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A relational approach to knowledge spillovers in biotech. 

Network structures as drivers of inter-organizational citation patterns 

 

Ron Boschma, Pierre-Alexandre Balland and Dieter Kogler 

 

Abstract 

In this paper, we analyze the geography of knowledge spillovers in biotech by investigating the way 

in which knowledge ties are organized. Following a relational account on knowledge spillovers, we 

depict knowledge networks as complex evolving structures that build on pre-existing knowledge and 

previously formed ties. In economic geography, there is still little understanding of how structural 

network forces (like preferential attachment and closure) shape the structure and formation of 

knowledge spillover networks in space. Our study investigates the knowledge spillover networks of 

biotech firms by means of inter-organizational citation patterns based on USPTO biotech patents in 

the years 2008-2010. Using a Stochastic Actor-Oriented Model (SAOM), we explain the driving forces 

behind the decision of actors to cite patents produced by other actors. Doing so, we address directly 

the endogenous forces of knowledge dynamics. 

Key words: knowledge spillovers, network structure, patent citations, biotech, proximity 

 

1. Introduction  

 

Since the 1990s, economic geographers have embarked on the study of the geography of knowledge 

spillovers. Not only did they show that geographical distance forms a real barrier to knowledge 

spillovers (Jaffe et al., 1993; Feldman 1994; Acs et al., 2002), they also observed a high degree of 

spatial concentration of Research and Development (R&D) spending and patenting in a small number 

of regions (Storper, 1992; Acs et al., 1994; Audretsch and Feldman, 1996; Caniels, 2000; Cantwell and 

Santangelo, 2002). These studies often relied on patent citations as a proxy for knowledge flows and 

used information on the geography of citing patents and cited patents to determine the geography 

of knowledge spillovers. What they demonstrated is that knowledge spillovers are often 

geographically localized, and that place matters for knowledge production and knowledge exchange. 

Network studies have demonstrated that knowledge networks are not randomly structured 

but highly skewed, that is, some nodes are highly connected, while other nodes are not (Ozman, 

2009). This might be attributed to geographical proximity as a potential driver of network formation, 

but not necessarily, as there might be other network drivers involved (Breschi and Lissoni, 2003). 

Only recently, economic geographers have started to conduct network studies on knowledge 

spillovers by investigating the geography of inventor networks and collaborative research projects 

(Breschi and Lissoni, 2003; Balconi et al., 2004; Ejermo and Karlsson 2006; Gluckler, 2007; Ponds et 

al., 2007; Maggioni et al., 2007; Hoekman et al., 2009; Boschma and Frenken, 2010). In this respect, 

networks are conceptualized as ‘space of flows’ (Castells, 1996) and perceived as important vehicles 

of knowledge transfer and diffusion (Ter Wal and Boschma, 2009). 

In this chapter, we analyze the geography of knowledge spillovers by investigating the way in 

which knowledge ties are organized. Following a relational account of knowledge spillovers, we 

depict knowledge networks as complex evolving structures that build on pre-existing knowledge and 
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ties. In doing so, we describe knowledge spillovers as complex and dynamic relational structures that 

contain important features of knowledge production and diffusion. In economic geography, there is 

still little understanding of how the structure of knowledge networks are formed over time, and how 

the current network structure impacts on future network states. The objective of this book chapter is 

to explain the dynamics of inter-organizational knowledge spillovers, i.e. we aim to explain the 

driving forces behind the decision of actors to cite patents produced by other actors. In particular, we 

address directly the endogenous forces of knowledge dynamics, because we claim that the particular 

structure of knowledge ties provide unequal positions in terms of opportunities, cost and risks. Our 

study investigates the knowledge spillover networks of biotech firms by means of inter-

organizational citation patterns based on USPTO biotech patents in the years 2008-2010. 

The structure of the book chapter is as follows. Section 2 briefly discusses the theoretical 

background. Section 3 explains the biotech patent database. Section 4 will introduce the statistical 

modeling of the knowledge network. Section 5 presents the main variables and Section 6 sets out the 

main findings. Section 7 concludes. 

 

2. Spatial networks of knowledge spillovers  

 

In economic geography, the study of the geography of knowledge spillovers took off in the 1990s. 

There were very good reasons to expect that geographical distance acts as a barrier to knowledge 

spillovers, due to the tacit and complex nature of knowledge that requires face-to-face interaction 

(Storper, 1992). This expectation has been confirmed in many empirical studies that used patent 

citations as a proxy for knowledge flows (e.g. Jaffe et al., 1993; Feldman 1994; Audretsch and 

Feldman, 1996; Caniels, 2000; Acs et al., 2002). In addition, studies often found high correlations 

between inputs to knowledge (like R&D) and output to technical knowledge (such as patent 

intensity) to explain the geography of innovation. These studies demonstrated that knowledge 

spillovers are often geographically bounded, and what mattered for knowledge exchange and 

innovation is the space of place (Castells, 1996). 

However, these studies did not analyze knowledge spillovers from a network perspective. 

Networks studies observe again and again that knowledge networks are not randomly structured but 

very biased (Newman, 2003; Ozman, 2009), just like knowledge spillovers are geographically biased. 

