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Abstract:

In this paper, we study the formation of network ties between Örms along the life cycle of a creative

industry. We focus on three drivers of network formation: i) network endogeneity which stresses a

path-dependent change originating from previous network structures, ii) Öve forms of proximity (e.g.

geographical proximity) which ascribe tie formation to the similarity of actorsí attributes; and (iii)

individual characteristics which refer to the heterogeneity in actors capabilities to exploit external

knowledge. The paper employs a stochastic actor-oriented model to estimate the ñ changing ñ e§ects of

these drivers on inter-Örm network formation in the global video game industry from 1987 to 2007. Our

Öndings indicate that the e§ects of the drivers of network formation change with the degree of maturity

of the industry. To an increasing extent, video game Örms tend to partner over shorter distances and

with more cognitively similar Örms as the industry evolves.
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1 Introduction

InterÖrm networks have increasingly become the focus of study in economic geography (Grabher, 2001;

Morrison, 2008; Bergman, 2009; Ter Wal and Boschma, 2009; Boschma and Frenken, 2010; Vicente et

al., 2011). While research on interÖrm networks as a means to explain Örm performance and regional

competitiveness has grown exponentially, relatively little is known about how interÖrm networks come

into being, how their structure changes over time, and how spatial patterns a§ect this process. Scholars

have started to investigate how interÖrm network formation in terms of tie initiation takes place (e.g.

Rosenkopf and Padula, 2008; Ahuja et al., 2009; Cassi and Plunket, 2010; Balland, 2011; Broekel and

Boschma, 2011), but applied research on the spatial and temporal dimension of network formation

remains sparse (Ter Wal, 2011). In this paper, we analyse the formation of an interÖrm network by

using longitudinal data and adopting a long-term perspective.

Our main objective is to provide a detailed account of the underlying mechanisms of network dy-

namics along the life cycle of an industry (Klepper, 1996; Audretsch and Feldman, 1996). We aim to

make three contributions. First, the industry life cycle approach has provided a rich account of the

changing nature of competition among Örms, but questions about the changing nature of collaboration

have been left unanswered (Malerba, 2006; Ter Wal and Boschma, 2011). A few studies have investi-

gated the dynamics in network structure (e.g. Bonaccorsi and Giuri, 2001; Orsenigo et al., 2001, Gay

and Dousset, 2005), but not the driving forces. Second, scholars have argued that the level of similarity

between attributes of actors is crucial in the process of tie formation (McPherson et al., 2001). We build

on the French proximity school to investigate which forms of proximity (like geographical proximity)

that drove the formation of the interÖrm network (Boschma and Frenken, 2010). Although it has been

shown empirically that di§erent forms of proximity ináuence network formation (Balland, 2011; Broekel

and Boschma, 2011), it is crucial to investigate whether the e§ect of these drivers changes or remains

stable along the industry life cycle (Ter Wal, 2011). And Önally, we aim to contribute to the literature

on networks in creative industries. Creative industries are characterized by project-based production

in which local buzz is considered to be highly important (Grabher, 2001). By means of investigating a

particular creative industry, we test which drivers are crucial in network formation, and whether these

e§ects change as the industry evolves in space.

In this paper, we analyze network formation in the global video game industry from 1987 to 2007.

The analyses are conducted for the total population of Örms that developed or published one or more

video games for a video game console and the co-production of a video game is what represents the

formation of a network tie. The video game industry is often referred to as a creative industry. Typical to

such a creative industry is its project-based production in which new video games are jointly developed

(Caves, 2000). Also, the video game industry has a 35 years long history which allows us to track and

follow tie formation processes from the very beginning of the industry. We analyze collaboration in

the production of video games for four generations of video game consoles, starting in 1987. Yearly

relational matrices are constructed for analysing underlying mechanisms of network dynamics within

each generation: 1987-1992, 1993-1998, 1999-2004, 2005-2007.

The paper focuses on two research questions: (1) which proximity dimensions, among other factors,
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drive the formation of network ties in the global video game industry?; and (2) do the e§ects of these

driving forces increase or decrease as the industry evolves? We employ a stochastic actor-oriented

model (Snijders, 2001) to analyze the evolution of the interÖrm collaboration network. This approach

allows for the simultaneous evaluation of 3 sets of driving forces: (1) individual characteristics which

a§ect, for instance, the capacity to exploit external knowledge; (2) relational structures that display

endogenous structural mechanisms that reproduce themselves over time; and (3) similarity between

attributes of Örms (like being proximate in cognitive or geographical terms). Our Öndings indicate that

the forces that drive the formation of network ties are indeed dependent on the state of development

of an industry. Firms tend to partner over shorter distances and with more cognitively similar Örms as

the industry matures.

The paper is organized as follows. Section 2 presents a brief literature review on the main drivers

of interÖrm network dynamics. Then, section 3 describes the data collection and provides descriptive

statistics of the longitudinal network database. The stochastic actor-oriented model, the di§erent

variables and the model speciÖcation are detailed in section 4. In section 5, we present the main

empirical results. Section 6 concludes and discusses implications for further research.

2 Drivers of the InterÖrm Network along the Industry Life Cycle

InterÖrm networks and proximity

There is increasing attention for a relational approach in economic geography (Bathelt and Gl¸ckler,

2003). While the earlier work on relational issues in economic geography has generated very rich and

contextual narratives of the spatial processes at hand, various scholars have recently identiÖed áaws

in this literature by criticizing its lack of formalisation, and its metaphorical accounts of relational

processes (e.g. Giuliani and Bell, 2005; Grabher, 2006; Cantner and Graf, 2006; Gl¸ckler, 2007;

Sunley, 2008). We argue that social network analysis, which allows for a quantitative investigation of

interorganizational interactions, provides a framework to deal with these áaws.

