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ABSTRACT 
 
U.S. patent data and patent citations are used to build a measure of knowledge relatedness 
between all pairs of 438 major patent classes in the USPTO. The knowledge relatedness 
measures, constructed as the probability that a patent in class j will cite a patent in class i, form 
the links of a patent network. Changes in this U.S. knowledge network are examined for the 
period 1975 to 2005. Combining the knowledge network with patent data for each of the CBSAs 
in the United States permits analysis of the evolution of the patent knowledge base within 
metropolitan areas. Measures of knowledge relatedness are employed to explain technological 
diversification and abandonment in U.S. cities. 
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The Geography of Knowledge Relatedness 
and Technological Diversification in U.S. Cities 

 
INTRODUCTION 
 
Regardless of whether the theory of growth is guided by political economy or more orthodox 
economic frameworks, the accumulation of knowledge and technological change are viewed as 
central to economic performance (SCHUMPETER, 1950; SOLOW, 1956; MARX, 1970; 
NELSON and WINTER, 1982; ROMER, 1986; LUCAS, 1988). For economic geographers, 
concern with the creation of competitive advantage at the regional level focused attention on the 
ability of place-based economic agents to generate, or otherwise acquire, economically relevant 
knowledge, and on their capacity to use that knowledge effectively (VON HIPPEL, 1988; 
COHEN and LEVINTHAL, 1990). While for developing regions of the global economy that 
capacity might be manifest in the production of large volumes of standardized outputs at low unit 
prices, within industrialized regions it frequently rests on the invention of new product or process 
technologies and the creation of monopoly rents (LUNDVALL, 1992; STORPER, 1997; 
MASKELL and MALMBERG, 1999). 
 
At least since the work of MARSHALL (1920), SCHUMPETER (1950) and PERROUX (1955), 
economic growth has been considered “lumpy”, or discontinuous in both a spatial and a temporal 
sense. While geographical lumpiness might once have been seen as the outcome of localized 
natural resources, sunk capital investments and market exchanges between a region’s firms and 
industries, it is increasingly viewed as a product of the stickiness of tacit knowledge and the 
difficulty of developing the creative terroir between individuals, firms, and the panoply of 
supporting institutions and ‘untraded interdependencies’ from which knowledge is born 
(POLANYI, 1966; LUNDVALL, 1988; STORPER, 1995; MASKELL and MALMBERG, 
1999). These ideas have spawned a massive literature on regional innovation systems 
(FREEMAN, 1985; COOKE et al., 1997), learning regions (MORGAN, 1997; LUNDVALL and 
JOHNSON, 1994) and localized knowledge economies more generally. MACKINNON et al. 
(2002) and ASHEIM and GERTLER (2005) offer reviews. 
 
While considerable effort has been directed towards uncovering what it takes to be a learning 
region or a knowledge economy, much less attention has been given to the character of 
knowledge produced within such regions. What does the technology or the knowledge base of a 
region look like? How do the knowledge cores of regions vary over space and time? How might 
we measure that variance to gauge the degree of specialization or the relatedness of a region’s 
knowledge base, and how is that variance connected to the evolution of technology within the 
region? These are key questions for economic geographers who seek to understand regional 
differences in knowledge production and economic growth.  
 
This paper proposes a way of using information contained within patents to answer some of the 
questions just posed. The arguments of the paper are laid out in five sections that follow. Section 
2 provides additional motivation for this work and a brief review of related literature. Section 3 
outlines a method of using patent citation data to measure the proximity of the different 
technology fields into which patents are placed. These measures form the links of a network that 
represents a U.S. knowledge space. Visualizations of that space are shown for the period 1975 to 



2005. In Section 4, measures of proximity between patent technology fields are combined with 
metropolitan patent data to calculate the relatedness of invention, an index of knowledge 
specialization, in U.S. cities. In Section 5, the relatedness of urban invention is employed to 
model technological diversification and technological abandonment, key components of the 
evolution of urban knowledge cores. Section 6 concludes the paper. 
 
LITERATURE REVIEW 
 
At any moment of time, a regional economy may be conceived as a collection of economic 
agents, firms and workers, embedded within a set of organizational and institutional structures 
that guide behavior to a greater or lesser extent. As such, regions are repositories of accumulated 
knowledge, both codified and tacit, that is to varying degrees place-bound, locked within capital 
stocks of different vintage, within firm routines, within workers of varying skill, education and 
experience, and within the broader social capital of the region. We typically imagine the region’s 
knowledge base to comprise familiarity with the production of particular commodities (industry 
mix) and of specific techniques used in their production. However, the “softer capital” associated 
with behavioral conventions that regulate activities within and between firms, as well as the 
political and economic environments within which firms and workers compete, are increasingly 
understood to shape the ways in which knowledge is produced and distributed over space 
(STORPER, 1995; STORPER 1997). 
 
The knowledge base of regions change over time through deliberate processes of search, through 
invention, learning and imitation that involves multiple actors engaged in competition. We know 
that the pace of such change is uneven, with some regions locked into particular technological 
regimes that yield diminishing returns (GRABHER, 1993) while other regions seem better able 
to maintain their capacity to innovate (SAXENIAN, 1994). Cloning the hard and soft capital of 
fast growth, high technology regions does not appear to be a viable competitive strategy, in part 
because some technologies do not travel well (GERTLER, 1995; 2003). Thus, the technological 
trajectories of most regions are relatively stable (RIGBY and ESSLETZBICHLER, 1997). The 
costs of technological diversification and technological abandonment assure that this is so.  
 
From DAVID (1975), NELSON and WINTER (1982) and DOSI (1982), we hypothesize that 
firms accumulate knowledge about technology largely through experimentation with existing 
techniques. Localized search is thought to be conditioned by bounded rationality (SIMON 1959) 
and by sharply declining returns to investment in research and development efforts that are 
relatively dissimilar to existing technology, and by the costs of knowledge acquisition that rise 
steeply around the boundaries of existing knowledge bases (ATKINSON and STIGLITZ, 1969; 
WEBBER et al., 1992; ANTONELLI, 1995). Much of the literature on learning economies has 
extended these arguments, deepening our understanding of the different dimensions of proximity 
(BOSCHMA, 2005) and their importance to the regional evolution of technology and 
competitive advantage (KIRAT and LUNG, 1999). Yet, empirical research on knowledge 
production and its evolution over space, how regions diversify and add to their technological 
repertoire, and what kinds of technologies they abandon, remains underdeveloped. 
 
Some clues are offered by research on the history of technological development within the firm. 
In early work on technological spillovers, JAFFE (1986) provides a measure of technological 



distance between the knowledge portfolios of different firms. A related idea is advanced by 
TEECE et al. (1994) who examine the coherence of knowledge developed by individual firms 
and show that technological diversification within firms is closely linked to their existing 
knowledge base. Similar measures of technological or knowledge proximity are used by 
ENGELSMAN and VAN RAAN (1994) to “map” technological fields.  In more recent work, 
BRESCHI et al. (2003) and LETEN et al. (2007) extend earlier arguments, offering different 
ways of calculating knowledge relatedness to explore the nature of technological diversification 
and firm performance. 
 
In related, and more explicitly geographical, research VERTOVA (1999) and CANTWELL and 
VERTOVA (2004) use patent data to illustrate the cumulative nature of technological 
development at the country-level, and the long-run relationship between country size and level of 
technological diversification. HAUSMAN and KLINGER (2007) and HIDALGO et al. (2007)) 
employ detailed trade data to measure the relatedness of products through patterns of co-
exporting. They argue that specialization in the production of particular commodities provides 
countries with a set of capabilities that constrains diversification to related products. Thus, 
countries specializing in goods that are located in densely populated parts of “product space” can 
transition relatively easily among different product-sets. Countries specializing in products that 
are relatively isolated in product space have more narrowly-defined sets of capabilities that 
hinder diversification.  
 
BOSCHMA et al. (2012) extend the work of HAUSMANN and KLINGER (2007) at the sub-
national level exploring how different regions in Spain diversify into industrial sectors that are 
related to their existing product-based capabilities. Similar ideas are exploited by NEFFKE et al. 
(2011) to reveal path-dependence in the evolution of the industrial landscape in Sweden, and the 
more general concept of related variety is developed by FRENKEN et al. (2007) to explain 
differences in regional employment growth in the Netherlands. QUATRARO (2010) shows that 
knowledge variety and coherence play a significant role in productivity growth across Italian 
regions, while BOSCHMA and IAMMARINO (2009) demonstrate the importance of related 
variety to regional growth in Italy, alongside the role that trade plays in spilling related 
knowledge over space.  
 
