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Abstract 

This paper investigates the impact of scientific relatedness on knowledge dynamics in biotech 

at the city level during the period 1989-2008. We assess the extent to which the emergence of 

new research topics and the disappearance of existing topics in cities are dependent on their 

degree of scientific relatedness with existing topics in those cities. We make use of the rise 

and fall of title words in scientific publications in biotech to identify major cognitive 

developments within the field. We determined the degree of relatedness between 1,028 

scientific topics in biotech by means of co-occurrence of pairs of topics in journal articles. We 

combined this relatedness indicator between topics in biotech with the scientific portfolio of 

cities (i.e. the topics on which they published previously) to determine how cognitively close 

a potentially new topic (or an existing topic) is to the scientific portfolio of a city. We 

analyzed knowledge dynamics at the city level by looking at the entry and exit of topics in the 

scientific portfolio of 276 cities in the world. We found strong and robust evidence that new 

scientific topics in biotech tend to emerge systematically in cities where scientifically related 

topics already exist, while existing scientific topics had a higher probability to disappear from 

a city when these were weakly related to the scientific portfolio of the city. 
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1. Introduction 

The geography of scientific knowledge production is very uneven. For instance, the world’s 

most influential scientific researchers reside in a very small number of cities (UNESCO, 

2010). This is reinforced by research linkages which connect in particular the scientific hubs 

(Gertler and Levitte, 2005; Laudel, 2005; Gittelman, 2007; Zucker and Darby, 2007; 

Hoekman et al., 2009; Trippl, 2009). At the same time, there is a process of ongoing 

globalization in scientific research (Cooke, 2006; Moodysson, 2007; Hoekman, 2012), as 

illustrated by the ever increasing number of countries that contribute to scientific publications. 

Scientific knowledge production in biotech, for instance, has shifted away in relative terms 

from the US towards Asian regions, like Seoul, Tokyo, Beijing and Singapore, which have 

become world players in biotech (Heimeriks and Boschma, 2013). 

This calls in question how knowledge in biotech science evolves over time, and to what extent 

regions still contribute to this evolution in the context of globalization. Where is new 

scientific knowledge created, and to what extent does new knowledge build on existing 

regional knowledge? Recent studies show that product relatedness is a main driver of industry 

dynamics at the regional scale, as new industries tend to build on and exploit capabilities in 

related regional industries, and existing industries are more likely to disappear when few or no 

related industries are present in the region (Neffke et al., 2011; Boschma et al., 2013). The 

question is whether the rise and fall of scientific knowledge is also depending on the degree of 

relatedness with existing knowledge, and whether the body of scientific knowledge available 

at the regional level matters in that respect. Systematic evidence is yet lacking. 

The main objective of the paper is to investigate the impact of scientific relatedness on 

knowledge dynamics in biotech science at the city level worldwide during the period 1989-

2008. More in particular, we assess the extent to which the emergence of new scientific topics 

in biotech and the disappearance of existing topics in cities are dependent on their degree of 

relatedness with existing topics present in those cities. In order to measure knowledge 

dynamics in biotech science, we make use of title words in scientific publications over a long 

period of time, in order to identify the rise and fall of key scientific topics in biotech. Inspired 

by the ‘product space’ concept (Hidalgo et al., 2007), we construct a ‘scientific space’ in 

which the degree of relatedness between 1,028 scientific topics in biotech is determined by 

means of co-occurrence analysis. Then, we combine this relatedness indicator between topics 

in biotech with the topic portfolio of 276 biotech cities worldwide, in order to determine how 
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close a new topic that entered a city (and an existing topic that exited a city) is to the scientific 

portfolio of that city. We analyzed knowledge dynamics at the city level by looking at the 

entry and exit of topics in the scientific portfolio of 276 cities in the world. Our main finding 

is that new scientific topics in biotech emerge systematically in cities where scientifically 

related topics already exist, while existing topics were more likely to disappear from a city 

when these were weakly related to the scientific portfolio of the city. 

The paper is structured as follows. Section 2 sets out the main theoretical ideas, especially the 

process of branching of scientific knowledge dynamics at the regional level. Section 3 

describes the methodology and the data used. We explain how we define the relatedness 

between scientific topics in biotech, and how we use that information as an input for our 

econometric exercise in which we assess the impact of scientific relatedness on the rise and 

fall of topics in biotech science. Section 4 presents the main findings. Section 5 concludes. 

 

2. Scientific knowledge dynamics, relatedness and regional branching 

In evolutionary thinking, knowledge production is often described as a cumulative, interactive 

and path-dependent process (Dosi, 1982; Nelson and Winter, 1982). Because of bounded 

rationality, search for new knowledge is highly uncertain. As a result, agents tend to draw on 

knowledge acquired in the past, which provides opportunities but also sets limits to what can 

be learned (Atkinson and Stiglitz, 1969; Heiner, 1983). As Cohen and Levinthal (1990) 

argued, agents are more likely to understand, absorb and implement external knowledge when 

it is close to their own knowledge base. This also implies that knowledge is widely dispersed 

among many heterogeneous agents, and that the process of knowledge creation heavily 

depends on combining different capabilities of agents (Antonelli, 1995; Nooteboom, 2000). 

