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Abstract 

A key question raised in recent years is which factors determine the structure of inter-

organizational networks. While the focus has primarily been on different forms of proximity 

between organizations, which are determinants at the dyad level, recently determinants at the 

node and structural level have been highlighted as well. To identify the relative importance of 

determinants at these three different levels for the structure of networks that are observable at 

only one point in time, we propose the use of exponential random graph models. 

Their usefulness is exemplified by an analysis of the structure of the knowledge network in 

the Dutch aviation industry in 2008 for which we find determinants at all different levels to 

matter. Out of different forms of proximity, we find that once we control for determinants at 

the node and structural network level, only social proximity remains significant. 
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1. Introduction 
The analysis of inter-organizational knowledge networks has become increasingly popular in 

in recent years (e.g. Giuliani and Bell, 2005; Boschma and Ter Wal, 2007; Giuliani, 2007; Ter 

Wal and Boschma, 2009; Glückler, 2010; Ter Wal, 2011). As there is a growing awareness of 

the importance of inter-organizationals networks for innovation, many studies emphasize the 

necessity of gaining a deeper understanding of the determinants of tie creation to explain the 

structure of these networks (e.g. Glückler, 2007; Ter Wal and Boschma, 2009; Boschma and 

Frenken, 2010). In particular the proximity approach by Boschma (2005), which emphasizes 

the role different proximity types (cognitive, organizational, social, institutional, geographic) 

between organizations play for tie creation, has recently been the focus of empirical studies 

(see, e.g., Balland, 2011; Broekel and Boschma, 2011). As proximity is a dyadic concept, this 

approach naturally focuses on the dyad level. However, determinants at the node level (e.g. 

the size of an organization) and more recently determinants at the structural network level 

have been highlighted to impact the structure of networks as well (Glückler, 2007; Boschma 

and Frenken, 2010; Rivera et al., 2010). For example, the triadic closure hypothesis predicts 

that partners of partners are more likely to become partners as well in a network, which 

implies that new tie creation depends on the existing structure of a network (Ter Wal, 2011). 

A key methodological challenge in this respect is to separate the effects of determinants at the 

dyad level from effects at the node level and structural network level. 

 To estimate the relative importance of determinants at all three levels in explaining the 

structure of a network, they need to be included simultaneously in a model. While this is 

possible with existing empirical tools (see, e.g., Burk et al., 2007), those tools require 

longitudinal network data. However, longitudinal data for inter-organizational networks are 

unavailable in most cases (Baum et al., 2003; Ter Wal and Boschma, 2009). This is especially 

true for informal knowledge networks as those can usually only be observed by directly 

interviewing the employees of an organization, who only have a limited memory of the past. 

Hence, the question is how to determine which determinants explain the structure of an inter-

organizational network that is observed at only one point in time. 

In this article, we propose that exponential random graph models (ERG-models) may 

provide an answer to this question. These models are a new set of network analysis techniques 

that have been developed in the past few years in mathematical sociology (Snijders et al., 

2006; Robins et al., 2007; Snijders et al., 2010a) and are increasingly used by scholars across 

other scientific disciplines to explain the structure of networks (e.g. in biosciences: Saul and 
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Filkov, 2007; in life sciences: Fowler et al., 2009; in political science: Cranmer and 

Desmarais, 2011). The reason for their growing popularity is that ERG-models only require 

cross-sectional network data but allow one to simultaneously estimate the importance of 

determinants at the node, dyad, and structural network level. For this reason, we believe that 

they are useful to analyze the determinants of the structure of inter-organizational networks as 

well.  

To illustrate this, we confront ERG-models with one of the most frequently used 

methods so far to analyze inter-organizational network structure with only cross-sectional 

network data at hand: a Multiple Regression Quadratic Assignment Procedure, known as the 

MRQAP-model originally developed by Krackhardt (1987, 1988). We apply both models to 

explain the structure of the Dutch knowledge aviation network as observed in 2008. We show 

that the MRQAP-model has limited explanatory value as it can only account for determinants 

at the dyad level. Instead, with the ERG-model we find that determinants at the node level and 

structural network level also matter for the structure of the network. Furthermore, including 

determinants at the node and structural network level renders some determinants at the dyad 

level insignificant. 

The article is structured as follows. The second section gives an overview of 

determinants at the node, dyad and structural network level that may determine the structure 

of inter-organizational networks.The models used to analyze the structure of those networks, 

ERG-models and MRQAP-models, are presented in the third section. In section four, an 

example of an inter-organizational network is introduced, namely the technological 

knowledge network of the Dutch aviation industry. In section five, we apply both models to 

estimate and evaluate the determinants of its structure. Finally, a conclusion is presented in 

the sixth section.  

 

2. Determinants of the structure of inter-organizational networks 
The question what determinants explain the structure of inter-organizational networks has 

been picked up only recently. The theoretical accounts on this question are framed within a 

theory of inter-organizational network evolution (Glückler, 2007; Ter Wal and Boschma 

2009; Boschma and Frenken, 2010). The most elaborated theory on the formation of inter-

organizational networks in space is given by Glückler (2007). He argues that:  

“A theory of network evolution, thus, looks at the changes that every new tie produces 

in the existing structure and, conversely, at the impact that the structure imposes on the 
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formation of the next tie. Note that the unit of analysis is always dyadic tie formation, whereas 

the object of knowledge is network structure” (Glückler, 2007, p. 622) 

As he points out, central to understanding network formation is the interplay between 

network structure and tie creation between actors. Accordingly, there are several determinants 

that may impact tie creation and hence determine the structure of inter-organizational 

networks. Those are determinants at the (1) dyad (pair) level, (2) the node (organizational) 

level, and (3) structural network level. We elaborate below on the specific determinants at 

each of these levels. 