This paper builds on some of the ideas above to explore the relatedness of technological fields 
identified in U.S. patent data. A U.S. knowledge space is mapped and the evolution of this space 
is tracked since 1975. Knowledge relatedness within U.S. metropolitan areas is employed to 
explain patterns of technological diversification and abandonment. 
 
THE U.S. KNOWLEDGE SPACE 

One of the primary reasons we know so little about the spatial demography of knowledge is that 
we lack precise measures of knowledge  and technology (PAVITT, 1982). Consequently, 
researchers have long made use of proxies such as the “high tech” industry mix of a region’s 
economy (HALL and MARKUSEN, 1985), or the distribution of “knowledge workers”, equated 
with particular sectors, occupations, and creative potential (FLORIDA, 2002; FESER, 2003). 
Unfortunately, these proxies are noisy and they do not tell us much about the nature of the 
knowledge or technology created in different places. We can do better, perhaps, by developing 
more sophisticated, multi-dimensional measures of the technologies employed by individual 



plants/firms within a region, and examining how far those technologies might be from an 
industry average or from a technological frontier. We can also examine the range of techniques 
available within different economic spaces and link technological heterogeneity to the expected 
rate and direction of invention and innovation (WEBBER et al., 1992), or to the different 
mechanisms by which techniques of production are altered (RIGBY and ESSLETZBICHLER, 
2006). However, the data requirements of these measures are relatively high, often demanding 
access to establishment-level micro-data. And, outside manufacturing, these possibilities are 
typically unavailable. 
 
Increasingly, we have turned to various measures of the inputs and outputs of invention and 
innovation to track knowledge production. On the input side, research and development spending 
has been shown to be closely correlated with counts of patents and innovations that typically 
form our indicators of knowledge outputs (FELDMAN, 1994) Many of these linkages are 
exploited by work on knowledge production functions and spatial derivatives thereof 
(GRILICHES, 1979; ACS et al., 2002). Patent data have become a staple for those interested in 
the geography and history of knowledge production (LAMOREAUX and SOKOLOFF, 1996; 
O’HUALLACHAIN, 1999; JAFFE and TRAJTENBERG, 2002; O’HUALLACHAIN and LEE, 
2010), in inventors and inventor networks (BRESCHI and LISSONI, 2001; SINGH, 2005), in 
knowledge flows or spillovers (JAFFE et al., 1993; SONN and STORPER, 2008), in 
geographical and cognitive proximity (FISCHER  et al., 2006), and on the types of knowledge 
produced (HALL et al., 2001; STRUMSKY et al., 2010). 
  
The popularity of patent data is related to their availability and to the wealth of information that 
they provide. At the same time, the disadvantages of patent statistics as overall indicators of 
economic and inventive activity are legion (PAVITT, 1985; GRILICHES, 1990), and we are 
becoming increasingly aware of the difficulties of extracting increasingly sophisticated 
information from patent and citation records (BRESCHI and LISSONI, 2004; THOMPSON and 
FOX-KEANE 2005; ALCACER and GITTELMAN 2006). Bearing these difficulties in mind, 
and recognizing that patents do not represent all knowledge production, the primary aim of this 
section of the paper is to develop a measure of technological relatedness between patent classes, 
to use this measure to examine the technological specialization, or coherence, of knowledge 
production in different regions of the U.S., and to explore how this has changed over time. Patent 
technology class data and patent citations form the core of this work. These data are drawn from 
the United States Patent and Trademark Office (USPTO). 
 
Upon review, individual patents are placed into one or more distinct technology classes that are 
supposed to reflect the technological characteristics of the underlying knowledge base that they 
embody. By the end of 2009, there were 438 such classes of utility patents in use by the USPTO.  
It is important to note that these technological classes do not remain constant over time. Through 
its bi-monthly “classification orders” the USPTO redefines classes, it adds new classes and, 
though rare, removes obsolete ones. Fortunately, the USPTO also reclassifies patents, providing 
the researcher with a consistent set of technology classes into which patents are placed for 
specific periods of time. Patents may be placed into a number of different technology classes, 
consistent with the range of knowledge that they introduce, though each granted patent is also 
allocated a primary technology class on the basis of the extent of the novelty generated across 
different technology fields. The research below focuses upon these primary technology classes. 



 
Combining data on the location of inventors, the date of application of a patent and technology 
class information allows researchers to develop a technological profile of different places and to 
track changes in those profiles over time. Thus, ARCHIBUGI and PIANTA (1992) examine the 
links between country size and specialization in patenting, and CANTWELL and VERTOVA 
(2004) show that countries of a given size have become more technologically focused over time. 
At the sub-national level, KOO (2005) makes use of a concordance between patent technology 
classes and the standard industrial classification to identify geographical clusters of industries in 
the U.S. that are  linked by knowledge flows, while O’HUALLACHAIN and LEE (2010) 
examine specialization and diversity in knowledge production across U.S. metropolitan areas.  
 
Measurement of technological specialization is a significant problem in much of this research. In 
most cases, calculation of specialization/diversity is based on ordinal measures of inequality such 
as the Gini, Theil or Herfindahl indices. While these metrics are convenient, they say nothing 
about the nature of the association between technology (or other forms of economic) categories. 
Hence the “technological distance” between two primary patent technology classes in “organic 
compounds” is regarded as equal to the distance between the classes of “nanotechnology” and 
“boot and shoe making”. This makes little sense. More useful characterizations of the knowledge 
stocks, or the technological capabilities, of different regions would be based on measures of the 
relatedness or coherence between the components of those stocks. 
 
Attempts to generate measures of the relationships between patent technology classes can be 
traced back to JAFFE (1986), though SCHERER (1982) and TEECE et al. (1994) follow similar 
lines of argument in their measures of inter-industry R&D relatedness and corporate coherence, 
respectively. Three different methods have been used to measure the “distance” between patent 
technology classes. In the first of these, probabilities of the links between technology classes, 
and thus inter-class distances, are derived from the joint classification of individual patents 
across different technology categories (JAFFE 1986; VERSPAGEN 1997; BRESCHI et al., 
2003). A second approach uses patent citations and the primary technology classes into which 
citing and cited patents are placed in order to measure distances between technology classes 
(LETEN et al., 2007). A third approach combines patent class data and geography. In this case 
measures of revealed comparative advantage in patent technology class codes are derived for 
different locations. Conditional probabilities linking all pairs of patent classes are estimated 
across all locations and measures of technological relatedness between classes so derived (VAN 
DER WOUDEN, 2012). This method builds on the product-space work of HIDALGO et al. 
(2007). 
 
In the analysis below, the second of the methods just discussed is used to identify a U.S. 
knowledge/technology network and provide measures of technological relatedness (the inverse 
of distance) between each pair of U.S. patent classes. Before outlining how patent citation and 
technology class data are used to identify technological or knowledge relatedness between patent 
classes, some comments on patent citations, a crucial element of this method, is required. 
U.S. patent law requires that an invention be novel and non-trivial in order for a patent to be 
granted. In addition, U.S., patent applicants are legally required to identify the prior knowledge 
upon which their inventions are based. This prior art is typically referenced through citations 
provided by patent applicants (inventors or their lawyers) and patent examiners. Patent 



examiners are responsible for about 60% of the citations placed on U.S. patents. This has led 
many to question what these citations represent (BRESCHI and LISSONI, 2001; ALCACER and 
GITTELMAN, 2006; ALCACER et al., 2009). Do they measure real knowledge flows or not? 
JAFFE et al., (2000) provide evidence in the affirmative, though the jury is clearly still out. It is 
surely difficult to make the case that citations track knowledge flows if inventors have no 
knowledge of the patents cited by examiners. It is less dangerous, perhaps, to think of citations as 
measures of related sets of technologies or knowledge, whether added by patent examiners or 
inventors. This is the spirit in which citation data are used in the methods outlined below. No 
claim is made that knowledge only flows through citations. 
 
To construct a U.S. knowledge space the location of individual patents has to be determined. For 
single inventor patents that is straightforward. For patents with multiple inventors, the country of 
the first listed inventor is taken as the location of the patent, and so only those co-inventor 
patents where the first inventor is located in the U.S. are designated as U.S. patents. Using the 
location of the first inventor, in cases of co-invention, assumes that the order of inventors reflects 
their relative weight in the invention process. In the citation analysis below, only citations to and 
from U.S. patents are considered.  
 
