Papers in Evolutionary Economic Geography

# 12.25

Co-agglomeration of Knowledge-Intensive Business Services and Multinational Enterprises

Wouter Jacobs, Hans R.A. Koster and Frank van Oort
Co-agglomeration of Knowledge-Intensive Business Services and Multinational Enterprises

By Wouter Jacobs,* Hans R.A. Koster,† and Frank van Oort‡

This version: August 29, 2012

SUMMARY — It has been argued that the relationship between knowledge intensive business services (KIBS) and multi-national enterprises (MNEs) within the regional economy is advantageous for urban and regional dynamics. It is likely that KIBS aim to locate proximate to (internationally operating) MNEs because of agglomeration externalities. The impact of MNEs on the birth of KIBS has rarely been examined, and the research on the new formation of KIBS has mainly adopted a case study approach, thus limiting the opportunity for generalisation. We have taken a more quantitative approach using a continuous space framework to test whether proximity is important for the co-location of KIBS and MNEs in the metropolitan area of Amsterdam in the Netherlands. Our results, controlled for other location factors, indicate that KIBS are co-agglomerated with MNEs and that the presence of a MNE significantly influences the birth of KIBS nearby, but the effect on such start-ups is considerably smaller than the positive effect of the presence of already established KIBS. We discuss the implications for urban and regional development strategies and policy initiatives.

JEL-code — F23, L84, L25, R12

Keywords — knowledge intensive business services, multi-national enterprises, start-ups, point pattern methodology, Amsterdam.

* Corresponding author. Urban and Regional Research Center, Utrecht University, Heidelberglaan 2 3508TC Utrecht, e-mail: w.jacobs@geo.uu.nl. This paper was presented at the Annual Conference 2011 of the Association of American Geographers (AAG), Seattle WA, and at the 58th North American Meetings of the Regional Science Association International, Miami FL. We are grateful to the seminar participants for their constructive comments. Establishment level data on economic activity were courteously provided by Stichting LISA and PAR/BRU.
† Department of Spatial Economics, VU University, De Boelelaan 1105 1081HV Amsterdam. This author would like to thank NICIS-KEI for funding.
‡ Urban and Regional Research Center, Utrecht University, Heidelberglaan 2 3508TC Utrecht.
I. Introduction

The spatial behaviour of knowledge-intensive business services (KIBS) as well as their contribution to regional growth and innovation systems has gained growing scholarly attention over the last decade (Miles et al., 1995; Den Hertog, 2000; Müller and Zenker, 2001; Wood, 2002; Keeble and Nachum, 2002; Koch and Stahlecker 2006). It has been argued that within innovation processes and policy there is a need for a more service-oriented focus besides the traditional emphasis on manufacturing-related research and development (Wood, 2009). Service innovation is much more 'hidden' because it is less traceable (e.g. through patents) and more implicit tacit in nature. Service innovation relies on close interaction, on cognitive proximities and on customer-specific, intangible products. Moreover, innovation in services and the presence of KIBS are considered to be crucial for the development of a city’s international competitiveness in the knowledge-based economy (OECD, 2005; Raspe and Van Oort, 2006; Simmie and Strambach, 2006).

In addition to the observation that KIBS act as creators, carriers and diffusers of knowledge, economic geography scholars have begun to analyse the locational behaviour of KIBS. In empirical case studies, scholars have suggested that KIBS cluster in large metropolitan areas due to the agglomeration benefits they enjoy with their (globally operational) clients (Keeble and Nachum, 2002; Shearmur and Avergne, 2002; Shearmur and Doloreux, 2008; Müller and Doloreux, 2009). This is related to agglomeration theory, which concerns itself with the presence of positive externalities that stem from the localisation of similar types of industry; these positive externalities include, most notably, input sharing, knowledge spillovers and a specialised labour force, which result in increasing returns to scale. The argument can also be made that the co-location of KIBS and their (international) clients stems from urbanisation economies, which include the availability of urban amenities, the cosmopolitan atmosphere of a place, the presence of universities and government administration, and easily accessible, internationally well-connected transportation hubs. It is often argued that it is the diversity of economic activity, offered by large cities, that leads to the development of new products, services and markets (Frenken et al., 2007).\footnote{This explanation of the co-location of KIBS (or what is referred to as advanced producer services) with corporate headquarters of MNE-clients within the CBDs of vibrant and diverse urban settings, also forms the basic premise of Sassen’s (2002) thesis on the ‘global city’.
}

Explaining the location pattern of KIBS, however, becomes less straightforward on the intra-metropolitan level and on sub-sectoral levels of the types of KIBS. Porter (1995) argues that the most obvious place for KIBS and multi-national enterprises (MNEs) to
(co)locate is in inner cities because there is where one finds the four ‘true advantages of the inner city’: market access, strategic location, human resources and the integration possibilities with regional clusters. Although the inner city is still regarded as favourable location of KIBS and MNEs (see for a recent reappraisal Hutton 2008), other assessments after Porter (1995) indicate that the inner city or central business district (CBD) is not the only ‘true’ location that can provide these advantages. For example, because smaller-sized KIBS and start-ups face barriers in their attempt to enter metropolitan cores (e.g. high office rents), they might opt for decentralised locations within the metro-area, whereas on the sub-sectoral level certain specialised types of KIBS may prefer suburban office parks to traditional CBDs (see Keeble and Nachum, 2002 for Greater London; see Shearmur and Avergne, 2002 for Ile-de-France). These nuances correspond to what Coe and Townsend (1998) have referred to as the ‘myth of localized agglomeration’. They argue that it is better to speak of a ‘regionalized service economy’, at least in the case of Southeast England. What is more, they maintain that new firm formation and the concentration of business service firms in certain (sub-) urban locales in the region result from cumulative causation processes. Dynamic analyses are, in their opinion, more important than static accounts.

More fundamentally, the impact of multi-national enterprises on the birth of knowledge intensive business services within a regional economy has not been satisfactorily tested in a quantitative research design. The lack of such empirical research is surprising given the fact that many researchers have highlighted the importance of the co-location of multi-national head offices and business services in the metropolitan cores of world cities (see Sassen, 2002; Taylor, 2004). Co-location suggests the presence of dynamic urbanisation externalities, with both populations benefiting from each other's presence, resulting in innovations and new firm formation. Locations that host MNE head offices are also reservoirs of human capital, increasing the likelihood of new firm formation through spin-offs and spinouts (Henderson and Ono, 2008; Avnimelech and Feldman, 2010). Research on new firm formation and entrepreneurship within KIBS-activities are, however, scarce (but see: Koch and Stahlecker, 2006).

Location and agglomeration theories suggest other reasons for co-location of firms than learning and profiting from urban externalities. For instance, a similar need for real estate categories, a common consumer or labour market, zoning and regulation may be important determinants of co-location of firms as well (Hayter, 1997; DiPasquale and Wheaton, 1996;}

---

2 With cumulative causation Coe and Townsend (1998) refer to the issue that the growth of a sector in an area has an impact on that area’s attractiveness as a location of other sectors, through entrepreneurship, capital supply, labor supply or the institutional framework.
Capello, 2007). But, as Feser and Sweeney (2002, pp. 226-227) rightly remark, research focused on business clustering and its causes are faced with two major challenges. First, they observe a severe disconnect between broad theories of clustering and generalizable empirical research. They argue that this is partly a problem of failure of much existing empirical research to relate clearly varying forms of clustering suggested under very different literatures to appropriate operational measures (Gordon and McCann, 2000), ultimately an issue of construct validity and research design. But the real cause of the disconnect can, according to Feser and Sweeney (2002) be largely traced to the absence of reliable and accurate data measuring clustering on a detailed scale, able to test the burgeoning amount of cluster relevant theories (like New Economic Geography and endogenous growth theory) or to develop new and interesting hypotheses. Specifying factors hypothesized to drive clustering in detail and develop methods to isolate them is of key importance. In our analysis on co-location of KIBS and MNEs, we therefore aim for identifying and isolating relevant location specific attributes, and control for (and conclude on) them in our empirical models. Our theoretical propositions then are threefold that controlled for other locational factors: 1) geographical proximity with clients (like MNEs) matters to newly founded KIBS; 2) spatially bound, cumulative causation effects foster entrepreneurship among KIBS; and 3) corporate head offices are more likely to spawn newly founded firms that locate in their vicinity. Based upon these propositions we would expect that the proximity of multi-national firms is a factor in the birth of KIBS. Our central question is therefore: does the spatial proximity of MNEs and established KIBS foster the births of KIBS-firms? We test our propositions in the so-called Northwing of the Randstad region in the Netherlands (containing the cities of Amsterdam and Utrecht). This region equals other "global city-regions" in Europe, like Frankfurt, Lombardy, Catalunia, and Bavaria in size, density, sector structure, and many important location factors (Thissen et al., 2012), and therefore forms a good (quantitative) case study with wider implications of our outcomes than only the Dutch case.

In addressing this empirical question and filling this research gap on clusters and co-location of KIBS and MNEs, we take both a theoretical and methodological step forward. We contribute to the more theoretically grounded debate on the evolution of regionalised service economies as encouraged by Coe and Townsend (1998; see also Strambach, 2008). We examine whether location factors that matter for industrial location (summarised e.g. in Hayter, 1997) also hold for service sector activities, More specifically we want to fill the gap in research on knowledge intensive business services on the issue of entrepreneurship,

---

3 We use the terms births, new entries and startups interchangeably throughout the paper.
especially in relation with MNEs and how this differentiates across different KIBS subsectors, and policy strategies that are related to this. Empirically we actively take up the plea for detailed (point-process modelled) analysis in clustering posed by Feser and Sweeney (2002). Our models apply spatial-economic modelling on a refined spatial scale, approaching continuous space. Many studies within urban economics and economic geography typically use administrative spatial units when measuring agglomeration effects. This is problematic because in reality these units tend to be of different sizes, are often treated as symmetric and may induce sorting effects (Duranton and Overman, 2005; Combes et al., 2008; Briant et al., 2010). We employ the nonparametric methodology proposed by Duranton and Overman (2005) because we know the exact locations of firms (both KIBS and MNEs). We show that KIBS, KIBS-births and MNEs are all significantly localised, and also that KIBS and KIBS-births are co-agglomerated with MNEs. Subsequently, we determine the magnitude of the impact of nearby KIBS and MNEs on the number of entries of KIBS in a certain location using a conditional logit model.