 First, the dyad level refers to the relation between two network actors. Ter Wal and 

Boschma (2009) and Boschma and Frenken (2010) argue that organizations with similar 

attributes are more likely to be tied. In sociology, this effect is known as the homophily effect 

(McPherson et al., 2001). In particular the proximity approach by Boschma (2005) has 

received a lot of attention lately. He argues that in the case of inter-organizational networks 

organizations are more likely to be tied when they are geographically, cognitively, socially, 

institutionally or organizationally proximate. Geographical proximity may matter because it 

facilitates frequent face-to-face contacts between organizations’ personnel, and hence ties 

between organizations are more easily established and maintained when organizations are co-

located. Accordingly, several studies find that geographical proximity between organizations 

has a positive impact on the chance of tie establishment (e.g. Maggioni et al., 2007; Ter Wal, 

2011). Cognitive proximity between organizations may also matter because organizations 

only learn from each another when they have some similar knowledge assets (Cohen and 

Levinthal, 1990; Nooteboom, 2000). Accordingly, organizations prefer to tie to organizations 

that have a knowledge base that is similar to their own because only then are they able to 

understand one another. 

Furthermore, at the dyad level, social proximity, institutional proximity and 

organizational proximity may matter for new tie creation. Social proximity refers to socially 

embedded ties between agents where a certain degree of trust exists between partners 

(Maskell and Malmberg, 1999; Storper and Venables, 2004). It may matter for new tie 

creation because ties between organizations are more easily established when managers of 

organizations trust one another. For example, Agrawal et al. (2006) find that firms are often 

tied when their employees have worked for a similar organization before and hence already 

know one another personally. In addition, institutional proximity may be important for tie 

creation. It refers to the extent to which organizations have related routines and incentive 

mechanisms (Metcalfe, 1994). If organizations have little institutional proximity they may 
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have a lower chance of being tied. For example, such may be the case for firms and 

universities because of their different incentives regarding knowledge creation and exchange 

(keeping new knowledge secret versus publishing new knowledge). Finally, organizational 

proximity, which refers to the degree of strategic interdependence between organizations, may 

matter for new tie creation. For example, if organizations are members of the same corporate 

group (e.g. part of the same parent company), they may be more likely to be tied (Balland, 

2010). Recent studies provide empirical evidence that all different proximity types set out 

above matter for the likelihood of organizationas to link (see, e.g., Balland, 2010; Broekel and 

Boschma, 2011).  

Second, the node level refers to characteristics of network actors (nodes). Particularly, 

it may be that the size of an organization is relevant in this respect. Large organizations may 

be more likely to attract new ties because they occupy a more prominent position than small 

organizations within an industry. Accordingly, large organizations are likely to have more ties 

in the network. This is supported by Boschma and Ter Wal (2007) who in their study on the 

knowledge network of footwear producers in Barletta find the size of organizations to matter 

for their network position, with larger organizations being more central.  

Third, the structural network level refers to characteristics of the entire network. 

Particularly for inter-organizational networks, it may be that new tie creation is affected by 

two determinants at the structural network level: triadic closure and multi-connectivity. 

Triadic closure implies that partners of partners are likely to become partners as well. As a 

result, the network consists of dense cliques of strongly interconnected actors. Such cliques 

are generally seen as a sign of social capital (Coleman, 1988) and hence enhance trust and 

willingness among actors to invest in mutual goals such as knowledge sharing. For this 

reason, it is likely that a tendency towards triadic closure between organizations and hence 

many triangles should be observed in an inter-organizational network (Ter Wal, 2011). 

Second, a tendency towards multi-connectivity might explain new tie creation between 

organizations. For instance, organizations may aim at connecting to other organizations in 

multiple ways because they want to decrease their dependency on a single link or channel. 

This implies that multiple independent paths are formed amongst two organizations, 

something that is known as the multi-connectivity hypothesis (Glückler, 2007). Empirical 

evidence for this hypothesis is found by Powell et al. (2005).  

To estimate the relative importance of the determinants at all the three levels above to 

explain new tie creation and hence the structure of a network, they need to be simultaneously 

incorporated in a model. With longitudinal data, this can be accomplished with a stochastic 
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actor-based network approach that models the change of a network from one state (point in 

time) to another as part of an iterative Markov chain process (the technical details are 

described in Holland and Leinhardt, 1977; Snijders, 1996, 2001; Snijders et al., 2010a). The 

models applying this approach are derived from mathematical sociology and have been 

applied very recently to inter-organizational networks as well (Balland 2011; Ter Wal, 2011). 

A limitation of using these models, however, is that they require longitudinal network 

data, which is often not available for inter-organizational networks. The reason for this is that 

network analysis requires data of high quality that cover all actors of a particular population. 

If already a small number of links is unobserved (missing data), the structure of the observed 

network may be very different from the real-world network and hence may not be a valid 

observation (Ter Wal and Boschma, 2009a). Obtaining high quality data is a major problem 

when collecting network information at one point in time, but becomes even more of a 

problem when network data is collected at multiple periods. If data is unavailable at any point 

in time for some of the actors, the networks cannot be compared over time. This is especially 

true when the network concerns informal ties between organizations (e.g. social contacts, 

asking for advice and so on). Those informal inter-organizational networks can realistically 

only be observed by directly observing (interviewing) organizations’ employees, who only 

have a limited memory of the past.  

 For this reason, in most instances data on certain inter-organizational networks can 

only be collected for one particular moment in time. This implies that stochastic actor-based 

models for longitudinal network data cannot be used. Instead, one has to apply a model that is 

ment for cross-sectional network data. In the next section we elaborate on two of those 

models. First, we introduce one of the most frequently used models so far: a Multiple 

Regression Quadratic Assignment Procedure Model (MRQAP-model). Subsequently, we 

compare it with and discuss the exponential random graph model (ERG-model).  