Therefore, interaction between agents is central, and knowledge production is more than ever 

an outcome of socially constructed learning processes (Amin and Cohendet, 2000). 

This path-dependent and interactive nature of knowledge production becomes manifest not 

only at the organizational but also at the regional level. To transfer knowledge in an effective 

manner, not only absorptive capacity of actors but also close and intensive face-to-face 

contacts between actors are needed. Geographical proximity accommodates this type of 

interaction, especially for more tacit forms of knowledge (Gertler, 2003). So, knowledge 

dynamics unfolds at the level of organizations but is situated in a social and geographical 

context. As regions specialize in particular competences, these offer opportunities to local 
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organizations for further improvements in similar fields of knowledge, and discourage the 

creation of knowledge that does not match the regional knowledge base (Boschma, 2004). In 

sum, the regional accumulation of tacit knowledge provides an intangible asset that is difficult 

to cope by non-local agents, as geographical distance may form an insurmountable barrier for 

the transfer of tacit knowledge (Maskell and Malmberg, 1999). 

Knowledge also accumulates at the regional level because some mechanisms through which 

knowledge diffuses across organizations, like spinoff activity, labor mobility and social 

networking, are often spatially bounded (Capello, 1999; Boschma and Frenken, 2011). That 

is, new spinoff companies tend to locate in the same region as their parent organization, where 

these new ventures exploit the knowledge they acquired from the parent (Klepper, 2007). And 

most employees still change jobs in the same labor market region, which means that the 

transfer of knowledge and skills through labor mobility primarily occurs between local 

organizations (Eriksson, 2011). And there is evidence that knowledge sharing through social 

networks tends to be often local (Breschi and Lissoni, 2009). 

This is further reinforced by the regional institutional context which shapes the interaction 

between agents. As knowledge is more and more distributed among heterogeneous actors, 

there is a strong need to connect, combine and integrate different capabilities. Institutions 

(like cultural values, conventions and social practices) are important enablers to deal with this 

increasing complexity of knowledge creation, because they decrease uncertainty and create 

mutual understanding between actors, especially at the regional level, as geographical 

proximity favors institution building (Storper, 1995). Accordingly, linkages among agents 

across different institutional contexts tend to be less widespread and are not always very 

productive in terms of learning and innovation (Gertler, 2003). Moreover, these regional 

institutional settings are difficult to replicate in other places as these have evolved over long 

periods of time. In other words, knowledge often accumulates at the regional level, in which 

the territory shapes combinatorial knowledge dynamics by providing physical proximity and 

institutional closeness between agents (Strambach and Klement, 2012). 

This is not to say that regions only drive knowledge dynamics. On the contrary, there are 

tendencies of globalization in knowledge production, and it is widely accepted that knowledge 

dynamics is a multi-scalar phenomenon (Asheim and Isaksen, 2002; Bathelt et al., 2004; 

Moodysson, 2007; Martin, 2012). Nevertheless, place still matters in processes of collective 

interactive learning. Studies have recently demonstrated that region-specific capabilities 
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operate as sources of diversification. That is, regions are more likely to expand and diversify 

into sectors that are closely related to their existing activities (Neffke et al., 2011; Boschma et 

al., 2013). This means that geographically localized capabilities provide opportunities but also 

set constraints for regions to diversify into new industries (Neffke, 2009). Boschma and 

Frenken (2011) describe this process as regional branching, in which new industries arise 

from technologically related industries in regions in which existing competences are 

recombined. Moreover, apart from the fact that sectors that are technologically related to other 

sectors in the region are more likely to enter, Neffke et al. (2011) also found that sectors have 

a higher probability to exit a region when these have few or no other sectors in the region to 

which they are technologically related. In other words, the rise and fall of industries is heavily 

conditioned by the presence of technologically related industries in the region. 

Although the literature on the evolutionary geography of scientific knowledge production is 

still underdeveloped (Frenken et al., 2009; Hoekman, 2012), it seems rather straightforward to 

apply this line of reasoning to scientific knowledge dynamics. Especially in science, 

knowledge is widely dispersed among many heterogeneous agents, and it is increasingly 

difficult for a researcher to possess the necessary skills and knowledge to solve scientific 

problems alone (Cronin et al., 1998; Wuchty et al., 2007; Hardeman, 2012). Therefore, the 

spatial concentration of research may bring all kinds of advantages like lower search costs for 

research partners and new personnel (Carvalho and Batty, 2006). In their programmatic paper 

on spatial scientometrics, Frenken et al. (2009) explained why interactions in science tend to 

be spatially biased towards physically proximate actors. There is ample evidence that research 

collaboration is indeed triggered by geographically and socially proximate partners (Breschi 

and Lissoni, 2009), as in the case of university-industry research collaboration (Katz, 1994; 

Hoekman et al., 2009). Scientific knowledge production is also heavily affected by territorial 

institutions such as funding schemes, labour regulations and property right regimes, which 

constrain mobility to a considerable degree, especially across national institutional 

boundaries. But even when there is international mobility of researchers, it tends to reproduce 

the spatial concentration of science to a considerable degree, as leading scientists tend to be 

attracted to the major scientific hubs (Laudel, 2005; Zucker and Darby, 2007; Trippl, 2009).  