The paper proceeds as follows. The next section presents the main conceptual argument by building on the theoretical insights of economic geography, location theory and urban economics upon which we examine our hypotheses. The third section presents our empirical methodology while the fourth section presents the data. In the fifth section the results will be presented and discussed. In the final section we draw conclusions and address policy implications and limitations and further avenues of research.

II. Regionalised service economies: innovation, agglomeration, scale and entrepreneurship

A. Literature

The goal of this literature review is to further frame the discussion as introduced above and address empirical hypotheses. A large body of empirical literature has emerged in the field of regional science and urban economics that examines the question of whether spatial circumstances give rise to agglomeration economies – external economies from which firms can benefit through co-location – that endogenously induce localized economic growth. Many of these empirical studies convincingly show that agglomeration economies may be one source of the uneven distribution of economic activities and economic growth across cities and regions. In their survey of this empirical literature on the benefits of agglomeration, Rosenthal and Strange (2004) point out that the elasticity of productivity to city and industry size typically ranges between three and eight percent. The effect of agglomeration economies on localized firm behavior can be expected to differ, however,
across sectors, space, and time (Van Oort et al., 2012). At the same time, little is known about the importance of agglomeration economies for the location decisions of individual firms. Although the scarcity of firm level evidence in the locational choice and agglomeration literature can be ascribed to data limitations and confidentiality restrictions, its absence is nevertheless disturbing, as the theories (e.g. New Economic Geography) that underlie agglomeration economies are microeconomic in nature (Martin et al., 2008). In other words, agglomeration economies do not directly foster regional economic growth, but do so only indirectly through their effect on firm performance and location decisions (Neumark et al., 2006).

Location theories focus on the process of choosing (and staying on) a specific location, and the relevant location factors influencing the outcome of this process. Hayter (1997) distinguishes between three different types of (re-)location theories. The first, called neo-classical theory of firm relocation, is based on the assumption that firms choose to locate in certain places if it can increases their profitability. Firms are assumed to have full information on alternative locations and choose their location on the basis of a rational appraisal of all relevant elements of the possible locations. Consequently, within this framework differences between location factors, like physical accessibility, the availability of space, the presence of qualified labor and real estate characteristics, are the main drivers of the observed patterns of location (De Bok and Van Oort, 2011; Holl, 2004). The second theory is the behavioral location theory, which assumes that firms do not have perfect information on the conditions of all alternative locations and are not rational decision makers, but exhibit satisfying behavior. Consequently, a multitude of locations might be selected as long as these satisfy the most stringent location demands of firm – implying that differences in location factors are considered to be less important than in neo-classical theory (Van Dijk and Pellenbarg, 2000). Furthermore, much attention is given to the processes of decision-making inside the firm and the role of firm internal factors (Hayter, 1997). Finally, the institutional location theory is distinguished. This theory focuses on the relation between firm location and the embeddednes of the firm in its location. Firms have (long-)lasting relationships with suppliers, employees and local governments. The institutional theory of relocation analyses the role of these networks and relations in the location process (Knoben, 2008).

Empirically, location theory (in all three conceptual frameworks) has been tested in aggregated (spatial or sectoral) models, with much emphasis on tangible location factors as put forward in the neo-classical location theory, and still little focus on firm-level analysis of firms located in their individual environment or on intangible network dimensions of firms.
(Van Oort et al., 2012). Further, the theories are traditionally much tested on industrial firm location, and only recently also focuses on the location of (business) services. For our case study in the Netherlands (the Amsterdam-Utrecht region), especially the location factors of market density (population), physical accessibility (distance to Schiphol international airport, the highway or intercity train stations), regulated zoning areas on the national level (the Green Heart, open space) and proximity to universities and knowledge institutions are important factors determining firm location (Raspe and Van Oort, 2006; De Bok and Van Oort, 2011; Van Dijk and Pellenbarg, 2000). In terms of regionalised service economies, especially four issues come to the fore. One is the role of innovation in regional development in general and of innovation in services in particular, as services are of a more intangible character than goods. Two other issues deal with the economics of agglomeration and refer to the degree of concentration of services and the spatial scale at which externalities emerge. Fourth, and related to the above, there is concern with the issue of entrepreneurship in KIBS because this provides indicators of the true evolution of a regional service economy – the burgeoning type of regional economies in Western countries (Coe and Townsend, 1998; Hutton, 2008).

It is generally accepted that, to a large extent, the international competitiveness of firms, cities and regional economies is dependent on their capacity to innovate, absorb new knowledge and talent, and insert themselves into global networks of exchange (Porter, 1995; Knight, 1995; Storper, 1997; Bathelt et al., 2004). Within this context, it is important to note that knowledge and innovation still concentrate geographically (Audretsch and Feldman, 1996) despite the advantages of improved communication systems. Some types of knowledge are so tacit that they are only absorbed by the actors who are in close cognitive proximity to each other, which is facilitated by spatial proximity (Boschma, 2005; Malmberg and Maskell, 2006).

While these insights are typically used to explain the concentration of R&D activities within clusters and industrial districts, they are also said to be relevant for knowledge intensive business services (see Müller and Zenker, 2001; Shearmur and Doloreux, 2008; Wood, 2009). Despite their heterogeneity, KIBS can be understood as having a number of defining characteristics (see Strambach, 2008). In contrast to more technology-related R&D activities, KIBS are characterised by intense interaction with clients, by their capability to simultaneously de-contextualise and customise knowledge, and by the often-intangible nature of the knowledge output they supply. The tacit-ness of knowledge involved in business service innovation, in addition to the need for intense interaction with clients, implies that spatial proximity with client firms provides significant advantages (Bennett et
al., 2000). Spatial proximity facilitates the building of trust and reputation necessary for the provision of ‘organizational commodities’ by KIBS to globally operating clients (Sassen, 2010). It generates absorptive capacity among KIBS to tackle market demand (Nootheboom, 2000). It lowers transaction and search costs and allows both KIBS and their clients to profit from ‘untraded interdependencies’ (Storper, 1997). Given these characteristics, it comes as no surprise that KIBS have an urban profile (Simmie and Strambach, 2006).

According to Shearmur and Doloreux (2008), the role of KIBS in regional development in the 2000s has been studied from two different perspectives, each with their own set of causal mechanisms. The first perspective views KIBS as ‘vectors of information exchange’ and highlights the role KIBS play in the creation and diffusion of new knowledge in relatively closed regional innovation systems (Müller and Zenker, 2001). Regional development in this perspective is the by-product of local interaction processes between KIBS and their clients. Endogenous growth will be fostered through these local interactions, especially when it is stimulated by a dedicated innovation policy that targets governance and capacity building among local stakeholders (the ‘triple helix’) and local infrastructure investments (see Cooke, 2001). Acting as knowledge brokers and co-creators, KIBS contribute to an innovative milieu. This explains the call for the inclusion of KIBS – and services in general – in regional innovation policy, which still tends to be biased towards more technology-related innovations and R&D within manufacturing-based industries (see Wood, 2009).

The second perspective takes a macro-geographical approach to the analyses of KIBS and regional development. This perspective highlights the distribution of KIBS across (predominantly national) urban systems and explains the tendency of KIBS to cluster in large metropolitan areas through the presence of dynamic agglomeration externalities. According to this approach, while KIBS still tend to concentrate within cities along the top of the urban hierarchy at the national level, the picture becomes more nuanced at the intra-regional level. According to Coe and Townsend (1998), agglomeration of business services follows a different logic than is often understood in the analysis of manufacturing-related clusters and industrial districts (see also Keeble and Nachum, 2002). More specifically, the agglomeration of business services is not (only) fuelled by reducing transport and transaction costs, but even more so by the possibilities to innovate and to engage in collective learning. The clustering of KIBS then follows the logic of localisation economies for reasons of competition-driven innovation and growth, resulting in processes of cumulative causation (Porter, 1995).
The overlap between the two approaches, as identified by Shearmur and Doloreux (2008), is that they both take into account the importance of KIBS for localised learning and the development of dynamic capabilities. The difference is that the latter approach also acknowledges the importance of external linkages, most importantly those locally provided by the global networks of client firms. Indeed, as observed by Keeble and Nachum (2002, pp. 86) in their study of Southeast England, “cluster SMEs [Small and Medium Sized Enterprises] are significantly more globally orientated than their decentralized counterparts, in terms of client revenues, overseas offices, collaborative arrangements and even professional staff recruitment”. The location of KIBS in proximity to the multi-national head offices of clients suggests the presence of dynamic urbanisation externalities. The clustering of both KIBS and international client firms within urban centres represents a diversity of different economic activities in close proximity, which is understood to foster innovation and growth (Glaeser et al., 1992). More specifically, a large presence of MNEs within a region can provide sufficient market demand for KIBS services, allowing for start-ups to fill the gap. What is more, locations with a high number of corporate head offices are often characterised by concentrations of talent and professional networks, increasing the likelihood of local spin-offs and potential local entrepreneurs (Henderson and Ono, 2008; Avnimelech and Feldman, 2010). It might be the case that spin-offs spawn from internationally operating KIBS or through the outsourcing of KIBS-related business functions by large MNEs. At the same time, it has been argued that multi-national firms act as global pipelines that distribute new knowledge and best practices into local clusters while challenging local suppliers to meet their standards (Bathelt et al., 2004; Ernst and Kim, 2002). As such, large international clients demand more from their local suppliers of business services, increasing the likelihood that these service firms will possess and develop better skills and hence have greater chance of survival.

The issue of external linkages, as well as the co-location of KIBS (or advanced producer services) and their globally operating clients or MNEs within certain urban locales, similarly forms the central focus of research on world cities. These studies highlight how business service firms connect urban economies through their corporate networks, in which the global connectivity of cities determines its position in the world city hierarchy (see Taylor, 2004). However, while co-location and interaction between KIBS and MNEs form the basic premise within the study of world cities, empirical research seemingly takes the presence of agglomeration economies at the urban and regional level for granted. In their study of the Oslo capital region, Aslesen and Jakobson (2006) confirm that there is a positive relationship between the co-location of multi-national head offices and KIBS in
terms of knowledge interaction. However, this study does not explain how these interactions evolve across space and whether these interactions lead to regional growth in the form of new firm formation.