 

3. Analyzing the structure of networks: multiple regression 

quadratic assignment procedure models (MRQAP-models) versus 

exponential random graph models (ERG-models) 
In general, the basis for network analyses are relational variables. Relational variables 

describe the relationship between two nodes (i.e. organizations), i.e. the extent to which they 

are distinct, similar, or share certain characteristics. A particular value xij (i=1…n and j=1…n) 

indicates the relation between organization i and j with n being the number of observations. In 
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dealing with this type of data to estimate the determinants of the structure of networks, a 

number of models for cross-sectional network data have been applied so far, particularly 

binary logit models (e.g. Kaufman et al., 2003; Autant-Bernard et al., 2007), gravity models 

(e.g. Hoekman et al., 2009) and multiple regression quadratic assignment procedure models 

(e.g. Cantner and Graf, 2006; Broekel and Boschma, 2011). While these models focus on 

determinants of network structure, they can only account for determinants at the dyad level.  

We go deeper into this issue below by focusing on the multiple regression quadratic 

assignment procedure as an illustrative example. We compare it to the exponential random 

graph model, which we believe is a promising alternative since it can also take into account 

determinants at the node and structural level to explain the structure of a network that is 

observed at only one point in time. 

 

3.1 Multiple regression quadratic assignment procedure regression model 
While the multiple regression quadratic assignment procedure has been developed to deal 

with network data, it is based on a standard regression, which can be used to analyze the 

determinants of the structure of a network. However, relational data is characterized by 

variables that are not vectors but n*n (adjacency) matrices. To apply standard regressions, the 

matrices need to be vectorized such that the columns are stringed together to form one vector 

with n2 elements. Accordingly, the first elements (first row in the adjacency matrix) are the 

relations of the first organization to all others, next are those of the second organization, and 

so on.  

 In the regression underlying the MRQAP-model, the dependent variable is regressed 

with a standard logit model on the independent variables. For non-valued network data, the 

logit model is more appropirate than an ordinary least square approach because the dependent 

variable is a 0/1 variable with 1 indicating the existence of a link between two organizations, 

and 0 indicating its absence. However, network data are characterized by frequent 

row/column/block autocorrelation. For this reason, standard tools of inference are invalid 

(Krackhardt 1987). A solution to this is Krackhardt (1987) and Krackhardt (1988) propse the 

so-called Quadratic Assignment Procedure. Here, the estimated model statistics are compared 

to the distribution of such statistics resulting from large numbers of simultaneous row/column 

permutation of the considered variables (before the vectorization). In most applications the 

multicolinearity robust “semi-partialling plus” procedure by Dekker is applied (Dekker et. al. 

2003). Accordingly the MRQAP-model is a logit model that is able to incorporate network 
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variables and that can deal with the inherent interdependencies of network data. For these 

reasons they are frequently applied to explain the structure of inter-organizational networks 

(e.g. Cantner and Graf, 2006; Broekel and Boschma, 2011). 

However, the main shortcoming of the MRQAP-model is that it only allows one to 

identify determinants at the dyad level to explain the structure of a network. This implies that 

node level determinants cannot be incorporated into a MRQAP-model. Instead, one can try to 

translate node attributes into dyadic attributes. For instance, to test whether the size of 

organizations has a positive impact on the chance of being tied to other organizations, with a 

MRQAP-model, it can only be tested if the probability for two large organizations to be 

linked is higher than for two small organizations. This is distinct from an argument at the 

node-level, which could for instance imply that large organizations as such are more likely to 

have more links. The latter cannot be tested with a MRQAP-model . 

In addition, the MRQAP-model also cannot incorporate determinants at the structural 

network level. For instance, if one wishes to assess whether the existence of a tie between 

actors Pi and Pj is dependent on whether Pj has ties with actors Pk and Pl, a configuration 

needs to be included that involves more than two actors (Snijders and Bosker, 1999). Such a 

configuration, of which triadic closure is an example (partners of partners are more likely to 

become partners as well) is called a higher order network configuration and cannot be 

included in a MRQAP-model. Also, translating these determinants to the dyadic level is not 

possible. It would mean that the newly created dyadic variable is based on the dependent 

variable, which raises serious concerns regarding the independence assumption underlying the 

model. Accordingly, the unability to incorporate determinants at the structural network level 

is a major shortcoming of the MRQAP-model because tendencies towards triadic closure and 

multi-connectivity are frequently argued to be relevant to explain the structure of inter-

organizational networks. 

 

3.2 Exponential random graph models  
In response to the shortcomings of the MRQAP-model and other conventional regression 

approaches used to explain network the structure of networks, recent years have seen the 

development of exponential random graph models, known as ERG-models (Snijders et al., 

2006; Robins et al., 2007; Snijders et al., 2010a). These models allow one to include 

determinants at the node and structural network level as well. ERG-models are stochastic 

models that approach new tie creation as a time-continuous process. Specifically, an observed 
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network at one point in time is regarded as one particular realization out of a set of multiple 

hypothetical networks with similar characteristics. The aim of an ERG-model is to identify 

the determinants that maximize the probabilty of the emergence of a network with roughly the 

same characteristics as the structure of the observed network.  

The roots of the ERG-models date back to the early 1960s with the development of 

Bernoulli random graphs (Erdös and Renyi, 1959). These graphs were used to estimate 

configurations of individual ties between actors. They assume that ties between actors are 

independent of one another. As this proved to be an inaccurate assumption, in the early 1980s 

dyadic models, also called p1 models, were developed. These models assumed independence 

of dyads, which are relations between actors, rather than independence of actors themselves 

(Holland and Leinhardt, 1981). However, this dependence assumption was soon found to be 

unrealistic in many circumstances (Newman, 2003). Therefore, Frank and Strauss (1986) 

introduced the so-called Markov dependence, which assumes that a possible tie between two 

actors, for example between a and b, is contingent on other possible ties between other actors 

involving a and b. Accordingly, two ties are said to be conditionally dependent in Markov 

random graph models (Robins et al., 2007). These models serve as the basic building block 

for ERG-models that been developed until now (Snijders et al., 2010a). Acordingly, in an 

ERG-model the network is seen as being generated stochastically, whereby relational ties are 

created in ways that are shaped by the presence or absence other ties and actor attributes. 