This does not mean that scientific knowledge production is a completely geographically 

localized phenomenon. Globalization of knowledge production in science is occurring, and it 

is heavily promoted by the harmonization of national institutional frameworks and the set-up 

of international research programs. Moreover, science is a global, collective and distributed 
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system, a collection of individuals and organizations contributing to a common body of 

scientific knowledge that is shared at conferences and workshops and codified in journals and 

reports (Wagner, 2008; Heimeriks, 2012). This global body of scientific codified knowledge 

acts as a focusing device for the whole scientific community. Kauffman (1995) has referred to 

this as the ‘adjacent possible’, which defines all new knowledge that can be directly derived 

from the present state of knowledge. As such, it provides a kind of map of possible new 

scientific topics that may occur from the current set of topics. 

In this context, it then becomes a crucial question whether the emergence of new scientific 

topics is triggered and channeled by the adjacent possible at the local scale. In the literature on 

the geography of scientific knowledge production, little attention has yet been devoted to this 

question. The knowledge base literature (Asheim and Coenen, 2005; Asheim and Gertler, 

2005) claims that knowledge production and learning processes are less sensitive to 

geographical proximity in sectors like biotech which are grounded in analytical knowledge 

bases. Studies have shown that knowledge relationships in analytical knowledge bases indeed 

take place over larger geographical distances, as compared to other knowledge bases (Martin 

and Moodysson, 2012). However, one still wonders what the role of the region is in scientific 

knowledge production. As Hoekman et al. (2010) have demonstrated, physical co-presence 

remains important for exchanging complex forms of scientific knowledge. Therefore, it is 

crucial to know whether there still is a systematic tendency of new scientific knowledge to be 

strongly rooted in capabilities and institutional practices at the local scale, despite 

globalization. 

Heimeriks and Boschma (2013) explored whether new and disappearing topics in different 

types of cities were related to the existing set of topics that is available worldwide. Taking the 

global set of research topics as reference, they provided evidence for the process of branching 

and the adjacent possible at the global scale, and how that works out in different city contexts. 

Doing so, they described the evolution of scientific knowledge as a dynamic interplay 

between the global and the local scale, in which codified and accessible knowledge available 

in leading international journals interacts with geographically localized processes of scientific 

knowledge production. However, they did not investigate the extent to which the emergence 

of new scientific topics and the disappearance of existing topics in cities are dependent on 

their degree of relatedness with existing topics available in those cities. Such a study would 

provide evidence for the branching process in scientific knowledge at the city scale.. It would 

shed light on the cumulative and path dependent nature of scientific knowledge production at 
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the regional scale, and the extent to which this is driven by region-specific capabilities. We 

argue that the scope of opportunities for researchers to contribute within the constraints of the 

existing body of scientific knowledge may be very different across locations, and what 

constitutes a research opportunity and how it is dealt with, may be locally situated. 

 

3. Data and methodology 

The main argument developed in this paper is that the dynamics of scientific knowledge is a 

path and place dependent process, and that the scientific composition of cities influence their 

further capacity to evolve. More particularly, we aim to evaluate the impact of scientific 

relatedness on the emergence of new topics in science at the city level. Our methodology 

follows the "product space" framework, which integrates network science to macroeconomic 

theories in order to understand the uneven development of countries (Hausmann and Klinger, 

2007; Hidalgo et al., 2007). This framework develops a 2-mode network approach of the 

economy constructed from country-product pairs (Hidalgo et al., 2007). In this paper, we 

apply the product space framework to scientific knowledge dynamics, and our 2-mode 

network is based on pairs of city-topics constructed from publication records in the biotech 

field from 1986 to 2008. 

 

Data and context 

We use the accumulated body of codified knowledge in biotech for the period 1986-2008 as 

laid down in scientific publications. The field of biotech is delineated using journal-journal 

citation patterns (Leydesdorff and Cozens, 1993). This method is based on factor analysis of 

the journal-journal citations matrix of the central journals in biotech, which is Biotechnology 

and Bioengineering. The relational citation environment of that journal can be determined by 

using a threshold of 1%. We include all journals in the analysis that are cited by the core 

journal at least 1/100
th

 of the total number of citations. For the resulting set of journals, a 

journal-journal citation matrix is constructed, with citing behavior as variables. A factor 

analysis of this matrix resulted in factors consisting of journals that revealed similar citation 

patterns. The factor on which the core journal had it highest loading represents the field under 

study. The other factors represent a set of research fields that are related to the field. In recent 

years, it seems that there is a narrow definition of the field consisting of only three core 

journals that we used for our analyses: Biotechnology Progress, Biotechnology and 



8 

 

Bioengineering, and Journal of Biotechnology. These three journals are expected to provide 

an accurate representation of developments in biotechnology, because they are consistently 

present in the core of the field in the period under study (Leydesdorff and Heimeriks 2001, 

Heimeriks and Leydesdorff 2012). After obtaining this set of journals, all publications for the 

period 1986-2008 were downloaded from the Web of Science. The total set of publications 

consisted of 13,386 articles. 

