
http://econ.geo.uu.nl/peeg/peeg.html 
 

 

 

 

 

Papers in Evolutionary Economic Geography 

 

# 09.08  
 

 

 

 

 

 

 

 

 

 

Regional Dynamics of Innovation 

Investigating the Co-Evolution of Patents, R&D, and Employment 

 

 
Matthias Buerger & Tom Broekel & Alex Coad 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



REGIONAL DYNAMICS OF INNOVATION 
INVESTIGATING THE CO-EVOLUTION OF PATENTS, R&D, AND EMPLOYMENT 

 

Matthias Buerger
*
 

Friedrich-Schiller-University Jena  

RTG 1411 – The Economics of Innovative Change 

 

Tom Broekel 
Department of Economic Geography, 

Faculty of Geosciences, Utrecht University  

 

Alex Coad 
Max Planck Institute of Economics, Jena 

Centre d’Economie de la Sorbonne, Univ. Paris 1 

 

 

 

 

 

Abstract. We investigate the lead-lag relationship between growth of patent applications, 

growth of R&D, and growth of total sectoral employment for 270 German labour market 

regions over the period 1999-2005. Our unique panel dataset includes information on four 

two-digit industries, namely Chemistry, Transport equipment, Medical & Optical 

Equipment as well as Electrics & Electronics. The results obtained from a vector 

autoregression model show that an increased innovative activity is associated with 

subsequent growth of employment in the Medical & Optical Equipment industry as well as 

in the Electrics & Electronics sector. With respect to the latter growth of patent applications 

is also associated with subsequent growth of R&D employees indicating either a ‘success-

breeds-success’ story or benefits due to agglomeration economies at the level of the region. 

However we do not find those effects for the other industries due to their idiosyncratic 

innovation and patenting behaviour. 
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I   Introduction 

Innovation is generally considered the most important source of long-term economic growth. 

However the public often shows a rather schizophrenic attitude towards technological change 

(e.g., Van Reenen, 1997). Especially for policy makers it is particular important to know about 

the interdependencies between technological advancement and growth. However this 

relationship is a rather complex one. While productivity gains may be accompanied by losses in 

jobs, innovation also has the potential to stimulate demand. 

During the last two decades the regional dimension of innovation has gained importance in 

both, scientific debate and innovation policy (see, e.g., Audretsch, 1998; Feldman, 1994; Jaffe, 

1989; Krugman, 1991). Particular attention was given to geographically bounded knowledge 

spillovers (e.g., Acs et al., 1992; Jaffe et al., 1993) and the spatial concentration of industries 

and innovative activity as such (e.g., Audretsch & Feldman, 1996; Brenner, 2004, 2006; 

Brenner & Gildner, 2006; Porter, 1990). The influence of local factors on regional 

innovativeness has been addressed by the concept of a geographically defined ‘technological 

infrastructure’ (Feldman and Florida, 1994). Moreover the effect of industrial concentration on 

regional innovative activity and growth has been subject to a heated debate, starting with the 

seminal work of Glaeser et al. (1992). The combination of the geographic dimension and the 

systemic nature of the innovation process itself led to the emergence of a new strand of 

research, viz. the regional innovation systems approach (e.g., Cooke, 2001; Doloreux, 2002). 

Such a system may be seen as an agglomeration or regional cluster but also encompasses the 

supportive institutions and organisations within those (Asheim & Gertler, 2006; Asheim & 

Isaksen, 2002). 

With respect to the employment effects of innovation the regional dimension has been 

somewhat neglected in the literature though. The interdependencies between innovation and 

employment have been subject to research at the firm level (e.g. Smolny, 1998; Greenan & 

Guellec, 2000; Coad & Rao, 2007) as well as at the industry level (e.g. Antonucci & Pianta, 

2002; Evangelista & Savona, 2003). However, very little is known about how the firm level 

relates to the regional level. Thus the focus of this paper is on the regional co-evolution of the 

three statistical series growth of employment, growth of R&D and growth of patent 

applications.  

We trace the respective variables over time to reveal interdependencies. A unique panel dataset 

including information on total sectoral employment, R&D employees, and patent applications is 

used to gain new insights into the dynamics of innovation at a regional level. The dataset tracks 

the 270 German labour market regions over the period 1999-2005. In order to exploit this 

dataset properly we employ ’reduced-form’ vector autoregressions (VAR), which has been 
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successfully used in firm level studies (see Coad, 2007). In adopting this methodology in 

regional economics we intend to provide a description of the interrelated processes regarding 

the growth rates of the three variables. We aim at presenting evidence on how regions develop 

over time. Notice however that we do not claim to resolve any issues of causality. 

The remainder of the paper is structured as follows. The next section provides the theoretical 

underpinnings for this study at both, the level of the firm and the regional level. 

Interdependencies between our variables are presented along with some propositions concerning 

their co-evolutionary dynamics. Section three highlights some particularities about the 

industries under consideration. The methodology of our empirical analysis is put forward in 

section four. Section five introduces the dataset we draw on. The results obtained by ‘reduced 

form’ vector autoregressions are presented and discussed in section 6. In section 7 we conclude 

the paper and offer some critical discussion. 

II   Theoretical considerations 

Innovation at the firm level 

In the analysis of the employment effects of innovation it is convenient and common practice to 

distinguish between product innovations and process innovations. The former basically 

influence the demand function. Instead process innovations focus on improvements of the 

production process itself, which yields a direct effect on factor productivity and unit costs. 

Accordingly the employment effects of both types of innovation are likely to go into different 

directions. 