As pointed out by Koch and Stahlecker (2006), the issues of entrepreneurship and the evolution of start-ups has been lacking in most (English-based) studies on KIBS. This lacuna presents a challenge because many studies have emphasised the growth of KIBS in general over the last two decades as a result of the outsourcing of service-related functions such as human resource management, legal services, ICT, executive management training and the like. The qualitative analysis of three German cities by Koch and Stahlecker (2006) confirms that start-ups favour proximity to their clients. However, their study is mainly an inter-urban comparison and therefore does not take into account the location of start-ups within the urban region. As suggested by Coe and Townsend (1998), large urban regions can host a variety of business environments from which new firms can choose. In addition, the study does not make a distinction among the specific types of KIBS clients, nor does it differentiate between KIBS subsectors. As pointed out by Shearmur and Alvergne (2002), different subsectors of KIBS display combinations of both concentration and dispersal within the Greater Paris metropolitan region. Much depends in this case on the markets served (local, global) and on the internal structure of KIBS establishments.

B. Hypotheses

Our examination of the agglomeration of KIBS, their start-ups and the characteristics of their co-location with MNEs led to a series of testable hypotheses.

Spatial concentration within local clusters provides external benefits to firms, such as better information about market opportunities and the presence of a specialised labour market. In times of overall industry growth, we can expect that the regional concentration of firms in certain locations increases over time. Therefore, we propose the following hypothesis:

H1: KIBS have become more concentrated in the urban region over time

Regionally growing KIBS may be attributed to corporate spawning in which spin-offs or spin-outs emerge from the existing KIBS populations. Spatial concentration is enhanced, as spin-offs are more likely to stay close to the mother while start-ups are more likely to

---

emerge close to the entrepreneur’s home and to their social networks (see Stam, 2007). Indeed, regions that have a concentration of firms of a certain kind tend to generate a large number of new firms of the same kind (Stam, 2010), following the logic of localisation economies. Therefore, the following hypothesis seems reasonable:

H2: Entries of KIBS in the urban region are spatially concentrated

Given the expectation that KIBS increasingly cluster over time, it can be argued that KIBS start-ups are more likely to be found in existing concentrations as competition fosters innovation and new firm formation even though competition reduces survival chances (Porter, 1996). Therefore, we hypothesise as follows:

H3: The location of entries of KIBS depends on spatial proximity to existing KIBS

Ultimately, we want to know to what extent the number of KIBS births is related to co-location with (and spatial proximity to) multi-national enterprises. As argued before, MNEs may offer (dynamic) urbanisation externalities in the form of the presence of a highly skilled labour market, knowledge spillovers and a concentration of clients, among other things. Therefore, we propose the following hypothesis:

H4: The number of entries of KIBS depends on spatial proximity to MNEs

However, we should take into account the heterogeneity of KIBS. While KIBS might have some common characteristics, they also differ greatly in the type of services they provide, their client base and their location pattern within the regional economy (see Shearmur and Alvergne, 2002). Thus, we expect that the role of MNEs varies for different types of KIBS:

H5: The effect of MNEs on KIBS entries differs for subsectors of KIBS

Note that we do not hypothesise a dual causality; the presence of KIBS start-ups will not likely act as an incentive for MNEs to locate in a certain place. Following the logic of supply and demand, it is the business service firms that have the most to gain when locating in proximity of their clients. What is more, MNEs are less dependent on the local host environment than KIBS start-ups, and MNEs are furthermore embedded within global corporate networks, which also influence locational choices.
We will apply these hypotheses to one particular regionalised service economy, namely the Northwing of the Randstad in the Netherlands (Figure 1). The Northwing of the Randstad consists of two metropolitan cores, namely the cities of Amsterdam and Utrecht, along with a number of middle-sized cities and towns that offer more suburban environments. The case of the Northwing of the Randstad has been selected for two reasons. First, the region in general is regarded as the national centre of both internationally operating business services and foreign direct investment (see Van Oort et al., 2010). Not only are the majority of Dutch-based multinationals headquartered here (e.g. Philips, Akzo Nobel), many foreign multi-nationals also locate their executive and marketing and sales operations in the region (e.g. Hewlett Packard, IBM, Canon). The second reason is more policy-driven. The national government has recently designated the Northwing Randstad as an important centre of innovation and international competitiveness. A cluster policy is proposed for this region, building on new firm formation by KIBS in relation to MNEs. A good formulation of the potential of such a
strategy is dependent on an understanding of the statistical relationship between KIBS and MNEs in the recent past. We proceed by first introducing our empirical methodology and our data, after which we present our results.

III. Empirical methodology

A. Measuring concentration

The first step in the empirical analysis is to test whether KIBS become more spatially concentrated over time, whether births of KIBS are localised, and whether KIBS are co-agglomerated with MNEs. Duranton and Overman (2005) argue that many measures of concentration use arbitrary spatial units (such as provinces, municipalities or postcodes), which may be problematic as it may lead to biases (see Briant et al., 2010 for a discussion).

We therefore use a calculation of employment concentration that is continuous over space, as we have individual, firm-level data at a very detailed level (postcode 6-digit, PC6). So our data is essentially continuous over space. We employ the method of Duranton and Overman (2005; 2008) to estimate kernel densities for a given industry (e.g. KIBS, MNE) in a specific year. This concentration index controls for overall agglomeration, is comparable across industries, is invariant to scale and aggregation and provides an indication of statistical significance. Below, we briefly discuss the procedure. For more details, we refer the reader to Duranton and Overman (2005; 2008).

Let \( \bar{\bar{R}}_{st}(d) \) denote the estimated kernel density of industrial sector \( s \) in year \( t \) at a given distance \( d \), \( d_{ij} \) denotes the distance between firm \( i \) and \( j \), where \( i = 1, ..., l \) and \( n_{ist} \) represents the number of employees of firm \( i \) in industry \( s \) in year \( t \). Then:

\[
\bar{\bar{R}}_{st}(d) = \frac{1}{h} \sum_{i=1}^{l-1} \sum_{j=i+1}^{l} n_{ist} \eta_{jst} \sum_{i=1}^{l-1} \sum_{j=i+1}^{l} n_{ist} \eta_{jst} \Omega \left( \frac{d - d_{ij}}{h} \right),
\]

where \( h \) is the bandwidth and we define:

\[
\Omega(\cdot) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left( \frac{d - d_{ij}}{h} \right)^2},
\]

so we use a Gaussian weighting function. An important parameter of the kernel density function is \( h \). Following Duranton and Overman (2005; 2008) and Klier and McMillen

---

5 More specifically, spatial units are often very different in size and are therefore not comparable. A solution is to use relative indices such as location quotients, but these measures tell us little about the absolute concentration of an industry. Further, spatial units are treated symmetrically, so firms in the neighboring region are treated in exactly the same way as a firm which is located further away (Duranton & Overman 2005).

6 A PC6 area is a very small area (comparable to the size of a census block in the United States). It includes on average 17 workers.
(2008), we set the bandwidth equal to Silverman’s plug-in bandwidth (see Silverman, 1986). We estimate \( \hat{K}_{st}(d) \) for \( d \leq 25 \) because the median distance between firms in our region appears to be 25 kilometres. Distances \( d \) cannot be negative. To deal with this issue, we use the reflection method, proposed by Silverman (1986).

We aim to test whether the estimated concentration is statistically significant or simply random; so we have to define a counterfactual location pattern. For that we randomly assign firms of a specific industry \( s \) in a given year \( t \) to PC6-locations. Note that the density of PC6-locations is much higher in urban areas, so this should control for the overall agglomeration of people and firms.

We determine the five percent local confidence bands by ranking the simulations of the counterfactual location patterns in ascending order and choose the 5th and 95th percentile to obtain the five percent lower and upper confidence intervals. However, we are more interested in whether global location patterns of firms depart from randomness. We determine global confidence intervals by treating each of the estimated density functions for each simulation as a single observation. Like Duranton and Overman (2005), we choose identical local confidence levels, in such a way that the global confidence level is 5 percent.

The upper and lower five percent confidence bands are then defined as \( \overline{K}_{st}(d) \) and \( \underline{K}_{st}(d) \).

When \( \hat{K}_{st}(d) > \overline{K}_{st}(d) \) for at least one \( d \in [0,25] \), we conclude that an industry is statistically significantly localised at the five percent level. An industry is significantly dispersed when it is not localised and \( \hat{K}_{st}(d) < \overline{K}_{st}(d) \) for at least one \( d \in [0,25] \). We then may define a global index of localisation \( L_{st} \) that is comparable across industries and time:

\[
L_{st} = \begin{cases} 
L_{st} & \text{if } L_{st} = 0 \\
-D_{st} & \text{otherwise}
\end{cases}
\]

where \( L_{st} = \sum_{d=0}^{25} \max(\hat{K}_{st}(d) - \overline{K}_{st}(d), 0) \) and \( D_{st} = \sum_{d=0}^{25} \max(\overline{K}_{st}(d) - \hat{K}_{st}(d), 0) \). As shown in Ellison et al. (2010), this index equals zero when there is neither localisation nor dispersion; it is positive when an industry is statistically significantly localised, and it is negative when the industry is statistically significantly dispersed.

---

7 More specifically, \( h = 1.06\sigma_{d_{ij}}^{-1/5} \), where \( \sigma_{d_{ij}} \) is the standard deviation of the estimated bilateral distances between firms in a specific sector, so this is given the industry and year.

8 Information for larger distances is superfluous, as industries that are localized at very small distances are by construction dispersed at very large distances (as there are too few firms located far from each other).

9 For a detailed description on how to construct the global confidence intervals, we refer to Klier and McMillen (2008).

10 See Ellison et al. (2010), pp. 20 of the Data and Empirical Appendix.
We also use this procedure to investigate whether KIBS and MNEs are co-agglomerated. In this case, the kernel density function is slightly different because we consider the bilateral distances between a sector $s$ and $r$ (see Ellison et al., 2010):

\[
\hat{K}_{srt}^{co}(d) = \frac{1}{h \sum_{i=1}^{l} \sum_{j=1}^{l} n_{ist} n_{jrt}} \sum_{i=1}^{l} \sum_{j=1}^{l} n_{ist} n_{jrt} \Omega \left( \frac{d - d_{ij}}{h} \right).
\]

An index of co-agglomeration is then defined as:

\[
C_{st} \equiv \begin{cases} 
L_{st}^{co} & \text{if } L_{st}^{co} = 0 \\
-D_{st}^{co} & \text{otherwise}
\end{cases}
\]

where $L_{st}^{co} = \sum_{d=0}^{25} \max(\hat{K}_{srt}^{co}(d) - \hat{K}_{srt}(d), 0)$ and $D_{st} = \sum_{d=0}^{25} \max(\hat{K}_{srt}(d) - \hat{K}_{srt}^{co}(d), 0)$.