The use of title words in the set of biotech publications provides us with an indication of the 

cognitive developments of topics within the field
1
. Our publication records provide title 

words, in addition to institutional addresses of universities and companies authors are 

affiliated to. Several indicators based on title words have been developed to trace the 

development of science (e.g. Leydesdorff, 1989). Scientific texts carry information indicated 

by selections of title words and co-occurrences of title words (Callon et al., 1986; 

Leydesdorff, 1991). Title words are carefully selected by authors in order to position their 

knowledge claims. As such, “title words seem to offer a means of making visible the internal 

cognitive structure” (p. 217) of a field (Leydesdorff 1989).. The information is positioned in a 

network with an emerging (and continuously reconstructed) structure (Leydesdorff, 2010). In 

this way, an evolving discourse of scientific topics can be measured by using title words and 

their co-occurrences as the observable variation. For the purpose of our study, plural 

morpheme stemming was applied (e.g. removing the "-s" at the end of "computers"). 

 

The scientific relatedness between topics 

To measure the relatedness between a topic and the scientific profile of a city, we first have to 

measure the scientific relatedness between topics. Instead of using journal's classifications, we 

follow Hausmann and Klinger (2007) and compute an outcome-based measure of relatedness 

based on co-occurrence analysis. Previous studies have used co-occurrences of products 

within countries (Hidalgo et al., 2007), products within regions (Boschma et al., 2013), 

products within plants (Neffke et al., 2011), or co-occurrences of technology classes within 

patents (Boschma et al., 2012). In this paper, we use a simple and normalized measure of 

relatedness based on the co-occurrences of fine-grained scientific topics, i.e. title words, 

within journal articles. The literature presents many meaningful examples of topic mappings 

                                                             
1
 Abstract words and keywords could also be used for tracing the evolutionary development of topics in a field. 

They could not be used in this study covering the period 1986-2008 however, because abstracts and keywords 

were included in the ISI Web of Science from 1991 onwards. 
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using co-occurrences of words (e.g. Lucio-Arias and Leydesdorff 2009, Heimeriks and 

Leydesdorff 2012 as recent examples) Researchers select words to describe their research 

topic and within the context of a body of literature the words acquire their specific meaning. 

In this way we can account for different ways of using words, and for changes over time in 

the meanings of words (Van den Besselaar and Heimeriks, 2006). 

Two topics are considered to be related if they co-occur on many journal articles, because 

they are assumed to require the same scientific capabilities. To normalize co-occurrences, we 

use the Jaccard index, which has widely been used in scientometrics
2
. With ijocc  denoting the 

total number of times i and j co-occur in the same journal article, and 
iocc  denoting the total 

number of occurrences of i
3
, the relatedness 

tji ,,ϕ between each topic i and j is given by: 

ijji

ij

ji
occoccocc

occ

−+
=,ϕ                               (1) 

As a result, the measure is symmetric and [ ]1,0,, ∈tjiϕ . A value of 0 indicates that the two 

topics never co-occurred within the same journal article, while a value of 1 indicates that the 

two topics systematically co-occur. Since topics might be related at some point of time but not 

anymore at a later stage (and the other way round), as the scientific field evolves, we compute 

the relatedness 
tji ,,ϕ between each pair of topic i and j for five different non-overlapping 

periods of time from 1986 to 2008
4
: 1986-1988; 1989-1993; 1994-1998; 1999-2003; 2004-

2008. For instance, on the period 2004-2008, the relatedness between "cell" and "protein" is 

equal to 0,10
5
. Table 1 indicates the relatedness between the 10 most central title-words on 

this scientific space from 2004 to 2008. As we can see in Table 2, the correlation between 

these relatedness matrices over time is important given the fine grained classification we use 

and the substantial rates of entry and exit of title-words. 

 

                                                             
2
 Although the Jaccard index is popular in scientometrics, there is still a debate concerning the most appropriate 

measure for normalization of co-occurrence data. For a discussion of alternative normalization procedures, the 

reader is referred to Leydesdorff (2008) and Van Eck and Waltman (2009).  
3 If i occurs on 5 journal articles in total during a given period, occ i = 5, regardless of the number of words with 

which i co-occurs. Another alternative would have been to use the total number of times i co-occurs with other 

words to compute occ i. 
4
 Excepted the first period for which we only have 3 years of data, all the periods run on five years. 