With structure, we mean that the set of links between nodes in a network is very different from the 

properties of a random network, i.e. the properties one obtains by randomly connecting nodes to 

create a network structure. In reality, the degree distribution of nodes in networks is skewed almost 

by rule: few nodes have a high degree while many nodes have a low degree, meaning that some 

nodes are more popular to link with than other nodes. In addition, clustering is a very significant 

feature of networks, meaning that friends of friends are often friends with one another, and some 

nodes are so much more than other nodes. This implies that networks are not random but structured 

or organized, and therefore require a full explanation (Boschma and Frenken, 2010). 

Preferential attachment can provide an explanation for differences in the degree of nodes. The 

process of preferential attachment describes the growth of a network in which the probability that a 

new node will link to a certain other node is proportional to the number of links this nodes (that is, 

its degree) already has (Barabasi and Albert, 1999). As a result, central nodes tend to become more 

central, whereas peripherally positioned nodes stay peripheral (Orsenigo et al., 1998; Powell et al., 

2005). This mechanism reflects the benefits of linking to nodes with high degree as such ‘hubs’ 

provide new nodes with short pathways to many other nodes in the network. Closure can explain 

clustering of nodes in networks. In this case, new network relations follow from existing relations as 

two actors are introduced to one another by a third actor which whom both already have a relation. 
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The reason for the establishment of such triangle relationships is that each actor can be informed by 

the common third party about the other in terms of its trustworthiness and the knowledge it 

possesses, and once the relationship is established, the two partners have less incentive to behave 

opportunistically as they may jeopardize their relation with the third actor. Ter Wal (2011) found in a 

study on the evolution of co-inventor networks that closure is particularly relevant as a mechanism 

of network formation in exploitation rather than exploration contexts. 

However, there might be limits to the number of network relations a node can meaningfully 

maintain, as is the case of inter-firm networks (Holme et al., 2004). This implies that well-connected 

nodes will often not be responsive to proposals for networking and will select only the most 

beneficial partners (cf. Giuliani 2007). In addition, there is a tendency of new nodes to connect to 

nodes with lower degree when these are more proximate or similar to them in a number of 

dimensions (Boschma and Frenken, 2010). Geographical proximity might be a crucial driver here, as a 

node may opt to collaborate locally to save on travel time and transportation costs, and to 

circumvent linguistic and cultural barriers. In that case, firms will connect not necessarily with the 

most central firms that are located in other regions, but will connect to those that are close by in a 

geographical sense (Guimera and Amaral 2004). But there may be other forms of proximity that bias 

the partnering choice to similar firms. Breschi and Lissoni (2003) argued that it is not geographical 

proximity itself that causes knowledge spillovers to be geographically bounded. Instead, it is the 

underlying social networks of inventors and the mobility of inventors across firms that tend to be 

geographically localized and in turn cause knowledge spillovers to have a limited geographical reach. 

Firms also tend to select partners that are cognitively similar. Cognitive proximity favours 

collaboration between agents because absorptive capacity is needed to communicate and to 

interpret and exploit the knowledge that is exchanged (Cohen and Levinthal 1990). That is, their own 

cognitive bases should be close enough in order to understand and absorb each other’s knowledge 

(Breschi and Lissoni 2006; Nooteboom et al. 2007). 

Nevertheless, it is not necessarily true that all forms of proximity may matter equally in 

partnering decisions. Proximity dimensions in knowledge networks may actually be substitutes rather 

than complements (Boschma, 2005). Singh (2005) found evidence that geographical proximity is 

especially important in the establishment of interdisciplinary research collaboration (when cognitive 

proximity is low), while inventors working in the same field (high cognitive proximity) collaborate on 

average over longer geographical distances. Agrawal et al. (2006) found that knowledge is 

transferred between firms in different locations (so geographical proximity is low) by employees that 

are socially linked due to a shared past, like a common working experience. Breschi et al. (2009) 

found similar results when analyzing the social networks of US inventors who are mobile in space. 

A drawback of the knowledge spillovers literature in economic geography is that they did not 

analyze knowledge spillovers from such a network perspective until very recently. Breschi and Lissoni 

(2003) were among the first to use patent data as true relational data. Economic geographers have 

started to conduct spatial network studies on knowledge spillovers by investigating inventor 

networks and collaborative research projects (Ejermo and Karlsson 2006; Ponds et al. 2007; Maggioni 

et al. 2007; Hoekman et al. 2009). Only a few of these network studies have applied the proximity 

framework, and there is still little understanding of what role cognitive capabilities of agents, 

geographical proximity and social connectedness play in the spatial formation of knowledge 

networks. Moreover, as far as we know, no study has accounted for structural network forces (like 

preferential attachment and closure) that shape the formation of knowledge networks, with two 

exceptions (Balland et al. 2011; Ter Wal 2011). These structural forces account for the self-

reproducing, path-dependent process behind knowledge dynamics, i.e. that knowledge production 

builds on pre-existing knowledge and previously formed ties. These structural patterns of knowledge 
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spillovers are often left unconsidered in statistical models of knowledge spillovers. In this chapter, we 

incorporate these structural forces and the various proximity dimensions to explain the structure of 

the knowledge spillover network of biotech firms.  

 

3. The biotech patent database  

The biotechnology sector makes extensive use of patent protection (Kortum and Lerner, 1999). 