In the last decade, network analysis has gained an increasing amount of attention from scholars in

economic geography (Ter Wal and Boschma, 2009). One of the main research questions is: what drives

a network tie? Traditionally, one looks at the similarity of actorsí attributes, in which the similarity

between connected actors is compared with the similarity between non-connected actors (McPherson

et al., 2001). Sociologists refer to the term homophily for explaining the tendency of social groups

to form around actors that have similar tastes, preferences, ethnic background or social status. We

follow the terminology of proximity introduced by the French proximity school (Rallet and Torre, 1999;

Carrincazeaux et al., 2008), and we link proximity to the formation of network linkages (Boschma and

Frenken, 2010). Boschma (2005) proposed an analytical distinction in Öve dimensions of proximity, in

which cognitive, organizational, institutional, social and geographical proximity reduce collaboration

costs or risks, and do therefore increase the likelihood of actors to form partnerships. That is, actors

are more likely to collaborate with others when they have similar knowledge bases, when they share
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similar norms and values, when they belong to the same business group, when they are embedded in

the same social context, or when they are located in the same geographical area.

It is not necessarily true that all forms of proximity act as important drivers of network formation.

In economic geography, a crucial question is whether geographical proximity ináuences the likelihood

of tie formation (Morgan, 2004). By employing Boschmaís (2005) proximity framework, one can isolate

the e§ect of geographical proximity from other forms of proximity, as geographical proximity is just one

potential driver of network formation, and not necessarily the most important one (Boschma, 2005).

Although a great deal of interactions take place between agents that are geographically proximate

(see e.g. Weterings, 2005; Suire and Vicente, 2009; Hoekman et al., 2010), this might be caused by

other forms of proximity. Moreover, other forms of proximity may act as substitutes for geographical

proximity in network formation, as studies have empirically demonstrated (see e.g. Singh, 2005; Agrawal

et al., 2006; Ponds et al., 2007; Sorenson et al., 2006; Breschi et al., 2010).

In addition to these proximity dimensions, the literature has argued that individual characteristics of

organizations may also ináuence the likelihood to collaborate (Cassiman and Veugelers, 2002). Indeed,

changes in the network result from decisions of organizations with heterogeneous characteristics such

as age or size. Organizations establish relationships in order to access resources that they do not have

themselves. For example, larger Örms are often argued to be better able to gain access to Önancial

resources, while smaller Örms are often argued to be more áexible. As a result, large organizations

might turn to smaller organizations to respond more rapidly to unexpected situations, while smaller

Örms might turn to larger Örms to gain access to Önancial resources. Another important determinant of

collaborations is the experience of the Örm. The more experience a Örm accumulates over the years, the

richer its functional knowledge base and the more valuable its knowledge about potential partners. As

a result, experienced Örms will be more likely to be able to identify fruitful collaborations and attract

potential collaborators.

Apart from proximity and individual characteristics, network formation may also be ináuenced by

endogenous structural network e§ects. Endogenous or path-dependent network formation describes how

current network structures ináuence its future evolution. Two of the most prominent structural e§ects

are transitivity and preferential attachment. Transitivity ñ or triadic closure ñ is a local network force

that induces two unconnected nodes that are connected to one common node to connect themselves

(Davis, 1970; Holland and Leinhardt, 1971). Positive transitivity implies that organizations that have

a partner in common are more likely to partner themselves, thereby e§ectuating triadic closure. The

role of the common partner here is crucial. The partner can provide information to both partners in

order to reduce uncertainty about the competences and the trustworthiness of the potential partner

(Uzzi, 1996; Cowan et al., 2007). Preferential attachment describes the attractiveness of central actors

comparatively to others. It has been shown recently that new nodes entering the network indeed tend

to form ties with incumbent nodes according to their degree distribution (Barab·si and Albert, 1999).

When analyzing the driving forces behind interÖrm network formation, scholars often adopt a static

approach, explaining the structure of the network at one point in time (e.g. Autant-Bernard et al., 2007;

Rosenkopf and Padula, 2008; Ozman, 2009; Ahuja et al., 2009; Gl¸ckler, 2010; Broekel and Boschma,
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2011). Little attention has been devoted so far to the changing nature of network formation over time

(Powell et al., 2005). One reason that causes this lack of attention is that it requires complete network

data over a long period of time and complex statistical models. Therefore, research on the spatial and

temporal dimension of network formation has remained sparse (Gl¸ckler, 2007; Boschma and Frenken,

2010). Only very recently, studies focus on network dynamics in a spatial setting, like the dynamics in

knowledge networks in a Chilean wine cluster (Giuliani, 2010), or the dynamics in co-inventor networks

in French genomics (Cassi and Plunket, 2010) and German bio-tech (Ter Wal, 2011).

Industry Evolution

To study network dynamics, we believe that the industry life cycle approach provides a useful

framework. This is not because the industry life cycle approach has fully incorporated network dynamics

in their models. On the contrary, the industry life cycle approach has mainly been preoccupied with

Örm population dynamics in which the evolution of competitive structures over an industryís lifespan

is examined and how these relate to the nature of the products that are produced in these industries

(Gort and Klepper, 1982; Abernathy and Clark, 1985; Klepper, 1997; Ne§ke et al., 2011). Typically,

the evolution of the population of Örms in an industry follows an S-curve, starting by just a few Örms

entering the industry, followed by a period of strong growth in the number of new entrants which, after

some time, levels o§ and eventually decreases. However, while entry and exit of Örms and the changing

nature of competition are inextricably interwoven with changing network structures, this domain of

research has remained largely unexplored (Malerba, 2006; Ter Wal and Boschma, 2011). There are a

few studies that have investigated dynamics in networks structures in the aircraft-engine industry (e.g.

Bonaccorsi and Giuri, 2001) and pharmaceuticals (Orsenigo et al., 2001), but these studies have not

analyzed the driving forces behind the network dynamics.

Changes in the pattern of entry and exit of Örms and the nature of competition along the industry

life cycle mark some implications for the study of network evolution. Due to the entry and exit of

Örms, the nodes in a network come and go, and relationships are created and dissolved (Boschma and

Frenken, 2010). In order to fully capture and understand the forces that drive formation of network ties,

an understanding of the changing industrial settings and the interaction between Örm population and

industry setting is required. According to Orsenigo et al. (2001), the network of strategic alliances in

biotechnology is characterized by stable core-periphery patterns during the industry life cycle, because

the formation of new alliances depends on the network of prior alliances, among other factors. And when

the nature of competition in an industry changes from product innovation to price cuts, Örms tend to

collaborate with similar partners to secure e¢cient and smooth interactions. Such a pattern is frequently

observed in various industries, as mimetic isomorphism within the population of Örms tends to guide the

industry towards the establishment of a dominant design (DiMaggio and Powell, 1983; Utterback and

Su·rez, 1993). The emergence of a dominant design allows production to become more standardized and

Örms to exploit scale economies. This type of competition requires very specialized, industry-speciÖc

knowledge, skills and machinery, and little access to new and diverse sources of knowledge (Ne§ke et

al., 2011).