Product innovations are usually viewed as employment enhancing at the firm level since new 

products create new demand that is eventually associated with increasing labour. This effect will 

however be reduced if the new product substitutes other products of the firm (Harrison et al., 

2005; Van Reenen, 1997), commonly known as cannibalisation. The matter becomes more 

complicated at the aggregate (regional) level as will be shown in the next section. Moreover, 

product innovations may also have productivity effects, if affecting production methods and 

input mix. This can lead to changes in the labour requirements as well. Nevertheless the positive 

compensation effects due to an increased demand are typically regarded the most important 

effects (Harrison et al., 2005). With respect to a single firm the impact of this effect is 

dependant on the nature of competition and the time competitors need to catch up (Harrison et 

al., 2005). 

Regarding processes it is rather straightforward to assume that innovations will reduce the need 

for most of the required factors at a given output level, which includes labour. A first intuition 
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therefore is that process innovations reduce employment. This is however conditional on the 

nature of the particular innovation, whether it is rather labour or capital augmenting, and on the 

competition the firm is exposed to. Furthermore a reduction in costs per unit eventually leads to 

a lower price, which in turn stimulates demand again inducing higher output and employment 

(Harrison et al., 2005). Other compensation mechanisms may gain importance as well. We 

refrain from a comprehensive discussion at this point but see Spiezia & Vivarelli (2000) for an 

overview. 

Consequently the sign and magnitude of the firm level employment effects of innovations are 

not clear a priori and have to be determined empirically, which has stimulated a notable number 

of studies. Doms et al. (1995) explore survey data on U.S. manufacturing plants and find that 

the use of advanced manufacturing technologies (corresponding to process innovation) 

influences plant-level employment growth in a positive way. Hall (1987, p. 603) in analyzing 

panel data on the publicly traded firms in the US manufacturing sector observes that “a dollar of 

R & D expenditures is a more important predictor of growth in the immediate future than is a 

dollar of expenditure on physical capital”. This finding proves to be robust across size classes. 

In contrast Coad & Rao (2007) by investigating patent data on four manufacturing industries 

report a rather small effect of innovation that is more positive for large firms compared to small 

ones. Evangelista & Savona (2003) instead provide evidence for a negative overall impact of 

innovation on employment in the Italian services sector. 

Lachenmaier and Rottmann (2007) draw on a panel data set of German manufacturing firms 

covering a period of more than 20 years. Their results reveal positive employment effects of 

innovation in general which are robust to several specifications with the impact of process 

innovation being higher than that of product innovation. The respective coefficients are 

significant mostly for the first or second lag. Similarly Smolny (1998) finds positive effects for 

both product and process innovation for West German manufacturing firms. While Van Reenen 

(1997) also reports positive effects of new products for UK manufacturing firms the coefficients 

for process innovations are insignificant and small (often negative). Regarding the 

manufacturing sector in four European countries Harrison et al. (2005) show that product 

innovation is associated with employment growth. Moreover they report that the tendency of 

process innovation to displace employment is partly counteracted by compensation 

mechanisms. At the same time the authors find less evidence of displacement effects in the 

service sector. Summarizing the findings from the literature we may conclude that while the 

positive effect of product innovation seems to be clear the results regarding new processes are 

less harmonious (see also Greenan & Guellec, 2000; Peters, 2004; Smolny, 2002). 
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Our innovation indicator (patent applications) captures mainly product innovation (see e.g. 

Arundel & Kabla, 1998). According to the above mentioned we assume an overall positive 

relationship between growth of patent applications and growth in total sectoral employment 

according to the respective firm level effects. Considering the results of Lachenmaier and 

Rottmann (2007) we reckon with significant coefficients for the first or second lag of growth of 

patent applications.  

Though there is no need for firms to hire more R&D personnel in order to satisfy the additional 

demand created by new products there is still a firm level rationale for a positive correlation 

between growth of patent applications and subsequent R&D growth. If innovation leads to firm 

growth as described above firms may use parts of the profits to further invest in R&D. Firms 

might also try to keep the share of R&D employees on total employment stable because of 

various reasons, e.g. to ensure future growth or to keep an innovative image. In this case we 

expect to find a positive correlation between growth of patent applications and growth of R&D 

with a somewhat longer lead-lag relationship than between the former and growth of total 

employment. This corresponds to a 'success breeds success' hypothesis. 

Straightforwardly we anticipate a positive correlation between growth in R&D employees and 

later growth in patent applications. In order to create innovations firms depend on creative 

minds. Accordingly R&D employees must be considered a necessary input into the process of 

knowledge generation (Henderson et al., 1995; Broekel & Brenner, 2007). We therefore regard 

them as the most important element within the innovative process and expect growth in this 

variable to be associated with subsequent growth of patent applications. Since the development 

of new products is a time consuming process we assume a rather long lead-lag relationship 

depending on sectoral specificities.  

Dynamics in the region 

Since the focus of this paper is the relationship between innovation, total employment, and 

R&D growth at the regional level, we need to relate the findings from the empirical literature 

presented above to the aggregate level. Of course we cannot get to the regional impact of 

innovation by simply multiplying the average firm level effect by the number of firms in a 

certain area (see, e.g., Harrison et al., 2005).  