Essentially, if a firm or individual believes that a biotech invention has potential economic value, 

there is a high probability that they will seek intellectual property protection in form of a patent.  

Most attractive in this context is to file for a patent in the largest economic markets like the United 

States (Niosi and Bas, 2001). Thus, one could argue that an analysis based on United States Patent 

and Trademark Office (USPTO) patent data, which is utilized in the present study, is potentially 

representative of the worldwide stock of knowledge in a particular technology sector in which it is 

customary to patent. Furthermore, patent data provide a wealth of information regarding the 

individual inventors and assignees, as well as references to prior art, i.e. citations to previous patents, 

that were instrumental in the development of a new invention. Thus patent data provide an 

excellent opportunity to investigate the networks of knowledge spillovers of biotech firms, based on 

inter-organizational citation patterns (Gittelman and Kogut, 2003). 

All patent data utilized in this study originally are from the United States Patent and Trademark 

Office (USPTO). Several publicly available patent datasets as well as supplementary data were used 

to derive the various measures that are employed in our model. These include the “Patent Network 

Dataverse” at the Institute for Quantitative Social Science at Harvard University (Lai et al., 2011), the 

NBER Patent and Citations Data (Hall et al., 2001) and the USPTO harmonization of names of 

organizations data file (USPTO, 2010). 

The initial sample of USPTO biotech patents granted in the years 2008, 2009 and 2010 was selected 

according to the USPTO’s definition of biotechnology based on U.S. Patent Classes, i.e. primary and 

sub-class (USPTO, 2002)
 1

. We identified 1,081 organizations that were awarded at least three 

patents over the 3-year time period, i.e. one patent per year on average, in order to formalize our 

network dimensions. Patents assigned to individuals rather than organizations, which represent a 

very small fraction of total biotech patents granted, were excluded from the analysis. This selection 

procedure resulted in the inclusion of about 13,000 patents, which represent over 75% of all USPTO 

biotech patents awarded in the 3-year time period analyzed. 

Subsequently, we identified all citation linkages between these organizations based on the generated 

sample of network patents and their respective assignees, i.e. the organizations listed as assignee on 

the actual patent document. This allowed for the construction of annual citation matrices between 

the 1,081 organizations in the sample, which essentially indicate the occurrence of knowledge 

spillovers between each pair of firms. Over 90,000 individual citations are accounted for in the three 

matrices that indicate knowledge spillovers between the organizations of interest. 

4. Statistical modelling of knowledge structures  

                                                           
1
 This specific definition of biotechnology has been previously used in other studies (Johnson, 2009; Lee, 2010), 

and includes the following U.S. Patent Classes (primary and sub-classes): 47/1.1-47/1.4, 47/57.6-47758, 

424/9.1-424/9.2, 424/9.34-424/9.81, 424/85.1-424/94.67, 424/130.1-424/283.1, 424/520-424/583, 

424/800-424/832, 435/1.1-435/7.95, 435/40.5-435/261, 435/317.1-435/975, 436/500-436/829, 514/2-514/22, 

514/44, 514/783, 530/300-530/427, 530/800-530/868, 536/1.11-536/23.74, 536/25.1-536/25.2, 800, 930, 935.  
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Our objective is to explain the dynamics of inter-organizational knowledge spillovers, i.e. we want to 

explain the driving forces behind the decision of actors to cite patents produced by other actors. 

Moreover, we want to address directly the endogenous forces of knowledge dynamics, because the 

particular organization of knowledge ties provides unequal positions in terms of opportunities, cost 

and risks. Therefore, we are interested in modelling explicitly the complex interdependencies 

between organizations, which raises a set of econometrical issues. 

A fundamental characteristic of structures of relationships is the existence of conditional 

dependencies between observations, i.e. the interdependencies between the set of pairs of actors 

that can be potentially linked. A first kind of interdependency is that dyads (pairs of actors) that have 

one actor in common cannot be assumed to be statistically independent. Such structural 

dependencies violate standard statistical procedures in generalized linear modeling that assume 

independence among observations. In this case, however, one can correct for this problem by 

introducing actor level or dyadic level fixed effects (Mizruchi and Marquis 2005). But in case of more 

complex interdependencies (like indirect relationships), the resulting correlation between 

observations can lead to unreliable estimations of parameter coefficients and standard errors 

(Steglich et al., 2010). A crucial point is that the structure of knowledge spillovers contains a lot of 

information in terms of hierarchy, cohesive sub-groups of actors and relational positioning of 

organizations that should not be left out in a study that investigates patent citations.  

To model knowledge dynamics, we employ a class of statistical network models based on Markov 

chain Monte Carlo simulation procedures. This class of model is known as the class of Stochastic 

Actor-Oriented Models (SAOM), and they are the most promising class of models allowing for 

statistical inference of network dynamics. An introduction  to the SAOM can be found in Snijders et 

al. (2010), while the mathematical foundation of these models are detailed in Snijders (2001). In 

economic geography, there are some very recent applications (Giuliani 2010; Balland 2011; Ter Wal 

2011; Balland, de Vaan and Boschma 2011). We use SAOM implemented in the RSiena
2
 statistical 

software (Ripley et al., 2011). In the literature, this class of models is also referred as SIENA models. 

The acronym "SIENA" stands for "Simulation Investigation for Empirical Network Analysis".  