5 The title-word "cell" and the title-word "protein" co-occurred 128 times on journal articles from 2004 to 2008, 

while singly, "cell" occurred 868 times and "protein" occurred 539 times. Therefore φ cell, protein, 2004-2008 = 128 / 

(539 + 868 – 128) = 0.10. 
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Table 1. Scientific relatedness between the 10 most central topics (2004-2008)  

 cell Rec. cult. prod. coli protein Esch. effect batch Expr. 

cell 1 0.08 0.17 0.1 0.04 0.1 0.03 0.06 0.04 0.08 

recombinant 0.08 1 0.05 0.14 0.16 0.16 0.15 0.04 0.05 0.1 

culture 0.17 0.05 1 0.11 0.02 0.03 0.02 0.06 0.1 0.03 

production 0.1 0.14 0.11 1 0.09 0.1 0.09 0.06 0.06 0.03 

coli 0.04 0.16 0.02 0.09 1 0.09 0.86 0.04 0.03 0.09 

protein 0.1 0.16 0.03 0.1 0.09 1 0.08 0.03 0.03 0.11 

Escherichia 0.03 0.15 0.02 0.09 0.86 0.08 1 0.04 0.03 0.08 

effect 0.06 0.04 0.06 0.06 0.04 0.03 0.04 1 0.02 0.02 

batch 0.04 0.05 0.1 0.06 0.03 0.03 0.03 0.02 1 0.01 

Expression 0.08 0.1 0.03 0.03 0.09 0.11 0.08 0.02 0.01 1 

Note: Relatedness is given by the co-occurrences of title-words (N=1,028) on journal articles from 2004 to 2008, 

normalized by a Jaccard index (Eq. 1).  

 

Table 2. The dynamics of scientific relatedness between topics over time  

 1986-1988 1989-1993 1994-1998 1999-2003 2004-2008 

1986-1988 - - - - - 

1989-1993 0.275*** - - - - 

1994-1998 0.273
***

 0.407
***

 - - - 

1999-2003 0.255
***

 0.376
***

 0.456
***

 - - 

2004-2008 0.236
***

 0.347
***

 0.420
***

 0.481
***

 - 

Note: This table is based on the relatedness between each pair of 1,028 topics. The 

change in scientific relatedness is inflated by the entry and exit of topics over time 

 

The scientific relatedness between topics and cities 

We then combine the relatedness 
tji ,,ϕ  between topics with the scientific specialization of 

cities (the topics on which they publish) to construct a city-topic level variable that indicates 

how close a potential new topic is to the existing scientific portfolio of a given city. The 

portfolio of cities is constructed from the addresses mentioned in journal articles.  

The publications can be attributed to cities as unit of geographical analysis. Each publication 

in our dataset contains one or more institutional addresses that enable us to specify the 

location of the universities, research organisations and companies, to which the authors are 

affiliated. In this study, publications are fully attributed to each author location (no fractional 
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counting was applied). All addresses in the publication set could be provided with geo-

coordinates at http://www.gpsvisualizer.com/geocoder/. Yahoo! was used for obtaining the 

city names. As such, we can attribute topics to city locations in each year. From this 

geographical information, we can derive information about local path-dependent dynamics 

and collaboration patterns based on co-authorships (Leydesdorff & Persson, 2010).  

This relatedness variable combines therefore relatedness between topics with the particular 

scientific expertise of cities and it indicates how cognitively close a potential new topic is to 

the pre-existing set of topics in a given city is specialized. The variable is constructed in the 

same way than the "density" index developed by Hidalgo et al. (2007) or the "closeness" 

index proposed by Neffke et al. (2011). The relatedness of a topic i to the expertise of city c in 

time t is computed by summing the scientific relatedness
6
 of this topic i to all the scientific 

topics that can be found in the portfolio of the city c, divided by the sum of scientific 

relatedness of topic i to all the other topics in t. We then multiply by 100. The city-topic 

relatedness can then easily be interpreted as the percentage of related topics found in a city. 

For instance, if a given topic is scientifically related to 100 other topics (on 1,028), and if a 

city c is specialized in 10 (numerator) of these 100 topics (denominator), then the relatedness 

between topic i and city c will be equal to (10/100)*100 = 10%. By construction, the 

relatedness variable lies then between 0 % and 100 % and is given by the following formula: 

100
,

,, ×=
∑

∑

≠

≠∈

ij

ij

ijcj

ij

tciSRELATEDNES
ϕ

ϕ

                                                              (2) 

Table 3 presents some real measures of relatedness between the top 10 words and the top 10 

cities that appeared on scientific articles most frequently during the period 1999-2003. For 

instance, the degree of relatedness between the city "Cambridge, MA" and the topic "cell" is 

67%, which means that researchers from Cambridge, MA are specialized in 67% of the topics 

that are scientifically related to "cell".  

 

                                                             
6
 To further ease the interpretation of the city-topic relatedness index, we first had to dichotomize the topic-topic 

measure of relatedness. For each period, we use a 5% threshold, which means that only the top 5% (in terms of 

ji ,ϕ ) of all technology-pairs are considered as related (=1), while the other pairs of topics are considered as 

unrelated (= 0). The main findings presented in the paper are robust to alternative dichotomization procedures 

(1% and 10% threshold) and to using the weighted relatedness index. 
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Table 3. Scientific relatedness between top cities and hot topics 

Cityc Topici Relatednessi,c,t 

Cambridge (USA) Cell 67 % 

Lund (Sweden) Production 69 % 

Taejon (South Korea) Protein 58 % 

London (UK) Culture 60 % 

Wageningen (Netherlands) Effect 66 % 

Zurich (Switzerland) Recombinant 62 % 

Delft (Netherlands) Coli 55 % 

Seoul (South Korea) System 54 % 

Baltimore (USA) Expression 49 % 

Pittsburgh (USA) Escherichia 32 % 

Note: City-topic relatedness index are computed from relatedness between topics 

and the scientific expertise of cities from 1999 to 2003. 