Hence, a network is approached as being a self-organizing system of relational ties, whereby 

if one tie emerges or disappears in the simulated construction process, other neighboring ties 

may emerge or disappear as well (Robins et al., 2006). 

The general form of ERG-models is defined as follows (Robins et al., 2007): 
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where Pr(Y=y) is the probability that the network (Y) generated by an exponential random 

graph is identical to the observed network (y). ! is a normalizing constant to ensure that the 

equation is a proper probability distribution (summing up to 1). "a is the parameter 

corresponding to network configuration A and ga (y) represents the network statistic. Network 

configurations (A) can be determinants at the node level, dyad level and structural network 

level. Their corresponding network statistic obtain a value of 1 if a configuration is observed 

in network y and 0 if not.  
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The aim of solving the equation is to find parameters for the configurations that 

maximize the probability that the simulated random graphs by the ERG-model are identical to 

the observed network. This is done by a combination of estimation and simulation methods, 

which usually involve a Markov Chain Monte Carlo Maximum Likelihood Estimation 

procedure (Snijders, 2002; Van Duin et al., 2009). This procedure can be performed by 

modern computer software such as ‘Simulation Investigation for Empirical Network 

Analysis’, known as SIENA, or pnet and statnet (see Robins et al., 2007; Carter et al., 2008; 

Snijders et al., 2010b).  

 Because estimation and simulation techniques are used to establish parameter values 

in an ERG-model, it has to be tested whether the estimated parameters provide a good fit of 

the observed network. The first step is to assess whether the model is not degenerate. 

Degeneracy appears when an ERG-model is specified (i.e. the variables and / or the starting 

parameters of the simulation) that is unlikely to produce the observed network (Handcock 

2003a, 2003b; Hunter et al., 2008) .In this case, either the Maximum-Likelihood-Estimates do 

not exist and the model does not converge, or the estimates exist but they do not provide a 

good fit to the data. This implies that in the simulated networks a significant number of nodes 

are either completely linked to each other or totally unconnected (Austad and Friel, 2010). To 

determine whether the model is degenerate, one has to check the Degeneracy Value, which as 

a rule of thumb should be below 1 (Goodreau et al., 2009). Moreover,,the traces of the 

parameter values over the course of iteration should be relative stable and vary more or less 

around the mean value (see for a discussion, Goodreau et al., 2008).  

 Another step in checking whether the parameters predict the observed network well is 

to assess the model’s goodness of fit by comparing the structure of the simulated networks to 

the structure of the observed network. As Hunter et al. (2008) argue, this can be done by 

comparing the degree distribution, the distribution of edgewise shared partners (the number of 

links in which two organizations have exactly k partners in common, for each value of k), and 

the geodesic distribution (the number of pairs for which the shortest path between them is of 

length k, for each value of k). The more the distributions of the simulated networks are in line 

with these of the observed network, the more accurate and hence reliable the parameters of 

the ERG-model are.  

 Hence, whereas the use of simulation and estimation techniques implies that an ERG-

model is not as straightforward as conventional models, it provides one major advantage over 

them: it allows one to include determinants at the node and structural network level as well as 

determinations of network structure. With respect to the MRQAP-model, this is a key 
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advantage as it may well be that initially determinants at the dyad level are identified as being 

relevent whereas it are in fact effects of determinants at the node level or structural network 

level. For this reason, ERG-models are increasingly used outside mathematical sociology, for 

example in biosciences to explain the structure of cell networks (Saul and Filkov, 2007), in 

life sciences to model genetic variation in human social networks (see Fowler et al., 2009) or 

in political science to analyze the structure of networks of political international conflicts 

(Cranmer and Desmarais, 2011). However, so far they have not been used to explain the 

structure of inter-organizational networks. To illustrate their usefulness in this respect as well, 

in the next section we will apply an ERG-model to an inter-organizational network.  

 

4. Empirical application: determinants of the structure of the 

knowledge network in the Dutch aviation industry  
This section applies an ERG-model to explain the structure of the Dutch aviation knowledge 

network as observed in 2008 and compares its results to those of a MRQAP-model. As 

pointed out earlier, in particular the importance of proximity at the dyad level has drawn a lot 

of attention recently (see, Boschma, 2005, Boschma and Frenken, 2010). We follow this 

literature and analyze the impact of different types of proximities on the structure of the 

network. In a common fashion, we conceptualize the proximities as dyad-level determinants 

(i.e. describing the relation between two organizations) and estimate their impact with a 

MRQAP-model. Subsequently, we confront these results with a ERG-model where we also 

include determinants at the node level and structural network level, both of which may 

provide additional or alternative explanations for the structure of the network.   

 

4.1 Data 
The data we use concern network data on technological knowledge sharing between Dutch 

aviation organizations. These data have been gathered by means of semi-structured interviews 

held in 2008 and 2009 with members of the Netherlands Aerospace Group (NAG), whose 

members account for about 95% of total turnover generated by Dutch aviation organizations 

(NAG, 2008). The interviews focused on profit and non-profit organizations that are activie in 

aviation related manufacturing and/or engineering since only for those organizations is 

innovation and the exchange of technological knowledge likely to be of utmost importance. 

Of the 64 organizations falling into this category, 59 were willing to participate, hence the 

response rate is 93% and thus we have network data of almost all actors in the population, 
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which is a necessary condition in order to carry out a sound network analysis (Wasserman and 

Faust, 1994). By means of these relational data, we can construct and analyze the structure of 

the complete network of technological knowledge sharing of Dutch aviation organizations. 