The period of analysis runs from 1975 to 2005. The choice of the first year is easy to defend. 
1975 is the first year for which patents are electronically linked to citations in the USPTO 
database. Patent data are available through 2011, though analysis here ends in 2005 largely 
because of the right censoring of patent applications. Table 1 provides some general information 
on numbers of patents and citations for selected years over the period 1975-2005. Note that these 
data are not averaged across a number of years: they are not smoothed in a temporal sense. There 
are significant swings in patent numbers and citations across individual years, but the years 
shown are certainly not outliers. Patents are aged by date of application rather than year of 
granting, for the usual reasons. Note that U.S. knowledge networks were built using both year of 
application and year of granting. There is little difference to the overall results. Self-citations are 
not removed in construction of the knowledge network for the analysis here is not attempting to 
identify spillovers. Rather, the focus is on the technological linkages across all patent classes. 
Investigation focuses on citations to patents that are no more than twelve years old. The twelve 
year cutoff is employed to ensure a long period of investigation while also capturing the majority 
of the citations that most patents generate (see HALL et al., 2001). 
 
Table 1 shows the number of domestic patent applications to the USPTO for 1975, 1985, 1995 
and 2005, along with the number of citations to existing U.S. patents recorded on those 
applications that are not more than twelve years old. For all these patents, citing and cited, their 
primary technological class is known. Clearly the number of U.S. patents has increased markedly 
over time. The apparent decline between 1995 and 2005 is, in large part, the result of right 
censoring, or truncation in the data: many patents applied for in 2005 have yet to be granted. 
What is also clear from Table 1 is the rapid growth in the number of total citations, and in the 
average number of citations per patent. Indeed, the number of citations on each patent has 
climbed from an average of 2.8 in 1975 to 9.6 in 2005. The extent to which this represents 
citation inflation or the increasingly derivative nature of new knowledge claims is unclear. 
 
 



Table 1: Application Year Patents and Grant Year Patents, US Only 

YEAR PATENTS 
APPLCTN. 

YEAR 

CITATIONS 
(12-YEARS) 

PATENTS 
GRANT 
YEAR 

CITATIONS 
(12-YEARS) 

1975 41,385 118,742 
(2.817)2 

45,692 116,237 
(2.544) 

1985 36,996 135,866 
(3.604) 

37,772 122,364 
(3.156) 

1995 80,460 549,062 
(6.708) 

54,670 276,495 
(5.058) 

20051 52,975 517,004 
(9.649) 

46,183 492,597 
(10.666) 

Notes: 1. 2005 application year patents are right censored. The patents identified here were granted by the end of 
2009.  2. Ratio of citations to patents in parentheses. 

The citation and technology class information on the patents described in Table 1 are used to 
derive a measure of the technological or knowledge relatedness between all pairs of patent 
classes. In a general sense, two technology classes are considered related if patents in one of 
these classes cite patents in the other class. There are 438 primary utility patent technology 
classes currently used by the USPTO. All patents in the database are located in one of those 
primary classes. 
 
A method for calculating technological relatedness between patent classes is outlined next. All 
(granted) patent applications for a given year, say 1975, are recorded along with all citations on 
those citing patents that extend back for twelve years. This generates a database of cited patents 
that extend back to 1963 (for the digital records). The primary technology class of all citing and 
cited patents are recorded and arranged in the following matrix 
  

௜௝࡯
௧ ൌ ൥

ܿଵ	ଵ … ܿଵ	ସଷ଼
⋮ ⋮ ⋮

ܿସଷ଼	ଵ … ܿସଷ଼	ସଷ଼
൩ 

 
where ࡯௜௝

௧  is a 438x438 matrix, the elements of which record the number of citations made by 
citing patents in technology class j to cited patents in class i in a given year t. Dividing each 
element of ࡯௜௝

௧  by the number of patent applications (granted) in the element’s column class 
yields a matrix of the relative frequency that a patent in technology class j in a specified year will 
cite a patent in technology class i 
 

௜௝ࡼ
௧ ൌ 	

ܿ௜௝
௧

௝ܰ
௧ 

 
where ௝ܰ

௧ is the number of patents in technology class j in a given year. 
 
௜௝ࡼ
௧  provides a measure of the technological relatedness or knowledge relatedness between 

patents in technology classes i and j. The elements of ࡼ௜௝
௧ 	take the value 0 when patents in class j 



do not cite patents in class i. In this case there is no technological relatedness between class i and 
class j. To be more concrete, in 1985, technology class 331 (oscillators) did not cite technology 
class 236 (automatic temperature and humidity regulation). However, note that technology class 
236 did cite technology class 331 in 1985. Thus, the matrix of relatedness between patent classes 
is asymmetric. The values of technological relatedness are not bounded to the right. Patents in 
the same technological class, located on the principal diagonal of ࡼ௜௝

௧ ,	quite often exhibit 
relatedness values greater than 1. On average, technological relatedness should be greater for 
patents in the same technology class than for patents located in different classes. The values on 
the principal diagonal vary, perhaps, with the technological heterogeneity of patents found within 
individual classes. Technological relatedness values greater than 1 are rare off the principal 
diagonal of the matrix ࡼ௜௝

௧ . A similar method of identifying technological relatedness was applied 
to European patent and citation data by LETEN et al. (2007). That analysis focused only on 30 
technology classes and thus the technological precision of the estimates developed here is 
considerably greater. 
 
Individual technology classes reported in the USPTO have been aggregated into 30 intermediate 
classes and 6 broad technology classes by HALL et al. (2001). These aggregate groups afford a 
simple test of the efficacy of the technological relatedness measure just developed. It makes 
sense to assume that primary patent classes that are members of the same aggregate technology 
groups will cite one another with greater frequency than primary patent classes found in different 
aggregate technology groups. If we do not see this, then the meaning of our relatively frequency 
matrix ࡼ௜௝

௧  is in doubt. 
 
With the aid of UCINET (BORGATTI et al., 2002), the network of technological relatedness 
across the 438 primary patent classes is mapped. The technological relatedness network is 
generated with the Gower-scaling metric, itself derived to examine patterns of similarity across 
network nodes (GOWER, 1971). The nodes in the network correspond to each of the 438 distinct 
technological classes within the USPTO. The relative positions of the nodes are fixed by the 
frequencies of citation across each technology class pair (ࡼ௜௝

௧ ሻ. The principal diagonal plays no 
role in the relative locations of the nodes. Note that because of the asymmetry in the relatedness 
matrix, the links between network nodes i and j are the average of ࡼ௜௝

௧  and ࡼ௝௜
௧ . The knowledge 

relatedness networks for 1975 and 2005 are shown below (see Figures 1 and 2). Note that the 
knowledge relatedness networks for 1985 and 1995 are quite similar to those displayed. 
 
The node colors in the figures represent the aggregate technology (6 class) grouping of HALL et 
al. (2001):  Black = Chemicals (1), Green = Computers & Communications (2), Yellow = Drugs 
& Medical (3), Red = Electronics (4), Blue = Mechanical (5), Grey = Miscellaneous (6). There is 
clear evidence of the clustering of individual patent categories within most of these classes, 
indicating that the relatedness measure is capturing what may be considered as a common 
knowledge base within these more aggregate technology groupings. All network links are not 
included for their density would render the network largely unreadable. The network links shown 
are illustrative of the total, representing the strongest links in the network at each time period. 
Because of the increase in the number of citations per patent throughout the study period, the 
density of links increases markedly between 1975 and 2005. The citation data used to build the 
knowledge networks are not adjusted for potential citation inflation. The size of each node 
illustrates the number of patents in that technology class in the given year. Node sizes have been 



scaled to allow comparison over time. To aid comparison, the size of the largest node in each 
year is indicated below each figure. 
 
Figure 1: U.S. Knowledge Space, 1975 
 

 
Notes: Black = Chemicals (1), Green = Computers & Communications (2), Yellow = Drugs & Medical (3), Red = 
Electronics (4), Blue = Mechanical (5), Grey = Miscellaneous (6). The largest node (514 = Drug: bio-affecting and 
body treating compositions) represents 746 patents. 
 
The U.S. knowledge space in 1975 shows that patents appear to be reasonably evenly distributed 
across the six broad technology groupings. The shared knowledge cores of those groupings can 
be identified in 1975, though they become much more pronounced over time, especially in 
computers and communications, electronics, and to a somewhat lesser extent in drugs and 
medical patents.  By 2005, the rapid expansion in the share of patents in those same three classes 
is evident. The computers and communications core becomes more closely aligned with the 
electronics core between 1975 and 2005 and the drugs and medical core moves away from the 
core of the chemicals cluster, perhaps overlapping increasingly with the electronics and 
computers clusters. The cores of the mechanical and miscellaneous groups appear to be 
reasonably closely correlated over the whole period examined. 
 