 

Sample construction 

We generated our sample by identifying all biotech publications through journal-journal 

citation analysis as described above. After obtaining this set of journals, all publications for 

the period 1986-2008 were downloaded from the Web of Science. The total set of 

publications consisted of 13,386 articles involving 1,789 unique cities and 6,430 unique title-

words. Since most of the cities and words appear only very few times, we concentrate on 

topics and cities that are scientifically important to avoid statistical noise. The results 

presented in the paper concerns words and cities that can be associated with around 1 paper a 

year
7
. Our sample finally includes 276 cities and 1,028 fine-grained scientific topics for 4 

non-overlapping periods (the independent variables are lagged by one period) resulting in a 

total of 1,134,912 city-topic observations. We analyzed knowledge dynamics at the city level 

by looking at the entry/exit of topics in the scientific portfolio of cities. From this sample we 

excluded the observations with topics that were, by construction, not able to emerge in a given 

city (if the word was already in the scientific portfolio in the previous period). And vice-versa, 

we excluded topics that were not able to exit cities because they did not belong to the pre-

existing set of topics. Table 4 provides some summary statistics and the correlation matrix of 

the variables used in the econometric analysis.  

 

                                                             
7
To be included in the analysis, cities need to publish more than 20 papers on the entire period, while topics need 

to appear on more than 20 papers. 
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Table 4. Summary statistics 

 Mean SD Min Max Obs. [1] [2] [3] [4] 

[1] Entry 0.045 0.208 0 1 1,089,104 - - - - 

[2] Exit 0.685 0.465 0 1 45,808 - - - - 

[3] Scientific relatedness (%) 6.996 9.882 0 100 1,134,912 0.127 -0.109 - - 

[4] # publications (topic level) 15.232 30.741 0 591 4,112 0.127 -0.308 0.231 - 

[5] # publications (city level) 10.886 15.57 0 146 1,104 0.090 -0.170 0.486 0.237 

Note: to correspond with the econometric analysis, the variables "# publications (topic level)" and "# 

publications (city level)" have been log-transformed before computation of the correlation matrix. 

 

 

4. Econometric estimations 

 

Our objective is to estimate empirically the impact of scientific relatedness on knowledge 

dynamics at the city level. Our unit of analysis is the city-topic observation, and to explain the 

emergence of new topics in science, we regress the entry of new title-words on their degree of 

scientific relatedness with the scientific portfolio of cities: 

tcititctcitci TOPICCITYSRELATEDNESENTRYP ,,1,31,21,,10,, )()()()( εββββ ++++= −−−  
(3) 

The dependent variable ENTRY in Eq. (3) is a dummy that takes a value of one when a topic 

that did not belong to the scientific portfolio of the city c in time t-1 enters its portfolio in time 

t, and zero otherwise. All the variables are centered around the mean, so the intercept 0β  

gives the expected mean probability of entry when all the independent variables in the 

equation are set to their means. The key explanatory variable 
1,, −tciSRELATEDNES  indicates 

how related the potential new topic i is to the pre-existing knowledge set of capabilities of c;  

But to capture the relationship between scientific relatedness and knowledge dynamics at the 

city level in science it is important to control for the scientific importance of both topics and 

cities. In fact, some words tend to emerge in many cities (such as the topic "cell"), while some 

cities tend to have expertise in a wide variety of topics (such as the city "Cambridge, MA"). A 

first control variable is constructed at the city level: 
1, −tcCITY , by computing the natural 

logarithm of the total number of publications of this city on a given 5-years period. In a 

similar vein, the popularity of topics is controlled by a second variable: 
1, −tiTOPIC constructed 
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by computing the natural logarithm of the total number of publications in which a word occur 

on a given 5-years period.
tci ,,ε is a regression residual. We estimate Eq. (3) by using a linear 

probability (OLS) regression
8
 and standard errors are clustered at the city and topic level

9
 to 

correct for correlation within groups of observations (Wooldridge, 2003).  

Table 5 presents the results for the estimation of Eq. (3). The baseline model (model 1) simply 

regresses the entry of new scientific topics on their degree of relatedness with the existing 

portfolio of cities (lagged by one period). As the variables are centered around their mean, the 

intercept is equal to 0.04534, which corresponds then by construction to the mean of the entry 

variable (see table 4). Therefore, the probability that a new topic emerges in a city is around 

4.5 %. But the probability of entry strongly increases if this topic is related to the local 

scientific structure. In fact, the coefficient for relatedness is equal to 0.00299. This estimate 

implies that an increase of 10% in the degree of relatedness is associated with a 66% increase 

([10*0.00299]/0.04534=0.659) in the probability of entry. In a second model (model 2) we 

estimate the impact of the scientific importance of cities (number of publications in which the 

city is mentioned, lagged by one period) and topics (number of publications in which the title 

word appears, lagged by one period) on the emergence of new scientific topics in cities. Both 

variables have a positive and significant impact on the probability of entry, so we included 

these variables together with relatedness in a third model. Model 3 presents the results for the 

estimation of the full Eq. (3). All three variables positively and significantly influence 

scientific knowledge dynamics at the city level. With control variables included at the city and 

topic level, the coefficient for relatedness is slightly lower than in model 1 (0.00224) but it 

still has a substantial impact. In this specification, an increase of 10% in the degree of 

relatedness is associated with a 49% increase ([10*0.00224]/0.04534=0.494) in entry 

probability. 

