005), and 

indirectly through enhancing other forms of proximity within localized clusters of economic 

actors (Gertler, 2003). 

Arguments about spatial proximity have long played a role in the diffusion of knowledge 

within geography (Hägerstrand 1953; Brown 1981) and beyond (Griliches 1957).  Recent 

empirical evidence of the localization of knowledge flows by Jaffe et al. (1993), Maruseth and 

Verspagen (2002) and Sonn and Storper (2008) reinforce those earlier claims.  At the same time, 

growing recognition of different forms of proximity and relatedness (Noteboom 2000; Boschma 

2005; Boschma and Frenken 2010) has raised questions about the role of distance in regulating 

both the creation and flow of knowledge.  Attention is increasingly directed at the role of social 

proximity and cognitive proximity in the diffusion of knowledge (Huber 2012). 
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Social proximity refers to the strength of inter-personal relationships that exist between 

individual actors (Boschma, 2005). These relationships may take a variety of forms, though they 

tend to cohere around the concept of trust borne by repeated interaction in common work-places, 

industrial organizations or related institutions.  Autant-Bernard et al. (2007) also note that social 

proximity can be developed among actors well beyond the local scale often through work-related 

collaboration, regular meetings, through conferences and trade fairs.  Once trust-based social 

relationships are in place, it is much more likely that actors will engage in interactive learning 

processes and knowledge sharing, guided by an open attitude towards communicative rationality 

rather than purely market-driven considerations (Lundvall, 1992).  Social proximity is much 

more likely to develop when actors are connected through short social chains.  Formal 

collaboration among individuals, as in the case of co-inventorship, or common employment with 

the same company, adds to the development of such short chains, that in turn enhances the 

strength of social proximity (Breschi and Lissoni, 2009). 

Cognitive proximity focuses upon the extent to which different actors, or in aggregate 

industries and regions, share common knowledge structures.  High cognitive proximity implies 

greater correspondence between knowledge sets, skills, routines and institutions of knowledge 

creation and sharing and, thus, a higher potential for absorptive capacity (Cohen and Levinthal 

1990; Noteboom 2000). Higher levels of cognitive proximity also lead to enhanced collaboration 

as well as knowledge sharing.  In similar fashion, recombinant models of technological progress 

rest on the cognitive proximity of technological subsets and of the economic agents that shape 

their integration (Weitzman, 1998; Fleming and Sorenson, 2001).  Kogler et al. (2013) and Rigby 

(2013) extend these arguments in an explicitly spatial framework. 

These different forms of proximity are finding purchase in a variety of empirical 

applications.  Thus, Breschi and Lissoni (2001 and 2004) express a good deal of skepticism 

regarding the measurement of localized knowledge spillovers, suggesting that empirical 

estimates are unreliable, at least in part, because they do not separate social from spatial 

proximity.  Maggioni et al. (2007) develop a variety of econometric models exploring knowledge 

production and co-patenting within and across European regions.  They show that geographical 

proximity is always more important than social networks measured by participation within the 

EU Fifth Framework Programme and EPO co-patent applications.  Using similar data Autant-

Bernard et al. (2007) find strong evidence of spatial and social proximity in R&D cooperation 
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across Europe.  Fischer et al. (2006) examine patent citations across European regions in an 

extended gravity model, revealing that spatial and cognitive proximity regulate knowledge flows.  

In the United States, Agrawal et al. (2008) use the knowledge production function to explore 

how spatial proximity and social proximity influence access to knowledge.  Using patent 

citations structured by MSA and the co-ethnicity of inventors, they show that the two forms of 

proximity are statistically significant and that they act as substitutes.  Strumsky and Lobo (2008) 

report that the agglomeration of inventors is more important than inventor networks in regulating 

the pace of invention in metropolitan areas.  Rigby and van der Wouden (2013) find that 

cognitive proximity trumps both spatial and sectoral proximity in this regard.  Huber (2012) 

provides an excellent summary of much of this work and reports a more nuanced set of results 

regarding the importance of the different measures of proximity operating within the Cambridge 

technology cluster. 

Specific work that relates to knowledge diffusion in the biotechnology industry outlines 

that the “growth and diffusion of intellectual human capital was the main determinant of where 

and when the American biotechnology industry developed” (Zucker et al., 1998:302).  Johnson 

and Lybecker (2012) examine knowledge flows within the biotechnology sector by means of 

patent citation analysis.  The results confirm prior findings elsewhere, i.e. that inter-firm 

knowledge transfers decrease with distance (Jaffe et al., 1993), but also provide evidence that the 

impact of physical distance has been diminishing in this sector over time. Spatial proximity is 

especially important in the early stages of an industry life cycle (Klepper, 1996), and for 

knowledge and R&D active industries in general (Audretsch and Feldman, 1996; Breschi, 1999).  

Mariani (2004) confirms that regional competencies along with localized spillovers play a more 

dominant role in the development of significant innovations in the early stages of the 

biotechnology industry life cycle compared to the more established research-intensive industry 

such as traditional chemicals. 

The biotechnology industry “is characterized by a rapid knowledge diffusion and intense 

technological competition” (Gittelman and Kogut, 2003: 369).  The link between scientific 

knowledge and innovation outputs are especially strong considering that this industry engages in 

the commercialization of scientific discoveries in the realm of basic science.  Thus, there are 

particular strong linkages between technological innovation and local scientific knowledge in the 

biotechnology industry (Cohen et al., 2002).  Studies that review the emergence of the US 
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biotechnology industry emphasize the important role of knowledge spillovers from universities 

as drivers of firm start-ups (Zucker and Darby, 1996; Zucker et al., 1998; Feldman, 2001; 

Prevezer, 2001).  Zucker and Darby (1996) found that the agglomeration of star scientists 

(defined as highly productive individuals who have discovered a major scientific breakthrough) 

in the biotechnology field directly results in a high concentration of new biotech ventures at the 

same location.  Both, Almeida and Kogut (1999) and Zucker et al. (1998) provide arguments that 

stress the importance of the labor market (mobility of scientists and engineers), and there 

especially the mobility of those individuals between organizations, as a driver of knowledge 

diffusion.  However, both studies also point to the localization of such labor mobility, i.e. people 

move from one organization to another, but not necessarily between places. 