Figure 1 shows the technological knowledge network of the Dutch aviation industry, 

of which the structure will be analyzed in the remainder of the paper. The organizations were 

asked to indicate with which other aviation organizations they share technological knowledge, 

and the links in the network represent the knowledge ties that follow from this. As we assume 

that knowledge exchange is a mutual process between two organizations, all links are 

undirected (i.e. going both ways). Some descriptives of the network are presented in Table 1. 

 

<INSERT FIGURE 1 ABOUT HERE> 

<INSERT TABLE 1 ABOUT HERE> 

 

4.2 Variables 
The variables that we use to explain the structure of the network relate to the node, dyad, and 

structural network level. As set out before, variables at the node level and structural network 

level cannot be incorporated in a MRQAP-model and hence are only included in the ERG-

model. 

 

4.2.1 Dyad level: social proximity, institutional proximity, geographical proximity, 

cognitive proximity 

At the dyad level we focus on four of the different types of proximities as set out by Boschma 

(2005) which may matter for the structure of inter-organizational networks: social, 

institutional, geographical and cognitive proximity. We do not measure organizational 

proximity because we lack data on this dimension. Below we describe how each of them have 

been operationalized. The proximity variables are included in both the MRQAP-model and 

the ERG-model. 

 Social proximity (SOCPROX): to investigate whether social proximity between 

organizations matters for tie creation, a dyad-level variable SOCPROX is created. It amounts 

to a value of 1 if members of the top management of two organizations are former employees 

of Fokker B.V., and a value of 0 if they are not. The motivation for this is that Fokker B.V. 

has been the dominant firm in the Dutch aviation industry until 1996 with (at its peak) more 

than 13,000 employees. Its bancruptcy in 1996 lead to massive job cuts and a reformation of 
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the Dutch aviation industry. However, many of its old employees got employed in new firms 

or started their own businesses. Broekel and Boschma (2011) show organizations are more 

likely to be linked if its employees have a shared past in Fokker .They suspect, “old boys” 

networks might still be in place, which give exclusive knowledge sharing opportunities. 

Accordingly, it is expected that a shared past in Fokker leads to a higher chance of being tied. 

 Institutional proximity (INSTPROX): we approximate institutional proximity by 

differentiating between profit organizations (firms) and non-profit organizations (universities, 

research institutes, associations, and trade organizations) (see Balland, 2011). With few 

exceptions, these non-profit organizations are highly connected in the technological 

knowledge network, see Figure 1. Moreover, they are also frequently named by firms as 

important technological knowledge sources. A dyadic dichotomous variable (INSTPROX) is 

constructed that has a value of 1 when both organizations are profit organizations (firms) or if 

both are non-profit organizations, and a value of 0 when otherwise. It is expected that 

institutional proximity between organizations increases the chance of being tied. 

 Geographical proximity (GEOGPROX): to assess the effect of geographical proximity, 

we first calculate the geographical distance in kilometers between two organizations, which 

results in a continuous variable. While other studies use travel time (e.g. Ejermo and 

Karlsson, 2006), the spatial scale of the network of Dutch aviation industry is rather small, 

which is why the use of travel distances is unlikely to change the results. Then, for 

computational reasons, the variable is transformed into a dyadic categorical variable. This 

implies that all distances below fifty kilometers obtain a value of 10, distances between 50 

and 100 kilometers obtain a value of 50, and larger distances obtain a value of 100. 

Accordingly, the variable GEOPROX differentiates between local, regional, and national 

“distances”.1 It is expected that the more geographical proximity between organizations, the 

higher the chance of being tied. 

 Cognitive proximity (COGPROX): we refer to cognitive proximity as to whether two 

organizations’ knowledge bases are technologically similar or not. For its measurement, we 

rely on the technology classes that are assigned by the Netherlands Aerospace Group (NAG). 

The NAG defines 15 technologies of which 13 are relevant for the organizations considered in 

this study. The technological fields and the according number of organizations are listed in 

Table 2. In case the interviewed organization is not a member of the NAG, the profile was 

created on the basis of the organization’s webpage. The variable COGPROX is defined 

                                                
1 We also tested a range of alternative definitions of local, regional, and national distances but the results proved 
to be fairly robust.  
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dichotomously, with a value of 1 if both organizations are active in at least one identical 

technology, and 0 otherwise. It is expected that being cognitively proximate leads to a higher 

chance of being tied. 

The dyadic covariates are included in the ERG-model by: 

ijx !
i, j" i! = j!{ }   (eq. 3) 

where the indicator function { }!! ji ="  is 1 if the condition i! = j!{ }  is satisfied, and 0 if 

this is not the case. Thus, organizations with a similar attribute gain a score of one. 

 

   <INSERT TABLE 2 ABOUT HERE> 

 

4.2.2 Node level: Organization size 

As set out earlier, at the node level the size of organizations is likely to matter for the structure 

of a network. Large organizations may be more likely to attract new ties because they occupy 

a more prominent position in the industry than small organizations, and hence large 

organizations are likely to have more ties. We define the variable SIZE by the organizations’ 

number of employees.  

In the ERG-model, individual covariates are included as follows: 

ixi! + i!  (eq. 2) 

where i represents the actor in the network !  and x represents the attribute in the network. If a 

positive parameter is observed for this effect, it means that actor i that scores high on x has a 

higher chance of being tied to other actor. Accordingly, a positive correlation exists between x 

(the actor attribute) and the number of ties.  

Because the MRQAP-model cannot incorporate variables at the node level, SIZE is 

only included in the ERG-model. Instead, for the MRQAP-model SIZE is transformed into a 

dyadic variable called ORGASIZE, which is estimated as the sum of two organizations’ 

number of employees. 