 
 



Figure 2: U.S. Knowledge Space, 2005 
 

 
Notes: Black = Chemicals (1), Green = Computers & Communications (2), Yellow = Drugs & Medical (3), Red = 
Electronics (4), Blue = Mechanical (5), Grey = Miscellaneous (6). The largest node (438 = Semi-conductor device 
manufacturing) represents 1709 patents. 
 
To measure the overall technological coherence of the patent network an average relatedness 
score is generated. Average relatedness measures the total “technological distance” between all 
pairs of patents divided by the number of such pairs. For a given number of patents, a higher 
average relatedness score indicates that patents are located in technology classes that are 
relatively close to one another in the U.S. knowledge network. These are patents found in classes 
that tend to cite each other with a relatively high frequency. A lower relatedness score would 
indicate that the patents are distributed over technology classes that are, on average, further apart 
from one another in technology space. Average relatedness measures the technological 
specialization or coherence of produced knowledge. Higher levels of relatedness indicate greater 
technological specialization. The average relatedness value for a region r in year t is calculated 
as: 
  

௧,௥ܴܣ ൌ
∑ ∑ ௜ܲ௝

௧
௝௜ ∗ ௜௝ܦ

௧,௥ ൅ ∑ ௜ܲ௜
௧ ∗ ௜௜ܦ2

௧,௥
௜

ܰ௧,௥ ∗ ሺܰ௧,௥ െ 1ሻ
݅	ݎ݋݂										 ് ݆	

  



where ௜ܲ௝
௧ 	measures the technological relatedness between patents in the 438 technology classes i 

and j, ܰ௧,௥ is a count of the total number of patents in region r in year t, and where ܦ௜௝
௧,௥ counts 

the number of pairs of patents that can be located in technology classes i and j in region r in year 
t. To clarify the meaning of ܦ௜௝

௧,௥, imagine a region with three patents, one in technology class 1 

and two in technology class 2. Then, the pair	counts	ܦ௜௝
௧,௥ represent elements in the (438x438) 

symmetric matrix  

௧,௥ࡰ ൌ ቎

0 2 … 0
2
⋮

1
⋮

… 0
⋮

0 0 … 0

቏ 

 
With three patents, there are 3x2 = 6 unique distance measures to calculate, the distance between 
the patent in class 1 and each of the patents in class 2, the distances from both patents in class 2 
to the patent in class 1 and the distance between the two patents in class 2. Note that the latter 
distance is counted twice.  
 
Tables 2 and 3 provide information on average technological relatedness between all patents in 
the U.S. knowledge network and between patents within each of the six aggregate technology 
classes. Table 2 reports that average relatedness increased by more than 94% between 1975 and 
2005, even after adjusting for “citation inflation”. An increase in average relatedness indicates  
that more patents are being generated within technology classes that are closer to one another in 
technology space. This is consistent with the growth of technological specialization, an increase 
in the shared knowledge base that underpins invention. The rate of growth of specialization in 
U.S. patenting accelerated sharply after 1985, though it slowed somewhat between 1995 and 
2005. 
 
Table 2: Total and Average Knowledge Relatedness, US Total (All Patents) 

  RELATEDNESS 
YEAR PATENTS1 TOTAL AVERAGE 
1975 41,385 23,811,636 

(23,811,636)2 
0.01390 

(0.01390)2 

1985 36,996 28,041,166 
(21,924,289) 

0.02049 
(0.01602) 

1995 80,460 366,530,344 
(153,939,666) 

0.05662 
(0.02378) 

2005 52,975 259,254,666 
(75,694,793) 

0.09238 
(0.02697) 

Notes: 1- Number of (granted) patent applications  in year indicated, with known CBSA.  2- Knowledge relatedness 
adjusted for citation inflation in parentheses. 
 
As expected, Table 3 shows that average relatedness values are much greater within each of the 
six aggregate technology classes than overall. This confirms expectations that technological 
information (a citation) is more likely to flow within a major technology grouping (such as the 
chemicals category) than it is to flow between such groupings. The drugs and medical group 
exhibits the highest average relatedness score of all major patent groups, indicating that 



knowledge, in the form of citations, circulates more frequently in this group than in others. On 
average, relatedness scores are also relatively high in the electronics and in the computers and 
communication patent groups. They tend to be lower in the chemicals and mechanical patents. 
Since 1975, before adjusting for citation inflation, average relatedness values have increased 
fastest in the electronic, the drugs and medical, and the miscellaneous patent groups.  
 
Table 3: Average Knowledge Relatedness by Major Patent Class, US Total  
 
PATENT GROUP YEAR 

1975 1985 1995 2005 
CHEMICALS 0.05518 

(0.05518)1 
0.07951 

(0.06216) 
0.11638 

(0.04888) 
0.13150 

(0.03839) 
COMPUTERS & 
COMMNCTN. 

0.14008 
(0.14008) 

0.14444 
(0.11293) 

0.24182 
(0.10156) 

0.26731 
(0.07804) 

DRUGS & 
MEDICAL 

0.18804 
(0.18804) 

0.33333 
(0.26061) 

0.75794 
(0.31833) 

0.92738 
(0.27074) 

ELECTRONIC 0.07994 
(0.07994) 

0.10972 
(0.08578) 

0.19388 
(0.08143) 

0.47144 
(0.13764) 

MECHANICAL 0.03508 
(0.03508) 

0.03966 
(0.03101) 

0.08184 
(0.03437) 

0.17182 
(0.05016) 

MISCELLANEOUS 0.04221 
(0.04221) 

0.05753 
(0.04498) 

0.10743 
(0.04512) 

0.25746 
(0.07516) 

Notes: 1-Knowledge relatedness adjusted for citation inflation in parentheses. 

 
THE KNOWLEDGE CORES AND AVERAGE RELATEDNESS OF U.S. 
METROPOLITAN AREAS 
 
The patent knowledge cores of metropolitan areas in the U.S. can be identified by mapping the 
patents generated within individual cities on the U.S. knowledge space of a given year. Building 
a separate knowledge space for each city based upon localized patent citations would yield very 
sparse networks for most because of the tendency for the majority of knowledge flows to cross 
metropolitan boundaries. Once more the address of the inventor, or the first-named inventor on 
co-invented patents, is used to locate patents within the United States. There are 949 core based 
statistical areas (CBSAs) in the United States within which patents can be located. Note that the 
newest patent files provided by the USPTO provide zip codes for inventor addresses that are 
readily linked to CBSAs. For older files, linking the cities and counties within which inventors 
are located to CBSAs was performed using the geographical correspondence engine available 
through the Missouri Census Data Center (http://mcdc2. missouri.edu/websas/geocorr2k.html). 
The focus here is on the 366 metropolitan CBSAs that house well over 90% of all U.S. patents. 
Still with so many metropolitan areas, it is only possible to provide illustrations of the knowledge 
cores of a few. Three CBSAs highlighted - Boise, Idaho, Dayton, Ohio and Rochester, New 
York. These cities do not form a representative sample, they serve merely to illustrate quite 
different trajectories of knowledge production. Rather than map every patent within these three 
cities, only patent classes in which cities exhibit relative specialization, identified by location 
quotients, are displayed. 
 



In 1975, Boise was home to inventors who developed 22 patents. 21 of these 22 patents were 
developed in different patent classes, with only one USPTO patent technology class 
accumulating two patents. Because of the relatively small number of patents generated in Boise, 
all 21 occupied patent classes in 1975 have patent location quotients greater than 1.0, indicating 
metropolitan specialization. Figure 3a shows the relative position of these 21 patent classes in the 
U.S. technology space for 1975. There is nothing in this figure that suggests an existing, or even 
a nascent, technology or knowledge core. The average relatedness score for Boise in 1975, the 
average technological distance between all pairs of patents (not just those in classes with a 
location quotient greater than 1) was a relatively low 0.0123, ranking Boise 275 out of 366 
metropolitan CBSAs in terms of the coherence of its produced knowledge base. However, by 
2005, Boise had become one of the leading centers of semi-conductor patenting in the United 
States (see Figure 3a). In that year, Boise inventors generated 577 patents, 68% of these in just 
three technology classes: 257 (active solid state devices), 365 (static information storage and 
retrieval) and 438 (semi-conductor device manufacturing). Of 74 metropolitan CBSAs in 2005 
generating more than 100 patents, Boise ranked second highest in terms of average relatedness 
(1.413), indicating that most of its patents were located in technology classes closely related to 
one another. While a detailed history of invention in Boise is well beyond the scope of this 
paper, the interested reader might consult MAYER’S (2011) account of the evolution of 
invention in Treasure Valley. 