One reason is that while observing a positive effect for a single firm we cannot distinguish 

between an expanding market as a result of innovation on the one hand and simple market share 

stealing effects on the other hand. If the firm level effect is not based on a growing market but is 

the result of a market share gain on expense of less innovative firms then the aggregate effect 

will be much smaller compared to the effect at the firm level (see, e.g., Harrison et al., 2005).  
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In this case, the spatial distribution of innovating firms in relation to that of non-innovators 

gains importance. Most likely these distributions will overlap and the question remains, whether 

for each region the employment gains of innovative firms are greater or smaller than the 

reductions in non-innovative ones. In this respect also firm entry (stimulated by innovation) and 

exit (due to eroding market shares) becomes relevant (cf. Harrison et al., 2005; Pianta, 2005). 

This refers lastly to an industry’s degree of spatial concentration. In industries concentrated in a 

few regions most of the market stealing effects will be going on within the very same regions. 

In this case the regional employment effect of innovation will be smaller than the firm level 

effect. If on the contrary an industry is more or less uniformly distributed over space the 

employment gains in one region will cause employment losses in other regions and one would 

expect a clear correlation between innovation and employment at the regional level.  

This relation is also impacted by agglomeration economies, which means that firms draw 

benefits from being located in spatial proximity to other firms. During the last two decades in 

regional science a huge body of empirical literature has been dedicated to investigate different 

types of agglomeration economies. This research is based on the seminal works of Marshall 

(1890), Arrow (1962), and Romer (1986) on the one hand and on that of Jacobs (1969) on the 

other hand. Thus the literature refers to the different notions of agglomeration economies as 

MAR and Jacobs externalities respectively.
1
 

MAR-externalities refer to the spatial concentration of a single industry. In the respective 

literature we find mainly three driving forces giving explanatory power to this idea, viz. labour 

market pooling, specialised suppliers, and knowledge spillovers within the industry (see e.g. 

Rosenthal & Strange, 2001). These mechanisms allow for a more efficient production in 

specialised regions compared to less specialised areas. However advantages for firms with 

respect to innovation may derive mainly from intra-industry knowledge spillovers that become 

more likely the more knowledge is concentrated in the region. 

While the former idea deals with a single industry and only indirectly considers other industries 

the second notion of agglomeration economies refers to local variety in industrial composition. 

Jacobs externalities are economies external to the firm deriving from the variety of industries in 

the region (Jacobs, 1969). It is argued to exert positive influence on the generation of 

innovations in two (similar) ways. First, the more important and radical innovations may be the 

result of a recombination of knowledge from different industries. Accordingly a large local 

variety of sectors increases the likelihood for such new combinations. Second, given that firms 

in different industries face similar problems the solutions developed in one industry might be 

suitable in another as well. Again, the larger the local knowledge base, the more opportunities 
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for knowledge spillovers there will be (Frenken et al., 2007; Neffke et al., 2008). This idea 

stimulated the development of the concept of related variety. Its main argument is that it is not 

so much the quantity of contacts and intensity of knowledge exchanges that matters for firms’ 

success, but rather the type of knowledge exchanged, i.e. the content of the knowledge 

exchanges, and how that matches the existing knowledge base of the firms. In this respect, 

cooperation is most fruitful when network partners have related, not similar knowledge bases 

(see, e.g., Boschma and Iammarino, 2007). 

Recent research that attempts to analyze empirically the different types of externalities can be 

broadly classified into two streams. The first investigates the relationship between such 

externalities and regional economic growth (e.g., Glaeser et al., 1992; Henderson et al., 1995; 

Henderson, 1997; Combes, 2000; de Lucio et al., 2002). Studies belonging to the second stream 

analyze agglomeration externalities with respect to their influence on regional innovation 

activities (e.g., Feldman & Audretsch, 1999; Paci & Usai, 1999; Greunz, 2004; van der Panne & 

van Beers, 2006).  

Both concepts, MAR and Jacobs externalities, emphasize the importance of knowledge 

spillovers either within or between industries. We regard a growth of patent applications as an 

indicator for an increased local knowledge base resulting in greater opportunities for knowledge 

spillovers within the industry
2
 under consideration. Thus at the regional level there is a further 

reason to assume a positive relationship between growth of employment and previous growth of 

patent applications due to local knowledge spillovers.  

Hence, potentially there are two contrary effects of agglomeration. On the one hand the positive 

employment effects of innovation might be smaller in an agglomerated industry (due to market 

stealing effects within the region). On the other hand a geographically concentrated industry 

may show larger employment effects if it benefits from agglomeration economies. Whether the 

one or the other effect is predominant in a certain industry or whether it is the pure firm level 

effect is unclear a priori.  

One important vehicle for regional knowledge transfer is a spinoff from an incumbent firm. 

Research has been dedicated to explore the regularities of market entry by spinoffs. Klepper & 

Thompson (2005) summarize the findings from some of the most important studies concerning 

the semiconductor, automobile, hard drive, and bio tech industry. With respect to these studies 

around 20% of all entrants must be considered spinoffs, which are markedly good performers. 

The better the incubator firm the higher its spinoff rate and the better will be their spinoffs’ 

                                                
1
 Following Glaeser et al. (1992) 
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performance. Spinoffs are typically formed by a few well educated employees whose prime 

reason for starting an own business has been identified in strategic disagreements with the 

incumbent firm’s management, e.g. over what technologies shall be developed (Klepper & 

Thompson, 2005; Klepper & Sleeper, 2005).  

It is quite likely that spinoffs with their well educated personnel will contribute to a large degree 

to the category of R&D employees in our study. Hence the regional dimension of innovation 

adds an additional rationale to assume a positive correlation between growth of R&D employees 

and previous growth of patent applications. The more knowledge is concentrated in a region the 

larger the opportunities will be for potential entrepreneurs to start their own business. 