The basic principle of SAOM is to estimate parameters by simulating the evolution of a particular 

network structure from a given starting configuration (the observation of the network structure in t0) 

to another given configuration (the observation of the network structure in t1). Therefore, the 

dependent variable in SAOM is slightly different than the one employed in conventional 

econometrics, since the variable to be explained is the structure resulting from knowledge spillovers 

between a set of actors, i.e. the particular way patent citations between actors are organized. In our 

study, the dependent variable is more precisely a set of consecutive (yearly) observations of the 

architecture of citations that firms decide to make between each other. More formally, these 

observations take the form of three successive square (n*n) matrices, and we explain why knowledge 

ties are created or maintained between organizations. 

Table 1 presents a simple description of the dynamics of knowledge spillovers we model, indicating 

the number of ties created, maintained and dissolved from one observation to another
3
. The ties 

                                                           
2
 The RSiena package is implemented in the R language and can be downloaded from the CRAN website: 

http://cran.r-project.org/web/packages/RSiena/. In this chapter, we use the RSiena version 1.0.12.167. 
3
 The Jaccard coefficient indicates the degree of stability of the network structure from one observation to 

another (Snijders et al., 2010). Since we decide to set the duration of a tie to one year, the structure is quite 
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between the n actors are represented by dichotomous
4
 (0/1) and directed linkages, which means 

that we are analysing asymmetric adjacency matrices. To give an example, if organization i cites in 

the year 2008 one or more patents granted by organization j, then xij (2008) = 1. But if organization j 

does not cite any patent from organization i in the year 2008, then xij (2008) = 1 # xji (2008) = 0. The 

link is deleted in the next year if ego does not decide in a new patent to cite again organization j. 

Obviously, patenting is a necessary condition for the actors to have out-going ties, but they can 

receive ties (citations) without patenting during the observed year. 

 

Periods 0 -> 0 0 ->  1 1 -> 0 1 ->  1 Jaccard 

2008-2009 1158167 3723 3598 1992 0.214 

2009-2010 1157845 3920 3676 2039 0.212 

 

Table 1. Changes in citation ties between observations 

The dynamics of the structure of knowledge spillovers is modelled on the basis of several principles 

and assumptions. These assumptions are related to the modelling procedure, since the evolution of 

the structure of patent citations is modelled as a Markov chain. It implies that change probability 

only depends on the current state of the network (t) and not on its past configurations (t-1). The 

second principle is related to the idea of non-simultaneity of events. Time runs continuously between 

observations, and actors can only make one citation at a time. Three actors can only be connected as 

a result of a sequence of citations between the three pairs of actors. Finally, the observed network 

dynamics is supposed to be the result of the decisions of actors. Such relational choices are based on 

their preferences, constraints, costs or opportunities. It is assumed that organizations are actors that 

have the ability to elaborate on their own strategic decisions. It should be noted that these 

assumptions would be less realistic in the case of citations between patents directly, since patents 

are not actors with an own strategy. 

A key principle of the model is that the dynamics of knowledge spillovers is driven by micro-level 

decision of actors to cite patents invented by others, which in turn will form an aggregated 

knowledge structure. Given that an actor i  has the opportunity to make a relational change 

(determined stochastically), the choice for this actor is to change one of the tie variables
ji

x , which 

will lead to a new state )(, 0xCxx ∈ . A traditional logistic regression is used to model choice 

probabilities (Snijders et al. 2010): 

{ )(tXP  changes to x | i  has a change opportunity at time }0)(, xtXt =  

( )
( )∑ ∈

==
)('

0

0
0

0 ),,',(exp

),,,(exp
),,,(

xCx i

i
i

wvxxf

wvxxf
wvxxp

 

 

When actors have the opportunity to change their relations, the objective function describes 

preferences, opportunities, or constraints of actors, for instance to cite patents developed by 

organizations from the same technological class, or from the same spatial area. Patent citations 

                                                                                                                                                                                     

dynamic and therefore the Jaccard coefficient is a bit low, but it does not affect the convergence of the 

algorithm.  
4
 The current implementation of RSiena does not allow to analyze easily weighted, i.e. valued networks. 
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choices are determined by a linear combination of effects, depending on the current state (x0), the 

potential new state (x), individual attributes
5
 (v) and proximity (w): 

 

 
 

As detailed in Snijders (2001), the estimation of the different parameters  of the objective 

function is achieved by an iterative Markov chain Monte Carlo algorithm based on the method of 

moments. The stochastic approximation algorithm simulates the evolution of the network and 

estimates the parameters that minimize the deviation between observed and simulated 

networks. The specification of the objective function used in the empirical section is described 

below.  

 

5. Model specification: structural and non-structural variables 

 

Figure 1 indicates the cumulative degree distribution of organizations over the period 2008-2010
6
. 

We can observe a typical statistical signature of knowledge structure, i.e. the fact that very few 

actors are active players, while most of the actors make or receive very few citations. This structural 

characteristic is known as the scale free distribution in statistical physics (Barabási and Albert 1999), 

and it indicates the hierarchical nature of relational structures. Interestingly, we can observe that the 

shape of the citations received (in-degree) is even more hierarchical than the shape of the citations 

made (out-degree). It suggests that the production of successful patents (that will be highly cited) is 

more unequal than the production of patents. 