If industries are subject to continuous áows of new Örms entering the industry resulting from
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disruptive technological change (Rosenkopf and Tushman, 1994; Rosenkopf and Padula, 2008), interÖrm

network structures are likely to be less stable. Also, the patterns of tie formation between new entrants

and incumbent Örms in the industry are argued to be decisive in determining Örmsí success rates. For

example, incumbent Örms can increase the size of the population of Örms that have adopted a speciÖc

technology by entering into a partnership with new entrants (Chandler, 1997; Rosenkopf and Padula,

2008). Another feature of partnerships between incumbents and new entrants is that innovations are

often introduced by new entrants which exert pressure on the yet existing pool of Örms. Incumbent

Örms can team up with the new entrants in order to gain access to the innovative product or technology.

Network formation in creative industries

The aforementioned studies on interÖrm networks concern either engineering industries, with a

focus on vertical networks between suppliers and buyers, or high-tech industries (biotech, telecommu-

nications) in which the focus is strategic alliance networks. The insights provided by these studies are

unlikely to apply to creative industries, because in creative industries collaboration patterns are ex-

tremely important but less subject to processes of knowledge codiÖcation and product standardization.

Production in creative industries is highly dependent on the interaction between multiple au-

tonomous agents (Caves, 2003). Industries such as feature Ölm production (Mezias and Mezias, 2000),

advertising (Grabher, 2001) and book publishing (Heebels and Boschma, 2011) are based on project-

based production systems involving creative and business-oriented entrepreneurs. Success of these entre-

preneurs is dependent on their embeddedness in interÖrm networks, communities and scenes (Grabher,

2001). Within each project, the functional activities are distributed over the Örms involved. The Örms

involved are continuously updating each other, exchanging ideas and negotiating decisions. The prod-

ucts that come out of these projects are unique: each product di§erentiates itself by introducing more

or less novel ñ stylistic ñ elements.

InterÖrm collaborations in creative industries serve not only as conduits of information áows but

also as hierarchies of reputation and status (Currid, 2007; Heebels and Boschma, 2011). Reputation

and status are extremely important in the production of cultural products. The main reason is that

cultural production is associated with great uncertainty. Nobody knows a priori whether a cultural

product will be accepted or rejected by the larger audience (Caves, 2003), and hits can easily be followed

by áops. Gaining access to partners with high levels of status is likely to enable Örms to capture the

attention and fulÖll the needs of a large audience.

While various scholars have argued that the weightlessness of ideas is likely to diminish the role of

geography (Friedman, 2005), others have stressed the overall importance of space and place because of

the symbiotic relationship between place, culture and economy (Pratt, 2000; Scott, 1997; Johns, 2005).

The latter strand of literature argues that geographical proximity, urban culture and local buzz are

extremely important for cultural industries and are likely to set apart the spatial organization of cultural

industries from other industries. Scott (2004) argues that a large share of all interÖrm partnerships in

creative industries can be found in larger cities.

Synthesis
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In summary, we have identiÖed three main drivers of interÖrm network formation (i.e. proximity

mechanisms, individual characteristics and structural endogenous network structures). We will test

which ones have been responsible for the formation of the co-production network in the global video

game industry, and we will explicitly focus on the (in)stability of these forces as this industry evolves.

By doing so, we reconcile insights provided by the industry life cycle approach and insights from network

analysis. Moreover, though our focus on the video game industry, we will be able to unravel more of the

subtleties that are speciÖc to creative industries. In that respect, we see this study as an explorative

and early attempt to provide insights on the dynamics of network formation over the life cycle of a

creative industry.

3 Empirical Setting

The video game industry is typically referred to as a creative industry to stress the importance of both

creative human capital in the production process and the one-o§ nature of the Önal product (Tschang,

2007). Each video game di§erentiates itself from any other video game by introducing new gameplays,

new perspectives, new genre combinations, new characters or enhanced graphics. Therefore all video

games are essentially novel and its success depends on whether consumers are prepared to pay for the

quality of the product innovation (Delmestri et al., 2005).

Like other creative industries, the video game industry is made up of Örms that generate creative

content and Örms that recognize, Önance and market the creative content (Tschang, 2007). The pro-

duction of a video game is carried out as a project involving a development company and a publishing

company, although some development companies publish their own games and some publishing compa-

nies set up in-house development studios. Developers ì. . . are charged with the creative development

of a game codeî (Johns, 2005, p. 169) by providing programming skills, artistic designs and insights on

the gameplay1, while publishers are responsible for managing, funding and marketing the video game

project by providing the project management, market insights, marketing skills and Önancial capital

(Tschang, 2007). The production of video games is organized in temporal projects in which employees

of the developer and the publisher gather to create a new video game. The production process of a

video game is characterized by the coalescence of art and technology and involves character designers,

graphic artists, programmers, and managers, project leaders and marketers.

We deÖne two Örms as having a network tie if both Örms were involved in the production of a

video game. In most cases, such a network tie is established through the co-production of video games

involving a Örm with a clear proÖle as a publisher and a Örm with a clear proÖle as a developer. As

shown in table 1, more than 75 % of all video games are produced by at least two companies, while the

rest is produced by one company.