The aim of this paper is to explore the roles of spatial, social and cognitive proximity in 

guiding the spatial diffusion of rDNA technology across metropolitan areas of the United States. 

 

The Cohen-Boyer rDNA Patents and the Creation of a New Sub-Class 

The Cohen-Boyer discovery builds upon prior advances in biochemistry and genetics, but 

it is notable in that it was patented because it had immediately apparent commercial applications 

(Feldman et al., 2008).  The patent was controversial when it was filed in 1974 and then was 

subject to three continuations and a six-year delay.  Two factors delayed the granting of a patent 

(Feldman and Yoon, 2012).  First, academic patents were rare at the time and ownership for 

discoveries under federally funded research was not automatically assigned to universities.  

Second, rDNA was highly controversial (Smith Hughes 2001).  The scientific community agreed 

to a voluntary moratorium on rDNA research until its safety could be investigated.  The original 

patent application claimed both the process of making recombinant DNA and any products that 

resulted from using that method.  When the USPTO initially denied the product claims Stanford 

divided the claims into two divisional product applications, one that claimed recombinant DNA 

products produced in prokaryotic cells, and the other, which claimed recombinant DNA products 

produced in eukaryotic cells.
1
  The rDNA patents referred to process and product patents: the 

product claims cover compositions of matter (recombinant DNA plasmids) that were then used 

to make proteins and are a basic component of the production method. 

                                                 
1
 A prokaryotic cell is one without a contained nucleus. The Prokaryotic patent is US 4468464, issued on August 28, 

1984. A eukaryotic cell has a contained nucleus. The Eukaryotic patent is US 4740470, issued on April 26, 1988.   
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Every patent is placed into one or more distinct technology classes that are designed to 

reflect the technological characteristics of the underlying knowledge base that they embody.  On 

Dec. 5, 1989, the USPTO issued Classification Order Number 1316, which created a new patent 

class 435/69.1 - Chemistry: molecular biology and microbiology (Recombinant DNA technique 

included the method of making a protein or polypeptide).  When the set of technology codes is 

revised, as in this example, the USPTO reviews all granted patents and reclassifies those meeting 

the criteria of the new codes.  This provides the researcher with a consistent set of all of the 

patents that use a specific technology.  Strumsky et al. (2012) provide a review regarding the use 

of patent technology codes to study technological change, and point to their usefulness in tasks 

that relate to the identification of technological capabilities, the definition of technology spaces, 

or as an indicator of the arrival of technological novelty. 

The data used in our analysis are patent records made available through the United States 

Patent and Trademark Office (USPTO).  Patents have become an analytic staple for scholars 

interested in the geography and history of knowledge production (Lamoreaux and Sokoloff, 

1996; O’hUallachain, 1999; Jaffe and Trajtenberg, 2002; O’hUallachain and Lee, 2011), on the 

various types of technical knowledge produced as indicated by patent classes (Hall et al., 2001; 

Strumsky et al., 2012) and on the factors that regulate knowledge flow (Jaffe et al., 1993; 

Breschi and Lissoni 2001; Sonn and Storper 2008). The popularity of patent data is related to 

their ready availability and to the wealth of information that they provide. At the same time, the 

disadvantages of patent as overall measures of economic and inventive activity are well known 

(Pavitt, 1985; Griliches, 1990).  It is clear that patents do not represent all forms of knowledge 

production within the economy and that patents do not capture all produced knowledge.  Patents, 

however, do provide insights into the organizations actively engaged in inventive activity in 

technologies, like rDNA, where the protection of intellectual property is important.   

We focus on patents that make knowledge claims in USPTO class 435/69.1, regardless of 

whether 435/69.1 is the primary class or not
2
  In total, there are 8,947 patents used in our 

analysis. All patents in our sample contain at least one inventor residing in a U.S. Core-Based 

Statistical Area (CBSA) that is classified as a Metropolitan Statistical Area (MSA)
3
.  Patents are 

allocated to the metropolitan area that corresponds to the address of the first U.S. inventor listed.  

                                                 
2
 When we refer to rDNA or Cohen-Boyer patents, we are explicitly referring to patents that make claims to 

producing knowledge in class 435/69.1. 
3
 Refer to OMB (2009) for a detailed list and definitions of CBSAs and MSAs. 
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It is possible to locate patents across multiple MSAs on the basis of the locations of co-inventors 

or to allocate fractions of a patent across MSAs when multiple co-inventors exist.  In our 

experience, this has little impact on the subsequent results.  The USPTO patent data does not 

identify inventors that can be linked across patents.  Fortunately, Ronald Lai and colleagues at 

Harvard University have produced a list of individual inventors and their co-inventors that can be 

linked to individual patent records in the USPTO (Lai et al. 2011).  Any inventors located 

outside the United States, or not located within one of the 366 U.S. core metropolitan statistical 

areas (CMSAs) are dropped from our data. 

The start of our study is 1976, the year of the first USPTO patent application in USPTO 

class 435/69.1.  Three  patents pre-date the application of the rDNA patent (#4237224) in 1978 

because their knowledge claims were adjudicated to belong to class 435/69.1 in a process of 

reclassification.  We focus on the year of application rather than patent grant year to capture the 

time of invention.  Because many patents are not granted for several years after application, we 

end the analysis in 2005 to dampen the impact of right censoring in the data.
4
 

 

[Insert Figure 1 Here] 

 

The Spatial Diffusion of rDNA 

Diffusion of rDNA technology over both time and space can be traced by expansion in 

the number of patents placed in  this technology class.  Figure 1 shows the growth of r-DNA 

knowledge claims over time,  recording the annual count of rDNA patents and the number of 

CMSAs , or cities, where inventors using rDNA resided.  