 

 

Figure 1. Degree distribution (2007-2010) 

 

To have a better idea of the centrality of the biggest players in the structure of knowledge spillovers 

in biotech, Table 2 indicates the top 20 companies in terms of in-degree and out-degree. This ranking 

                                                           
5
 Individual and proximity variables are centered around the mean. 

6
 We aggregate the structure of knowledge spillovers in 2008, 2009 and 2010. 
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confirms the influential role of universities in biotechnology (Zucker et al., 1998; Zucker et al., 2002). 

The relationships between the top 20 players
7
 in terms of knowledge transfer are displayed in Figure 

2. Since only the most important actors are considered, we observe a cohesive picture, with a central 

position in terms of knowledge accessibility occupied by the University of California
8
.  

 

Out-degree (Top 20) In-degree (Top 20) 

Organizations Citations made Orgnaizations Citations received 

University of California 224 University of California 554 

U.S. Health Human Services 208 Genentech 457 

Cornell Research Foundation 181 U.S. Health Human Services 423 

University of Texas 161 Chiron 275 

Genentech 159 Roche 268 

Amgen 155 University of Texas 259 

Sequenom 153 Abbott 243 

Genprobe 138 Harvard University 231 

Novartis 132 Stanford University 230 

Monsanto 119 Johns Hopkins University 218 

Merck 113 Amgen 212 

University of Michigan 113 General Hospital Corporation, MA 209 

California Institute of Technology 112 Du Pont 208 

Ravgen 109 Genetics Institute 170 

Human Genome Sciences 108 Merck 169 

Life Technologies 108 Becton Dickinson 165 

Columbia University 107 University of Wisconsin-Madison 162 

Pioneer Hi-Bred 103 Eli Lilly 158 

Wyeth 102 Human Genome Sciences 158 

Stanford University 99 Massachusetts Institute of Technology 156 

Table 2. Key players in the biotech: top 20 centrality scores (2007-2010) 

                                                           
7
 Top 20 players in terms of out-degree.  

8
 Patents that are assigned to ‘The Regents of the University of California’ as well as other sub-entities within 

the University of California university system on the official USPTO patent documents are generally referred to 

as ‘University of California’ in the present study. 



 9 

 

Figure 2. Knowledge exchanges between the top 20 actors (2007-2010) 

 

Table 3 shows further descriptive of the structure of knowledge spillovers. The density is low (0.005), 

which indicates that only 0.5% of the possible linkages are patent citations. In addition, 5% of the 

citations are reciprocated within a year. It is more than what we can expect from a random network 

structure with the same characteristics, but lower than what we find in other networks like advice 

networks or friendship networks. Together with the highly unequal degree distribution, the relatively 

low level of reciprocity can be interpreted as another indicator of the hierarchical nature of 

knowledge spillovers. When we turn to the triadic level, we observe that knowledge spillovers are 

not only strongly localized in space, but also strongly localized in few parts of the global structure. 

Indeed, the clustering coefficient shows that inter-organizational citations occur between 

organizations that cite the same actor, creating triangles of relationships. The connectivity is also 

very high, which indicates that even if actors are located in different parts of the world, they are still 

very close in terms of geodesic distance (average path length of approximately 3 steps).  

 

 2008 2009 2010 

    

Number of nodes (organizations) 1081 1081 1081 

Number of edges (citation links) 5590 5715 5959 

Density 0.005 0.005 0.005 

Average degree 5.171 5.287 5.512 

Reciprocity 0.047 0.041 0.037 

Average clustering coefficient  0.092 0.103 0.096 

Diameter 10 8 8 

Average path length 3.211 3.158 3.285 
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Table 3. Structural characteristics of knowledge spillovers 

 

These descriptive statistics confirm that the structure of knowledge spillovers contains a lot of 

information in terms of non-spatial positioning of actors. Therefore, this structure should be taken 

into account in models of knowledge spillovers. The main challenge is to operationalize this global 

structure into a set of structural variables at the micro-level, and to model the decision of actors to 

cite other actors. Taking into account the observed structural patterns, we model explicitly the 

following structural variables using SAOM: density, transitivity, cyclicity and preferential attachment. 

 

Structural variables 

The structural variables accounting for the structural patterns of knowledge spillovers are described 

below. All are represented visually in table 4 to facilitate their interpretation. 

 

Name Visual representation 

Reciprocity 

 

Transitivity 

 

Cyclicity 

 
  

Preferential 

attachment 

 

Note: The dashed arrows represent the expected link if the corresponding structural 

effect is positive 

Table 4. Structural variables 
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Density. This variable can be interpreted as the constant term in regression analysis. It is a structural 

determinant that indicates the general tendency of organizations to cite patents granted by others. 

As specified by Snijders et al. (2010), this variable should always be included in SAOM to control for 

the general likelihood of ties to appear. Density is measured by the out-degree of organizations:  

∑= j iji xD  

Reciprocity. Reciprocity is a relevant variable for the dynamics of directed knowledge spillovers. It 

indicates the general tendency of actors to cite patents of organizations that also cites their patents. 

Reciprocity is based on the counts of the number of reciprocal citations of actor i: ∑= j jiiji xxR .  