Eventually this can also feed back on total employment if these firms grow above average. 

Both, the decision to leave the old employer and start a new venture as well as the replacement 

of personnel in the incumbent firm are very likely to require quite some time. Therefore we 

expect a certain delay for the effects of a growing number of patent applications on growth of 

R&D employees and total employment if based on spinoff formation. 

Summarising this section we hypothesise to find the same dynamics between our variables from 

a firm level as well as from a regional perspective. In detail we assume a positive correlation 

between growth of total sectoral employment and some lag of growth of patent applications. 

Moreover we expect to find a positive relationship between a growing number of patent 

applications and previous growth of R&D. In addition we expect growth of regional 

innovativeness to be associated with a subsequent increase in R&D employees. 

III   Industry characteristics 

In the present paper we distinguish between four different industries, namely Chemistry 

(CHEM), Transport equipment (TRANS), Electrics & Electronics (ELEC), as well as Medical 

& Optical equipment (INSTR). As different industries exhibit very different innovation 

characteristics our results presumably will also differ significantly among the industries under 

consideration.  

Innovations can be very heterogeneous in value for firms of different industries (Van Reenen, 

1997). On the one hand this is because industries differ with respect to the importance of 

product and process innovation. In scale intensive industries, as transport equipment, process 

innovations are of outweighing importance (Arndt, 2000). On the other hand the degree to 

                                                
2 It is possible that we however capture in parts vertical knowledge spillovers since buyers and suppliers 

recruit mainly from within the industry at a two-digit level. In this case whether the phenomenon is to 

be labelled MAR or Jacobs externalities depends on the classification of the particular industry. 
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which innovations are captured by common innovation indicators varies between industries as 

well (see Arundel & Kabla, 1998).  

Concerning Europe’s largest firms in the ‘automobiles’ and ‘other transport equipment’ industry 

Arundel & Kabla (1998) report a sales-weighted patent propensity rate for process (product) 

innovations of only 17 % (30 %) and 10.9 % (31.2 %) respectively. The ratio for process 

(product) innovations for chemicals and pharmaceuticals is 39 % (57.3 %) and 45.6 % (80%) 

respectively. For the industries covered by ELEC the authors report ratios of slightly above 20 

% for process innovations and of around 50 % for product innovations.  

These differences in the innovation and patenting behaviour have to be kept in mind because 

our innovation indicator is based on patent applications, i.e. product innovations. Accordingly 

we are rather pessimistic about finding the relations specified above for the transport equipment 

industry (TRANS). 

To judge an industry’s degree of agglomeration we compute the location coefficient (see Table 

4 in the Appendix). This index is defined as an industry’s employment share in a region related 

to the same ratio at the national level (see, e.g., Feldman and Audretsch, 1999). 

 

Xs,r is the employment of sector s in region r. We follow Laursen (1998) and make this index 

symmetric by estimating: 

 

The normalised location coefficient takes values between zero and two. A value of unity 

indicates that the regional employment share of the respective industry equals the industry’s 

average employment share in Germany.  

Regarding this index TRANS is the industry with the lowest mean value but also the one with 

the highest standard deviation. At the same time its 0.1 and 0.25-quantiles by far take the lowest 

values of all industries. For TRANS 10 % (25 %) of all regions exhibit a location coefficient 

below 0.0554 (0.157). In more than 75 % of all regions TRANS shows an employment share 

below the national average. For the other three industries the 0.75-quantile is larger than unity. 

The median for ELEC and INSTR is about 0.71 and 0.75 respectively. The one for CHEM even 

takes a value of about 0.85. In contrast the median for TRANS is about 0.46. Accordingly the 

Gini coefficient of inequality on TRANS’s regional location coefficients is the highest of all 



 9 

four industries. In 1999 it shows a magnitude of about 0.45 for TRANS, 0.32 for ELEC, 0.26 

for INSTR, and 0.23 for CHEM. Together those figures clearly show that TRANS is the 

industry with the highest degree of geographical concentration.
3
 

As has been mentioned earlier in this paper the employment effects of innovation are likely to 

be smaller at the regional level if an industry is highly concentrated in geographical terms. But 

this effect might be set off in parts if the respective industry simultaneously benefits from 

agglomeration economies. The industry for which we expect these mechanisms to play the most 

significant role is TRANS. However, as mentioned above, we do not expect to find any 

correlations in this industry due to its idiosyncratic innovation and patenting behaviour. 

Regarding the employment effects of innovation in the chemical sector we are again somewhat 

sceptical whether we can detect them in the data or not. Firms in this industry face rather long 

development times. For the pharmaceutical industry for example, which forms a part of the 

chemistry industry, Dranove & Meltzer (1994) report an average time from a drug's first patent 

application to its approval by the FDA of about 13.5 years. Only at this time the employment 

effects of the innovation may become visible. However our dataset does not allow for 

considering more than three one-year lags. Thus it is quite likely that our dataset does not allow 

for observing any co-evolutionary dynamics in this industry. 

Malerba & Orsenigo (1995, p. 62) show ‘that patterns of innovative activities differ 

systematically across technology classes’. In their study the authors identify two groups of 

technological classes, commonly known as ’Schumpeter Mark I’ and ’Schumpeter Mark II’. 