The counterfactuals are constructed in a similar way. It is important to note that we cannot distinguish empirically between joint-localisation and co-localisation (Duranton and Overman, 2008; Ellison et al., 2010). For example, two industries may co-locate because of unobserved locational advantages (e.g. natural resources, accessibility). In the next section, we discuss the methodology that enables us to filter out the impact of factors that may cause the observed co-agglomeration patterns.

**B. Measuring the effect of proximity to MNE and KIBS on births**

To investigate the magnitude of the effect of concentrations of MNEs and KIBS on KIBS-births, we employ a standard random profit framework. We assume that firm $i$ will choose a location $j$ in such a way that it maximises profits. Location $j$ is defined as a postcode six-digit (PC6) area.

The proximity to MNEs is defined as $\Gamma_j$. Similar to the previous section, the index is defined as an exponential distance decay function with respect to employment:

\[
\Gamma_k = \sum_{k=1}^{K} e^{-\delta d_{kk} m_k},
\]

where $d_{kk}$ is the distance between location $k$ and $\kappa$, where $\kappa = 1, \ldots, K$, $m_\kappa$ are the number of employees in MNEs at location $\kappa$ and $\delta$ denotes a distance decay parameter.

Similarly, we may expect that proximity to other KIBS, defined as $\Delta_j$, may have a positive impact on profits because it implies access to potential customers and talented employees and may facilitate knowledge spillovers among business services firms. We use a formula analogous to (6) to estimate the weighted number of employees in KIBS firms at each location. Similarly, we also take into account the proximity to employment in all other firms, $\Theta_j$. Profits are not only influenced by proximity to firms, but also by other attributes.

---

11 So, in our application, $r$ are multi-national enterprises.
of location \( X_j \) (e.g. distance to highways, universities, land use etc.). We introduce and explain these controls in the next section.

The profit function of a firm is then defined as:

\[
\max \pi_{ik} = X_k' \alpha + \beta \Gamma_k + \gamma \Delta_k + \zeta \Theta_k + F_k' \eta + \xi_k + \epsilon_{ik},
\]

where \( \pi \) denotes profits of firm \( i \) choosing location \( k \); \( \alpha, \beta, \gamma, \zeta \) and \( \eta \) are parameters to be estimated, \( \epsilon_{ik} \) are municipality fixed effects that control for unobserved spatial heterogeneity (for example, unobserved factors related to the regulatory framework that may attract firms), \( \xi_j \) is a random effect and \( \epsilon_{ij} \) is an idiosyncratic constant. For convenience, we assume that \( e_{ij} \) follows an independent and identically distributed gamma distribution with \( (\mu^{-1}, \mu^{-1}) \) parameters and \( \epsilon_{ij} \) has an Extreme Value Type I distribution. Then, it may be shown that:

\[
\Pi_{ik} = \frac{\exp(X_k' \alpha + \beta \Gamma_k + \gamma \Delta_k + \zeta \Theta_k + F_k' \eta + \xi_k)}{\sum_{k=1}^{K} \exp(X_k' \alpha + \beta \Gamma_k + \gamma \Delta_k + \zeta \Theta_k + F_k' \eta + \xi_k)},
\]

where \( \Pi_{ik} \) denotes the probability that firm \( i \) chooses location \( j \). Guimarães et al. (2003) show that the log-likelihood function of a conditional logit model (CLM) is equivalent to that of a Poisson model. With the inclusion of random effects \( \xi_j \), this model collapses to a standard negative binomial regression (Hausman et al., 1984; Cameron and Trivedi, 1998; Guimarães et al., 2004). Thus, we may estimate this model by applying a negative binomial regression and regress the number of births per location on \( X, \Gamma, \Delta, \Theta \) and \( F \) (see also Rosenthal and Strange, 2003).

### IV. Data

#### A. Datasets

The micro-data on KIBS and other firms within the region are derived from LISA (for North-Holland/Amsterdam) and PAR (for Utrecht) databases (both are based on Chambers of Commerce data complemented with data on non-commercial employment via all-encompassing questionnaires). See Van Oort (2004) for a detailed description of these data. They include all new entries and establishments that have already been registered within our defined region, including their names, exact location (on postcode six digit-level) and number of employees. For KIBS-births we have information per year for the period 2000-2009. While the fact that some have argued that Standard Industry Classifications (SIC) are not very useful in the empirical analyses of KIBS, we nonetheless proceed by defining KIBS accordingly (Hipp, 1999). This is almost inevitable if one wants to make regional aggregations based upon data of a large research population. In this paper we define KIBS...
in terms of NACE codification. Following Strambach (2008), we aggregate the KIBS sub-sectors into the following branches: R&D services, Economic Services, Technical/IT Services and Marketing/Advertising (see Table A1 in Appendix A). The distinction in these four classes is based upon the different types of knowledge they develop and possess. In line with insights of Shearmur and Alvergne (2002), we expect that these different KIBS sub-sectors also display different locational preferences. Some global financial services prefer a location in the CBD that matches their international status while IT-Services and auditing firms prefer easy access to highways at the urban fringe so that their staff can travel easily with their lease cars to clients across the region.

The data on MNEs are derived from the Achilles database for foreign-owned multinationals. The Achilles database is compiled by the Dutch national agency for foreign direct investment (NFIA) and consists of MNE establishments at locations in the Netherlands, including their year of establishment in the Netherlands and their number of employees. This database provides us with a total of 1,182 MNE establishments in the defined region, generating 117,224 jobs in 2000. As we have only data of MNE establishments in 2000, we select KIBS-births from 2001 to 2004 because we may expect that the pattern of MNE establishments has not changed drastically between 2001 and 2004.

We also gathered information on a wide range of other locational attributes in 2000. In particular, we control for population density at the postcode four-digit level. Population density may be a proxy for crowding effects, such as high rents, traffic congestion and higher wages. On the other hand, previous studies have confirmed that population density does positively affect entrepreneurship (Reynolds et al., 1994; Wagner and Sternberg, 2004) because high population density provides the advantage of easier access to customers and input factors. We also control for the distance to the nearest highway ramp and train station to capture accessibility, distance to hectares of water and hectares of open space to capture natural amenities, and distance to universities and the Schiphol international airport. We furthermore include a dummy that indicates whether a location is

---

12 NACE: Nomenclature statistique des Activites dans la Communauté Européenne.
13 According to Strambach (2008) different types of KIBS possess and develop different types of knowledge. While R&D services are more engaged in analytical knowledge, economic service and technical-and IT services include more synthetic knowledge. Marketing and advertising activities rely upon symbolic and intangible knowledge.
14 We notice that we have only information on foreign-owned MNEs, which may lead to a sample selection bias. However, we have a dataset of all MNEs (including domestic MNEs) in 2011, and it appears that foreign-owned multi-nationals account for about 80 percent of the population, so although we do not have information on the full population of MNEs, our sample seems to be large enough to make relevant claims about the location patterns of MNEs.
in the so-called Green Heart, where regional planning restrictions apply. We control for zoning (which restricts the choice set of locations) by only selecting PC6 locations that had more than 10 employees in 2000 (see also Duranton and Overman, 2005). In the Netherlands, there are quite strict planning regulations on the urban level that prohibit firms from locating wherever they would like. Municipalities in the Netherlands generally pursue an active land policy (Buitelaar et al., 2007). Given this convention, the local government acquires greenfield sites, assigns land uses and sells them to the private developer in order to recoup the costs of public amenities. Further, municipalities strictly designate zones for shopping and living; provinces focus on nature reserve areas and secure water provision; and the national government is concerned with national parks (including the already-mentioned Green Hart, bordering the cities of Amsterdam in the south and Utrecht in the West) and sea protection (Van der Cammen and De Klerk, 2003). Selecting locations with more than 10 employees in 2000 also makes it more likely that we are only selecting employment locations rather than residential locations. This is important because we want to rule out the possibility that entrepreneurs might work from home and make a joint location decision where to work and live, muting the effect of the variables of interest. Our dataset then consists of 13,655 PC6 locations.

B. Descriptives

The descriptives of the variables are presented in Table A2 in Appendix A, which shows that, given our selection of locations with more than 10 employees in 2000, the average number of births per PC6 location is 0.44. It further indicates that the variance is much larger than the mean, implying overdispersion, which makes the use of a negative binomial regression preferable over an ordinary Poisson model. Table A3 shows that the correlation between KIBS, MNEs, and other firms is modest, so we can separately identify the effects in our econometric models. When we take logs, the correlations are even lower.

---

15 As the threshold value of 10 employees is arbitrary, we will test the robustness of our results with respect to this threshold in the sensitivity analysis in Appendix B.

16 When we take logs, the correlations are even lower.

- 18 -
KIBS are primarily concentrated in the major cities of Amsterdam and Utrecht and to a lesser extent in the medium-sized cities of Haarlem and Almere. We see a strong clustering in the city centre of Amsterdam. The pattern of agglomeration of MNEs is somewhat similar to that of KIBS. However, we observe notable differences. First, the MNEs are more agglomerated near the international airport Schiphol and in the south of Amsterdam. Schiphol may be a favourable location because it implies a better connection with global cities such as London and New York. For example, the (regional) headquarters of AirFrance-KLM is located in Amstelveen, which is relatively close to Schiphol. Many international firms, including the head offices of the Dutch financial corporations ING and ABN-Amro as well as auxiliary KIBS in the field of management consultancy, executive search, auditing and legal advice, are also located at and near the so-called Zuidas (a prestigious dedicated business park in Amsterdam that has developed since the late 1990s). Second, a number of MNEs, for example, Atos Origin and CapGemini, which can be considered KIBS in their own right, are located in the western part of Utrecht whereas domestic-based KIBS are more concentrated near the campus of Utrecht University east of the city. All these locations can be characterised by their close proximity to the main highways connecting the region.