A very different pattern of urban invention is offered by Dayton, Ohio that traces a long history 
of aircraft, computing and automobile related patenting, through the work of the Wright brothers, 
the National Cash Register Company (NCR) and Dayton Engineering Laboratories Company 
(DELCO), later to become the foundation of the General Motors research arm. One of the most 
productive U.S. cities for patenting at the end of the nineteenth century, by the 1970s the pace of 
invention in Dayton had already begun a slow decline. Nonetheless, in 1975 with 289 patents, 
Dayton ranked 30 out of all U.S. cities in terms of the number of patents produced. These patents 
were distributed across mechanical, chemical and electronic technologies with one pronounced 
cluster in refrigerants (see Figure 3b). In 1975 the average relatedness of Dayton’s patents was 
0.027, ranking 33 out of 60 metropolitan areas with more than 100 patents. As late as 2005, more 
than 100 patents were still produced in Dayton. However, these patents were widely scattered 
across the U.S. knowledge space. Indeed, the average relatedness score for Dayton’s patents in 
2005 was 0.0799, placing the city dead last in terms of technological coherence out of all U.S. 
metropolitan areas with more than 100 patents. The distributed character of Dayton’s patents in 
2005 is clear in Figure 3b. 
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Figure 3c maps the locations of patents developed in Rochester, New York in 1975 and 2005. 
Most noticeable from this figure is Rochester’s long concentration in optics related invention, 
chiefly a function of the activities of the Kodak and Xerox Corporations. FELDMAN and 
LENDEL (2010) provide an overview of the emergence and development of the optics industry 
in the United States. In 1975, Rochester generated 654 patents, marking the city as the thirteenth 
most inventive in the U.S.. Even more remarkable is the concentration of these patents in 
technology classes strongly connected to the optics industry: 382 (image analysis), 399 
(electrophotography) and 430 (radiation image chemistry). In 1975, Rochester had a higher 
average relatedness score (0.2495) than any other U.S. metropolitan area that housed more than 
100 patents. By 2005, the average technological distance between Rochester’s patents had not 
changed by much. In this year, the average relatedness of Rochester’s patents measured 0.2731, 
ranking the city 14th most specialized out of the most inventive U.S. metropolitan CBSAs.  

A more general overview of the technological coherence of patents produced across all U.S. 
CBSAs is provided in Figure 4 that maps the distribution of average relatedness values between 
1975 and 2005. In general, average relatedness clusters at relatively low values, indicating that 
there is little coherence in the knowledge base of most CBSAs. This reflects the fact that in the 
majority of CBSAs the number of patents is relatively small and the technological links between 
those patents limited. The average relatedness values for each year exhibit a marked right skew 
as they are heavily influenced by a few CBSAs with considerable numbers of patents that cluster 
in a small number of technological fields. The most extreme examples of these are “company 
towns” like Midland Michigan, where patenting is dominated by Dow Chemical and Dow 
Corning, Bartelsville, Oklahoma where patenting is dominated by Philips Petroleum, and 
Duncan, Oklahoma where patenting is dominated by Haliburton. In general, average relatedness 
is negatively related to urban size, whether measured by patents or population: the largest cities 
tend to patent across many technology classes, some quite distant from one another in knowledge 
space. Over time, the average (unweighted) relatedness value for all CBSAs has increased from 
0.0668 in 1975 to 0.3347 in 2005 (not adjusting for citation inflation). 

Table 4 refocuses attention on metropolitan CBSAs with more than 100 patents each. These 
metropolitan areas are responsible for approximately 80% of all U.S. patents. The top and 
bottom ranked metropolitan CBSAs, in terms of average relatedness, are listed in this table. So in 
1975, along with Rochester, New York, average relatedness or technological specialization was 
relatively high in Akron, Houston, Peoria and Springfield. In 2005, the metro CBSAs with the 
most specialized set of patents were Memphis, Boise, Burlington, Poughkeepsie and Houston. 
The cities with the least specialized patent knowledge base in 1975 tended to be those with the 
largest numbers of patents. This pattern had shifted by 2005, such that four of five metropolitan 
CBSAs with the least specialized patent set were the old, rust-belt cities of Dayton, Cleveland, 
Pittsburgh and Columbus. These cities still produce relatively large numbers of patents, but not 
necessarily in technological fields that the industrial histories of these cities would suggest.  
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rests heavily on accumulated knowledge sets. This begs the question of whether we can use 
information on the characteristics of local knowledge cores along with measures of relatedness 
between different technology classes to account for local histories of technological 
diversification and technological abandonment? This question is examined in the next section. 
 
TECHNOLOGICAL DIVERSIFICATION AND TECHNOLOGICAL ABANDONMENT 
IN U.S. METROPOLITAN AREAS 
 
Knowledge accumulates over time through search, including learning, and diffusion. The 
productivity of search is uneven. Much of the time the process of invention proceeds 
incrementally, moving along familiar trajectories. Occasionally those trajectories are abandoned 
as knowledge breakthroughs occur, pushing invention and innovation along novel pathways, 
some of which become well-used routes to future discovery (DOSI, 1982; NELSON and 
WINTER, 1982). 
 
The accumulation of knowledge proceeds unevenly over space as well as time. Space remains a 
barrier to the flow of particular kinds of knowledge and to other commodities within which 
technological information is embedded. Characterized by different histories of resources and 
industrial development, different modes of organizing production and competing institutional 
arrangements, the knowledge bases and production technologies of individual regions exhibit a 
variety of forms (SAXENIAN, 1994; RIGBY and ESSLETZBICHLER, 1997; STORPER, 
1997). These forms often give rise to distinctive techno-industrial clusters, regions with long 
histories of development in particular sets of skills, commodities and industries that we can 
readily identify. Within many such regions, knowledge production exhibits considerable inertia. 
The patents produced within individual regions over time are not a random draw from the set of 
technology classes that defines the global knowledge space. Rather, the technological 
distribution of patents within a region reflects the underlying knowledge base of that 
geographical area. This knowledge base is directed by the past experience of search and 
discovery within the area, and it is also influenced by the characteristics of the networks of 
invention and innovation within which individual inventors, firms and other research units in the 
region are embedded. 
 
The primary aim of this section of the paper is to explore how existing configurations of 
technological capabilities within U.S. metropolitan areas shapes emerging technological/ 
knowledge trajectories. I explore this question using information on the existing knowledge 
cores and measures of technological relatedness within cities, forecasting the direction of 
invention from the technological gap or proximity between current invention and the range of 
inventive paths not yet taken within a city. The goal is not to explain the precise patterns of 
technology production within individual cities, but rather to relate the technological structure of a 
place at time t to the technological structure of that place in some future time t+n. This analysis 
builds on the work of HIDALGO et al. (2007) and HAUSMANN and KLINGER (2007) in 
modeling a global commodity space and the evolution of countries within that space. In this 
sense it is closely related to work in economic geography by NEFFKE et al. (2011) and 
BOSCHMA et al. (2012) who examine the process of industrial diversification within regions. 
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In the left image of Figure 5, the city is most likely to diversify into knowledge class D because, 
out of the classes in which the city is not yet specialized, this class is closest to the set of 
techniques in which the city is already specialized. Turning to the case of technological 
abandonment, the right image of Figure 5 shows that of all technology nodes in which the city is 
specialized, node A is the most remote, or the furthest from the knowledge core of the city, and 
thus most likely to be abandoned. Note that in Figure 5 the set of all technology classes and their 
relative locations are fixed in U.S. knowledge space and are thus common to all cities. However, 
the pattern of technologies in which each city exhibits relative advantage (specialization) varies 
with the distribution of patents. 

The discussion of technological diversification and abandonment to this point assumes that cities 
are independent spatial units that are not influenced by technological practices elsewhere. Yet, a 
long history of geographical scholarship suggests that there are strong linkages between urban 
areas (PRED, 1977). It seems reasonable therefore to extend the model of technological change 
to incorporate flows of knowledge between cities. I do this using co-inventor data. BRESCHI 
and LISSONI (2001) and SINGH (2005) provide strong evidence of the importance of co-
inventor networks in understanding knowledge flows. 
 