 

4.2.3 Structural network level: Triadic closure and multi-connectivity 

We define two variables that relate to the structural network level, namely triadic closure and 

multi-connectivity, which, as set out earlier, are both likely to matter for the structure of inter-

organizational networks. Triadic closure refers to the tendency of organizations’ partners 

becoming partners as well. It may be beneficial because it enhances trust and willingness 
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among actors to invest in mutual goals such as knowledge sharing. Multi-connectivity refers 

to the tendency of organizations to establish multiple paths amongst each other. It can yield 

positive effects as multiple paths to other organizations decreases the dependency on a single 

link or channel. Both of them are higher order network configurations because they involve 

more than two actors in the network, and hence they can only be included in the ERG-model. 

 Triadic closure (TRIADCLOS) is captured by the geometrically weighted edgewise 

shared partner statistic, known as the GWESP-statistic (Snijders et al., 2006; Hunter et al., 

2008). It is formulated as follows:  

v(y;! ) = e! 1! (1! e!! )i{ }
i=1

n!2

" #$i (y)  (eq. 4) 

where, as E denotes the number of edges (existing ties),   is the edgewise shared 

partner statistics that indicates the number of edges that share edges with a certain number of 

other nodes. Accordingly, it represents the number of unordered pairs (j,k) where                 

and j and k having exactly i neighbours in common in network y. In a nutshell, it measures the 

number of triangles in the network while taking into account the number of edges that are 

involved in multiple triangles (multimodality) and hence may have the same neighbours in 

multiple triangles (the technicalities of the statistic are explained in greater detail in Hunter et 

al., 2008). If for this statistic a positive parameter is found, it means that there is a tendency 

towards triadic closure in tie creation in the network. 
 

Multi-connectivity (MULTICON) is captured by the alternating independent two-path 

statistic as introduced by Snijders et al. (2006). It is formulated as follows:
 

!
< "#

"
$
%

"&

"
'
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+
,
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. //
ji

L ij

c
2111

0
 (eq. 5) 

where for some value c, L ij2  is the number of two-paths from i to j (through another node h) 

that is expressed as follows:  

hjh ihij xxL !=2   (eq. 6) 

Hence, the alternating independent two-path statistic (MULTICON) measures how many 

partners every pair of nodes shares. Because it does so for pairs of nodes that are not linked 

1=jkx

)(yi!"
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themselves, it is a lower order parameter to the TRIADCLOS-statistic. If the value on this 

statistic is positive, it means that there is a tendency towards creating multiple paths among 

nodes in the network. The result implies that nodes are better able to reach one another 

through a greater variety of other nodes, and hence a structural tendency towards multi-

connectivity is visible in tie creation in the network. 

 

4.2.4 Control variables 

Because the organizations in our sample are heterogeneous, we use a number of control 

variables that should capture this heterogeneity. First, as private and profit organizations may 

show distinct cooperation behavior, a node-level variable is created that represents non-profit 

organizations (NON-PROFIT). Similarly, we define a node-level variable that represent firms 

with a background in Fokker (FOKKER).  

 Second, we control for the fact that some organizations are more focused on the aviation 

industry than others. Because of their shared focus, these organizations may be more likely to 

be linked in the knowledge network of the industry. This effect is taken into account by the 

dyadic variable AVIASIM, which indicates whether two organizations are particularly active 

in the aviation industry or not. For firms, this implies that the share of their turnover attributed 

to aviation is above the average of all firms in the sample. In case of other organizations, we 

define them to be “dedicated” to aviation if their focus is mainly on this sector, for which we 

primarily rely on information derived from the organizations’ websites. With this information 

at hand, the dichotomous variable AVIASIM is created that has a value of 1 if two 

organizations are dedicated towards aviation and a value of 0 otherwise.  

 Third, organizations may differ with respect to their openness towards external 

knowledge. Two organizations that perceive external knowledge as being highly relevant may 

be more likely to be linked than two organizations that rely more on internal knowledge. 

Therefore, the variable EXTERNALSIM defined, which has a value of 1 if the relative 

importance that organizations i and j attribute to external knowledge is above average, and a 

value of 0 if not. This information is collected by the following question we asked during the 

interviews: “Please indicate in terms of percentage the relative importance of: a) knowledge 

acquired inside the company; b) knowledge acquired outside the company (adding up to 

100%)”. 

 

5. Results  
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We first show the results of the MRQAP model that only includes the seven variables at the 

dyadic level. Then, we present the results of the ERG-model. We show that determinants at 

the node level and structural network level also explain part of the structure of the knowledge 

network in the Dutch aviation industry.  
 
5.1 Multiple regression quadratic assignment procedure model (MRQAP-

model) 
The results of the MRQAP-model are shown in Table 3. Given that the MRQAP-model is 

based on a standard logistic regression, the interpretation of the results is straightforward. Of 

the four types of proximities, only two are found to increase the probability of tie creation. 

Institutional proximity as well as geographic proximity have a positive impact on the chance 

of organizations exchanging knowledge. The large coefficient of INSTPROX reflects the high 

importance of this variable for the model, implying that it is particularly institutional 

proximity that determines tie creation. In other words, organizations with the same 

institutional background (non-profit vs. profit-oriented) are more likely to link to the same 

kind than connecting to organizations that operate in a different institutional set-up. This 

particularly regards non-profit organizations that tend to be strongly linked with each other 

(69 links). In contrast, firms rarely connect with other firms (18 links). Cognitive proximity is 

insignificant. The same applies to social proximity. In addition, ORGASIZE has a significant 

positive coefficient, which indicates that larger organizations tend to be linked more 

frequently with each other. In sum, the results appear to be in line with our expectations. Note 

however, that we cannot include node or structural network level determinants in the 

MRQAP-model. In the next part we present the results of the ERG-model to see whether the 

consideration of these influences the results. 