Transitivity. We also control for the effect of transitivity which leads to triadic network closure. A 

positive effect indicates that actor i and actor h are more likely to cite each other if they both already 

cite actor j. Although transitivity can be measured in several ways, the most common is based on the 

counts of number of transitive triplets, i.e. the number of times an actor i is tied with two actors that 

cites each other (Ripley et al., 2011):  ∑= hj jhihiji xxxT
,

 

Cyclicity. Transitivity refers to local clustering of actors, but it does not account for the direction of 

linkages. Knowledge spillovers can be transferred as a cycle, from actor i citing actor j, then actor h 

citing actor i, and then actor j citing actor h. Such a cyclic process of knowledge spillovers would 

indicate a non-hierarchical structure, and a collaborative way of producing knowledge. The cyclicity 

effect counts the number of three cycles in citations of actor i : ∑= hj hijhiji xxxC
,  

Preferential attachment. The preferential attachment variable models the in-degree distribution of 

actors, i.e. the fact that few actors are cited very often, while most of the actors receive very few 

citations. A positive effect would reflect the attractiveness of actors that already receive many 

citations, for instance because they invented groundbreaking patents in the past that have been the 

basis of many further developments in the field. More precisely, we consider the square root version 

of the in-degree distribution, in order to avoid co-linearity issues with other structural effects, and to 

smooth the in-degree distribution (Ripley et al. 2011). Therefore, preferential attachment is 

measured as the sum of the square roots of the in-degrees (citations received) of the actors that 

actor i cites:      ∑ ∑=
j h hjiji xxPA

 

 

Non-structural variables 

Geographical Proximity. The location of the ‘inventive headquarter’ of an organization was 

determined based on the primary location of knowledge production as indicated by the inventor 

residences
9
. Almost every firm in our sample has patents assigned to it that have been developed by 

inventors in various different localities. However, organizations’ inventor pools are not randomly 

distributed in space, but rather show distinct patterns of spatial clustering. This in turn enabled us to 

identify one primary place of knowledge production for each firm. In order to measure geographical 

proximity between organizations based on their primary locations of knowledge production, we 

                                                           
9
 Our attempt in this chapter is not to provide a detailed account of the diffusion of knowledge spillovers in 

space, or to find the best measure of geographical proximity. Such an approach would require more fine 

grained measures of geographical proximity. 
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computed the inverse of the natural logarithm of the physical distance (+1) between the locations of 

two organizations in kilometres. We subtract the results from the maximum distance obtained to 

convert the measure into a proximity measure. 

Cognitive Proximity. The cognitive proximity between two organizations is a result of their 

commonalities of patenting in similar biotech classes as defined previously.  Specifically we count the 

total number of technology classes that two firms have patents assigned to, and then calculate the 

cognitive proximity measure based on the share of the total number of classes covered by each 

individual firm. The observation time frame to derive this asymmetric measure between all 

organizations in a network is the previous 5-year window of the actual observation that is 

investigated.  Essentially, cognitive proximity measures the similarity of two firms in terms of having 

patents granted in specific patent classes that comprise biotechnology, and thus indicates the 

relatedness of two organizations’ technology expertise and focus. 

Same country. We also control for belonging to the same country, on the basis of the location of the 

organizations. The measure of the same country is binary: 1 if both organizations have their 

‘inventive headquarter’ in the same country, and 0 if they have not.  

Absorptive Capacity. In addition to the structural and the proximity variables, we also control for 

heterogeneity in the patenting behaviour of organizations. Absorptive capacity is measured as the 

capacity of organizations to absorb knowledge produced by others. These organizations are also 

more likely to be leaders in the patent race, and therefore they are more likely to diffuse knowledge 

(Alcacer and Chung, 2007), i.e. in our case to receive citations. We measure absorptive capacity by 

computing the natural logarithm of the number of patents an organization developed in the biotech 

industry in the five last years before our first observation, i.e. during the period 2003-2007. Indeed, 

by construction, organizations that patent a lot are more likely to cite patents from others (ego 

effect). Since we analyze the dynamics of knowledge spillovers as a directed process of knowledge 

transfer, we also control for the fact that organizations that patent a lot are therefore more likely to 

be cited by others (alter effect).  

 

 Minimum Maximum Mean Standard 

deviation 

Geographical proximity 0 9 0.896 1.302 

Cognitive proximity 0 10 3.967 3.693 

Same country 0 1 0.338 0.473 

Absorptive capacity 0 7 1.913 1.343 

Table 5. Descriptive statistics of the control variables 

 

6. Estimation results  

 

Table 6 presents the results of SAOM estimating the driving forces of the dynamics of inter-

organizational knowledge spillovers for the period 2008 to 2010. Four different model specifications 

are reported. The first model is a "baseline" model that only includes the tendency of actors to cite 

patents from other actors, and the tendency to reciprocate citations. Then we explore more complex 

structural characteristics by including triadic level effects (transitivity and cyclicity) and degree 

related effects (preferential attachment) in the "structural" model. A third model specification is 

employed to test the influence of variables that have been found to be important in the literature on 
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knowledge spillovers (i.e. geographical proximity, cognitive proximity, belonging to the same country 

and absorptive capacity), but without taking the knowledge structure into account. The final model 

combines the variables of the structural and the non-structural model. 