The number of patents associated with class 435/69.1 increased rapidly through the late 

1980s and early 1990s, following the classic S-shaped diffusion curve.  The counts of rDNA 

patents remain level throughout the late 1990s at around 800 applications per year, although 

some significant fluctuations are visible.  The number of patent applications that utilize class 

435/69.1 has subsequently leveled off, and fell below 300 in 2005, the final year in our 

timeframe.   

                                                 
4
 The average time-lag between the application and actual grant of patents that contain USPC 435/69.1 is about 2.5 

years at the beginning of the investigated time period, i.e. in the late 1970s and early 1980s, and then increases to an 

average of just over 3.5 year towards the end of the analyzed timeframe.  The database utilized in this study provides 

data for USPTO patents granted up to the end of 2010 (Lai et al., 2012), and therefore right censoring the data in 

2005 is considered a conservative approach. 
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Few cities were engaged in the production of  rDNA inventions before the mid-1980s.  

By 1987, 11 years after the initial rDNA patent application, only 20 MSAs were producing 

patents in this technology field.  Over the following 10 years geographic diffusion accelerated 

with approximately 90 MSAs developing rDNA technologies in the early 1990s.  After 

stabilizing at this number for about five years, the number of MSAs participating in rDNA 

invention activities started to decline in 2001.  In the final two observed years, 2004 and 2005, 

the number of MSAs where inventors reside remained around 65.  Note, however, that the right 

censoring in the data series likely means this number is actually somewhat higher. 

 

[Insert Table 1 Here] 

 

The geographical spread of rDNA technology is further detailed in Table 1, along with 

the total number of rDNA patent applications for the study period 1976 – 2005; the year of the 

first rDNA patent in each place and the year when inventors in the city applied for a total of 10 

patents.  The cities listed are well-known centers of invention associated with academic research 

and subsequently the biotechnology industry.  The first ranked city on this list, based on the total 

number of rDNA related patent applications from 1976-2005, is the metropolitan area around 

San Francisco.  Home to Stan Cohen and Herbert Boyer, the two initial inventors of the rDNA 

technology, this is certainly no surprise.  Within San Francisco there is evidence of rapid 

diffusion as a number of different inventors there produced ten patents within three years of the 

development of rDNA applications.  From this initial lead, the city developed a well-known 

center of biotechnology research and commercialization activities. 

The Boston-Cambridge-Quincy CBSA, which again is considered one of the key 

biotechnology centers in the nation, is a close second, with the same first rDNA patent 

application but a longer lag of six years to achieve ten patent applications.  Total application 

counts start slightly later in the second tier metropolitan areas of Philadelphia, Washington, New 

York and San Diego. 

All of the cities on this list record their first patent application before 1989.  From this 

descriptive data there are no clear trends between the year of the first application and the total 

number of applications.  The correlation between total patent applications and the year of first 

rDNA application is -0.53 while the correlation between the total number of patents and year 
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when 10 patents were applied for is -0.76.  There is clearly not a deterministic relationship in the 

pattern of diffusion.  The correlation between the year of the first rDNA patent application and 

the year when 10 patent applications were filed is 0.75, and thus a plausible association. 

 

[Insert Figure 2 Here] 

 

As knowledge of rDNA technology has expanded both over space and time, this 

technology has found broader application as an input to invention across related patent classes.  

Figure 2 illustrates the patent classes that have been most frequently combined with the rDNA 

technology over three year periods running from 1976 to 2005.  Accordingly, technology in class 

435/69.1 is most closely associated with its parent technology class 435: Chemistry: Molecular 

Biology and Microbiology.  While USPC 930 (Peptide or protein Sequence) is frequently 

combined with the rDNA technology in the initial time periods, its significance rapidly declines 

over time.  Contrary to this, USPC 424 (Drug, Bio-Affecting and Body Treating Compositions) 

appears to become an increasingly more important ingredient, as measured by its co-

classification share, in the development of rDNA technology related inventions over time.  

Overall, over time the combinations of other technologies used with USPC 435/69.1 expand.  In 

addition to USPCs 536 (Organic Compounds), 530 (Chemistry: Natural Resins or Derivatives; 

Peptides or Proteins), 424 (Drug, Bio-Affecting and Body Treating Compositions), 800 

(Multicellular Living Organisms and Unmodified Parts Thereof and Related Processes) and 514 

(Drug, Bio-Affecting and Body Treating Compositions), which represent the largest shares of 

combined patent classes, more recently rDNA technology is also combined with such diverse 

technology fields as cleaning compositions (USPC 510), nanotechnology (USPC 977), or data 

processing (USPC 702).  The remainder of this section describes the construction of measures of 

spatial, social and cognitive proximity. 

 

Spatial Proximity of rDNA  

Invention incorporating rDNA technology depends upon access to knowledge of rDNA.  

Codified rDNA information may be broadly available, but tacit knowledge of rDNA technology 

depends upon the ability of a set of potential adopters who have the relevant absorptive capacity.  

We operationalize the role of geographical proximity in constraining the flow of rDNA 



 12 

knowledge between U.S. metropolitan areas in two ways.  First, data on the latitude and 

longitude of each MSA determine the Euclidean distance between each pair of metropolitan 

areas.  For each city, the average distance to all other 365 metro areas is calculated.  A simple 

hypothesis is that, ceteris paribus, metropolitan areas on average closer to all other MSAs are 

more likely to develop rDNA related capacity in the form of inventions in class 435/69.1.  This 

physical measure of network geography is fixed over time.  A second measure of geographical 

proximity combines distances between metropolitan areas with a binary (0/1) indicator of 

whether each city has generated an rDNA patent in class 435/69.1.  For each city in a given year, 

the resulting products indicate distances only to other cities that have generated an rDNA patent.  