Innovative activities within these groups follow very different rules. The first is characterized 

by a widening pattern, i.e. main innovative contributions stem from small firms and the entry of 

new innovators is high. The latter instead is dominated by large corporations representing a 

stable core of persistent innovators while the entry rate is low, which leads to some kind of 

deepening pattern. Malerba & Orsenigo (1996) identify large parts of our instruments industry 

as ‘Schumpeter Mark I’ whilst they classify chemicals and electronics into ‘Schumpeter Mark 

II’.
4
 Considering the study by Coad & Rao (2007) finding more positive effects for large 

compared to small firms we expect to find more clear-cut results for ELEC rather than for 

INSTR.  

Still we do not know whether large incubator firms or small businesses are more favourable to 

new firm formation (Dahlstrand, 1997). One might think that a positive correlation between 

patent growth and growth of R&D staff based on spinoff formation will be more likely in 

‘Schumpeter Mark I’ industries due to higher entry rates. Following another line of reasoning 

                                                
3
 The exhaustive statistics can be found in Table 4 in the Appendix. 

4
 Note that our industries are defined broader than those in the mentioned literature. 
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technological change in these industries is rather the outcome of an overall high entry rate than 

the other way round. Large technology-based firms dominating in ‘Schumpeter Mark II’ 

industries encompass several technologies with a potential for innovation in other product areas. 

As large firms commonly do not spur such opportunities outside their own product areas 

spinoffs may take advantage of this neglected potential (Dahlstrand, 2005). However whether 

the effects of spinoff formation are more likely in the one or in the other industry is unclear. 

Interestingly the R&D-employment ratio in three of the four industries under consideration is 

very high. In the Electrics and electronics industry almost 25% of all employees are classified as 

R&D staff. This number is quite high and we are a bit sceptical concerning misclassification. 

The ratio for transport is 19.3% and the one for instruments is 16.6%. Only the ratio for 

chemistry is much lower, viz. 5.6%. However, given the bias is systematic, general 

overestimation should not be much of a problem. 

Summarising this section we expect to find the dynamics described in section II for ELEC and 

INSTR while we are more pessimistic to find the respective correlations in CHEM and TRANS. 

The scepticism with respect to the latter industries is based on substantial differences in the 

industries’ idiosyncratic innovating and patenting characteristics. Instead effects stemming from 

an industry’s degree of agglomeration should be more pronounced for TRANS. 

IV   Methodology 

One of the main aims of this paper is to exploit a unique dataset that provides fresh insights into 

industrial dynamics at the regional level. We exploit a panel dataset that tracks a reasonably 

large number of regions over the period 1999-2005. In particular, we want to observe the co-

evolutionary dynamics between the three statistical series – employment, R&D, and patenting 

activity. In recognition of the complex and endogenous nature of the growth of employment, 

R&D and patent applications, we apply a vector autoregression model.  

The regression equation of interest is of the following form: 

 (1) 

where wit is an m ! 1 vector of random variables for region i at time t. ! corresponds to an m ! 

m matrix of slope coefficients that are to be estimated. In our particular case, m=3 and 

corresponds to the vector (Employment growth (i,t), R&D growth (i,t), growth of patent 

applications (i,t)). " is an m ! 1 vector of disturbances.  

In keeping with previous studies, our measure of growth rates is based on the differences of the 

logarithms of the respective variables. Let represent the absolute value of total 
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employment, R&D employees, or patent applications in region j at time t. Define the normalized 

(log) value of this variable as 

! 

x j (t) = log X j (t)( ) "
1

N
log

j

N

# X j (t)( )  (2) 

where N is the number of regions. In what follows we define growth rates as the first difference 

of normalized (log) values according to 

! 

g j (t) = x j (t) " x j (t "1) (3) 

Thus common macroeconomic shocks are already controlled for because we have normalized to 

zero the growth rate distribution for each variable in each industry in each year. 

We estimate equation (1) via ‘reduced-form’ VARs, which do not impose any a priori causal 

structure on the relationships between the variables, and are therefore suitable for the 

explorative nature of our analysis. These reduced-form VARs effectively correspond to a series 

of m individual OLS regressions (Stock and Watson, 2001). 

One problem with OLS regressions in this particular case, however, is that the distribution of 

growth rates is typically exponentially distributed and has much heavier tails than the Gaussian. 

The heavy tailed nature of growth rate distributions has been observed for the growth of firms 

(Coad, 2007), industrial sectors (Castaldi and Sapio, 2006) as well as at the level of countries 

(Lee et al., 1998). Figure 1, Figure 2 and Figure 3 in the Appendix show that the growth rates 

distributions for our regional data also exhibit heavy tails. In this case OLS may provide 

unreliable results, and as a result we would prefer Least Absolute Deviation unconditional 

(LAD) estimation, which is better suited to the case of non-Gaussian residuals. We also base our 

inference upon standard errors obtained using the computationally intensive ‘bootstrapping’ 

resampling technique (see Efron and Gong (1983) for an introduction). 

Since we are dealing with growth rates (i.e. differences rather than levels), we do not concern 

ourselves with the issue of unobserved heterogeneity in the form of time-invariant region-

specific ‘fixed effects’. 

It is also worth emphasizing that we do not claim to resolve any issues of causality between 

growth of employment, R&D and patent applications.
5
 Instead, we interpret our results merely 

in terms of the regularities that may be observed during the processes of industrial and regional 

                                                
5 One reason for this is that instrumental variable techniques are likely to perform poorly given that we 

have no suitable instruments. Taking lagged growth rates as instruments, for example, would not be 

suitable here because of the low persistence in the growth rate series (especially for R&D growth, and 

also for employment growth). 
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evolution. Indeed, much can be learned simply by considering the associations between the 

variables without mentioning issues of causality (see Moneta, 2005 for a discussion). 