Figure 3 indicates that KIBS start-ups tend to be concentrated in urban areas. The density of KIBS start-ups is rather high in the two largest cities of the region, Amsterdam and Utrecht. This corresponds to the general concentration pattern of KIBS presented in Figure 2. This can therefore be considered the first piece of evidence that new entries tend to be spatially concentrated within dense locations (see hypothesis 2). This can be
attributed to the fact that urbanisation economies, stimulate entrepreneurship (see Glaeser, 2011; Wagner and Sternberg, 2004)

Table 1 shows that the last decade has seen a significant growth in the number of KIBS. In terms of the total number of KIBS establishments, we note a growth of 85.6 percent in the period 2000-2009. Similarly, the total employment of KIBS in the region experienced a growth of 29.6 percent. The difference between the growth rates of establishments and employment indicates that the average firm size has decreased. This is especially attributable to an increased number of start-up firms in the region. The share of KIBS in the total employment of the Northwing area increased from 8 percent to 9 percent. The share of KIBS in the total number of establishments increased from 13 percent to 18 percent. When we look at the individual KIBS types, we see some profound differences between them although all types experienced growth. The largest growth of firm establishments in both absolute and relative terms can be observed in Economic Services, which has doubled its presence in the region. Also remarkable is the strong relative growth in terms of the number of establishments of the smallest group, the R&D Services. Furthermore, we observe, in particular, how for Technical & ICT Services and R&D Services the average firm size has declined although these types of KIBS are still, on average, the largest firms. Technical & ICT Services and Economic Services have the most start-ups during this period.
### Table 1 — Number of and Employment in KIBS in 2000 and 2009 in the Randstad Northwing

<table>
<thead>
<tr>
<th>Type of KIBS</th>
<th>2000</th>
<th>2009</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic Services</td>
<td>10,952</td>
<td>43,445</td>
<td>23,214</td>
</tr>
<tr>
<td>Marketing Services</td>
<td>6,922</td>
<td>26,293</td>
<td>10,577</td>
</tr>
<tr>
<td>Technical and ICT Services</td>
<td>5,956</td>
<td>49,277</td>
<td>10,461</td>
</tr>
<tr>
<td>R&amp;D Services</td>
<td>358</td>
<td>5,865</td>
<td>649</td>
</tr>
<tr>
<td>Total KIBS</td>
<td>24,188</td>
<td>124,880</td>
<td>44,901</td>
</tr>
<tr>
<td>Total All Firms</td>
<td>184,023</td>
<td>1,604,816</td>
<td>254,925</td>
</tr>
</tbody>
</table>

### V. Results

**A. Localisation and co-agglomeration**

In this subsection, we first analyse the results of the localisation index $L$ (see equation (3)) to test hypotheses 1 and 2. We ran 250 simulations to generate counterfactual location patterns for each industry. Figure 4 shows the results of the estimated kernel densities for KIBS and KIBS-births. It shows that KIBS and KIBS-births are all significantly localised. We find that the estimated kernel densities are above the global confidence band especially when the distance is small (less than 10 kilometres). It is striking that KIBS in 2009 are much more concentrated within shorter distances than were KIBS in 2000. Ellison and Glaeser (1997, 1999) and Bayer and Timmins (2007), among others, argue that natural advantages are a major reason for clustering. However, (unobserved) natural advantages remain fairly constant over time, so the difference in concentration may be attributable to the presence of Marshallian externalities, such as knowledge spillovers, access to specialised labour markets and suppliers. In the next section, we explore the importance of these types of externalities in more detail.

Table 2 presents the results for the estimated localisation index $L$ and the index for co-agglomeration $C$ for KIBS, KIBS start-ups, MNEs and also KIBS-subsectors. The table shows that all industries are significantly localised, although the values of $L$ are substantially different between industries. First, the results confirm that KIBS have become more spatially concentrated between 2000 and 2009; the index more than quadruples. The results of subsectors reveal that there is substantial heterogeneity in the magnitude of the index. Especially marketing services and R&D services are relatively concentrated whereas technical and ICT services are hardly concentrated. It is also notable that economic services have become less spatially concentrated despite the general trend of KIBS to become more spatially concentrated.

---

17 For some industries, we also run 1,000 and 2,500 simulations, but the results were very similar.
We also investigated whether KIBS-births are spatially concentrated. It appears that both in 2001 and in 2008 KIBS start-ups were significantly concentrated, which is in line with Figure 4. This suggests that spin-offs are more likely to locate close to the parental firm and start-ups are more likely to emerge in concentrations of KIBS. Although start-ups are concentrated, notice that the concentration of births has not increased between 2001 and 2008. This may seem surprising, but start-ups do not necessarily have to follow the tendency of KIBS to become more spatially concentrated (Dumais et al., 2002; Duranton and Overman, 2008).\footnote{We may illustrate this with an example. Consider the case that KIBS are only located in two clusters in a region. Our localization measure will then find that KIBS are clustered more than can be expected from a random pattern. However, consider two entries of KIBS, one in each cluster. Then, the localization measure of KIBS-births will signify dispersion.}

\footnote{We may illustrate this with an example. Consider the case that KIBS are only located in two clusters in a region. Our localization measure will then find that KIBS are clustered more than can be expected from a random pattern. However, consider two entries of KIBS, one in each cluster. Then, the localization measure of KIBS-births will signify dispersion.}
We further estimated the concentration index for MNEs. We observed that MNEs had a relatively strong tendency to concentrate, even relative to KIBS. This is in line with the results shown in Figure 2, which also suggests the clustering of multi-national enterprises.

| TABLE 2 — LOCALISATION OF KIBS AND MNEs |
|-----------------|-----|-----|-----|
|                | 2000 | 2009 | 2000 |
| KIBS           | 0.030 | 0.127 | 0.038 |
| Economic Services | 0.037 | 0.013 | 0.029 |
| Marketing Services | 0.115 | 0.134 | 0.070 |
| Technical and ICT Services | 0.008 | 0.014 | 0.009 |
| R&D Services    | 0.032 | 0.077 | -0.147 |
| KIBS-births     | 0.064 | 0.023 | 0.028 |
| MNEs            | 0.083 |       |       |

Note: KIBS-births refer to births in 2001 and 2008. We ran 250 Monte Carlo simulations for the counterfactual location patterns.

We now turn to the results of the co-agglomeration index $\mathcal{C}$ (see Table 2). In general, knowledge intensive business services are co-agglomerated with multi-national enterprises. The new entries of KIBS are also co-agglomerated with multi-national enterprises. Between different subsectors there are noticeable differences. Economic services and especially marketing services tend to agglomerate with MNEs whereas R&D services are co-dispersed. So, distances between R&D services and MNEs are larger than we should expect from a randomly drawn location pattern. The main reason for this outcome is probably that R&D services tend to agglomerate near universities whereas MNEs prefer locations in the inner city. In the empirical analysis, we therefore may expect that MNEs have no or a negative impact on entries of R&D Services. Table 2 also shows that technical and ICT services are hardly co-agglomerated with MNEs. The main reason is probably that these generally small firms are relatively more footloose (with human capital as main resource) and hence do not have a strong tendency to localise. In the next section, we aim to distinguish between joint-localisation and co-localisation: we controlled for locational factors that may lead to joint-localisation (e.g. highways, dense cities, etc.) to verify the impact of MNEs and KIBS on the number of entries of KIBS.

B. Results from negative binomial regressions

Based on the previous subsection, we established that KIBS entries tend to cluster at a local level and are spatially co-agglomerated with MNEs. In what follows, we assume that $\delta =$

19 The more technologically oriented faculties of the universities of Amsterdam (VU University) and Utrecht are located on (campus) science parks in the suburbs.
so that most of the weight of the estimated potentials is within 1.5 kilometres. In Table 3, negative binomial regressions are presented.

**Table 3 — Regression results of the impact of MNEs and KIBS on KIBS-births (Dependent variable: the number of KIBS-births per PC6-location)**

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNEs $\Gamma$ (log)</td>
<td>0.074 (0.013)***</td>
<td>0.060 (0.022)***</td>
<td>0.181 (0.038)***</td>
<td>0.060 (0.028)**</td>
</tr>
<tr>
<td>KIBS $\Delta$ (log)</td>
<td>0.468 (0.031)***</td>
<td>0.471 (0.040)***</td>
<td>0.517 (0.061)***</td>
<td>0.411 (0.052)***</td>
</tr>
<tr>
<td>Other Firms $\Theta$ (log)</td>
<td>-0.307 (0.033)***</td>
<td>-0.266 (0.051)***</td>
<td>-0.219 (0.071)***</td>
<td>-0.245 (0.052)***</td>
</tr>
<tr>
<td>Distance to University (log)</td>
<td>-0.045 (0.025)**</td>
<td>-0.059 (0.044)</td>
<td>-0.042 (0.024)*</td>
<td></td>
</tr>
<tr>
<td>Distance to Schiphol (log)</td>
<td>0.088 (0.121)</td>
<td>0.343 (0.190)*</td>
<td>0.058 (0.126)</td>
<td></td>
</tr>
<tr>
<td>Distance to Ramp (log)</td>
<td>-0.037 (0.046)</td>
<td>-0.223 (0.071)***</td>
<td>-0.047 (0.048)</td>
<td></td>
</tr>
<tr>
<td>Distance to Station (log)</td>
<td>-0.012 (0.039)</td>
<td>-0.046 (0.065)</td>
<td>-0.075 (0.058)</td>
<td></td>
</tr>
<tr>
<td>Highway &lt;150m</td>
<td>0.206 (0.073)***</td>
<td>0.304 (0.108)***</td>
<td>0.235 (0.093)***</td>
<td></td>
</tr>
<tr>
<td>Railway line &lt;150m</td>
<td>-0.060 (0.096)</td>
<td>0.131 (0.167)</td>
<td>-0.137 (0.113)</td>
<td></td>
</tr>
<tr>
<td>Water &lt;150m</td>
<td>0.101 (0.050)**</td>
<td>0.043 (0.085)</td>
<td>-0.001 (0.081)</td>
<td></td>
</tr>
<tr>
<td>Open Space &lt;150m</td>
<td>0.162 (0.047)***</td>
<td>0.260 (0.076)***</td>
<td>0.109 (0.070)</td>
<td></td>
</tr>
<tr>
<td>Green Heart</td>
<td>0.077 (0.197)</td>
<td>0.311 (0.385)</td>
<td>0.026 (0.198)</td>
<td></td>
</tr>
<tr>
<td>Population Density (log)</td>
<td>-0.125 (0.015)***</td>
<td>-0.205 (0.023)***</td>
<td>-0.110 (0.025)***</td>
<td></td>
</tr>
<tr>
<td>Municipality FE (61)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-11,235.643</td>
<td>-11,072.352</td>
<td>-4,537.268</td>
<td>-11,056.970</td>
</tr>
<tr>
<td>Vuong Z-Test (Probability)</td>
<td>2.620 (0.004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Locations</td>
<td>13,655</td>
<td>13,655</td>
<td>13,655</td>
<td>13,655</td>
</tr>
<tr>
<td>Number of Births</td>
<td>6,275</td>
<td>6,275</td>
<td>2,357</td>
<td>6,275</td>
</tr>
</tbody>
</table>

Notes: We selected locations that have more than 10 employees in 2000. In Specification (3), the dependent variable is the number of KIBS-births with at least three employees. Specification (4) is a zero-inflated negative binomial regression, where we include all variables except municipality dummies in the inflation equation in order to reach convergence (results are available upon request). The inflation equation is a Probit model. Robust standard errors are between parentheses.