The minimum of such distances is recorded by MSA.  If a given metro area has already patented 

in class 435/69.1, the minimum distance to a city with knowledge of rDNA is set at zero.  This 

measure of geographical proximity may change value for an individual city over time.  We 

hypothesize that the smaller this minimum distance, the greater the likelihood of a city 

generating an rDNA patent in a subsequent year.  For empirical analysis this independent 

variable is lagged one year.  

 

Social Proximity of rDNA  

To measure social proximity for each MSA and year we used a database of all patents 

generated by inventors of rDNA class patents and all the co-inventors on those patents.  This 

measure is operationalized in the following way.  First, we construct a city social proximity 

matrix with dimension 366x366.  All cells in this matrix are coded zero.  Second, we identify all 

inventors of rDNA patents with an application year t.  Each metro area with an inventor of a 

patent in class 435/69.1 has the value one added to the cell on the principal diagonal of the city-

social proximity matrix corresponding to that city.  If a city has two inventors of an rDNA patent 

in year t it would be given the value two on its principal diagonal.  Third, we identify all non-

rDNA patents generated by Cohen-Boyer inventors over the prior 5-year period (t-5 to t-1).  

Fourth, we list all co-inventors on those non-rDNA patents and we note the cities where those 

co-inventors are located. If the inventor of a Cohen-Boyer patent is located in city 1, and that 

inventor develops a non-Cohen-Boyer patent with a co-inventor located in city 50, then cell 

(1,50) of the city social proximity matrix is given the value 0.5.  We thereby discount the social 

proximity of non-rDNA co-inventor relationships across cities.  These social proximity values 
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for all cities are generated across all years from 1980-2005.  Finally, a summary measure of 

social proximity for each MSA is generated from the city social proximity matrix for each year.  

Values are lagged one year in the model. 

 

[Insert Table 2 Here] 

 

Over the first few years after the introduction of the patent for rDNA, the city with the highest 

social proximity to this technology was Bridgeport, Connecticut, home of Yale University 

(1980), then Chicago, Illinois (1981) and then San Francisco (1982).  Not surprisingly perhaps, 

San Francisco, the location of the original Cohen-Boyer patent, has the highest measure of social 

proximity by 1985 and maintains the top-ranked position over the next 20 years.  After 1985, 

larger MSAs, most known for their biotechnology industry clusters, fill out the remaining top 

ranks of the social proximity measure. 

Descriptive statistics on the rDNA metropolitan social proximity measure are reported in 

Table 2 for three time periods ten years apart.  The relatively high maximum value of social 

proximity in 1985 indicates the concentration of this technology in patent class 435/69.1, soon 

after its development.  Thereafter, the increase over time in the mean social proximity measure 

for U.S. metropolitan areas, together with a decline in the maximum value, is evidence of the 

spatial diffusion of knowledge regarding the Cohen-Boyer technology.  The data in Table 2 

suggest that between 1995 and 2005 there is little change in the geographical spread of rDNA 

knowledge. 

 

Cognitive Proximity of rDNA 

By cognitive or technological knowledge we refer to subsets of knowledge that are 

associated with particular classes of inventions, technologies, or even industries.  The proximity 

of a region to such knowledge subsets refers to local facility or expertise with specific 

technologies or to how close, in a technological sense, the economic agents of a region are to 

having such expertise.  The knowledge subset with which we are most interested is that 

circumscribed by patent class 435/69.1.  While rDNA patents are a subset of the broader class 

435, we separate the sub-class in what follows and map it in technology space as a distinct set of 

knowledge along with 438 other unique primary patent classes. 
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In order to construct a U.S. knowledge space we need information on the number of 

patents in each technology class along with measures of proximity, the technological distance, 

between each pair of classes.  Co-class information on individual patents is employed to measure 

the technological proximity of technology classes, following the earlier work of Jaffe (1986), 

Engelsman and van Raan (1994), Verspagen (1997), Breschi et al. (2003) and Nesta and Saviotti 

(2005).  The number of primary patent classes on which we focus is considerably larger than that 

employed in most prior studies and thus the technology space outlined below is of higher 

resolution than those reported to date. 

To measure the cognitive proximity, or knowledge relatedness, between patent 

technology classes in a single year we employ the following method.  Let P indicate the total 

number of patent applications in the chosen year.  Then, let       if patent record p lists the 

classification code i, otherwise         Note that i represents one of the 438 primary 

technology classes into which the new knowledge contained in patents is classified.  In a given 

year, the total number of patents that list technology class i is given by         .  In similar 

fashion, the number of individual patents that list the pair of co-classes i and j is identified by the 

count             .  Repeating this co-class count for all pairs of 438 patent classes yields the 

(438x438) symmetric technology class co-occurrence matrix C the elements of which are the co-

class counts    .  The co-class counts measure the technological proximity of all patent class 

pairs, but is also influenced by the number of patents found within each individual patent class 

  .  Thus, we standardize the elements of the co-occurrence matrix by the square root of the 

product of the number of patents in the row and column classes of each element, or 

 

     
   

   
    

  
  

 

where     is an element of the standardized co-occurrence matrix (S) that indicates the 

technological proximity, or knowledge relatedness, between all pairs of patent classes in a given 

year.  The elements on the principal diagonal of S are set to 1.  We prefer this simple form of 

standardization to calculation of the cosine index between all pairs of classes for the reasons 

outlined by Joo and Kim (2010). 
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With the aid of UCINET (Borgatti et al. 2002), the network of technological relatedness 

across the 438 primary patent classes and class 435/69.1 is mapped.  The technological 

relatedness network is generated with the Gower-scaling metric, itself derived to examine 

patterns of similarity across network nodes (Gower 1971).  The nodes in the network correspond 

to each of the 438 distinct technological classes within the USPTO, and class 435/69.1.  The 

relative positions of the nodes are fixed by the standardized co-occurrence class counts      .  