 

<INSERT TABLE 3 ABOUT HERE> 

 

5.2 Exponential random graph model (ERG-model)  
Table 4 shows the results of an ERG-model with the same variables as the MRQAP-model 

(the dyad-level determinants only). The results are very different from the MRQAP-model in 

that all the coefficients are negative. However, although the model is not degenerate, the 

goodness of fit statistics of the ERG-model (Figure 4 of the Appendix) show that these 



 18 

coefficients are unreliable as the fitted models’ characteristics (boxplots and dashed lines) 

depart strongly from the actual distribution in the original network (solid line). The predicted 

degree distributions, edgewise shared partners distributions and geodesic distributions do not 

match the distributions in the observed network, which means that the model fits poorly. 

Moreover, the parameter traces (Figure 2 in the Appendix) reveal that they vary strongly (in 

particular the parameter of GEOPROX). Accordingly, including only the seven dyadic 

variables in the ERG-model yields unreliable coefficients. This indicates that other variables 

might be better in explaining the structure of the Dutch aviation knowledge network. Hence, 

whereas from the MRQAP-model we can derive statistical associations between dyad level 

determinants and the chance of being tied, we learn from the ERG-model that when the same 

variables are also simulated to explain the structure of the network, they turn out to be 

inaccurate. 

 

<INSERT TABLE 4 ABOUT HERE> 

 

 Table 5 shows the results of the an ERG-model that also includes determinants at the 

node level and structural network level. The reported coefficients represent the model that is 

(1) not degenerate (2) shows stable and quite narrow parameter traces, and (3) provides the 

best goodness-of-fit statistics (matching degree, edgewise shared partners and geodesic 

distributions) of all (theoretically relevant) variable combinations possible with the available 

data. As such, some determinants that had been included initially are not reported in the final 

model in Table 5. Particularly, the results of the multi-connectivity variable (MULTICON) 

are not reported because its inclusion always causes degenerate models. The same applies to 

three of the proximity variables, namely geographical proximity (GEOGPROX), cognitive 

proximity (COGPROX) and institutional proximity (INSTPROX) and to two of the control 

variables, namely the node-level variable FOKKER and the dyadic variable 

EXTERNALSIM. This means that all of these variables are insignificant drivers of the 

structure of the Dutch aviation network and their inclusion in the model yields degenerate 

models in most instances.  

 

<INSERT TABLE 5 ABOUT HERE> 

  

Hence, with the exclusion of the variables above, the model as reported in Table 5 has 

a degeneracy value that is well below 1 and the model fits the observed network well. To 
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increase the fit of the model, two structural network configurations have been added to it, 

namely EDGES and ISOLATES. EDGES adds one statistic to the network, which equals the 

number of links in the network, and ISOLATES accounts for the share of isolates in the 

original network. As for the whole model’s fit, the traces of the parameter values over the 

course of the iteration process show the required pattern. As shown in Figure 5 and Figure 6, 

none of them follows a trend away from the mean, and show more or less normal 

distributions. In other words, the values vary more or less stochastically around the mean, 

which implies a satisfactory convergence of the model (see for a discussion, Goodreau et al., 

2008). Furthermore, the goodness of fit plots (Figure 7) reveal a much better fit than that of 

the model resembling the MRQAP-model. This is also backed by the lower AIC and BIC 

values (Akaike and Schwartz criteria), which are two commonly used goodness of fit 

measures.  

 The results of the ERG-model in Table 5 are clearly different from the MRQAP-model 

and can be interpreted as follows. First, non-profit organizations are more likely to be tied to 

other organizations than profit organizations as the node-level variable NON-PROFIT is 

positive and significant. This meets our expectations and is in line with the visual inspection 

of the network in Figure 1 which shows that non-profit organizations generally have more 

links.  

At the dyad level, AVIASIM and SOCPROX turn out to be significant and positive. 

Hence, the degree of engagement of organizations in this industry matters for the structure of 

the network (AVIASIM): two organizations that are above average active in the aviation 

industry are much more likely to share technological knowledge than two organizations that 

are less focused this industry. Also, social proximity matters for the structure of the Dutch 

aviation network. As such, if members of the top management of two organizations are 

former employees of Fokker, these organizations are more likely to be linked to exchange 

knowledge. 

 At the structural network level, the TRIADCLOS-variable is positive and significant, 

which implies that triadic closure is a driver of the structure of the network. This confirms the 

visual inspection of the network in Figure 1 as it shows the existence of a relatively large 

number of triangles. Hence, partners of partners are more likely to become partners as well. 

This structural network determinant of the structure of the network could not be accounted for 

with the MRQAP-model.  

 Concluding, our empirical example underlines the two major advantages of the ERG-

model. First, we find that some dyadic determinants that are identified as being important in 
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the MRQAP-model turn out to be unimportant when included into the simulation process of 

the ERG-model. Second, we show that determinants at the node-level (in this case: being a 

non-profit organization) and determinants at the structural network level (in this case: triadic 

closure) also matter for the structure of the network, something which cannot be accounted for 

with the MRQAP-model.  

 

6. Conclusion 
The aim of this article is to introduce exponential random graph models (ERG-models) as 

promising tools to explain the structure of inter-organizational networks that are observable at 

only one point in time. Their main advantage is that they are able to include explanatory 

determinants of tie creation at the node, dyad, and structural network level to explain the 

structure of a network. For this reason, ERG-models have grown increasingly popular across 

scientific disciplines in recent years but they have not been used so far to analyze the 

relevance of different forms of proximity for the structure of inter-organizational networks. 

The concept of proximity is dyadic in nature and therefore it puts the dyadic level in the 

focus. We believe however that ERG-models are particularly useful for evaluating the relative 

importance of different types of proximity as they allow not only for comparisons with other 

dyadic factors but also with determinants at the node and structural network level. 

 To illustrate this, we apply an ERG-model to explain the structure of the Dutch 

aviation knowledge network.. As many other networks, this is an example of a network of 

which it is almost unfeasible to collect network data at more than one point in time. 