The analyses in this paper are based upon a unique, newly constructed database that contains

1Gameplay is "the formalized interaction that occurs when players follow the rules of a game and experience its system

through play" (Salen and Zimmerman, 2003, p. 303).
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Gen 1 Gen 2 Gen 3 Gen 4 Gen 5 Gen 6
Years covered 1972-1981 1982-1986 1987-1992 1993-1998 1999-2004 2005-2007

Number of Örms 21 166 510 1035 1029 757

Number of games 212 916 2526 5525 8406 4857

Games per Örm (mean) 10.095 5.518 4.953 5.338 8.169 6.416

No. of games involving:

-A single Örm 128 508 806 1394 1112 455

-Two Örms 84 398 1659 3937 6841 4018

-Three Örms 0 10 58 188 437 355

-Four Örms 0 0 3 6 15 16

-Five Örms 0 0 0 0 1 8

-Six Örms 0 0 0 0 0 5

Table 1: Collaboration patterns along the video games industry life cycles

information on all Örms that developed or published one or more video games2 for a video game

console3. We collected Örm level data such as years of production, number of games produced, location,

ownership structures4 and game level data such as co-production partners, production year, computer

platform compatibility and genre. The data was collected starting from the inception of the industry

in 1972 until 2007. The data is a compilation of various data sources. The starting point was the

Game Documentation and Review Project Mobygames5. The Mobygames website is a comprehensive

database of software titles and covers the date and country of release of each title, the platform on

which the game can be played, and the name of the publisher and developer of the game. The database

goes back until the inception of the industry in 1972, and the project aims to include all games that

have ever been developed and published in the video game industry. To obtain data on entry, exit,

and location of Örms and to control and monitor the quality of the Mobygames data we also consulted

the German Online Games Datenbank6. This online database is complementary to the Mobygames

database in that it provides more detailed information on the location of companies and backgrounds

2Throughout the paper, the term ëvideo gamesí is used to describe games played using a video game console linked to

a television or monitor, rather than PC (Personal Computer) games or other digital hardware.
3 "A video game console is an interactive entertainment computer or electronic device that produces a video display

signal which can be used with a display device (a television, monitor, etc.) to display a video game. The term video

game console is used to distinguish a machine designed for consumers to buy and use solely for playing video games from

a personal computer, which has many other functions, or arcade machines, which are designed for businesses that buy

and then charge others to play" (http://en.wikipedia.org/wiki/Video_game_console, 04/23/2010). The consoles in the

database include the Odyssey, Channel F, Atari 2600, Odyssey 2, Intellivision, Atari 5200, ColecoVision, Vectrex, NES,

Sega Master System, Atari 7800, TurboGrafx-16, Genesis, TurboGrafx CD, Neo Geo, SNES, CD-I, Sega CD, 3DO, Amiga

CD32, Jaguar, Neo Geo CD, PC-FX, Saturn, Sega 32X, PlayStation, Nintendo 64, Dreamcast, GameCube, PlayStation

2, Xbox, Xbox 360, PlayStation 3, and Wii.
4We collected data not only for the headquarters of each Örm, but also its subsidiaries. Throughout the text we will

refer to these subsidiaries as Örms and in the empirical modeling we will use the legal relation between headquarter and

its subsidiaries as a factor that explains their collaboration.
5The Game Documentation and Review Project Mobygames can freely be consulted at http://www.mobygames.com.

The Mobygames database is a catalog of ëall relevant information about electronic games (computer, console, and arcade)

on a game-by-game basisí (http://www.mobygames.com/info/faq1#a). The information contained in MobyGames data-

base is the result of contribution by the websiteís creators as well as voluntarily contribution by Mobygames community

members. All information submitted to MobyGames is checked by the websiteís creators and errors can be corrected by

visitors of the website.
6 ìOnline Games Datenbankî can freely be consulted at http://www.ogdb.de
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of entrepreneurs. In the rare case that neither of the two databases provided this information or in

the rare case that the information in the two databases was contradicting, other online or hardcopy

resources were consulted.

Video games are produced for one or more video game consoles such as the XBOX 360. Each of

the video game consoles introduced in the industry can be categorized into chronological generations

(GEN). While the technological speciÖcations of the video game consoles within a GEN show a strong

resemblance, the technological speciÖcations of consoles from di§erent GENs are highly dissimilar. Each

subsequent GEN of consoles shows a signiÖcant improvement in technological speciÖcations and allows

the producers of video games to produce games that are signiÖcantly di§erent than the games produced

for the prior GEN. In other words, the introduction of a new GEN of consoles leads to a change in the

design rules for video games (Baldwin and Clark, 2000).

The introduction of new video game consoles, innovation in the production of video games and

other industry-speciÖc dynamics have generated high levels of turbulence in the industry. In Ögure 1,

we plotted the entry and exit of all Örms7 in the video game industry. Until the mid 1990s, the

population of Örms grew rapidly, after which the population has remained largely stable.

Figure 1: Entry, exit and population totals in the video game industry

For the empirical analyses, we set the start of a new generation at the year in which the Örst game

of a new generation is released. Generation 1 covers the years 1972-1981, generation 2 covers the years

1982-1986, generation 3 covers the years 1987-1992, generation 4 covers the years 1993-1998, generation

5 covers the years 1999-2004, and generation 6 covers the years 2005-2007. In our analyses, we focus

on generations 3, 4, 5 and 6. We exclude generation 1 and 2 from the empirical analysis, because the

7This Ögure only includes headquarters.
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Observed Ties Ties Ties Firms Firms
period created dissolved maintained entry exit
1987-1988 132 92 28 52 1

1988-1989 242 114 46 45 0

1989-1990 402 180 108 45 4

1990-1991 412 368 142 20 7

1991-1992 492 394 160 0 23

1993-1994 734 566 282 61 14

1994-1995 554 800 216 54 42

1995-1996 584 572 198 42 46

1996-1997 648 546 236 25 49

1997-1998 478 628 256 0 51

1999-2000 754 468 324 55 10

2000-2001 566 770 308 56 23

2001-2002 872 502 372 35 37

2002-2003 762 794 450 26 53

2003-2004 678 796 416 0 65

2005-2006 508 526 300 17 16

2006-2007 594 504 304 0 32

Table 2: Network dynamics : relational and composition change

level of stability8 of the network was too low9. Such instability keeps the approximation algorithm we

use to model the network dynamics from converging, which will produce unreliable results. In order

to improve the stability for generation 3, 4, 5 and 6, we excluded Örms that developed only one game

in the entire sample of games. In addition, we limited our analysis to the games produced by two

Örms. Including games developed by more than two Örms would have generated two problems. First,

it is impossible to assess which partners are actually collaborating. We would have to assume that all

partners are equally connected which might not always be the case. Second, each game produces a

clique in which all Örms involved are fully connected. This could artiÖcially increase the level of network

closure and bias the estimation of transitivity. Because such games are marginal10 during the period

considered, we opted for excluding them from the analyses. The Önal dataset used for our empirical

examination comprises 21,314 games involving 1,358 unique Örms from 1987 to 2007.