Note that the standardized co-occurrence matrix (S) is symmetric. The principal diagonal plays 

no role in the relative locations of the nodes. 

 

[Insert Figure 3 Here] 

 

The knowledge relatedness networks for 1975-2005 are shown in Figure 3.  The node 

colors in Figure 3 represent the aggregate technology (6 class) grouping of Hall et al. (2001):  

Black = Chemicals (1), Green = Computers & Communications (2), Yellow = Drugs & Medical 

(3), Red = Electronics (4), Blue = Mechanical (5), Grey = Miscellaneous (6).  There is clear 

evidence of the clustering of individual patent categories within most of these classes, indicating 

that our technological proximity or relatedness measure is capturing what may be considered as a 

common knowledge base within these more aggregate technology groupings.  The size of each 

node illustrates the number of patents in that technology class in the given year.  Node sizes have 

been scaled to allow comparison over time.  All network links are not included in Figure 3 for 

their density would render the network largely unreadable.  The network links shown are 

illustrative of the total, representing the strongest links in the network at each time period. 

rDNA patents in class 435/69.1 are illustrated with the small, yellow triangle in each of 

the slides of Figure 3.  In early years, rDNA patents are closely linked, in technology space, with 

chemicals and with drugs and medical patent classes.  By 1995 the close association between 

class 435/69.1 and its parent class 435, illustrated in Figure 3, is already apparent. 

In order to measure the cognitive proximity of the knowledge base of a metropolitan area 

to the rDNA patent class we find the average relatedness of a city’s patents to class 435/69.1.  In 

technology space, nodes that are close together have a high relatedness score.  These are the 

technology classes that tend to co-occur with relatively high frequency on individual patents.  In 

terms of rDNA, the average relatedness value for metropolitan area m in year t is calculated as: 
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where     
  represents the technological relatedness between rDNA (class 435/69.1) patents and 

patents in all 439 technology classes j, where the vector j includes class 435/69.1.  This term is 

the (row or column) vector of the standardized co-occurrence matrix noted above for the rDNA 

technology class.   
   is the count of the number of patents in technology class j in metro area m 

in year t, and     is a count of the total number of patents in city m in year t. 

 

[Insert Table 3 Here] 

 

Table 3 presents descriptive statistics for metropolitan area cognitive proximity to the 

rDNA patent class.  The mean average relatedness value of patents in general to the rDNA class 

of patents within U.S. metropolitan areas was approximately three times higher in 2005 than in 

1985, indicating the diffusion of rDNA-related technology.  The metro areas with the highest 

cognitive proximity values to patent class 435/69.1 are, perhaps, not those we might have 

expected.  Most metro areas listed in Table 3 have relatively small numbers of patents, but those 

patents are in patent class 435/69.1 or close to it in the technology space of Figure 3.  Indeed, 

Madison, WI, Kennewick, WA, Durham-Chapel Hill, NC, Blacksburg VA, Flagler, FL, Athens, 

GA and Iowa City, IA are all university towns and sites of rDNA inventions over the period 

investigated. 

Furthermore, all the metro area listed in Table 1 as key centers of rDNA invention have 

average cognitive proximity that are greater than average for U.S. cities.  We hypothesize that 

metropolitan areas with higher levels of cognitive proximity are more likely to patent in rDNA. 

In the statistical analysis reported below we control for a number of other covariates that likely 

influence the spatial diffusion of rDNA technology, in addition to the influence of geographical, 

social and cognitive proximity.  The number of patents generated in each metropolitan area 

provides a proxy for city-size/inventiveness.  Insofar as patenting in a specialized field of 

biotechnology is likely associated with basic research in universities and hospitals, typically 

though not always found in larger urban areas, we hypothesize that patent counts in general will 
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be positively related to the probability of a city patenting in class 435/69.1.  Note that the city-

size variable is positively correlated with our social proximity variable, as might be expected.  

However, that correlation is not cause for undue concern as co linearity renders estimators 

inefficient rather than biased.  We return to this issue later. Levels of bio-medical research 

funding in universities, in industry and in total were also constructed from NIH records for each 

city across the time period under study.  Higher levels of biomedical research are expected to 

increase the probability of patenting in rDNA.  All independent variables are lagged one year. 

 

Model and Estimation Results  

Our primary research question focuses on the probability of a metropolitan area 

generating an rDNA patent in class 435/69.1.  We have time series panel data for 366 MSAs 

over 30 years.  The limited (binary) nature of the dependent variable suggests use of a logit or 

probit regression model.  There is a right-censoring issue in our data that may generate 

significant bias in estimated coefficients (Allison 1984).  Armed with repeated observations on 

the same set of metropolitan areas over time enables exploration of a fixed effects panel model to 

deal with potential problems of unobserved heterogeneity.  Another possibility that does not 

control for unobserved heterogeneity, but that more explicitly handles censored data, is the event 

history model.  We use the Cox non-proportional (extended) hazard model, incorporating time-

varying covariates, to examine the date of a first rDNA invention within a metropolitan area, 

while we turn to the panel form of the logit model to examine the probability of repeated 

invention in patent class 435/69.1 across all years in the study period. 

In theory, endogeneity should not present significant challenges to estimation. 

Nonetheless, in order to dampen such concerns, all time-varying independent variables are 

lagged by one year.  We do not have a clear theoretical rationale for employing a lag of only one 

period, we seek only to ensure that the characteristics of patenting in year t do not influence the 

value of independent variables employed to explain the probability of a city developing a rDNA 

patent in that same year.  We turn attention first to the event history model and attempts to 

identify the date at which a metropolitan area first develops a patent in class 435/69.1.  Our 

patent data by city are not left-censored for our data series start with the introduction of the first 

rDNA patent in 1980.  However, there are right-censoring issues with our data, as a number of 

metropolitan areas, 165 out of 366, do not develop a Cohen-Boyer invention by 2005 when our 



 18 

study-period ends.  The Cox semi-parametric survival model is the most widely used of the 

family of hazard models, largely because it does not assume a particular form of probability 

distribution for survival times.  The cost of this flexibility is the assumption of the 

proportionality of hazards, an assumption that we violate because of the time-varying covariates 

that enter our model.  Thus, we make use of the extended Cox model (Blossfeld et al. 2007). 