To capture co-inventor network effects, it is assumed that the probability of technological 
diversification in a city is influenced by the knowledge base (structure of knowledge) in other 
cities, together with an index of how closely those other cities are linked to the city in question. 
This is operationalized in the following way. For each year of data, a symmetric inter-city matrix 
(366x366) of co-inventor relations is multiplied by a (366x438) matrix of location quotients 
showing for each of the 366 CBSAs and 438 technology classes where each city has relative 
technological advantage (location quotient greater than 1). A given cell ሺ݅, ݆ሻ		in the resulting 
(366x438) matrix is a weighted average of the (binary) location quotient values in all cities k 
ሺ݇ ് ݅ሻ in technology class j where the weights specify the proximity of each (row) city to all 
other cities in the network. The distance between one city and itself is set to zero, so I ignore 
intra-city co-inventor relationships. It is hypothesized that spillovers of knowledge between 
cities, driven by co-inventor relationships, should exert a positive influence on the probability 
that a city adopts a new technology.  
 
The inter-city matrix of co-inventor relations was constructed for all 366 urban areas for every 
second year between 1975 and 2005. These measures were developed from co-inventor data. The 
USPTO does not track individual inventors. Fortunately, LAI and colleagues at Harvard 
University have produced a list of individual inventors and their co-inventors that can be linked 
to the individual patent records in the USPTO (LAI et al., 2009). From these data I take all 
patent applications in a given year that list co-inventors and I record the metropolitan areas 
within which co-inventors were located. If a co-inventor was located outside the United States, 
or in one of the micropolitan CBSAs, they were dropped from the analysis. I then construct a 
metropolitan co-invention matrix with 366 rows and columns, each corresponding to one of the 
metropolitan CBSAs. The matrix is initially populated with zero values in all cells. If two co-
inventors on a patent are located in different metropolitan areas then the cells of the inter-city 
matrix of co-inventor relations corresponding to the cities where the co-inventors are located 
receive the value 1. The resulting matrix is symmetric and values on the principal diagonal are 
ignored. (Note that co-inventor counts along the principal diagonal provide a measure of co-
inventors located in the same city. This information is not exploited below.) If there are three co-



inventors on a patent, each living in a different metropolitan area then six cells in the matrix 
receive a count of 1 (three pairs of cities in the matrix are linked and the symmetry ensures a 
count of six). This process is repeated for all co-invented patents with the inter-city matrix counts 
building a representation of the interaction between co-inventors located in different U.S. 
metropolitan areas in a given year. 
 
The processes of metropolitan technological diversification and abandonment are examined 
using a regression model. The observational units are the 438 technology classes within each city 
over time. The model is run for every second year from 1975 to 2005 inclusive. The values of the 
dependent variable are 0 or 1, so the regression model is predicting the probability that Y = 1, 
that a city exhibits technological specialization in a particular technology class in a given year. 
The binary nature of the dependent variable suggests use of a probit or logit model extended to 
panel form to take advantage of the time dimension in the data. This is not straightforward, for a 
probit model cannot be run with a fixed effects panel specification that is suggested by a simple 
HAUSMAN test as preferable to a random effects model. So I opt for a fixed effects panel 
version of the logit model. The incidental parameters issue (resulting from controlling for 438 
fixed effects over 366 cities over 16 years and the need to estimate parameters for these effects) 
also raises problems of estimation.  These are solved using a conditional logit specification. 
 
The basic model to be estimated is 
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where the binary dependent variable assumes the value 0 or 1, and represents the probability of 
city c in year t exhibiting relative technological specialization in technology class i. On the right 
hand-side of the equation, the lagged value of the dependent variable captures existing 
specialization by cities in particular technologies. Absent the fixed effects, this could be 
interpreted as a measure of persistence. With existing specialization controlled, the two key 
independent variables are the lagged value of the distance between each technology class where 
the city does not exhibit technological specialization and those technology classes where it does 
(proximity), and a lagged measure of technology in related cities (cbsanet), where related is 
proxied by the co-inventor relationship between cities. The ݖ௧ represent year fixed effects, 
 .௜ are CBSA and technology (patent) class fixed effects݄ܿ݁ݐ and	௖ݕݐ݅ܿ
 
The results are displayed in Table 5. Model 1 is produced for comparison and is similar in form 
to that offered in HAUSMANN and KLINGER (2007) and BOSCHMA et al. (2012). Model 2 
adds the CBSA network variable. The proximity of technology classes where cities do not 
currently specialize to those in which cities do specialize has a positive and significant influence 
on technological diversification, or the probability that relative advantage will be developed in 
the future. A one unit increase in overall technological relatedness (knowledge proximity) means 
an increase in the probability that specialization will be developed in new technologies of about 
5%. The city network effect is also positive and significant, but extremely small in size. 
 
Clearly the linear probability models (Models 1 and 2) are not appropriate for estimating binary 
data as noted above. Estimated values might lie outside the unit interval and the errors cannot be 
homoscedastic. In Models 3 and 4 we take explicit advantage of the panel nature of the data 



estimating a fixed effect panel conditional logit model. This model handles omitted variable bias 
and deals with the incidental parameters problem. Still, some caution should be used in 
interpreting results because the lagged value of the dependent on the right hand side of the 
equation adds serial correlation (NICKELL, 1981), though with a relatively large number of 
years in the panel, this problem is dampened. Whether the techniques of ARELLANO and 
BOND (1991) provide a solution is unclear given the limited form of the dependent variable. 
 
Model 3 is a fixed effects conditional logit panel model with three independent variables. Year 
specific fixed effects are incorporated in this model but not shown. Note that the effect of the 
lagged dependent variable is considerably smaller in this specification. The partial regression 
coefficient on the lagged technological proximity measure (proximity) is slightly larger in 
magnitude to that of Model 2, and it remains statistically significant with the correct positive 
sign. The coefficient on the lagged city network measure (cbsanet) is also significant with a 
positive sign, and is similar in value to Model 2. Note that we lose two-thirds of our total 
observations in the panel logit models that discard technology classes in cities where there is no 
change in the value of the dependent variable over time. Note also that the partial regression 
coefficients in this model represent the log odds ratio rather than marginal effects. 
 
All the models examined so far do not distinguish between the factors that determine the 
probability of concentrating in a new technology class from the probability of abandoning a 
technology in which a city already exhibits specialization. To distinguish growth in 
specialization from decline in specialization, or from technological abandonment, in Model 4 of 
Table 5, a fixed effects panel version of the following model is estimated in conditional logit 
form 
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where most terms are defined as above and where xproximity is the distance from each 
technology class where a city has existing relative specialization to all other technologies in the 
same city with relative specialization. The second term in this model will drop out of the 
regression when the lagged value of the dependent variable is 1 and then the partial regression 
coefficient ߚଷ captures the influence of knowledge proximity in resisting technological 
abandonment. When the lagged value of the dependent variable is 0, the parameter ߚଶ captures 
the log odds ratio of a city developing relative specialization in a new technology. The results 
show little change in the effects of the city network and the effect of technological proximity on 
technological diversity. The impact of proximity in resisting technological abandonment is an 
order of magnitude larger than the effect of proximity in technological diversification. 
 
Overall the results in Table 5 provide strong support for evolutionary claims that the processes of 
technological diversification and technological abandonment exhibit significant path 
dependence. A region’s existing knowledge core is a strong predictor of future relative 
technological specialization, at least over the short-run: the pattern of technological 
diversification within a city is positively conditioned by the proximity of new technological 
possibilities that are relatively close to the existing knowledge core. In similar fashion, 
technological abandonment is strongly resisted when technology classes are close, in terms of 



knowledge space, to the city’s existing knowledge core. Inter-city knowledge flows aid 
technological diversification and help resist abandonment, though the effects are small. 
 
Table 5:  Regression Analysis of the Probability of Technological Diversification and 
Technological Abandonment 
 

Independent 
Variables 

Model 1 
LPM 

 

Model 2 
LPM 

 

Model 3 
XT 

(Conditional Logit) 

Model 4 
XT  

(Conditional Logit) 

௜ܻ௧ିଵ
௖  0.3747*** 

(0.0088) 
0.3492*** 
(0.0078) 

0.1043*** 
(0.0085) 

0.0969*** 
(0.0085) 

 ௧ିଵݕݐ݅݉݅ݔ݋ݎ݌
 

0.0471*** 
(0.0008) 

0.0461*** 
(0.0008) 

0.0501*** 
(0.0032) 

 

 ***௧ିଵ  0.00003ݐ݁݊ܽݏܾܿ
(4.07e-07) 

0.00003*** 
(3.22e-06) 

0.00003*** 
(3.21e-06) 

     
ሺ ௜ܻ௧ିଵ

௖ ሻ ∗	 
௜௧ିଵݕݐ݅݉݅ݔ݋ݎ݌ݔ

௖  
   0.5042*** 

(0.0474) 
ሺ1 െ ௜ܻ௧ିଵ

௖ ሻ
∗ ௜௧ିଵݕݐ݅݉݅ݔ݋ݎ݌	

௖  
   0.0522*** 

(0.0032) 
Constant -0.0025 

(0.0012) 
-0.0020*** 
(0.0034) 

  

     
 
 

n=2,404,620 
R2=0.1513 
 

n=2,404,620 
R2=0.1575 

n=809,010 
߯ଶሺ17ሻ ൌ 6073.6 
p=0.000 

n=809,010 
߯ଶሺ17ሻ ൌ 6191.0 
p=0.000 

Notes: All independent variables are lagged one period (L). All regressions include city, technology class and year 
fixed effects.  In Models 1 and 2 the errors are clustered by CBSA. Models 1 and 2 are fit by Ordinary Least Squares 
(LPM stands for linear probability model) and Model 3 and 4 (XT stands for cross-sectional and longitudinal) are fit 
by Maximum Likelihood Estimation and the chi-square test is based on the Likelihood Ratio. *** indicates 
significant at the 0.01 level. 
 