The resulting network involves n actors and can be represented as a n  n matrix x = (xij), where
xij = 1 represents the joint production of a video game by Örm i and Örm j(i; j = 1; : : : ; n). The

network dynamics within the four di§erent generations are analyzed separately. For the construction

of the longitudinal relational database, it is assumed that ties are active during the year of release of

a given video game. As such, if a game is released in 2005 by actor i and actor j (regardless of the

month), then we assume that a relation exist between i and j for the year 2005, and only for this

year. It means that the tie will be dissolved in 2006 if i and j do not release a game together again.

Moreover, relations are not directed because we assume that ties are always reciprocated. All relations

8Ties that are maintained from one observed moment (year) to another.
9Achieving such a level of stability would have required additional assumptions on the length of ties.
10See table 1 : 5,1% of the total of games developed from 1987 to 2007 (1092/21314).
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Observed No of Number Average Network
Year Firms of Ties degree Density
1987 187 120 0.642 0.003

1988 238 160 0.672 0.003

1989 283 288 1.018 0.004

1990 324 510 1.574 0.005

1991 337 554 1.644 0.005

1992 314 652 2.076 0.007

1993 482 848 1.759 0.004

1994 529 1016 1.921 0.004

1995 541 770 1.423 0.003

1996 537 782 1.456 0.003

1997 513 884 1.723 0.003

1998 462 734 1.589 0.003

1999 552 792 1.435 0.003

2000 597 1078 1.806 0.003

2001 630 874 1.387 0.002

2002 628 1244 1.981 0.003

2003 601 1212 2.017 0.003

2004 536 1094 2.041 0.004

2005 462 826 1.788 0.004

2006 463 808 1.745 0.004

2007 431 898 2.084 0.005

Table 3: Network structural descriptive statistics

are also dichotomized11, which means that xij = 1 even if the number of games produced by i and j is

> 1 during a given year. For technical reasons, each generation corresponds to a set of yearly matrices

with the same n  n size, with n = 349 for generation three, n = 664 for generation four, n = 724 for
generation Öve, and n = 479 for generation six, but actors are allowed to leave or enter the network12.

The resulting network dynamics are summarized in table 2. We can observe that the network

becomes more stable over time, because the proportion of ties maintained compared to the number

of ties created or dissolved from one year to another is increasing. Table 3 provides some descriptive

statistics about the longitudinal network data, including the number of Örms and the number of ties for

each year included in the statistical analysis. The number of Örms is increasing, but also the average

degree. This means that Örms not only produce more games (table 1), but also collaborate with an

increasing number of di§erent partners.

4 Modeling Network Dynamics

The empirical investigation of network dynamics is concerned with complex relational structures that

require speciÖc statistical models (Snijders, 2001). A fundamental property of network structures is the

existence of conditional dependencies between observations, especially between dyads that have actors

in common (Rivera et al., 2010). By nature, such network dependencies violate standard statistical

11The statistical model used can only run dichotomized networks.
12We used the method described in Huisman and Snijders (2003) to represent actors entering/leaving the industry. We

also used the method of structural zeros (Ripley et al., 2011) as a robustness check which led to the same results.
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procedures like OLS and logistic regressions that assume independence among observations. Correlation

between observations can lead to unreliable estimations of parameter coe¢cients and standard errors

(Steglich et al., 2010). Therefore, a class of statistical network models based on Markov random

graph has been developed to model structural dependencies. Although the Örst generation of statistical

network models was restrictive in terms of e§ects (Wasserman and Pattison, 1996), more realistic models

have been implemented with recent advances in Markov chain Monte Carlo simulation procedures.

So far, Stochastic Actor-Oriented Models (SAOM) are the most promising class of models allowing

for statistical inference of network dynamics (Snijders et al., 2010). In this paper, we use SAOM

implemented in the SIENA13 statistical software (Ripley et al., 2011). A brief description of the

general principles of SAOM and details of the model speciÖcation follows below.

Stochastic Actor-Oriented Models (SAOM)

Besides explicitly representing network dependencies, SAOM are dynamic models that o§er the

possibility to include a variety of e§ects related to the heterogeneity of actors or their proximity.

SAOM have been identiÖed as a promising model in economic geography (Ter Wal and Boschma, 2009;

Maggioni and Uberti, 2011), and applied to analyze the dynamics of global and regional knowledge

networks (Giuliani, 2010; Balland, 2011; Ter Wal, 2011).

SAOM are based on three principles that can appear more or less realistic depending on the nature

of the network analyzed. First, the evolution of network structures is modeled as the realization of

a continuous-time Markov chain, i.e. a dynamic process where the network in t + 1 is generated

stochastically from its conÖguration in t. Since change probability depends on the current state of

the network and not on its past conÖgurations, relevant information about joint history or intensity of

collaborations can be included as an exogenous variable to make this assumption more realistic (Steglich

et al., 2010). Second, time runs continuously between observations, which means that observed change

is assumed to be the result of an unobserved sequence of micro steps. In each step, actors can change

only one tie variable at a time, inducing that a group of actors cannot decide to start relationships

simultaneously. Third, and more importantly, it is assumed that network dynamics is the result of

choices of actors based on their preferences and constraints, i.e. the model is "actor-oriented". Network

structures change because actors develop strategies to create ties with others (Jackson and Rogers,

2007), based on their awareness of the network conÖguration. This assumption is plausible in the

context of the video game industry in which Örms are able to determine their strategic decisions, and

information on collaborations of other Örms is available for intellectual property rights purposes.