 

Table 5. The emergence of new scientific topics in cities (1989-2008) 

Dependent variable is:   

Entry t 

Model 1      

[Pooled OLS] 

Model 2      

[Pooled OLS] 

Model 3       

[Pooled OLS] 

Intercept 
0.04534*** 

(0.00165) 

0.04534*** 

(0.00189) 

0.04534***  

(0.00159) 

                                                             
8
 The econometric results, however, are robust to generalized linear models specifications (logit and probit 

regressions). 
9
 To compute the adjusted standard errors, we use the two-way clustering function written for the R statistical 

software by Arai (2011). 
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Relatedness t-1 (%) 
0.00299

***
 

(0.00016) 
- 

0.00224
***

  

(0.00016) 

Log (publications) t-1     

[topic level]          
- 

0.01099
***

 

(0.00076) 

0.00996
***

  

(0.00074) 

Log (publications) t-1    

[city level] 
- 

0.00524
***

 

(0.00055) 

0.00173
***

  

(0.00039) 

No. of observations 1,089,104 1,089,104 1,089,104 

Notes: The dependent variable entry = 1 if a given topic (n = 1028) enters in the 

scientific portfolio of a given city (n = 276) during the corresponding 5-years window 

(n = 4), and 0 otherwise. Coefficients are statistically significant at the ∗p < 0.10; ∗∗p 

< 0.05; and ∗∗∗p <0.01 level. Heteroskedasticity-robust standard errors (clustered at 

the city and topic level) in parentheses. 

 

The econometric results presented in table 5 indicate that relatedness plays a key role in the 

emergence of new scientific topics in cities over time. But to have a fully fledged 

understanding of knowledge dynamics, we also have to account for the process of creative 

destruction in the evolution of scientific fields. Therefore we now turn into the analysis of the 

exit of topics in cities by estimating Eq. (4), where 1,, =tciEXIT  if a topic i exits from the set 

of scientific topics of city c in time t, and 0 otherwise;  

 

tcititctcitci TOPICCITYSRELATEDNESEXITP ,,1,31,21,,10,, )()()()( εββββ ++++= −−−  
(4) 

 

Table 6 presents the results for the estimation of Eq. (4). The probability of exit when all the 

variables are set to their means is given by the intercept 0.68501 =0β . A probability of exit of 

68% reflects the high instability of scientific topics, which is in part induced by the fine-

grained classification and the large sample of cities and topics we analyze. But it is also true 

that scientific activities are more volatile than economic activities, as they can more easily 

migrate from one city to another with the mobility of academic researchers for instance. The 

exit of scientific topics is, however, strongly constrained by their degree of relatedness with 

the scientific portfolio of cities. As it can be seen from model 1 and model 3, relatedness has a 

negative and significant impact on the probability of exit of scientific topics. In the simplest 

specification (model 1), the probability of exit of a given topic in a given city during the next 

period decreases by about 5 % ([10*(-0.00333)]/0.68501 = -0.048) if the level of relatedness 

increases by 10 percent. Interestingly, the impact of relatedness is even higher when controls 

at the city and topic level are included. When variations in terms of scientific importance of 
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cities and topics are accounted for (model 3), an increase of 10% in the degree of relatedness 

is associated with a 10% decrease ([10*(-0.00659)]/0.68501=-0.096) in the probability of exit. 

 

Table 6. The exit of existing scientific topics in cities (1989-2008) 

Dependent variable is:   

Exit t 

Model 1      

[Pooled OLS] 

Model 2      

[Pooled OLS] 

Model 3       

[Pooled OLS] 

Intercept 
0.68501*** 

(0.01391) 

0.68501*** 

(0.00717) 

0.68501***  

(0.00563) 

Relatedness t-1 (%) 
-0.00333

***
 

(0.00041) 
- 

-0.00659
***

  

(0.00026) 

Log (publications) t-1     

[topic level]          
- 

-0.12034*** 

(0.00614) 

-0.14998***  

(0.00429) 

Log (publications) t-1    

[city level] 
- 

-0.08224
***

 

(0.00520) 

-0.02901
***

  

(0.00473) 

No. of observations 45,808 45,808 45,808 

Notes: The dependent variable exit = 1 if a given topic (n = 1028) exits from the 

scientific portfolio of a given city (n = 276) during the corresponding 5-years 

window (n = 4), and 0 otherwise. Coefficients are statistically significant at the 
∗p < 0.10; ∗∗p < 0.05; and ∗∗∗p <0.01 level. Heteroskedasticity-robust standard 

errors (clustered at the city and topic level) in parentheses. 