CONCLUSION 
  
Citation data were used to measure the proximity of different technology classes into which 
patents are placed. The resulting measures of knowledge relatedness formed the edges of a patent 
network that maps the U.S. knowledge space. The evolution of that space was traced between 
1975 and 2005. Over that time period, average relatedness between U.S. patents, after adjusting 
for citation inflation, has just about doubled: patents are increasingly concentrating in fewer 
technology classes and the distance between those classes is shrinking. Since 1975, the share of 
patents in chemical and mechanical classes has been decreasing while the share in drugs and 
medical, electronics, and computing classes has been increasing. Average relatedness scores vary 
markedly between these broad patent groupings. 
 
Knowledge relatedness also varies sharply between U.S. cities. In general there is a negative 
relationship between city-size and relatedness as larger cities typically patent across a broader 
range of technology classes. Since 1975 there has been considerable mixing in the technological 



specialization of cities. Many of the older, snowbelt cities such as Columbus, Dayton and 
Pittsburgh have seen the coherence of their knowledge cores decline as the industries on which 
their growth was based have become much less innovative. At the same time more specialized 
knowledge cities have grown rapidly, fuelled by their focus in new technologies where rates of 
invention are high. RIGBY and VAN DER WOUDEN (2012) extend the analysis of this paper to 
show that higher levels of average relatedness in cities, or greater specialization, increases the 
rate of invention. 
 
While some cities transition extremely rapidly from one knowledge core to another, for most, the 
process of technological transition is relatively slow. Cities build competence around a range of 
related technologies over time and this competence shapes the knowledge trajectories that most 
cities tend to follow. Technological diversification in cities, an expansion of the knowledge core, 
depends upon current practice and the proximity of new technological possibilities to the set of 
existing specializations. Diversification is also influenced by information about knowledge 
production from other locations. Knowledge specialization exhibits considerable inertia and the 
same forces that guide diversification play an even stronger role in maintaining competence. 
Technological abandonment is most likely to occur at the frontier of the knowledge space 
occupied by a city. 
 
Much more work remains to be done to define more precisely the knowledge cores of cities and 
how they evolve. Which technology classes are part of a knowledge core and which remain 
outside are important questions, along with identification of related knowledge sets that link 
different cores. What possible combinations of technologies are most productive, and how cities 
can efficiently transition from relatively barren parts of technology space to more fertile areas are 
key areas for future research. 
 
 
 
 
 
 
 
  



REFERENCES 
 
ACS Z., ANSELIN L. and VARGA A. (2002) Patents and innovation counts as measures of 
regional production of new knowledge, Research Policy 31, 1069-1085. 
 
ALCACER J. and GITTELMAN M. (2006) Patent citations as a measure of knowledge flows: 
the influence of examiner citations, Review of Economics and Statistics 88, 774-779 
 
ALCACER J., GITTELMAN M. and SAMPAT B. (2009) Applicant and examiner citations in 
U.S. patents: An overview and analysis, Research Policy 38, 415-427. 
 
ANTONELLI C. (1995) The Economics of Localized Technological Change and Industrial 
Dynamics, Kluwer, Dordrecht. 
 
ARCHIBUGI D. and PIANTA M. (1992) Specialization and size of technological activities in 
industrial countries: The analysis of patent data, Research Policy 21, 79-93. 
 
ARELLANO M. and BOND S. (1991) Some tests of specification in panel data: Monte Carlo 
evidence and an application to employment equations, Review of Economic Studies 58, 277-297. 
 
ASHEIM B. and GERTLER M. (2005) The geography of innovation: Regional innovation 
systems, in FAGERBERG J., MOWERY D. and NELSON R. (eds.) The Oxford Handbook of 
Innovation, Oxford University Press, Oxford (pp 291-317). 
 
ATKINSON A. and STIGLITZ J. (1969) A new view of technical change, Economic Journal 79, 
573-578. 
 
BORGATTI S. EVERETT M. and FREEMAN L. (2002) Ucinet for Windows: Software for 
Social Network Analysis. Analytic Technologies, Harvard, MA. 
 
BOSCHMA R. (2005) Proximity and innovation: A critical assessment, Regional Studies 39, 61-
74. 
 
BOSCHMA R. and IAMMARINO S. (2009) Related variety, trade linkages and regional growth 
in Italy, Economic Geography 85, 289-311. 
 
BOSCHMA R., MINONDO A. and NAVARRO M. (2012) Related variety and regional growth 
in Spain, Papers in Regional Science 91, 241-156. 
 
BRESCHI S. and LISSONI F. (2001) Knowledge spillovers and local innovation systems: A 
critical survey, Industrial and Corporate Change 10, 975-1005. 
 
BRESCHI S. and LISSONI F. (2005) Knowledge networks from patent data: Methodological 
issues and research targets, in MOED H., GLANZEL W. and SCHMOCH U. (eds.) Handbook of 
Quantitative Science and Technology Research, Kluwer, Dordrcht  (pp613-643). 
 



BRESCHI S., LISSONI F. and MALERBA F. (2003) Knowledge-relatedness in firm 
technological diversification, Research Policy 32, 69-87. 
 
CANTWELL J. and VERTOVA G. (2004) Historical evolution of technological diversification, 
Research Policy 33, 511-529. 
 
COHEN W. and LEVINTHAL D. (1990) Absorptive capacity: A new perspective on learning 
and innovation, Administrative Science Quarterly 35, 128-152. 
 
COOKE P. URANGA M. and ETXEBARRIA G. (1997) Regional innovation systems: 
Institutional and organizational dimensions, Research Policy 26, 475-491. 
 
DAVID P. (1975) Technical Choice, Innovation and Economic Growth, Cambridge University 
Press, Cambridge. 
 
DOSI G. (1982) Technological paradigms and technological trajectories: A suggested 
interpretation of the determinants and directions of technical change, Research Policy 11, 147-
162. 
 
ENGELSMAN and VAN RAAN (1994) A patent-based cartography of technology, Research 
Policy 23, 1-26. 
 
FELDMAN M. (1994) The Geography of Innovation, Kluwer, Boston. 
 
FELDMAN M. and LENDEL I. (2010) Under the lens: The geography of optical science as an 
emerging industry, Economic Geography 86, 147-171. 
 
FESER, E. (2003) What regions do rather than make: A proposed set of knowledge-based 
occupation clusters, Urban Studies 40, 1937-1958. 
 
FISCHER M., SCHERNGELL T. and JANSENBERGER E. (2006) The geography of 
knowledge spillovers between high-technology firms in Europe: Evidence from a spatial 
interaction modeling perspective, Geographical Analysis 38, 288-309. 
 
FLORIDA R. (2002) Rise of the Creative Class, Basic Books, New York. 
 
FREEMAN C. (1985) The ‘National System of Innovation’ in historical perspective, Cambridge 
Journal of Economics, 19, 5-24. 
 
FRENKEN K., VAN OORT F. and VERBURG T. (2007) Related variety, unrelated variety and 
regional economic growth, Regional Studies 41, 685-697. 
 
GERTLER M. (1995) Being there: Proximity, organization and culture in the development and 
adoption of advanced manufacturing technologies, Economic Geography 75, 1-26. 
 



GERTLER M. (2003) Tacit knowledge and the economic geography of context, or the 
undefinable tacitness of being (there), Journal of Economic Geography 3, 75-99. 
 
GOWER J. (1971) A general coefficient of similarity and some of its properties, Biometrics 27, 
857-871. 
 
GRABHER G. (1993) The weakness of strong ties: The lock-in of regional development in the 
Ruhr area, in GRABHER G. (ed.) The Embedded Firm: On the Socioeconomics of Industrial 
Networks, Routledge, London (pp 255-277). 
 