V   The dataset 

The 270 German labour market regions are chosen as unit of analysis, because they seem to best 

capture the regional dimension of innovation processes (Broekel and Binder, 2007) and have 

been used in similar studies (Combes, 2000, Broekel, 2008).
6
 

The data on employment has been collected by the German Federal Institute of Labour. The 

dataset contains the number of employees for each of the four industries and each of the 270 

labour market regions. As all other data used here it is available for the subsequent years from 

1999 to 2005. 

The data on patent applications is published by the Deutsches Patent- und Markenamt (German 

Patent Office) in Greif and Schmiedl (2002). The applications by public research institutes, such 

as universities and research societies (e.g. Max Planck Society) as well as the patent 

applications by private inventors are not included. The latter is because the corresponding R&D 

employment data covers only industrial R&D. Hence, only the innovations resulting from 

industrial R&D should be considered.  

Data on R&D employees is obtained from the German labour market statistic. The R&D 

personnel is defined as the sum of the occupational groups agrarian engineers (032), engineers 

(60), physicists, chemists, mathematicians (61) and other natural scientists (883) (Bade, 1987, p. 

194ff.). 

An industry’s total employment located in a region is defined as third variable. This data is 

taken from the German labor market statistic as well. For sound empirical estimations we 

subtract the number of R&D employees. 

Conducting industry specific analyses requires a definition of industries that, in the context here, 

covers all three variables: patent applications, R&D employees, and total employment. In the 

case of R&D employees and total employment this is easy. Both are organized according to the 

German Industry Classification (‘Deutsche Wirtschaftskzweig Klassifikation’) which is the 

German equivalent to the international NACE classification. However, the patent applications 

are classified according to 31 technological fields (TF) defined by Greif and Schmiedl (2002). 

                                                
6 Note that we use the up-to-date definition of labour market regions in contrast to the older definition 

used in Greif and Schmiedl (2002). 
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We use the concordance between these two classifications developed by Broekel (2007), which 

adapts the concordance by Schmoch et al. (2003) to our data. We concentrate on four industries 

as defined in Broekel (2007): Chemistry (CHEM), Transport equipment (TRANS), Electrics & 

Electronics (ELEC), and Medical & Optical equipment (INSTR). Its definition in terms of 

included technological fields and industries is presented in Table 3. 

For most of these industries patenting represents an important property rights protection 

mechanism (Arundel and Kabla, 1998). This ensures that the patent applications capture most, 

or at least a significant share of innovations in these industries. 

In order to obtain a single variable representing an industry’s innovations, the number of patent 

applications of the technological fields that are assigned to this industry is added up. Similarly, 

sums of the R&D employees and total employment numbers of the corresponding 2-digit 

NACE-industries define the other two variables. 

Table 1 presents some summary statistics for our dataset. We observe that the sizes of the four 

industries vary considerably across the regions. We also obtain a few null values in some cases 

for each of the variables. This leads us to drop some observations in the subsequent analysis 

based on growth rates. In addition, data constraints limit our study to no more than three lags 

because of a sharp decline in observations afterwards. 

 Mean Std Dev 10% 25% median 75% 90% Min Max Obs 

TRANS 

Empl 3014.722 8894.129 30 137 563 1663 7379.5 0 99320 270 

R&D 553.537 1994.839 0 5 60 265 1315.5 0 25986 270 

Patents 16.63185 64.96559 0 1.3 4.5 12 32.5 0 951.1 270 

Chem 

Empl 2793.189 4875.299 323 644 1319 2658 6069 38 49218 270 

R&D 146.9296 402.6852 5.5 14 40.5 112 304.5 0 4408 270 

Patents 12.37148 38.8693 0 0.6 1.9 6.2 27.75 0 382 270 

INSTR 

Empl 1544.874 2729.405 123.5 244 614.5 1593 3517 11 18124 270 

R&D 254.2074 541.8255 2 11 64 193 703.5 0 3731 270 

Patents 11.50037 28.14851 0 1 3.3 11.1 26.25 0 272.3 270 

ELEC 

Empl 2421.804 5024.096 107 275 836 2476 5623.5 1 55861 270 

R&D 610.8185 1405.686 7 42 165 591 1555.5 0 16548 270 

Patents 22.24037 73.18004 0 1.8 6.15 16.8 42.15 0 956.2 270 

Table 1: Summary statistics for the four industries in 1999. The statistics refer to absolute numbers of 

total employment, R&D employees and patent applications. 

In order to check for spatial autocorrelation we estimated Moran’s I on the regions’ average 

growth rates, see Table 5 in the Appendix. We use average growth rates because they reflect 



 14 

the fundamental relations between the regions in contrast to fluctuating yearly growth rates. 

While most of the growth rates show significant spatial autocorrelation the correlation 

coefficient is very low. Therefore this should not bias our estimations. This is even more so as 

we do not use standard OLS but rather LAD estimation techniques.  

VI   Results 

As the growth rates of our variables do not follow a normal distribution we prefer the 

bootstrapped LAD estimation to simple OLS. We will only present the respective coefficients in 

the following. However results obtained with OLS regression and LAD without ’bootstrapping’ 

re-sampling technique are very similar.
7
 Table 2 shows the results with 1000 bootstrap 

replications. 

Autocorrelation series 

To begin with we shall give some information on the observed autocorrelation of our variables. 