 

All parameter estimations are based on 1,000 simulation runs, and convergence of the 

approximation algorithm is excellent for all the variables of the different models. This convergence is 

a way to evaluate the goodness of fit of the different models, and it indicates if the deviation of the 

simulated structures compared to the observed structures is acceptable (t-values < 0.1). The 

parameter estimates of SAOM can be interpreted as non-standardized coefficients obtained from 

logistic regression analysis (Steglich et al. 2010). Therefore, the parameter estimates that are 

reported can be read as log-odds ratio, i.e. how the log-odds of tie formation (decision to cite a 

patent from another actor) change with one unit change in the corresponding independent variable. 

Because odds ratios are more easy to interpret, we will sometimes refer in the text to the odds ratios 

(OR) to discuss the results. Odds ratio can be computed as the exponentiated form of the coefficients 

of each predictor. 

 

 
Baseline  

Model 

Structural   

Model 

Non-structural 

Model  

Final             

Model 

Structural variables     

Density 
-2.848** 

[0.008] 

-3.513** 

[0.009] 

-3.441** 

[0.012] 

-3.529** 

[0.012] 

Reciprocity 
1.270** 

[0.047] 

0.439** 

[0.056] 
 

0.323** 

[0.053] 

Transitivity 

 

0.175** 

[0.004] 
 

0.146** 

[0.003] 

Cyclicity 
-0.067** 

[0.008] 
 

-0.112** 

[0.008] 

Preferential 

attachment 

0.168** 

[0.002] 
 

0.083** 

[0.004] 

    

Control variables    

Geographical 

proximity 

 

0.034** 

[0.006] 

0.038** 

[0.005] 

Cognitive 

proximity 

0.020** 

[0.002] 

0.019** 

[0.002] 

Same country 
0.415** 

[0.017] 

0.242** 

[0.017] 

Absorptive 

capacity [alter] 

0.475** 

[0.005] 

0.225** 

[0.008] 

Absorptive 

capacity [ego] 

0.183** 

[0.006] 

0.122** 

[0.005] 

Note: Number of actors: n = 1081. The asterisks indicate that the parameter estimates are 

significantly different from 0 at a 5% level (*), and at a 1% level (**). Standard errors are 

reported in brackets. 

Table. 6: The determinants of inter-organizational knowledge spillovers: 2008-2010  
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The different model specifications confirm the importance of endogenous, structural effects in the 

dynamics of knowledge spillovers. Although the coefficients of all predictors are very robust across 

the different specifications, we discuss the coefficients obtained in the final model, in order to 

control simultaneously for the effect of other structural effects and control variables. The density 

coefficient is an indicator of the general tendency of actors to form linkages. The negative and 

significant density effect indicates that, on average, organizations cite very few other organizations 

(Est. = -3.529; OR = 0.029). Organizations are more likely to cite patents from organizations that 

already cite them
10

. Other variables held constant, organizations are 38 % more likely (Est. = 0.323; 

OR = 1.381) to cite an actor that also cite them compared to an actor that does not. This result 

probably relates to the fact that there is a strong, cohesive group of actors (see figure 2) that cite 

each other, but this should not be interpreted as an absence of hierarchy in knowledge spillovers 

dynamics.  

 

Indeed, when we extend the analysis to the triadic level, we find that actors are more likely to create 

a sub-group of actors (positive effect of triadic closure), but they exchange knowledge in a non-cyclic, 

hierarchical manner (negative cyclicity effect). The positive effect of transitivity means that actors are 

15% more likely (Est. = 0.146; OR = 1.157) to cite other organizations if they are already linked by one 

common intermediary
11

. This preference for closed local networks is an important determinant of 

knowledge spillovers, and this structural configuration can capture other cognitive or social variables 

that are more difficult to observe in large scale studies. These closed local networks, however, are 

hierarchical because the coefficient for cyclicity is negative (Est. = -0.112; OR = 0.894). It indicates 

that the configuration where two actors, A and B, cite each other (regardless of the direction of the 

citation), and where these two actors cite the same actor C (that does not cite these two actors A 

and B in turn) is more likely to happen than a cyclic configuration where A cites B, B cites C and C 

cites A. In the non-cyclic configuration, and if C is an active
12

 actor, the position of C is an interesting 

position where C diffuse knowledge to A and B, while C is absorbing knowledge elsewhere in the 

structure. The degree distribution (figure 1) provides also important information on the individual 

capacity of actors to absorb and diffuse knowledge in the structure of the network. The preferential 

attachment coefficient is positive and significant, describing the behavior of actors to cite actors that 

are already cited by many others (Est. = 0.083; OR = 1.086). This result reflects a certain status of 

organizations that is not necessarily achieved by producing many patents, but by producing 

successful/groundbreaking patents, like Stanford's recombinant DNA method, which was one of the 

first biotech patents granted altogether. 