In SAOM, actors drive the dynamics of networks because at stochastically determined moments

they can change their relations with other actors by deciding to create, maintain or dissolve ties. More

formally, these opportunities are determined by a rate function in which opportunities to collaborate

occur according to a Poisson process with rate i for each actor i. Given that an actor i has the

opportunity to make a relational change, the choice for this actor is to change one of the tie variables

13This class of models is often referred to directly as SIENA models. SIENA stands for "Simulation Investigation for

Empirical Network Analysis". The RSiena package is implemented in the R language and can be downloaded from the

CRAN website: http://cran.r-project.org/web/packages/RSiena/.
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xij , which will lead to a new state x; x 2 C(x0). At this stage, a traditional logistic regression is used
to model choice probabilities (Snijders et al., 2010):

P

X(t) changes to x j i has a change opportunity at time t;X(t) = x0



= pi(x
0; x; v; w) =

exp(fi(x
0; x; v; w))X

x2C(x0)
exp(fi(x0; x0; v; w))

(1)

When actors have the opportunity to change their relations, they choose their partners by trying

to maximize their objective function, with random perturbations. For the analysis of non-directed

networks, di§erent types of models are implemented in SIENA. We model the creation of linkages by

using the unilateral initiative and reciprocal conÖrmation model, which is the most realistic for analyzing

collaboration networks (Van de Bunt and Groenewegen, 2007; Balland, 2011; Ter Wal, 2011). In a Örst

stage, actor i can only attempt to maximize its objective function by trying to produce a video game

with actor j, but this collaboration is only realized if actor j accepts on the basis of its own objective

function14. Thus, changes in network ties are modeled according to a utility function at the node

level which is the driving force of network dynamics. The objective function describes preferences and

constraints of Örms: to be linked with others that are geographically proximate might be one (Carayol

and Roux, 2009). More formally, collaboration choices are determined by a linear combination of e§ects,

depending on the current state , the potential new state , individual attributes15 and proximity :

fi(x
0; x; v; w) =

X

k

kSki(x
0; x; v; w) (2)

As proposed by Snijders (2001), the estimation of the di§erent parameters k of the objective

function is achieved by the mean of an iterative Markov chain Monte Carlo algorithm based on the

method of moments. The stochastic approximation algorithm simulates the evolution of the network and

estimates the parameters k that minimize the deviation between observed and simulated networks.

Over the iteration procedure, the provisional parameters of the probability model are progressively

adjusted in a way that the simulated networks Öt the observed networks. The parameter is then held

constant to its Önal value, in order to evaluate the goodness of Öt of the model and the standards errors.

Model speciÖcation

A major strength of SAOM is that a large variety of variables can be included in the speciÖcation of

the objective function to model preferences and constraints of actors. As discussed above, we consider

three sets of drivers of network formation: (1) structural e§ects (i.e. density, transitivity, preferential

attachment); (2) individual characteristics of actors (i.e. proÖle, size, experience); and (3) proximity

mechanisms (i.e. geographical, organizational, institutional, cognitive, social) which will be discussed

one by one below (see table 4 and table 5).

14 In other speciÖcations, one actor can impose unilaterally the creation of a tie to another one.
15For the analysis, individual and proximity variables are centered around the mean.
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Variable Operationalization

Density Out degree

Transitivity Transitive triplets

Preferential attachment Square root of degree of alter

Institutional proximity Same country (dummy)

Geographical proximity Inverse of Physical distance (natural log)

Organizational proximity Same group of Örms (dummy)

Social proximity Same games produced previously (nb)

Cognitive proximity Same genres of VG

ProÖle similarity Similarity of proÖle (developers/publishers)

Size No of Games produced previously (natural log)

Experience Number of years since entry

Table 4: Operationalization of the variables

Gen 3 Gen 4 Gen 5 Gen 6

Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max

Inst. prox. 0.3 0.4 0 1 0.2 0.4 0 1 0.2 0.4 0 1 0.2 0.4 0 1

Geo. prox. 2.6 2.9 0 10 2.4 2.6 0 10 2.2 2.4 0 10 2.0 2.1 0 10

Org. prox. 0.0 0.0 0 1 0.0 0.0 0 1 0.0 0.0 0 1 0.0 0.0 0 1

Soc. prox. 0.0 0.3 0 78 0.0 0.3 0 49 0.0 0.3 0 133 0.0 1.2 0 251

Cog. prox. 1.6 2.3 0 10 2.5 2.8 0 10 2.4 2.7 0 10 3.4 2.9 0 10

Prof. sim. 0.5 0.3 0 1 0.5 0.3 0 1 0.6 0.4 0 1 0.5 0.4 0 1

Size 1.7 1.0 1 7 2.3 1.2 1 7 2.4 1.3 1 7 3.2 1.5 1 8

Experience 3.7 3.2 0 16 5.7 4.4 0 22 7.2 5.9 0 28 9.9 6.9 0 31

Table 5: Descriptive statistics of the dyadic and individual variables

14



- Structural e§ects

We include three variables that measure the e§ects of structural network properties and explain

how the structure of the video game network ináuences its further evolution. First, the density e§ect

can be interpreted as the constant term in regression analysis, indicating the general tendency to form

linkages. This variable should always be included in SAOM to control for the cost of relations (Snijders

et al., 2010), and indicates why all nodes are not able to be fully connected to all others (McPherson

et al., 1991). Density is measured by the out degree of Örms: Di =
P
j xij

Transitivity is an important structural e§ect for network dynamics, concerned with the tendency

towards network closure. It can be measured in several ways, but the most straightforward is based on

the number of transitive triplets of actors, i.e. the number of times an actor i is tied with two actors

that are partners themselves (Ripley et al., 2011): Ti =
P
j<h xijxihxjh

Preferential attachment considers that actors with a large number of relations are more attractive.

As such, it is measured by the number of relations of the actor to whom i is tied. More precisely, we

take the square root of the degree of alter in order to decrease the degree of colinearity with other

structural variables: PAi =
P
j xij

pP
h xjh

- Individual characteristics

To control for the heterogeneity of Örms in their capacity to collaborate, we include size and expe-

rience of actors. Size is based on the natural logarithm of the number of games a Örm has produced

during the last Öve years. We consider all the games produced, regardless of the number of partners

involved. The experience of a Örm is measured by the number of years the Örm has been active in the

video game industry (i.e. the age of the Örm).

ProÖle similarity is a variable that accounts for the fact that Örms perform the role of either publisher

or developer in the development process. The tendency to publish is obtained by dividing for each actor

i the number of games in which i has the role of publisher, divided by the total number of games in

which i was involved16. We multiplied this ratio by ten, allowing the variable to range from 0 to 10.