 

[Insert Table 4 Here] 

 

Table 4 presents the estimation results of the extended Cox hazard model for our patent 

data against our time-varying covariates.  Model (1) presents results for all metropolitan areas.  

The geographical proximity of a metropolitan area to cities that have developed rDNA patents 

has no significant effect on the hazard ratio.  Social proximity exhibits a significant and positive 

influence on the hazard ratio: a one-unit increase in social proximity raises the probability that a 

metropolitan area will generate a first rDNA patent over the baseline hazard by 3.3%.  Cognitive 

proximity also has a positive and significant effect, raising the hazard ratio by a little more than 

1% for every one-unit increase in this variable. 

The patent count variable is employed as a proxy for city-size and also has a significant, 

positive influence on the hazard ratio: large cities are more likely to adopt.  Note that 

metropolitan patent counts are highly correlated with social proximity (Pearson coefficient = 0.6) 

as might be expected.  As the number of patents increase within a metropolitan area, the social 

proximity of the city also increases.  Removing the patent count variable from the Cox model 

doubles the size of the hazard ratio for social proximity, while leaving all other covariates 

essentially unchanged. 

The amount of university and industrial research and development conducted within a 

city also exert significant influence on the hazard ratio, though in different directions.  University 

R&D acts to lower the hazard ratio, while industrial R&D increases the hazard ratio.  In both 

cases, the influence of R&D on the hazard ratio is relatively small in size.  Turning to the time-

fixed variable, average distance to other cities, it is surprising that this variable has a significant, 

positive influence on the hazard ratio.  The coefficient suggests that increasingly remote cities 

are more likely to develop rDNA patents.  We have more to say about this result below. 
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Models (2) and (3) of Table 4 provide results from the extended Cox model for small 

cities with relatively few patents and for large cities with relatively high patent counts, 

respectively.  These two groups fall just inside the quartiles of the distribution of metropolitan 

areas by patent count, corresponding to the 30
th

 and 70
th

 percentiles.  (Trying to estimate the 

model for the lower quartile generated a very small number of failures (patents in class 435/69.1) 

and no model convergence).  Cities in the bottom quartile of metro areas by patent count 

generated only 17 of the 201 total first-time patents examined in the Cox model.  Cities in the top 

quartile were responsible for 87 Cohen-Boyer patents.  The key differences between these two 

sub-samples are found in the values of the hazard ratios for social and cognitive proximity.  On 

the one hand, for small cities, the hazard ratio for social proximity is very large, indicating that a 

one-unit increase in the connectedness of the city’s inventors to inventors of rDNA patents raises 

the probability of patenting in class 435/69.1 by about 30% over the baseline rate.  Cognitive 

proximity has no significant influence on the hazard ratio in small cities.  On the other hand, in 

large cities, social proximity has no significant influence on the hazard ratio, while cognitive 

proximity exerts a significant, positive effect.  We suspect that cities over a certain size threshold 

have a sufficient level of social proximity to generate rDNA technologies and that further 

increases in social proximity make little difference to the probability of such events. 

The hazard ratios for social proximity and cognitive proximity are significantly different 

between metropolitan areas in the lower and upper quartiles by patent count.  No other covariates 

are significantly different between these two groups.  Also note that the time-fixed measure of 

distance to other cities is insignificant in both small and large city sub-samples.  This might help 

explain the unexpected sign and significance of this variable in the full sample.  Smaller cities 

are on average closer together than large cities and with most rDNA patents generated in larger 

cities, the association of size and distance gives the unexpected sign on the simple distance 

variable. 

 

[Insert Table 5 Here] 

 

Table 5 presents results from examining the independent variables in a longitudinal panel 

framework using a logit model incorporating fixed effects to treat unobserved heterogeneity that 

is constant over time.  Our key finding is that the results are broadly consistent with those 
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already reported for the event history model.  One marked difference between the Cox hazard 

model and the logistic model is that we examine the probability of repeated patents over time in 

the latter, while we focused only on time to first rDNA patent in the former.  The fixed-time 

measure of average distance between cities also drops out of the fixed effects logit model.  In the 

logit model of Table 5 we include time fixed effects though we do not report them.  To reduce 

incidental parameters issues, this conditional form of the logit model eliminates 167 cities from 

analysis because the value of the dependent variable in these cities is unchanged.  In this 

instance, these cities never develop an rDNA patent. 

The partial logistic regression coefficients reported in Table 5 are log odds ratios, 

reporting how a one-unit increase in the independent variable influences a change in the log odds 

of the dependent variable.  The lagged value of geographic proximity, distance to the nearest city 

that has generated a Cohen-Boyer patent has no significant influence on the log odds of a patent 

in class 435/69.1.  Social proximity and cognitive proximity have a significant effect on the log 

odds ratio and both exhibit the anticipated positive sign.  For example, a one-unit increase in 

social proximity raises the log odds of an rDNA patent being invented in a metropolitan area by 

0.0457.  This is an increase in the odds ratio of a Cohen-Boyer patent of 1.046, after 

transforming the coefficient.  City-size, as proxied by the sum of patent counts, has no significant 

influence on the log odds ratio.  Removing the patent count variable yields no change on the 

social proximity measure in this model.  Research and development in the university and in 

industry significantly influence the log odds ratio, though again in different directions.  Industry 

R&D increases those odds.  University R&D reduces the log odds of an rDNA patent, suggesting 

that further work might consider the technology transfer orientation and operations at different 

institutions.  While the Bayh-Dole passed in 1980 it was not until the later 1990s that the 

majority of research universities had established tech-licensing offices.  Attitudes towards 

technology transfer were even slower to change to encourage active patenting.  Note that 

marginal effects are not reliably produced for the panel form of the fixed effects logit model. 