 

Our results also confirm the effects of variables that do not operate at the structural level, but at the 

dyadic (geographical and cognitive proximity, same country) and organizational level (absorptive 

capacity). As expected, geographical proximity strongly influences the citation patterns of 

organizations (Est. = 0.038; OR = 1.038), even when we control for belonging to the same country. It 

means that organizations are 40% more likely to cite an organization of the same spatial area 

                                                           
10

 In a network where the nodes are patents, the coefficient of reciprocity would be negative, since citations 

can only be made toward previous patents that, by nature, cannot reciprocate the citation.  
11

 If two actors A and B are indirectly linked by more than one intermediary, the probability that a tie is created 

between A and B also increases, because it would lead to the simultaneous closure of more than one triad.  
12

 If C is not an active node, this pattern might be artificially driven, because if C does not patent, C cannot by 

definition contributes to close the knowledge spillover cycle. 
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compared to an organization located in the most remote location in the world
13

. Interestingly, this 

coefficient does not change from the non-structural to the final model, suggesting that the 

information contained in the structure of knowledge spillovers and in the geography of knowledge 

spillovers is different. The same conclusion can be drawn from the reading of the coefficient of 

cognitive proximity. Organizations that have patented in the same technological classes are more 

likely to cite each other in the future (Est. = 0.019; OR =  1.019). Obviously, the effect of cognitive 

proximity would be even stronger if different industries are included in the sample. In our case, since 

we only consider biotech organizations, cognitive proximity is a pre-requisite to be part of the 

knowledge dynamics we model. In this case again, the inclusion of structural variables does seem to 

decrease the explanatory power of cognitive proximity. The belonging to the same country is an 

important determinant of knowledge spillovers (Est. = 0.242; OR = 1.273) but the coefficient is 

strongly reduced by the inclusion of structural variables. The absorptive capacity variable is positive 

and significant, and it simply controls for the fact that organizations that have substantially patented 

in the last years are more likely to cite other organizations in general (ego effect; Est. = 0.122; OR = 

1.129), but also more likely to be cited (alter effect; Est. = 0.225; OR = 1.252). While our measure of 

absorptive capacity only counts the number of patents, the information contained in the actual 

distribution of citations (modeled via preferential attachment) seems to provide an additional 

explanation, probably about the technological value of the patents.  

 

7. Conclusion 

 

In this chapter, we explicitly adopted a "relational" approach to knowledge spillovers, following the 

seminal claim by Breschi and Lissoni (2001). The different model specifications show that the 

structure of knowledge spillovers contains in itself important information that can explain patterns of 

knowledge dynamics and technological evolution. Therefore we argue that these complex 

interdependencies should not only be included in traditional econometric approaches, but they 

should also be modeled explicitly through variables representing local clustering, hierarchical 

positioning and degree distributions for instance. These variables provide additional explanatory 

power to the existing determinants of knowledge spillovers that have been discussed in the literature 

so far. In fact, evaluating the importance of structural effects in the dynamics of knowledge spillovers 

could allow for evaluating more precisely the influence of geographical proximity per se. Moreover, 

such an approach also allows to capture variables that are not easily observable, like cognitive 

proximity or social proximity, because they shape the structure of knowledge networks (Boschma 

and Frenken, 2010; Balland, 2011). 

 

This chapter, however, should not be considered as an attempt to obtain the best model possible to 

describe the dynamics of knowledge spillovers, but more as a first step toward the analysis of 

endogenous effects of knowledge dynamics. This approach opens a set of research questions that 

should be investigated further. First, the model proposed is admittedly quite simple in terms of non-

structural effects, and further research should consider other variables that have been shown to be 

relevant in the literature on inter-organizational patent citations. Social networks constructed from 

                                                           
13

 The scale of geographical proximity is constructed in such a way that minimum geographical proximity = 0, 

and maximum geographical proximity = 9. Since the coefficient are not standardized, the odd ratio of choosing 

an organization from the same spatial area versus an organization from the most remote spatial area should 

consider the scale of the input variable : OR = exp (0.038*9) = 1.407.  
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teams of inventors play an important role in explaining knowledge spillovers (Singh, 2005; Breschi 

and Lissoni, 2009), but also R&D collaborations (Gomes-Casseres, Hagedoorn and Jaffe 2006; 

Frankort, Hagedoorn and Letterie 2011) and labor mobility (Almeida and Kogut, 1999; Corredoira and 

Rosenkopf 2010). Second, the model only considers a short period of time (2008-2010) in a specific 

industry (biotech). It should be noted, however, that the changing role of the drivers of network 

dynamics over time is an emerging research topic in economic geography and network theory 

(Rivera, Soderstrom and Uzzi 2010; Hoekman, Frenken and Tijssen 2010; Balland, De Vaan and 

Boschma, 2011; Ter Wal 2011). Therefore, a next logical step would be to analyze how structural and 

non structural effects influence differently the dynamics of knowledge spillovers at different stages 

of the technology life cycle. Moreover, an interesting research question concerns whether 

incremental and radical innovations are driven by the same forces, and whether these forces are 

constant across industries. Third, we did not account for performance of organizations. It is often 

assumed that knowledge spillovers are important for economic performance of organizations, but it 

is rarely empirically assessed. Our approach provides an interesting opportunity to test whether the 

position of actors in knowledge structures influence their economic performance, and in turn, how 

the economic performance of actors influence their probability to diffuse (i.e., to be cited by other 

organizations) or to access (i.e., to cite other organizations) knowledge in the future. Such a research 

question could be an extension of our approach, since the class of statistical models we use in this 

chapter allows for the analysis of the co-evolution between network dynamics and performance of 

actors (Snijders et al. 2010; Steglich et al. 2010). 
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