Accordingly, to explain its structure, the empirical assessment has to deal with cross-sectional 

network data. In doing so, we compare the ERG-model to the most conventional model for 

cross-sectional network data used so far: a multiple regression coupled with the quadratic 

assignment procedure for statistical inference (MRQAP-model). We show that the MRQAP-

model explains only part of the structure of the Dutch aviation knowledge network as it can 

only handle determinants at the dyadic level. When applying an ERG-model, it is found that 

determinants at the node level (being a non-profit organization) and structural network level 

(triadic closure) are relevant as well. Moreover, it is shown that controlling for these renders 

some determinants at the dyad level insignificant. 

This is however not to say that ERG-models are without any drawbacks. A major issue 

of applying an ERG-model so far is the cumbersom process of finding the model that best fits 

the observed network if the theoretical framework allows one for some variance in variable 
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selection and specification. While the goodness of fit statistics provide some indications about 

the choice of variables, a lot of trial and error in recombining variables is involved in practical 

application. Nevertheless, because of their ability to incorporate determinants at all three 

levels (node, dyad, structural network) of tie creation to model the structure of a network that 

is observed at only one point in time, we believe that ERG-models have promising potential 

for future studies on the structure of inter-organizational networks. 
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Table 1: Network descriptives, technological knowledge network 

of Dutch aviation organizations, 2008 

 
Attributes Value 
Nodes 59 
Links 146 
Density 0.085 
Max. Component 47 
Isolates 12 
Degree Centralization 0.411 
Between. Centralization 0.213 
Mean degree 9.89 
Average distance in main component 2.122 

Table 2: NAG technological fields 
Technological field according to NAG Number of firms 
Airframe subsystems & components 17 
Interiors 10 
Propulsion & engine components 15 
Auxiliary systems 5 
Avionics, simulation & control 12 
Education & training 13 
General services 3 
Engineering & R&D 31 
Space subsystems & components 15 
Maintenance & overhaul 11 
Spare parts 10 
Special materials. 10 
Consultancy 5 
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Table 3: QAP-model results  
 Estimate Exp(b) Pr(<=b) Pr(>=b) Pr(>=|b|) 
(intercept) -6.09*** 0.00 0.00 1.00 0.00 
ORGASIZE 0.08*** 1.08 1.00 0.00 0.00 
SOCPROX -0.36 0.70 0.33 0.67 0.61 
OPEN 0.52 1.69 0.86 0.15 0.30 
AVIASIM 0.34 1.41 0.76 0.24 0.52 
INSTPROX 1.19*** 3.27 1.00 0.00 0.00 
COGPROX 0.43 1.53 0.85 0.15 0.28 
GEOPROX -0.01** 0.99 0.05 0.95 0.10 
Chi-Square 1501.46 8 degrees of freedom 
AIC 886.48     
BIC 930.04     
Pseudo-R2 Measures      
(Dn-Dr)/(Dn-Dr+dfn) 0.47     
(Dn-Dr)/Dn 0.633     

* Significant at 90%; **Significant at 95%; *** Significant at 99% 

 
 
Table 4: Results ERG-model resembling the QAP-model 

 
Variable Estimate Std. Error MCMC s.e. p-value  
ORGASIZE -0.008 185.499 368000.000 1.000  
EXTERNALSIM -0.373 0.211 0.219 0.077 . 
AVIASIM -0.827 0.211 2.639 <1e-04 *** 
SOCPROX -0.329 0.420 1.498 0.434  
INSTPROX -0.705 0.151 2.284 <1e-04 *** 
COGPROX -0.004 185.498 368000.000 1.000  
GEOPROX -0.025 0.002 0.186 <1e-04 *** 
AIC 1137.7     
BIC 1175.8     
Degeneracy value 0.167     
Log likelihood -561.853     

* Significant at 90%; **Significant at 95%; *** Significant at 99% 
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Table 5: ERG-model with node level and structural network level variables 
Variables Estimate Str. Error MCMC s.e. p-value  
NON-PROFIT 1.678 0.195 0.023 < 1e-04 *** 
SOCPROX 1.508 0.415 0.068 0.003 *** 
AVIASIM 0.775 0.232 0.022 0.001 *** 
EDGES -5.021 0.332 0.045 < 1e-04 *** 
ISOLATES 1.084 0.518 0.139 0.037 * 
TRIADCLOS 0.805 0.198 0.044 < 1e-04 *** 
AIC 
BIC 

754.86 
782.08     

Degeneracy value 0.524     
Log likelihood -372.492     

* Significant at 90%; **Significant at 95%; *** Significant at 99% 
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Figure 1: Technological knowledge network of Dutch aviation organizations, 2008 

 
 

 



 30 

 
 
 

!"#$%&'()'*++,-&..'+/'/"0'12*34+,&5'%&.&465"-#'07&'89:'4+,&5';<=!

 



 31 

 
!"#$%&'()'*++,-&..'+/'/"0'12*34+,&5'%&.&465"-#'07&'89:'4+,&5';6='

 
 

 



 32 

 
!"#$%&'>)'*++,-&..'+/'/"0'12*34+,&5'%&.&465"-#'07&'89:'4+,&5!

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 33 

 
 
!"#$%&'?)'*++,-&..'+/'/"0'12*34+,&5'@"07'-+,&'5&A&5'<-,'.0%$B0$%<5'-&0@+%C'5&A&5'A<%"<65&.'
;<=!

!
 



 34 

 
!"#$%&'?)'*++,-&..'+/'/"0'12*34+,&5'@"07'-+,&'5&A&5'<-,'.0%$B0$%<5'-&0@+%C'5&A&5'A<%"<65&.'
;6=!

!
 



 35 

 
!"#$%&'D)'*++,-&..'+/'/"0'12*34+,&5'@"07'-+,&'5&A&5'<-,'.0%$B0$%<5'-&0@+%C'5&A&5'A<%"<65&.'!

!
 
 
 
 
 
 
 
 