Thus, we control for the fact that publishing oriented Örms are likely to collaborate with developers

and developing oriented Örms with publishers17: PSij = 1 j(jvi  vj j)/ rv

- Proximity dimensions

We follow the seminal analytical distinction in Öve dimensions of proximity proposed by Boschma

(2005). Institutional proximity measures whether two Örms are exposed to the same institutional

framework. Sharing similar formal or informal institutions increases the likelihood of actors to start

16From the date of entry to the date of exit of the industry.
17Where v is the tendency to publish and Rv is the di§erence between the highest and the lowest value of the tendency

to publish variable.
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a partnership. In the case of the video game industry, the national level is especially important as it

refers to common intellectual property right regimes, languages and video game culture. As such, we

follow previous studies measuring institutional proximity as a binary measure, equal to 1 if the two

Örms belong to the same country and 0 if not (Hoekman et al., 2009).

Geographical proximity is measured by the inverse of the natural logarithm of the physical distance

(ëas the crow áiesí) between two Örms in kilometers18. More precisely, we obtained a maximum of 10 and

a minimum of 0 by computing the natural logarithm of the distance between Örms. We subtracted the

log of distance from 10, in order to have a proximity measure rather than a distance measure. As a result,

the variable ranges from 0 for the most distant Örms to 10 for the closest ones: PGij = 10 ln(distij)

Organizational proximity is deÖned as membership of a larger business group. We created a 1-0

dummy variable equal to 1 if the two organizations involved in the production of the video game belong

to the same legal entity, and 0 otherwise. In our dataset, we identiÖed all Örm ownership structures

allowing us to distinguish between the main o¢ce (headquarters) of each Örm and its subsidiaries. As

a result, we were able to identify whether two organizations involved in the production of a video game

shared the same owner(s) and did therefore belong to the same legal entity.

Boschma (2005) deÖned social proximity in terms of socially embedded relations between agents at

the micro-level. More in particular, social proximity refers to the extent to which agents share prior

mutual relationships. Such relationships carry information about potential future partners, and thereby

increase the probability to engage in future collaborations. Social proximity can be measured on the

basis of the number of previous collaborations (Ahuja et al., 2009). We count the number of games that

two actors have produced together during the Öve previous years. In order to compute this measure, we

also considered games that have been produced by more than two Örms. We must note here that social

proximity could also be classiÖed as a structural endogenous network formation mechanism. Indeed,

prior social interaction is given by the model.

Cognitive proximity refers to the similarity in the distribution of knowledge endowments across

two agents (Nooteboom, 1999). Contrary to most empirical studies, we adopt an asymmetric, directed

measure of cognitive proximity19. We follow Balland et al. (2011) who shows that adopting a featural

rather than a distance approach allows us to account for the fact that actor i might be more cognitively

proximate to j than j to i. To construct such a directed measure of proximity, we rely on information

on the stylistic elements used in the video games produced by companies in the 5 years prior to the

focal year. Each video game is categorized into one or multiple stylistic elements. Such elements range

from genres such as action or simulation to perspectives such as Örst-person perspective or top-down.

The genres that Örms have covered represent the cognitive framework upon which Örms operate. In

order to calculate the cognitive proximity between two Örms we measured the number of genres that

Örm i and Örm j share divided by the total number of genres covered by Örm i and Örm j respectively.

As a result the measure will be asymmetric.

18Not computed for Örms at distance 0 but directly replaced by 0.
19Ne§ke and Svensson Henning (2008) use a similar argument to conceptualize asymmetric related variety.
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5 Empirical results

Results of parameter estimations are presented in table 6. The network dynamics of the video game

industry from 1987 to 2007 are modeled separately for each generation (3, 4, 5 and 6), in order to

evaluate the changing ináuence of network drivers over time. All parameter estimations are based on

1,000 simulation runs, and convergence of the approximation algorithm is excellent for all the variables

of the di§erent models20 (t-values < 0:1). The parameter estimates of SAOM can be interpreted as non-

standardized coe¢cients obtained from logistic regression analysis (Steglich et al., 2010). Therefore, the

 reported in table 6 are log-odds ratio, corresponding to how the log-odds of tie formation change with

one unit change in the corresponding independent variable. In order to test if the di§erence between

coe¢cients along the di§erent generations was statistically signiÖcant, we visualize the 95% conÖdence

intervals for the di§erent coe¢cients (see Ögure 2). We found little or no overlap of the conÖdence

intervals of generation 3 and generation 6, and conÖdence intervals of some e§ects even do not overlap

from one generation to another. In sum, our analysis suggests that the ináuence of drivers of network

formation is relatively stable but their weights do signiÖcantly change over time as the industry evolves.

The Örst two rows of table 6 report the e§ects of the structural network variables density and

transitive triads on tie formation. We found a negative and signiÖcant impact of the density e§ect.

This variable measures the costs of linkages which inhibit Örms to be fully connected. For the transitivity

variable, we found a positive and signiÖcant e§ect for all generations. This result indicates that Örms

are more likely to produce video games with partners of partners. Moreover, this e§ect appears to be

rather stable over time, indicating that transitive patterns do not increase with the degree of maturity

of the industry. This is in contrast to Ter Wal (2011), who showed an increasing importance of triadic

closure in co-inventor networks in German biotech, which he associated with increasing codiÖcation of

knowledge in biotech.

Row 3 to 7 in table 6 report the ináuence of proximity mechanisms on partner selection. We evaluate

whether Örms tend to collaborate with Örms that have similar attributes. Institutional proximity is

positive and signiÖcant for generation 3, 4 and 5. This means that, even when controlling for physical

distance, Örms located in the same country are more likely to produce a game together. However,

this e§ect is decreasing after generation 4, and is not signiÖcant anymore in the last generation. This

suggests that national institutional regimes are becoming less important over time as drivers of network

ties. In that context, it is interesting to Önd a positive and signiÖcant impact of geographical proximity

for all generations. The weight of this coe¢cient is even increasing over time. This Önding contradicts

the result found at a national level in German co-inventor networks in biotech, which showed a deceasing

importance of geographical proximity as time passed by (Ter Wal, 2011). While this latter result has

been associated with increasing codiÖcation of knowledge in biotech, this process is unlikely to take place

in a creative industry like video games. An additional explanation is that video games have become more

technologically complex which requires more interÖrm collaboration at shorter geographical distances

20Convergence check can be used to evaluate the goodness of Öt of SAOM, by indicating the deviation between observed

values and simulated values. To achieve such a good level of convergence, we excluded preferential attachment from the

analysis because this e§ect was too highly correlated with the other structural mechanisms.
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Gen 3 (N=349) Gen 4 (N=664) Gen 5 (N=724) Gen 6 (N=479)