 

Reflective Conclusions  

In this paper we trace the spatial diffusion of a significant new technology, the 

knowledge base of rDNA, represented by the creation of USPTO patent class 435/69.1. rDNA 

was developed by Cohen and Boyer in the San Francisco Bay area in the mid-1970s and the 
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patent for this technology was granted in 1980. Between 1980 and 2005 multiple patents in class 

435/69.1 were developed in a relatively small number of metropolitan areas across the United 

States.  The pace of rDNA diffusion followed the standard logistic form. Our primary interest 

was in the factors that regulated the spatial spread of this new knowledge class and, in particular, 

the relative roles of geographical proximity, social proximity and cognitive proximity. 

Understanding the relative importance of these proximities illustrates the mechanisms by which 

knowledge is transmitted and the use of new technology diffuses.  

rDNA techniques spread rapidly from San Francisco to a number of relatively large 

metropolitan areas and to a few small cities around the U.S.  These areas were relatively far from 

one another and thus little evidence was found to support the role of spatial proximity in 

facilitating the flow of knowledge regarding rDNA.  Even after controlling for the location of 

academic and industrial research and development, geographic proximity, as measured by 

distance, was not statistically significant.  

Social proximity, measured by the network of rDNA co-inventors within the US, played 

a positive and significant role in the spread of rDNA technology.  Inventors associated with 

patents in the technology class 435/69.1 passed information on this new knowledge set to their 

co-inventors located in the same city or in different cities across the country.  This suggests that 

co-inventing relationships provided a mechanism for the diffusion of the technology.   

Absorption and application of this new technological information was not automatic, 

however, and also dependent on cognitive proximity -- the technological profile of knowledge in 

different cities and on the closeness of that profile to the knowledge base of rDNA.  The non-

local nature of rDNA knowledge flow indicates that social networks of co-inventors associated 

with this technology class do not have a strong local component and/or that few cities within 

close proximity of one another have the absorptive capacity to develop this knowledge subset.  

The specialization of rDNA technology appears to limit diffusion to those few areas with strong 

concentrations of biotechnology related activity. 

Results from our event history model suggest that in smaller, less inventive U.S. cities, 

even where cognitive proximity to rDNA technology was not strong, social proximity played the 

critical role in the diffusion of knowledge in patent class 435/69.1. This indicates that attracting a 

few individuals who have strong social ties outside the city allows for a greater likelihood of 

being able to participate in the new technology. When the technology under consideration is a 
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significant breakthrough or a General Purpose Technology the ability to engage with the 

technology is critical.   Conversely, in larger, more inventive cities, where we might assume that 

social proximity is always relatively high, absorptive capacity played the lead role in diffusion. 
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Figure 1: Annual number of rDNA patent applications and corresponding count of MSAs where 

their respective inventors reside, 1976-2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: The analysis is based on rDNA patents developed by inventors residing in one of the 366 

Metropolitan Statistical Areas (MSAs) of the U.S.  The 576 Micropolitan Statistical Areas (μSAs) that 

make up the remainder of the 942 Core Based Statistical Areas (CBSAs) as definite by the U.S. Office of 

Management and Budget (OMB, 2009) are ignored due to their marginal contributions to rDNA 

patenting. 
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Figure 2: Distribution of US patent classes (USPC) listed on rDNA related patent documents; 

three-year shares based on application year, 1976-2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Notes: 999 = rDNA USPC 435/69.1, 435 = Chemistry: Molecular Biology and Microbiology, 536 = 

Organic Compounds, 530 = Chemistry: Natural Resins or Derivatives; Peptides or Proteins, 424 = Drug, 

Bio-Affecting and Body Treating Compositions, 800 = Multicellular Living Organisms and Unmodified 

Parts Thereof and Related Processes, 514 = Drug, Bio-Affecting and Body Treating Compositions, 436 = 

Chemistry: Analytical and Immunological Testing, 506 = Combinatorial Chemistry Technology: Method, 

Library, Apparatus, 930 = Peptide or Protein Sequence;
5
 

 

 

  

                                                 
5
 The “62 other classes” refers to USPCs that are either rarely combined with class 435/69.1, or to classes that only 

have been combined with the rDNA technology in more recent time periods, incl. USPCs 510 (Cleaning 

Compositions), 977 (Nanotechnology), 426 (Food and Edible Material), and 702 (Data Processing); USPC 514 is an 

integral part of class 424. 
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Figure 3: The U.S. technology space incorporating rDNA (USPC 435/69.1) 

 

 
 

  

  
 

Notes: Patent class 435/69.1 is the yellow triangle in the lower left of the technology space. The nodes 

represent all 438 primary classes of utility patents and node sizes reflect the number of patents in each 

class, scaled for comparability over the years 1980, 1985, 1990, 1995, 2000 and 2005. The colors of the 

nodes represent the six aggregate technology classes of Hall et al. (2001):  Black = Chemicals (1), Green 

= Computers & Communications (2), Yellow = Drugs & Medical (3), Red = Electronics (4), Blue = 