*** Significant at the 0.01 level  
** Significant at the 0.05 level  
* Significant at the 0.10 level

When we include only the weighted employment of MNEs, KIBS and other firms in the regression, Specification (1), the MNEs have a statistically significant, but rather small, impact on KIBS-births. Doubling the weighted employment in MNEs $\Gamma$ leads to a 5.1 percent increase in KIBS-births. An area with many KIBS firms is likely to generate more KIBS-births. Doubling the weighted employment in KIBS $\Delta$ leads to an increase of KIBS-births of 32 percent. In contrast, concentrations of firms other than KIBS lower the probability of births. Doubling the weighted employment in other firms $\Theta$ leads to a decrease in KIBS-births of 21 percent. This is in line with previous studies that found localisation (own-

---

20 We test for robustness of the choice of $\delta$ in the sensitivity analysis in Appendix B. We then also include locations with more than respectively 5 and 15 employees in 2000. It is shown that the results are reasonably robust.

21 This is calculated as follows: $\log(2) \cdot 0.074 = 0.051$
industry) factors to be more important than urbanisation (between-industry) factors (Head et al., 1995; Guimarães et al., 2000; Figueiredo et al., 2002; Rosenthal and Strange, 2003; Barrios et al., 2006). The positive effect of nearby KIBS on births is also in accordance with previous results, where we observed a considerable increase in the concentration of KIBS between 2000 and 2009. In Specification (2), which is our preferred specification, we included a range of control variables as well as municipality fixed effects. The specification shows that the coefficients are very comparable to those presented in Specification (1), suggesting that the variables of interest are not strongly correlated to observed non-local (natural) advantages. The effect of MNEs is now slightly lower: doubling of Π leads to an increase in births of 4.2 percent. The coefficient of KIBS Δ is almost identical.22

In Specifications (1) and (2) we took into account KIBS-births of all sizes. It may well be that small KIBS firms (one or two employees) make different location decisions than do larger start-ups. For example, entrepreneurs may work from home, so their location decision is a joint-decision about where to work and live. It may therefore be expected that larger KIBS have a stronger preference to locate near MNEs and other KIBS. Specification (3), where we only selected births with at least three employees, confirms this suggestion. Doubling the weighted employment in MNEs leads to an increase in births of 13 percent, which is much higher than the effect of 4.2 percent. Additionally, doubling the weighted employment in KIBS leads to an increase in start-ups of 36 percent, which is slightly higher than the effect found in the previous specifications.

In Specification (4), we estimated a zero-inflated, negative binomial regression (for all births) because the number of zeroes (PC6 areas without any KIBS-births) may be excessive (see as an illustration Figure A1 in Appendix A). It appears that the results are very similar to those of Specification (2). The Vuong test highlights the statistical significance of the improvement by estimating the zero-inflated model, but because the model leads to very similar results for the variables of interest, we prefer presenting and interpreting the results of the standard negative binomial regressions.

22 One may argue that our estimates are suffering from an omitted variable bias: unobserved natural advantages may be correlated with the density measures and may partly explain the positive effect of our density measures (see e.g. Ellison and Glaeser, 1997; 1999; Bayer and Timmins, 2007). We cannot rule out the possibility that the effect of agglomeration economies is overstated, because we lack good instruments. Note, however, that we include municipality fixed effects that should correct for unobserved advantages at the municipality level and, more important, the estimates of Specification (1) and (2) are very similar, suggesting that at least non-local natural advantages are not correlated with our density measures. Recent empirical studies also show that controlling for endogeneity only slightly reduces the effects of agglomeration economies (see Combes et al., 2010; Puga, 2010; and a meta-analysis of Melo et al., 2008).
The control variables on location factors are in general plausible. Population density has a negative effect, suggesting that there are crowding effects (commonly found in the Netherlands, see Broersma and Oosterhaven, 2009). Locations near highways attract about 21 percent more KIBS, which is not surprising because so-called sight-locations are considered attractive (De Vor and De Groot, 2008; Olden, 2010). Locations near open spaces (amenities) attract about 16 percent more births. Proximity to universities, related to the innovation generation hypothesis of KIBS, only has a small effect on attracting new KIBS births. Proximity to railways and railway stations does not have a significant relation with KIBS births.

The populations of KIBS and MNEs are known for their heterogeneity. It may well be that a separation of KIBS and MNEs according to function, sector or market will yield different co-location behaviour. To test for this, the next section refines the analyses by investigating whether the effects of MNEs and KIBS are different for different KIBS and MNE subpopulations. We first focus on KIBS subsectors. We then examine whether the effects are different when we take into account employment in MNE-KIBS compared to MNEs that are not KIBS, MNE headquarters and MNEs that are subsidiaries. Finally, we examine whether the location choices of survivors and deaths are different.

C. Results for different sectors

It has been argued that economic geography should look more deeply into micro-heterogeneity in order to understand how firm-specificity impacts the intensity of agglomeration economies (Ottaviano, 2011). Shearmur and Alvergne (2002) show differentiated location patterns for KIBS subsectors while Shearmur and Doloreux (2008) demonstrate that the innovative capacity of KIBS first decreases with distance to the CBD and then increases again. Coe and Townsend (1998) illustrate how the cumulative causation of growth of populations of some types of KIBS only occurs at some locations in the Greater London region. The heterogeneity of KIBS thus generates differentiated outcomes. Results of negative binomial regressions allowing for this heterogeneity are presented in Table 4. It appears that focusing on the KIBS subsector indeed reveals heterogeneity with respect to locational preferences and MNEs.

Specification (5) indicates that the presence of multi-national enterprises does not influence the location decisions of economic services start-ups whereas already existing KIBS foster the births of these firms: doubling the weighted employment in KIBS increases the number of births by 41 percent. For start-ups in Marketing and Advertisement and in Technical and IT services, the presence of multi-national enterprises is more important, as
already suggested by Rodenburg et al. (2010). For Research and Development (Specification (8)), other KIBS are relatively important: doubling the weighted employment in KIBS leads to 38 percent more births. In line with results of Section V.A, it is clear that MNEs do not have a significant impact on the number of entries of R&D services. In contrast to analysis of all KIBS (Specification (2)), we find that proximity to universities is an important driver of R&D births: doubling the distance to a university leads to a decrease in R&D births of 27 percent, suggesting the presence of local university knowledge spillovers, which is in line with Woodward et al. (2006). Note, however, that the number of R&D births is relatively small, so the results are more suggestive than those of other subsectors.

### Table 4 — Regression results of the impact on KIBS-births for different sectors

<table>
<thead>
<tr>
<th></th>
<th>Economic services</th>
<th>Marketing services</th>
<th>IT services</th>
<th>R&amp;D services</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNEs $\Gamma$ (log)</td>
<td>0.013 (0.029)</td>
<td>0.068 (0.032)**</td>
<td>0.109 (0.034)**</td>
<td>-0.066 (0.117)</td>
</tr>
<tr>
<td>KIBS $\Delta$ (log)</td>
<td>0.586 (0.056)**</td>
<td>0.326 (0.051)**</td>
<td>0.401 (0.060)**</td>
<td>0.555 (0.215)**</td>
</tr>
<tr>
<td>Other Firms $\theta$ (log)</td>
<td>-0.339 (0.068)**</td>
<td>-0.178 (0.056)**</td>
<td>-0.133 (0.081)*</td>
<td>-0.412 (0.269)</td>
</tr>
<tr>
<td>Distance to University (log)</td>
<td>-0.006 (0.035)</td>
<td>-0.014 (0.038)</td>
<td>-0.029 (0.042)</td>
<td>-0.383 (0.072)**</td>
</tr>
<tr>
<td>Distance to Schiphol (log)</td>
<td>-0.163 (0.142)</td>
<td>0.159 (0.200)</td>
<td>0.394 (0.234)*</td>
<td>0.082 (0.546)</td>
</tr>
<tr>
<td>Distance to Ramp (log)</td>
<td>0.017 (0.060)</td>
<td>0.074 (0.073)</td>
<td>-0.221 (0.065)**</td>
<td>-0.045 (0.214)</td>
</tr>
<tr>
<td>Distance to Station (log)</td>
<td>-0.088 (0.052)*</td>
<td>0.076 (0.059)</td>
<td>-0.028 (0.059)</td>
<td>0.061 (0.176)</td>
</tr>
<tr>
<td>Highway &lt;150m</td>
<td>0.208 (0.097)**</td>
<td>0.146 (0.097)</td>
<td>0.249 (0.112)**</td>
<td>0.302 (0.261)</td>
</tr>
<tr>
<td>Railway line &lt;150m</td>
<td>-0.202 (0.115)*</td>
<td>-0.01 (0.146)</td>
<td>-0.031 (0.149)</td>
<td>-0.357 (0.484)</td>
</tr>
<tr>
<td>Water &lt;150m</td>
<td>0.092 (0.063)</td>
<td>0.225 (0.073)**</td>
<td>0.048 (0.080)</td>
<td>-0.449 (0.225)**</td>
</tr>
<tr>
<td>Open Space &lt;150m</td>
<td>0.205 (0.060)**</td>
<td>0.055 (0.073)</td>
<td>0.211 (0.072)**</td>
<td>0.249 (0.202)</td>
</tr>
<tr>
<td>Green Heart</td>
<td>0.369 (0.238)</td>
<td>-0.497 (0.448)</td>
<td>0.040 (0.423)</td>
<td>0.614 (0.844)</td>
</tr>
<tr>
<td>Population Density (log)</td>
<td>-0.124 (0.019)**</td>
<td>-0.083 (0.024)**</td>
<td>-0.137 (0.022)**</td>
<td>-0.129 (0.066)*</td>
</tr>
<tr>
<td>Municipality FE (61)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes: See Table 2. The dependent variables in Specifications (5), (6), (7) and (8) are respectively the number of births in economic services, marketing services, IT services and R&D services.