First of all R&D growth does not appear to be persistent. The respective coefficients are mostly 

negative but insignificant except for CHEM where the third lag is negative and highly 

significant. Total sectoral employment instead seems to have small positive persistence. In fact 

the coefficients are always positive though mostly insignificant.  

By contrast what turns out to be consistent over all industries is a negative autocorrelation of the 

patent growth variable, which corresponds to decreasing coefficients for larger lags. The 

coefficients are negative and highly significant for all lags and all industries. We ascribe this 

result to erratic growth dynamics since the innovative process always encompasses chance as 

such. Fortuity deriving from the non-deterministic nature of human creativity is always an 

inherent part of the innovative activity. However, the regularity of this pattern is surprisingly 

strong for which reason future research should investigate this in more detail. 

Patent applications and total employment 

With respect to the transport equipment industry we do not find any significant correlation 

between the growth rate of patent applications and subsequent growth of total sectoral 

employment. This is in line with our expectations concerning the industry’s low patent 

propensity rate. Patent data captures less than 20 % of all process innovations in the transport 

sector (Arundel & Kabla, 1998), which are particularly important in such scale intensive 

industries (Arndt, 2000). Moreover this industry is the most agglomerated of all four industries 

                                                
7
 They can be obtained from the authors upon request. 
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wt   !t-1   !t-2   !t-3    

 Empl. gr. Pat. gr. R&D gr. Empl. gr. Pat. gr. R&D gr. Empl. gr. Pat. gr. R&D gr. R" obs 

TRANS 

Empl. gr. 0.0437 -0.0020 -0.0030 0.0339 -0.0019 -0.0122 0.0571 0.0068 -0.0102 0.0107 586 

t-stat 1.34 -0.32 -0.18 1.75 -0.30 -0.77 1.50 1.14 -0.87   

p-value 0.182 0.749 0.860 0.081 0.768 0.443 0.134 0.253 0.384   

                

Pat. gr. -0.0818 -0.5204 -0.0283 -0.0734 -0.3495 0.1448 0.0437 -0.2513 -0.0369 0.1448 582 

t-stat -0.85 -8.48 -0.34 -0.69 -4.42 1.22 0.35 -3.71 -0.52   

p-value 0.395 0.000 0.738 0.491 0.000 0.221 0.727 0.000 0.607   

                

R&D gr. 0.0677 0.0002 -0.0040 0.0268 -0.0154 0.0043 0.1009 -0.0047 -0.0109 0.0086 585 

t-stat 1.02 0.03 -0.13 0.61 -1.74 0.14 2.06 -0.74 -0.56   

p-value 0.309 0.975 0.899 0.543 0.083 0.892 0.040 0.459 0.577   

CHEM 

Empl. gr. 0.0475 -0.0072 0.0091 0.0884 -0.0014 -0.0194 0.0685 0.0009 -0.0337 0.0167 562 

t-stat 1.22 -1.69 0.61 1.49 -0.29 -0.89 1.2 0.18 -1.41   

p-value 0.223 0.092 0.542 0.138 0.772 0.376 0.229 0.858 0.161   

                

Pat. gr. 0.4327 -0.5760 0.0171 0.3824 -0.3120 0.0852 -0.2978 -0.1327 0.3108 0.1272 547 

t-stat 1.04 -8.66 0.1 0.7 -4.63 0.41 -0.55 -2.27 1.44   

p-value 0.299 0.000 0.922 0.483 0.000 0.681 0.582 0.023 0.149   

                

R&D gr. 0.1352 -0.0080 -0.0374 0.0473 0.0011 -0.0356 0.1227 -0.0021 -0.1545 0.0154 562 

t-stat 1.31 -0.99 -0.82 0.42 0.11 -0.65 1.42 -0.23 -2.75   

p-value 0.191 0.323 0.414 0.672 0.911 0.513 0.156 0.822 0.006   

INSTR 

Empl. gr. 0.0506 0.0038 -0.0087 0.0111 0.0096 -0.0071 0.0663 0.0080 -0.0030 0.0107 638 

t-stat 1.14 0.70 -0.34 0.45 1.81 -0.62 1.21 1.73 -0.26   

p-value 0.253 0.482 0.732 0.650 0.072 0.537 0.225 0.083 0.793   

                

Pat. gr. -0.0895 -0.5914 0.1260 -0.2198 -0.2409 0.0629 0.2343 -0.1371 -0.1198 0.1600 634 

t-stat -0.28 -12.37 0.96 -0.76 -4.64 0.51 0.64 -3.04 -0.91   

p-value 0.777 0.000 0.338 0.449 0.000 0.613 0.520 0.002 0.365   

                

R&D gr. 0.0861 0.0009 0.0084 0.0376 0.0020 0.0233 0.0262 -0.0019 -0.0225 0.0058 637 

t-stat 1.65 0.13 0.39 0.88 0.29 0.70 0.44 -0.30 -1.00   

p-value 0.100 0.898 0.696 0.378 0.769 0.486 0.663 0.765 0.319   

ELEC 

Empl. gr. 0.0433 0.0176 -0.0056 0.0379 0.0183 0.0132 0.0598 0.0136 -0.0056 0.0205 675 

t-stat 0.74 2.42 -0.21 0.99 2.14 0.69 1.57 1.58 -0.22   

p-value 0.461 0.016 0.833 0.323 0.033 0.491 0.118 0.115 0.828   

                

Pat. gr. 0.1012 -0.4184 -0.0755 -0.1667 -0.2186 0.1994 0.1244 -0.1456 -0.1955 0.0803 665 

t-stat 0.52 -7.00 -0.56 -0.77 -3.15 1.51 0.74 -3.27 -1.16   

p-value 0.605 0.000 0.578 0.444 0.002 0.132 0.460 0.001 0.245   

                