Mechanical (5), Grey = Miscellaneous (6).  
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Table 1: Key Places (MSAs) of rDNA invention 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Metropolitan Statistical Area (MSA) Year of First Year When

rDNA Patent MSA Reached

Application 10 Applications

1 San Francisco-Oakland-Fremont, CA 1,133 1978 1981

2 Boston-Cambridge-Quincy, MA-NH 990 1978 1984

3 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 691 1981 1988

4 Washington-Arlington-Alexandria, DC-VA-MD-WV 639 1980 1986

5 New York-Northern New Jersey-Long Island, NY-NJ-PA 617 1980 1985

6 San Diego-Carlsbad-San Marcos, CA 585 1982 1985

7 San Jose-Sunnyvale-Santa Clara, CA 483 1985 1990

8 Seattle-Tacoma-Bellevue, WA 400 1981 1988

9 Los Angeles-Long Beach-Santa Ana, CA 260 1982 1989

10 St. Louis, MO-IL 150 1976 1989

11 Chicago-Joliet-Naperville, IL-IN-WI 147 1980 1990

12 Sacramento--Arden-Arcade--Roseville, CA 127 1987 1992

13 Baltimore-Towson, MD 126 1988 1993

14 Houston-Sugar Land-Baytown, TX 123 1983 1992

15 Madison, WI 122 1982 1987

16 Indianapolis-Carmel, IN 116 1981 1984

17 Durham-Chapel Hill, NC 113 1984 1992

18 Des Moines-West Des Moines, IA 97 1989 1995

19 Oxnard-Thousand Oaks-Ventura, CA 90 1985 1994

20 Dallas-Fort Worth-Arlington, TX 79 1983 1992

rDNA Patent

Applications

1976-2005
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Table 2: Descriptive statistics for city social proximity to rDNA inventors 

 

 

 

Year 1985 1995 

 

2005 

 

Minimum 0 0 0 

Maximum 50.787 34.786 36.163 

Mean 2.214 3.485 3.460 

Std Dev 7.063 6.528 6.541 

    

Top-Ranked 

Cities 

San Francisco 

New York 

Chicago 

Cleveland 

Boston 

San Francisco 

San Diego 

New York 

Boston 

San Jose 

San Francsico 

San Jose 

San Diego 

Boston 

Philadelphia 

 
Notes: Values are centrality measures from UCINET (Borgatti et al. 2002) 
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Table 3: Descriptive statistics for cognitive proximity of metropolitan areas to rDNA 

 

 

Year 1985 1995 

 

2005 

 

Minimum 0 0 0 

Maximum 0.0241 0.0449 0.1160 

Mean 0.0016 0.0055 0.0046 

Std Dev 0.0029 0.0083 0.0094 

    

Top-Ranked 

Cities 

Madison 

Kennewick 

Elkhart 

College Stn. 

Charleston 

Honolulu 

Shreveport 

Durham-Chapel 

Hill 

Madison 

Blacksburgh 

Flagler 

Athens 

Auburn 

Iowa City 

Decatur 
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Table 4: Estimating the influence of different forms of proximity on the likelihood of a city 

inventing a first Cohen-Boyer patent in relation to the baseline hazard (single failure estimated 

with the extended Cox Semi-Parametric Hazard Model with time-varying covariates) 

 

 

 

 Hazard Ratios 

 

Time-Fixed Covariates 
Model (1)  

Full Sample 

Model (2)  

Low Patent Cities 

(<10 patents) 

 

Model (3) 

High Patent Cities 

(>90 patents) 

 

Average Distance to 

Other Cities 

 

1.03451*** 

(0.0107) 

1.01377 

(0.0484) 

1.02711 

(0.0248) 

Time-Varying Covariates 

 
   

Lag Geographic 

Proximity 

0.99059 

(0.0146) 

1.05948 

(0.0456) 

0.99897 

(0.0243) 

Lag Social Proximity 
1.03280*** 

(0.0095) 

1.29740*** 

(0.0916) 

1.00837 

(0.0099) 

Lag Cognitive Proximity 
1.01147*** 

(0.00243) 

1.00282 

(0.0048) 

1.04668* 

(0.0269) 

Lag Patent Count 
1.00157*** 

(0.0002) 

1.02773 

(0.0186) 

1.00096*** 

(0.0002) 

Lag University R&D 
0.99999** 

(2.47E=07) 

0.99999 

(8.18E-07) 

0.99999* 

(4.03E-07) 

Lag Industry R&D 
1.00000*** 

(2.31E-06) 

1.00000 

(9.38E-06) 

1.00000 

(5.93E-06) 

 

 

n = 6573 

Failures = 201 

LL = -1048.071 

LR Chi
2
 =  

Prob > Chi
2
 = 0.000 

n = 2397 

Failures = 17 

LL = -65.944 

LR Chi
2
 =   

Prob > Chi
2
 = 0.000 

n = 740 

Failures = 87 

LL = -292.007 

LR Chi
2
 =  

Prob > Chi
2
 = 0.000 

 

Notes: All time-varying covariates are lagged one period and are interacted with log(time). Breslow 

method is used for ties. Robust standard errors reported in parentheses.   

*** significant at the 0.01 level, ** significant at the 0.05 level, * significant at the 0.1 level.  

LL = log pseudo-likelihood. Note that converting the hazard ratios to a regression coefficient by logging 

and then dividing by the standard error yields the usual p-scores. 
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Table 5: Estimating the influence of different forms of proximity on the probability of a city 

inventing a Cohen-Boyer patent (repeated events estimated with a Conditional Fixed Effects 

Panel Logit Model) 

 

 

Independent variables 
Partial Regression Coefficient 

(Log Odds) 

 

Lag Geog Proximity 

 

0.00974 

(0.0169) 

 

Lag Social Proximity 

 

0.04570*** 

(0.0122) 

 

Lag Cognitive Proximity 

 

0.00767** 

(3.1092) 

 

Lag Patent Count 

 

0.00032 

(0.0004) 

 

Lag University R&D 

 

-1.17E-06** 

(4.93E-07) 

 

Lag Industry R&D 

 

0.00001** 

(6.47E-06) 

 

 

 

n = 4975 

Log Likelihood = -1207.355 

LR Chi
2
 =  

Prob > Chi
2
 = 0.000 

 
Notes: All independent variables are lagged one period. *** significant at the 0.01 level, ** significant at 

the 0.05 level, * significant at the 0.1 level. Year fixed effects included but not reported.  167 cities (4175 

observations) dropped by the conditional  logit because of  no change in the dependent variable.  

 

 

 