### D. Heterogeneity in MNEs and results for survival and deaths

In this subsection, we first investigate whether there are different impacts of MNE-KIBS versus MNEs that are not KIBS at birth. Secondly, we investigate whether MNE headquarters and MNEs that are subsidiaries have different impacts on the number of KIBS births at a certain location. Results are presented in Table 5. Specification (9) shows that,

---

23 Please note the difference with table 2. In table 2 Technical & IT services as a total population is hardly co-agglomerated with MNEs, whereas Specification 5 shows that MNEs are however significant for start-ups in Technical & IT services.
conditional on employment in KIBS, MNEs that are not KIBS have a positive, significant impact while MNEs that are at the same time KIBS do not have any statistically significant impact on KIBS-births. This suggests that proximity to potential customers who offer complementary activities is more important than the proximity to MNE-KIBS that are likely to offer competing services. Another explanation might be that MNEs outsource certain internal services such as IT, which will be consequently provided by KIBS spin-offs that locate nearby.

### Table 5 — Regression results of the impact on KIBS-births: different MNEs and survival (Dependent variable: the number of KIBS-births per PC6-location)

<table>
<thead>
<tr>
<th></th>
<th>(9) MNE KIBS</th>
<th>(10) MNE HQs</th>
<th>(11) KIBS-Survivors</th>
<th>(12) KIBS-Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNEs KIBS $\Gamma_{\text{KIBS}}^{\text{(log)}}$</td>
<td>0.004 (0.021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNEs no KIBS $\Gamma_{\text{noKIBS}}^{\text{(log)}}$</td>
<td>0.058 (0.018)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNEs HQ $\Gamma_{\text{HQ}}^{\text{(log)}}$</td>
<td></td>
<td>-0.017 (0.019)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNEs no HQ $\Gamma_{\text{noHQ}}^{\text{(log)}}$</td>
<td></td>
<td>0.077 (0.022)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNEs $\Delta^{(\text{log)}}$</td>
<td>0.473 (0.043)**</td>
<td>0.474 (0.041)**</td>
<td>0.461 (0.054)**</td>
<td>0.481 (0.044)*****</td>
</tr>
<tr>
<td>Other Firms $\Theta_{\text{(log)}}$</td>
<td>-0.268 (0.052)**</td>
<td>-0.264 (0.051)**</td>
<td>-0.346 (0.064)**</td>
<td>-0.181 (0.054)*****</td>
</tr>
<tr>
<td>Distance to University $\text{(log)}$</td>
<td>-0.043 (0.025)*</td>
<td>-0.050 (0.025)**</td>
<td>-0.073 (0.029)**</td>
<td>-0.015 (0.032)</td>
</tr>
<tr>
<td>Distance to Schiphol $\text{(log)}$</td>
<td>0.087 (0.120)</td>
<td>0.104 (0.122)</td>
<td>0.204 (0.158)</td>
<td>0.037 (0.149)</td>
</tr>
<tr>
<td>Distance to Ramp $\text{(log)}$</td>
<td>-0.047 (0.046)</td>
<td>-0.032 (0.046)</td>
<td>0.061 (0.056)</td>
<td>-0.127 (0.054)**</td>
</tr>
<tr>
<td>Distance to Station $\text{(log)}$</td>
<td>-0.015 (0.039)</td>
<td>-0.012 (0.039)</td>
<td>0.003 (0.045)</td>
<td>-0.028 (0.051)</td>
</tr>
<tr>
<td>Highway &lt;150m</td>
<td>0.212 (0.073)**</td>
<td>0.215 (0.073)**</td>
<td>0.112 (0.098)</td>
<td>0.304 (0.082)*****</td>
</tr>
<tr>
<td>Railway line &lt;150m</td>
<td>-0.049 (0.095)</td>
<td>-0.061 (0.096)</td>
<td>0.019 (0.106)</td>
<td>-0.143 (0.119)</td>
</tr>
<tr>
<td>Water &lt;150m</td>
<td>0.103 (0.050)**</td>
<td>0.100 (0.050)**</td>
<td>0.139 (0.059)**</td>
<td>0.062 (0.062)</td>
</tr>
<tr>
<td>Open Space &lt;150m</td>
<td>0.160 (0.047)**</td>
<td>0.165 (0.047)**</td>
<td>0.219 (0.058)**</td>
<td>0.115 (0.056)*****</td>
</tr>
<tr>
<td>Green Heart</td>
<td>0.068 (0.198)</td>
<td>0.085 (0.197)</td>
<td>-0.268 (0.259)</td>
<td>0.394 (0.284)</td>
</tr>
<tr>
<td>Population Density $\text{(log)}$</td>
<td>-0.124 (0.015)**</td>
<td>-0.128 (0.016)**</td>
<td>-0.093 (0.018)**</td>
<td>-0.149 (0.018)*****</td>
</tr>
<tr>
<td>Municipality FE (61)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-11,070.872</td>
<td>-11,069.186</td>
<td>-6,953.482</td>
<td>-7,450.512</td>
</tr>
<tr>
<td>Number of Locations</td>
<td>13,655</td>
<td>13,655</td>
<td>13,655</td>
<td>13,655</td>
</tr>
<tr>
<td>Number of Births</td>
<td>6,275</td>
<td>6,275</td>
<td>2,873</td>
<td>3,402</td>
</tr>
</tbody>
</table>

Notes: See Table 2. The dependent variable in Specification (11) is the number of KIBS-births that still exist after 5 years, while Specification (12) indicates the number of births that have not survived.

In Specification (10), we separate MNEs in headquarters and non-headquarters. We may expect that headquarters are more important for KIBS-births because they are involved in command and control activities and are concentrations of human capital, suggesting that more knowledge is potentially spilled over. On the other hand, headquarters are more likely to still perform some services in house compared to their subsidiaries. Furthermore, in the case that MNE headquarters do contract KIBS, they are more likely to do so further afield or only to large and established KIBS with a global reputation that tend to concentrate near the head offices of clients (Aslesen and Jakobson, 2006). Likewise, the location of MNE...
headquarters is expected to be associated with higher property values and office rents, creating an entry barrier for start-up firms. This is not to suggest that MNE headquarters are not responsible for the birth of KIBS or for the survival of KIBS start-ups, but only that in most cases these start-ups will probably be located at some comfortable distance to the CBD, as suggested by Shearmur and Alvergne (2002). The results show that only MNEs that do not perform headquarter services have a statistically significant impact on KIBS-births.

An important issue in the identification of agglomeration economies is that already advantageous locations tend to produce more productive firms (which have a greater probability of surviving) (Ottaviano, 2011). It has also been argued that survivors in particular are very important to the stability of a regional economy (Brüderl et al., 1992; Stam, 2010). We therefore investigated the impact of location attributes (of the year 2000) on the births of survivors (which we define as firms that still exist five years later) and deaths (those firms that no longer exist after five years). Specification (11) and (12) present the results of births of survivors and deaths, respectively. Specification (11) shows that the effect of multi-national enterprises is larger than in Specification (2). On the other hand, we observe that MNEs do not influence the locational pattern of deaths significantly (Specification (12)). These results indicate that more successful entrepreneurs prefer locations nearby MNEs, ceteris paribus, likely because they expect that MNEs will increase their profits and chance of survival.24

VI. Conclusions and discussion

The relationship between knowledge intensive business services (KIBS) and multi-national enterprises (MNEs) within the regional economy has been viewed as favourable for urban and regional dynamics. The impact of MNEs on the births of KIBS has, however, rarely been tested. Instead, empirical analysis of clustering of firms is in general hampered by a lack of micro-level research methodologies (and data) that capture sectoral and local heterogeneity adequately, facilitating hypotheses to be formulated and tested. Location factors have been tested for industrial location patterns and dynamics already longer, but for business service firms this research is only emerging lately. Missing in this research is, related to the micro data and point-estimation arguments, a true test for the co-location and co-evolution of MNEs and KIBS, that may be considered a useful addition to the location factors literature. Reasoning from MNEs location to the attraction of newly established (births) of KIBS, such a conceptualization would enable us to more precisely determine

24 Further research could study the importance of nearby MNEs and KIBS on survival rates of KIBS-births more thoroughly, e.g. by estimating Cox-regressions (see e.g. Neffke et al., 2011).
firm-level spatial (cluster) determinants of economic growth and innovation, a feature already suggested by newly developed theories that have not much been tested empirically on micro-economic level, although they are micro-economic in nature. Related to this, we are interested in (new) policy strategies that are suggested by this conceptual framework.

In this paper we have analysed the location of new entries of knowledge intensive business services in a regionalised service economy (the Northwing of the Dutch Randstad), by using a continuous space framework. More specifically, we applied the point pattern methodology of Duranton and Overman (2005) and estimated conditional logit models. The Northwing of the Randstad equals other “global city-regions” in Europe, like Frankfurt, Lombardy, Catalunya, and Bavaria in size, density, sector structure, and other important location factors (Thissen et al., 2012), and therefore forms a good case study with wider implications of our outcomes than only the Dutch case. Based on propositions derived from the research literature, we addressed five hypotheses. The first main finding of the analysis is the confirmation of our hypothesis that KIBS have become more spatially concentrated over time. This could be tested accurately with a co-location analysis based on individual KIBS data. The spatial concentration of KIBS is both in city centres (of Amsterdam and Utrecht) and in more suburban locations, near university locations, Schiphol airport and good accessible locations with space for expanding. We secondly hypothesized that KIBS-births are spatially concentrated and co-agglomerated with MNEs. As this was confirmed in our analysis, we further elaborated on two important determinants of KIBS births. We hypothesized, in line with the literature, that the presence of MNEs fosters the births of KIBS (hypothesis 3). KIBS births have a new locational decision to make, as opposed to MNEs that are generally larger and older, already located in the region and embedded in global networks of subsidiaries. We therefore argue that causality runs from MNEs to KIBS births location. We found this relation to be present, although this effect is rather small compared to our fourth hypothesized relation, namely that the existing population of KIBS has an impact on newly created KIBS (births). This relation is found much more profound than the relation of MNEs with KIBS-births. Location factors that are significantly related to KIBS births are physical accessibility (proximity to highways), and the proximity to open space, the Green Heart and open water, indicating a role for amenities, but also for restricting zoning regimes imposed by local, regional and even national governments. Population density is negatively related to KIBS births in all specifications – confirming the congestion and crowding effects of high-density in this part of the Netherlands (see Broersma and Oosterhaven, 2009). Finally, because our fifth hypothesis stated that firm heterogeneity plays an important role in explaining the existence of agglomeration
economies (see Ottaviano, 2011), we tested the relations between MNEs and KIBS births for four different subsectors of KIBS (economic services, marketing and advertising, IT-firms and R&D-oriented firms) and for various sizes and ownership structures of firms. We found that the effect of MNEs is relatively more important for marketing and IT services KIBS births as well as for entries with a larger workforce. R&D-oriented KIBS births (relatively small in number) are more related to proximity to universities (important for the suggested innovative character of these KIBS), while births of KIBS specialized in economic services are more related to the existing KIBS population. These insights in the heterogeneity in KIBS location behaviour is important, as has been pointed out already by Shearmur and Alvergne (2002), who found that different sub-sectors of KIBS display combinations of both concentration and dispersal within the Greater Paris metropolitan region. They argued that this depends on the markets served (local, global) and on the internal structure of KIBS establishments. Insights in these aspects are important for policy conclusions.