Parameter SD Parameter SD Parameter SD Parameter SD

Density -1.957 *** 0.022 -2.209 *** 0.015 -2.456 *** 0.021 -2.362 *** 0.043

Transitive triads 0.654 * 0.331 0.653 *** 0.045 0.632 *** 0.031 0.700 *** 0.067

Institutional prox. 0.098 *** 0.038 0.140 *** 0.025 0.133 *** 0.023 -0.042 0.046

Geographical prox. 0.017 *** 0.003 0.026 *** 0.002 0.025 *** 0.002 0.045 *** 0.005

Organizational prox.1.854 *** 0.100 1.533 *** 0.096 1.450 *** 0.071 1.104 *** 0.135

Social prox. 0.186 *** 0.038 0.079 *** 0.011 0.081 *** 0.011 0.044 *** 0.010

Cognitive prox. -0.002 0.003 0.002 0.002 0.023 *** 0.003 0.025 *** 0.006

ProÖle sim. -0.735 *** 0.050 -0.820 *** 0.035 -1.097 *** 0.032 -1.181 *** 0.059

Size 0.206 ** 0.067 0.206 *** 0.003 0.166 *** 0.009 0.065 *** 0.015

Experience -0.003 0.005 -0.005 0.014 0.004 *** 0.001 0.020 *** 0.002

Table 6: Estimation results: parameter estimates and standard deviations

(Sorenson et al., 2006).

The results also demonstrate that organizational proximity is an important factor of collaboration:

this e§ect is positive and signiÖcant for all generations. Nevertheless, it is interesting to note that this

e§ect is decreasing over time, probably because business groups tend to diversify over time. Social

proximity also is a strong predictor of the likelihood that two Örms will co-produce a video game.

However, this e§ect is clearly decreasing over time, meaning that previous collaborations is still an

important driver of network formation in the video game industry, but to a lesser extent.

The e§ect of cognitive proximity seems to be strongly ináuenced by the industry life cycle. While this

e§ect was not signiÖcant during generation 3 and 4, it becomes positive and signiÖcant for generation

5 and 6. This may reáect the fact that developing new video games has become more technologi-

cally complex, and therefore requires more cognitive proximate partners over time, as well as more

geographically proximate partners, as noticed earlier.

With respect to the individual characteristics, proÖle similarity is negative and signiÖcant for all

generations. It shows that developers are more likely to collaborate with publishers, and vice versa. It

is interesting to observe that this negative e§ect is increasing, showing that actors tend to specialize in

their publisher/developer role over the industry life cycle. Size of Örms is positive and signiÖcant for all

generations, but this e§ect is decreasing. And Önally, experience is not signiÖcant for the early stages

of the industry, but it becomes a clear advantage at later stages.

6 Conclusion and discussion

In this paper, we have analyzed the network dynamics in an evolving industry, a topic that is still

relatively unexplored. We have employed a Stochastic Actor-Oriented Model to analyse the evolution

of drivers of interÖrm network formation in the global video game industry. By bringing together liter-

ature on industrial dynamics, network theory and economic geography, we have explored how network
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formation in a creative industry is ináuenced by di§erent forms of proximity, alongside individual char-

acteristics and structural endogenous network structures. Taking a dynamic perspective on networks,

we found strong evidence that the e§ects of the main drivers of network formation changed as the

video game industry evolved in the period 1987-2007. Broadly speaking, tie formation became increas-

ingly a function of geographical, cognitive proximity and being experienced, but to a lesser extent to

organizational, social and institutional proximity.

The increasing coe¢cient of geographical proximity clearly shows that Örms are more likely to

partner with Örms over shorter geographical distance as the video game industry evolved. This may

reáect the fact that we deal with a creative cultural industry in which local buzz is crucial (Storper and

Venables, 2004). The project-based and áexible nature of production makes the video game industry

less exposed to processes of standardization and increasing codiÖcation of knowledge which might

have relaxed the necessity to be geographically proximate. An additional explanation might be found

in the increasing technological complexity of video game development which requires more interÖrm

collaboration at shorter geographical distances (Sorenson et al., 2006). Interestingly, the e§ect of

Institutional proximity decreased and even lost its signiÖcance over time, while geographical proximity

became more important. Clearly, the national institutional regime has lost its meaning as a driver of

network ties as the video game business evolved.

Another important Önding is that cognitive proximity was not a determinant of tie formation in

the Örst generations, but the network formation in later generations was clearly driven by similarities

in genre portfolios of Örms. This may reáect the fact that developing new video games became more

technologically complex and therefore required more cognitive proximate partners over time. Another

explanation for this Önding might be found in the fact that boundaries between video game genres and

styles became better deÖned and video game Örms started to specialize over time.

This is in line with another outcome of our analysis. That is, experienced Örms were more likely

to attract partners than Örms with little experience but only so in later generations. A Örst possible

explanation is that the e§ect of experience on attracting partners is only apparent above a certain

threshold. Another explanation might be found on the consumer side of the video game value chain.

The ever increasing number of video games that are released each year requires consumers to acquire

larger amounts of information in order to assess the quality of all video games available. Rather than

acquiring information of all video games, the consumer might rely more on reputation and status of

experienced video game producers.

As mentioned earlier, we see this study as an explorative and early attempt to analyze the dynamics

of network formation along the life cycle of a creative industry. In that respect, there are a number

of challenges for future research. First, we have focused on drivers of network formation based on

secondary network data which enabled us, among others things, to focus on networks dynamics from

a long-term perspective. What is still needed is to conduct a more qualitative approach based on

survey data that could deepen our understanding of the motives behind networking in video gaming.

Second, we need more similar studies for other types of industries, and see whether the same drivers

of network formation over time hold in these contexts. As discussed earlier, creative industries might
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be di§erent from other industries. Third, our study showed that Örms Önd their collaboration mainly

within their own region, that they work together with Örms with similar portfolios, and that they

are likely to partner with experienced Örms. While such a pattern might be highly proÖtable in the

short to medium run, in the long run this pattern may cause these Örms (and their regions) to become

vulnerable for external shocks (Ne§ke et al., 2011). In other words, we need more understanding what

these types of networking really mean for the performance of Örms and regions.
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Figure 2: Drivers of network dynamics over the industry life cycle
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