 

 

The econometric results show that relatedness is a key driver of knowledge dynamics in 

science at the city level. We observed a strong and robust pattern of path and place 

dependence where scientific topics systematically tend to emerge in cities where scientifically 

related topics already exist, while relatedness in cities also tend to prevent the exit of topics. 

Since the city-topic relatedness variable combines relatedness between topics with the 

scientific expertise of cities, it is important to highlight that the cities that are specialized in 

the most central topics
10

 are more likely to make new discoveries and thrive scientifically 

speaking. In the next section, we discuss some implications of these findings.  

 

5. Conclusion and discussion 

This paper investigated the impact of scientific relatedness on knowledge dynamics in biotech 

at the city level worldwide during the period 1989-2008. We assessed the extent to which the 

emergence of new research topics and the disappearance of existing topics in cities are 

                                                             
10

 A central topic is a topic that is scientifically related to many other topics. Degree centrality of topics can be 

computed from the topic-topic relatedness matrices described in section 3. 
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dependent on their degree of relatedness with existing topics in cities. Inspired by the product 

space framework developed by Hidalgo et al. (2007), we mapped for this purpose a scientific 

space, which is a network-based representation of scientific relatedness between topics. The 

links that connect topics are constructed from their co-occurrences within the titles of journal 

articles, and they express similarities in the capability requirements. As expected, we found 

strong evidence that new scientific topics in biotech tend to emerge systematically in cities 

where scientifically related topics already exist, while existing topics were more likely to 

disappear from a city when these were weakly related to the scientific portfolio of the city. 

Of course, these findings raise many new issues that need more attention in future research. 

For instance, one wonders what the potential impact of extra-regional linkages could be on the 

rise and fall of scientific topics, as biotech researchers also collaborate and co-publish with 

other researchers outside their city to an increasing extent. Co-author and research 

collaboration networks are considered key channels of knowledge diffusion and learning 

among researchers. Moreover, the extent to which city-city networks matter for developing 

new research topics, may also depend on the degree of relatedness among the network 

partners involved (Phene and Tallman, 2002). Studies on networks suggest that more radically 

new knowledge is developed when actors bring in related competences (Nooteboom, 2000; 

Gilsing et al., 2007). Thus, non-local networks may provide relational access to the adjacent 

set of possible topics cities may branch into, next to the global and local context that give 

access to the adjacent possible. This needs to be taken up in future research. 

Another key topic is how to measure scientific knowledge dynamics. In this paper, we used 

title words in scientific biotech publications to identify major cognitive developments within 

the field of biotech, and we analyzed knowledge dynamics at the city level by looking at the 

entry and exit of topics in the scientific topic portfolio of 276 biotech cities in the world. 

However, the use of title words is not unproblematic (Heimeriks and Boschma, 2013). 

Therefore, it remains a big challenge whether our findings will be affected by the use of 

alternative indicators, like the identification of major new cognitive events in the history of 

biotech science by leading experts or by means of the study of the evolution of patent activity 

in various technology classes. Patent analysis would also enable to construct a relatedness 

indicator by means of co-occurrence analysis based on the frequency of technology classes in 

the same patent document (Boschma et al., 2012). 

Moreover, our main finding that new scientific topics emerge systematically in cities with 

related topics suggests that these are all recombinations of existing knowledge. While this 
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may be true for a large fraction of new topics, it is not necessarily true for all scientific topics. 

In fact, it is highly plausible that some new topics were true novelties, i.e. they had few or no 

related topics at the time they emerged. Krafft et al. (2011) used patent documents to identify 

a number of discontinuities in the evolution of the knowledge base in biotech, such as the rise 

of a new generation of biotech linked to bio-informatics. Making use of social network tools, 

they captured both genuine novelty through the emergence of completely new nodes (as 

proxied by new patent classes) and recombinations through the creation of new links between 

existing nodes. From a geographical perspective, it would be interesting to test whether 

novelties are more likely to enter in new or highly diversified biotech cities, and whether 

recombinations occur more often in more specialized biotech cities. 

Furthermore, as the scientific space shows explicitly which topics require similar capabilities 

to the ones a city already has, it may help to inform researchers and policymakers about 

promising areas of further scientific development, comparative advantages and missing 

competences. This is an especially pressing issue in emerging sciences such as biotechnology, 

that are characterized by rapid growth, divergent dynamics, and new complementarities 

creating the need for wide-ranging cross-disciplinary competences (Bonaccorsi, 2008; 

Heimeriks and Leydesdorff, 2012).  

Our results show that research strategies need to take into account existing local skills and 

infrastructures to create future capability and comparative advantage. This implies that 

policies that aim to develop biotech in cities from scratch are bound to fail. If policy wants to 

push new scientific fields in cities, it is better to connect to locally available scientific fields 

from which they can draw related capabilities. Topics (and fields in general) also differ in the 

number and specific nature of the capabilities they require, as cities differ in the number and 

nature of capabilities they have. Topics that require more capabilities will be accessible to 

fewer locations (as is the case in most topics in biotech), while locations with a wider range of 

capabilities will contribute to more topics. Biotechnology is characterized by a high level of 

branching into related knowledge, and as a consequence, policy should focus on developing a 

narrow set of related research activities in order to yield greater innovative output. 
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