As our analysis highlights, the heterogeneity in the relations between populations of MNEs, KIBS and KIBS births, this should be reflected in policy and development strategies. The Dutch government has ambitious plans to use precisely the MNE-KIBS interaction and co-location in the region for policy development. Within the ever pervasive discourse of 'urban competition', economic policy in many cases focuses on the attraction and acquisition of head offices of global corporations or on stimulating manufacturing-related R&D within industrial clusters (Bristow, 2005). In the latter case, such 'triple helix'-like innovation policy tends to ignore the role of KIBS in generating innovative capacity among their clients. This can be attributed to the fact that innovations within manufacturing-related R&D are far more 'measurable', which makes policy-makers more easily convinced of the value of their policy support. While we do not want to downplay the importance of these types of innovation for the economy as a whole, we do endorse Wood's (2009) observation that such innovation policy ignores the urban bias of KIBS and their contribution to the competitiveness of their clients. While strategies of acquisition and concentration of MNEs might result in improved centrality of the city in terms of corporate decision-making power (Wall et al., 2011), our research shows additional benefits to the regional economy in terms of interactions between KIBS and their MNE-clients. Our analyses also show that within the 'regionalized service economy' (Coe and Townsend, 1998; Strambach, 2008), different place-based development strategies apply for locations characterized by different location factors within such urban regions. Good physical local and (inter)national accessibility, the offering of space (outside but nearby the most densely populated areas) and amenities are potentially useful investment strategies. More
importantly, the co-evolving MNE-KIBS and KIBS-KIBS dynamics mainly seem to sustain themselves, rendering investment strategies in location factors as facilitating and not primary guiding. We also show that specializations in different types of KIBS induce different relations with MNEs and location factors. Universities are more important for R&D-based KIBS births, while MNEs show strongest relations with IT and marketing KIBS births. This heterogeneity requires skills and entrepreneurship to be developed on various levels of the city and region simultaneously, which can be promoted by local governments as well (Glaeser, 2011).

While our analysis fills a research gap in the field of micro-level co-agglomeration and urban and regional development (in our case of MNEs and KIBS), limitations also apply to our research. In further research, we suggest that a distinction be made between start-ups and spin-offs, which has not been the case in this paper (mainly because of data limitations). We expect that spin-offs will have a better chance of survival and growth than start-ups because they will likely follow the routines from the parent company (see Klepper and Sleeper, 2005). The sectoral and functional heterogeneity that showed important in our analysis should be sustained in such analyses. Future research should also focus on survival analyses of KIBS and investigate whether the survival rate of KIBS is influenced by the presence of nearby MNEs and other KIBS. An additional line of inquiry might be the conceptualisation and further empirical (causal) analysis of the co-evolutionary dynamics between KIBS and MNEs. The literature on international business economics considers how MNE subsidiaries try to strengthen their position within their own corporate network by studying the processes within local clusters (see Beugelsdijk et al., 2010). The strategic and commercial engagement of the MNE-subsidiary with local based KIBS can result in a change of firms’ routines and can increase their dynamic capabilities. Indeed, acquiring competences and functional mandates through strategic partnerships with locally based KIBS might be a relevant strategy of the MNE-subsidiary to strengthen its position within the overall MNE-corporate structure. Another form of co-evolution is the move of KIBS into vertical knowledge domains in which they start to specialise in delivering services to specific industries.
References


- 36 -
Rodenburg, C., M. Burger and F. van Oort (2010), Internationale positie Noordvleugel in greenfield en brownfield investments. Amsterdam: Ernst & Young.


### Appendix A. Data and descriptives

#### TABLE A1 — DEFINITION OF KIBS IN TERMS OF NACE INDUSTRY CLASSIFICATION

<table>
<thead>
<tr>
<th>KIBS category</th>
<th>NACE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic Services</td>
<td>64.1</td>
<td>Monetary intermediation</td>
</tr>
<tr>
<td></td>
<td>64.2</td>
<td>Activities of holding companies</td>
</tr>
<tr>
<td></td>
<td>64.3</td>
<td>Trusts, funds and similar financial entities</td>
</tr>
<tr>
<td></td>
<td>64.9</td>
<td>Other financial service activities, except insurance and pension funding</td>
</tr>
<tr>
<td></td>
<td>66.1.1</td>
<td>Administration of financial markets</td>
</tr>
<tr>
<td></td>
<td>69.2</td>
<td>Accounting, bookkeeping and auditing activities; tax consultancy</td>
</tr>
<tr>
<td></td>
<td>70.1</td>
<td>Activities of head offices</td>
</tr>
<tr>
<td></td>
<td>70.2</td>
<td>Management consultancy activities</td>
</tr>
<tr>
<td>Marketing Services</td>
<td>73.1</td>
<td>Advertising</td>
</tr>
<tr>
<td></td>
<td>73.2</td>
<td>Market research and public opinion polling</td>
</tr>
<tr>
<td>Technical &amp; IT services</td>
<td>62.0.1</td>
<td>Computer programming activities</td>
</tr>
<tr>
<td></td>
<td>62.0.2</td>
<td>Computer consultancy activities</td>
</tr>
<tr>
<td>R&amp;D services</td>
<td>72.1</td>
<td>Research and experimental development on natural sciences and engineering</td>
</tr>
<tr>
<td></td>
<td>72.2</td>
<td>Research and experimental development on social sciences and humanities</td>
</tr>
</tbody>
</table>
Appendix B. Robustness checks

In this subsection we provide some robustness checks for the results presented in Section V. The results are presented in Table B2. Specifications (B1) and (B2) provide a robustness
check for the choice of the decay parameter $\delta$. When we choose $\delta = 1$, most of the weight of the weighted employment measure is within 2.5 kilometers. The coefficient of KIBS is somewhat higher: doubling $\Delta$ leads to an increase in rents of 47 percent, but the effect of MNEs is now statistically insignificant. For higher values of $\delta$, the effects are similar to Specification (2), although the effect of KIBS is somewhat lower. In the preceding analysis, we only include locations that have more than 10 employees in 2000, which is an arbitrary value. In Specification (B3) and (B4) we include locations with more than respectively 5 and 15 employees in 2000. It appears that the results are very comparable to those presented in Table 1. The effect of KIBS is slightly higher when we only select locations with more than 15 employees.

In Table A3 it is shown that the correlation between the concentration of KIBS $\Delta$ and other firms $\Theta$ is reasonably high (0.869). Although potential multicollinearity should not affect the consistency of the estimated coefficients (only the magnitude of the standard errors), we also estimate equations where we include $\Delta$ or $\Theta$. In Specification (B5) we exclude $\Theta$. It is shown that the coefficient of MNEs is now only statistically significant at the 20 percent level, because it picks up some of the negative effects of clustering of other firms. The coefficient of KIBS is still strongly positive and an order of magnitude larger than the coefficient of MNEs, which is in line with previous conclusions. In Specification (B6) we exclude $\Delta$. It is then shown that the coefficient of MNEs is somewhat higher and the coefficient of other firms is now positive. This is not too surprising, as both the concentration of MNEs and other firms are positively correlated with the concentration of KIBS, which has a positive impact.

### Table B1 - Regression results of the impact on KIBS-births: robustness checks

(Independent variable: the number of KIBS-births per PC6-location)

<table>
<thead>
<tr>
<th>(B1)</th>
<th>(B2)</th>
<th>(B3)</th>
<th>(B4)</th>
<th>(B5)</th>
<th>(B6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta = 1$</td>
<td>$\delta = 5$</td>
<td>Locations &gt;5 empl.</td>
<td>Locations &gt;15 empl.</td>
<td>Exclude $\Theta$</td>
<td>Exclude $\Delta$</td>
</tr>
<tr>
<td>MNEs $\Gamma$ (log)</td>
<td>0.026</td>
<td>0.046</td>
<td>0.048</td>
<td>0.064</td>
<td>0.300</td>
</tr>
<tr>
<td>(0.039)</td>
<td>(0.014) ***</td>
<td>(0.019) ***</td>
<td>(0.023) ***</td>
<td>(0.021)</td>
<td>(0.020) ***</td>
</tr>
<tr>
<td>KIBS $\Delta$ (log)</td>
<td>0.673</td>
<td>0.409</td>
<td>0.444</td>
<td>0.493</td>
<td>0.341</td>
</tr>
<tr>
<td>(0.077) ***</td>
<td>(0.027) ***</td>
<td>(0.035) ***</td>
<td>(0.043) ***</td>
<td>(0.031) ***</td>
<td></td>
</tr>
<tr>
<td>Other Firms $\Theta$ (log)</td>
<td>-0.411</td>
<td>-0.123</td>
<td>-0.240</td>
<td>-0.293</td>
<td>0.117</td>
</tr>
<tr>
<td>(0.086) ***</td>
<td>(0.032) ***</td>
<td>(0.040) ***</td>
<td>(0.058) ***</td>
<td>(0.037) ***</td>
<td></td>
</tr>
<tr>
<td>Control Variables (10)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Municipality FE (61)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Log-likelihood</td>
<td>-11,155.068</td>
<td>-10,967.011</td>
<td>-14,784.065</td>
<td>-9,226.403</td>
<td>-11,091.626</td>
</tr>
<tr>
<td>Number of Locations</td>
<td>13,655</td>
<td>13,655</td>
<td>19,069</td>
<td>11,014</td>
<td>13,655</td>
</tr>
<tr>
<td>Number of Births</td>
<td>6,275</td>
<td>6,275</td>
<td>7,610</td>
<td>5,212</td>
<td>6,275</td>
</tr>
</tbody>
</table>

**Notes:** See Table 2. In Specification (B1) $\delta = 1$ and in Specification (2) $\delta = 5$. In Specification (B3) and (B4) we select respectively locations that have more than 5 and 15 employees in 2000.