GRILICHES Z. (1979) Issues in assessing the contribution of R&D to productivity growth, Bell 
Journal of Economics 10, 92-116. 
 
GRILICHES Z. (1990) Patent statistics as economic indicators: a survey, Journal of Economic 
Literature 28, 1661-1707. 
 
HALL B., JAFFE A. and TRAJTENBERG M. (2001) The NBER patent citations data file: 
lessons, insights and methodological tools, National Bureau of Economic Research, Working 
Paper 8498. 
 
HALL P. and MARKUSEN A. (1985) High technology and regional-urban policy, In HALL P. 
and MARKUSEN A. (eds.) Silicon Landscapes, Allen and Unwin, Boston (pp 144-151). 
 
HAUSMANN R. and KLINGER B. (2007) The structure of the product space and the evolution 
of comparative advantage, Harvard University, Center for International Development, Working 
Paper No. 146. 
 
HIDALGO C., KLINGER B., BARABASSI A. and HAUSMANN R. (2007) The product space 
conditions the development of nations, Science 27, 482-487. 
 
JAFFE  A. (1986) Technological opportunity and spillovers of R&D, American Economic 
Review 76, 984-1001. 
 
JAFFE, A., TRAJTENBERG M. AND HENDERSON R. (1993) Geographical localization of 
knowledge spillovers as evidenced by patent citations, Quarterly Journal of Economics 108, 
577-598. 
 
JAFFE A., TRAJTENBERG M. and FOGARTY M. (2000) The meaning of patent citations: 
Report on the NBER/Case-Western reserve survey of patentees, National Bureau of Economic 
research, Working Paper No. 8498. 
 
KIRAT T. and LUNG Y. (1999) Innovation and proximity: Territories as loci of collective 
learning processes, European Urban and Regional Studies 6, 27-38.  
 
KOO J. (2005) Technology spillovers, agglomeration, and regional economic development, 
Journal of Planning Literature 20, 99-115. 



 
LAI R., D’AMOUR A. and FLEMING L. (2009) The careers and co-authorship networks of 
U.S. patent-holders, since 1975, Harvard Business School, Harvard Institute for Quantitative 
Social Science. 
 
LAMOREAUX N. and SOKOLOFF, K. (1996) Long-term change in the organization of 
inventive activity. Proceedings of the National Academy of Sciences 93, 12686-12692. 
 
LETEN B., BELDERBOS R. and VAN LOOY B. (2007) Technological diversification, 
coherence, and performance of firms, Journal of Product Innovation and Management 24, 567-
579. 
 
LUCAS R. (1988) On the mechanics of economic development, Journal of Monetary 
Economics 22, 3-42. 
 
LUNDVALL B. (1988) Innovation as an interactive process: From user-producer interaction to 
the national system of innovation. In: DOSI G., FREEMAN C., NELSON R., SILVERBERG G. 
and SOETE L. (eds.) Technical Change and Economic Theory, Pinter, London (pp. 349-369). 
 
LUNDVALL B. (ed.) (1992) National Systems of Innovation: Towards a Theory of Innovation 
and Interactive Learning, Pinter, London. 
 
LUNDVALL B. and JOHNSON B. (1994) The Learning Economy, Routledge, London. 
 
MACKINNON D., CUMBERS A. and CHAPMAN K. (2002) Learning, innovation and regional 
development: A critical appraisal of recent debates, Progress in Human Geography 26, 293-311. 
 
MARSHALL A. (1920) Principles of Economics, Macmillan, London. 
 
MARX K. (1970) Capital 3 vols., International, New York. 
 
MASKELL and MALMBERG (1999) The competitiveness of firms and regions: 
‘ubiquitification’ and the importance of localized learning, European Urban and Regional 
Planning Studies 6, 9-25. 
 
MAYER H. (2011) Entrepreneurship and Innovation in Second Tier Regions, Edward Elgar, 
Cheltenham. 
 
MORGAN K. (1997) The learning region: Institutions, innovation and regional renewal, 
Regional Studies 31, 491-503. 
 
NEFFKE F., HENNING M. and BOSCHMA R.(2011) How do regions diversity over time? 
Industry relatedness and the development of new growth paths in regions, Economic Geography 
87, 237-265. 
 



NELSON R. and WINTER S. (1982) An Evolutionary Theory of Economic Change, Harvard 
University Press, Cambridge, MA. 
 
NICKELL S. (1981) Biases in dynamic models with fixed effects, Econometrica 49, 1417-1426. 
 
O’HUALLACHAIN  B. (1999) Patent places: Size matters, Journal of Regional Science 39,  
613-636. 
 
O’HUALLACHAIN B. and LEE D. (2010) Technological variety and specialization in urban 
invention, Regional Studies 45, 67-88. 
 
PAVITT K. (1982) R&D, patenting and innovative activities: A statistical exploration, Research 
Policy 11, 33-51. 
 
PAVITT K. (1985) Patent statistics as indicators of innovative activities: Possibilities and 
problems, Scientometrics 7, 77-99. 
 
PERROUX F. (1955) Note sur la notion de ‘pole de croissance’, Èconomie Appliquèe 7, 307-
320. 
 
POLANYI M. (1966) The Tacit Dimension, Doubleday, New York. 
 
PRED A. (1977) City Systems in Advanced Economies, Hutchinson, London. 
 
QUATRARO F. (2010) Knowledge coherence, variety and economic growth: Manufacturing 
evidence from Italian regions, Research Policy 39, 1289-1302. 
 
RIGBY D. and ESSLETZBICHLER J. (1997) Evolution, process variety, and regional 
trajectories of technological change, Economic Geography 73, 269-284. 
 
RIGBY D. and ESSLETZBICHLER J. (2006) Technological variety, technological change and a 
geography of production techniques, Journal of Economic Geography 6, 45-70. 
 
RIGBY D. and VAN DER WOUDEN F. (2012) Knowledge Relatedness and the Rate of 
Invention in U.S. Cities. Draft manuscript available from the authors. 
 
ROMER P. (1986) Increasing returns and long-run growth, Journal of Political Economy 94, 
1002-1037. 
 
SAXENIAN A. (1994) Regional Advantage: Culture and Competition in Silicon Valley and 
Route 128, Harvard University Press, Cambridge, MA. 
 
SCHERER F. (1982) Interindustry technology flows in the United States, Research Policy 11, 
227-245.  
 
SCHUMPETER J. (1950) Capitalism, Socialism and Democracy, Harper, New York. 



 
SIMON H. (1959) Theories of decision making in economics, American Economic Review 49, 
252-283. 
 
SINGH J. (2005) Collaborative networks as determinants of knowledge diffusion patterns, 
Management Science 51, 756-770. 
 
SOLOW R. (1956) A contribution to the theory of economic growth, Quarterly Journal 
of Economics 66, 65-94. 
 
SONN J. and STORPER M. (2008) The increasing importance of geographical proximity in 
knowledge production: An analysis of U.S. patent citations, Environment and Planning A 40, 
1020-1039. 
 
STORPER M. (1995) The resurgence of regional economies, ten years later: The region as a 
nexus of untraded interdependencies, European Urban and Regional Studies 2, 191-221. 
 
STORPER M. (1997) The Regional World: Territorial Development in a Global Economy, 
Guilford, New York. 
 
STRUMSKY D. LOBO J. and S.VAN DER LEEUW (2010) Using patent technology codes to 
study technological change, unpublished manuscript, Department of Geography and Earth 
Sciences, University of North Carolina, Charlotte. 
 
TEECE D., RUMELT R., DOSI G. and WINTER S. (1994) Understanding corporate coherence: 
theory and evidence, Journal of Economic Behavior and Organization 23, 1-30. 
 
THOMPSON P. and FOX-KEANE M. (2005) Patent citations and the geography of knowledge 
spillovers: A reassessment. American Economic Review 95, 450-460. 
 
VAN DER WOUDEN F. (2012) The role of relatedness in economic variety on knowledge 
production of U.S. cities between 1975 and 2005. MA thesis, Department of Economic 
Geography, Utrecht University. 
 
VERSPAGEN B. (1997) Measuring intersectoral technology spillovers: Estimates from the 
European and US Patent Office Databases, Economic Systems Research 9, 47-65. 
 
VON HIPPEL (1988) The Sources of Innovation, Oxford University Press, Oxford. 
 
WEBBER M., SHEPPARD, E. and RIGBY D. (1992) Forms of technical change. Environment 
and Planning A 24, 1679-1709. 
 
 