R&D gr. 0.0708 0.0105 -0.0012 -0.0183 0.0209 -0.0021 0.0270 0.0224 -0.0096 0.0078 672 

t-stat 0.95 1.10 -0.03 -0.32 2.06 -0.05 0.48 2.26 -0.37   

p-value 0.344 0.272 0.979 0.751 0.040 0.960 0.631 0.024 0.709   

Table 2: LAD estimation of equation (1) where m=3 and corresponds to the vector (Empl. growth (i,t), 

growth of patent applications (i,t), R&D growth (i,t)). Standard errors (and hence t-statistics) obtained 

from 1000 bootstrap replications. 
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considered here and our results very likely encompass market-stealing effects within the 

regions. Such may hide the ‘real’ relationship between these variables at the regional level. 

Whether or not the industry simultaneously benefits from agglomeration economies which are 

covered by market stealing effects or which are simply not reflected in patent applications can 

not be inferred from the data. 

Concerning the Chemical industry the first lag of growth of patent applications is significant but 

at the 10 % level. The coefficient is small and negative. However we refrain from overrating 

this correlation. A possible explanation could be market-stealing effects within the region which 

we doubt because of the industry’s comparatively low regional concentration and its long 

development times. All other lags of growth of patent applications are small as well and 

anything but significant. As in the transport equipment industry this supports our expectations 

about the industry’s innovation characteristics. With the long development times in this industry 

it is rather unlikely that patent applications show an immediate effect upon employment growth 

in the region. Since time to market is long it is plausible to assume a longer lag structure 

between the growth rates of the two variables. 

In the medical & optical equipment industry we find positive coefficients for the second and the 

third lag, both being significant but at the 10 % level. Whether this low significance level is due 

to market share stealing within the regions or whether it is based on rather small innovation 

effects at the firm level we cannot infer from the model. Nevertheless growth of patent 

applications is somewhat associated with subsequent growth of total employment. The low 

significance level might as well be owed to the lower number of observations in the three-lag 

model in which we face roughly 230 observations less compared to a two-lag specification. 

Regarding the electrics & electronics industry instead growth of patent applications is 

associated with subsequent growth of total employment. We observe exactly the lag structure 

we expected. The coefficients are positive and significant for the first and second lag of growth 

of patent applications. This result coincides with the findings by Lachenmaier and Rottmann 

(2007) who report positive effects for the first and second lag at the level of the firm. Though 

our methodology does not allow for resolving issues of causality our results at least suggest that 

in this case (i) there are positive compensation effects of innovations at the regional level and 

(ii) the employment gains of innovative firms are higher than the losses of less innovative firms 

in the region. Likewise it possible that there are agglomeration economies in terms of 

knowledge spillovers working in the region which benefit those firms that exhibit sufficient 

absorptive capacities. In this context one should remember that ELEC shows the second highest 

degree of agglomeration out of the four industries considered here. However, the data at hand 

do not allow for distinguishing between aggregate firm level and pure regional effects. 
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Those results also confirm our expectations based on the findings by Coad & Rao (2007). We 

also find the strongest employment effects of innovation in an industry (ELEC) which is, 

according to Malerba & Orsenigo (1996) dominated by large innovator firms. On the other hand 

those effects seem to be less pronounced in INSTR, an industry for which Malerba & Orsenigo 

(1996) report that in large parts of it small firms act as the main innovators.  

Patent applications and R&D employees 

Interestingly we do not observe any correlation between growth of R&D employees and 

subsequent growth of patent applications as we expected to do. One can think of different 

reasons for this result. On the one hand the true lead-lag structure between the two variables 

could be larger than the three lags considered in our model. Maybe an increase in R&D 

employees first pays off after more than three years in the industries considered here. This is 

especially probable in industries with long development times as, for example, CHEM.  

On the other hand any additional lag we consider in the VAR comes along with a sharp decline 

in observations. This may render some coefficient insignificant. Indeed when we include but 

two lags in the analysis we observe a positive coefficient for the second lag of R&D growth 

with respect to growth of patent applications in INSTR. This coefficient is then significant at the 

10 % level. In this case we run the VAR with about 230 additional observations. Lastly, it is 

known that the innovation activities are subject to decreasing returns to scale at the regional 

level (see, e.g., Bode, 2004), which may also lower the correlations. 

Unfortunately, since we are unable to increase the number of observations and cannot include 

longer lags we can test neither the one nor the other hypothesis. 

Regarding correlations between patent growth and subsequent growth of R&D employees there 

is no evidence for a ‘success breeds success’ story or spinoff effects at the regional level for 

CHEM, INSTR, or TRANS. The coefficients often change the sign between the different lags 

and are always far from being significant. Regarding CHEM and TRANS this again might be 

owed to the industries’ innovation characteristics. 

The expected correlations are found in the electrics & electronics industry, though. While the 

first lag of growth of patents is positive but insignificant the second and the third lag are 

positive as well and significant at the 5 % level. Hence growth of patent applications is 

associated with subsequent growth of R&D employees. This is again in line with our 

argumentation in section II. Accordingly our results basically suggest two things. Either there is 

(i) a ‘success-breeds-success’ mechanism at work and/or, since the industry shows the second 

highest degree of agglomeration, (ii) an increase in the local knowledge stock raises the 

likelihood for opportunity spinoffs.  
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However we have to emphasise again that while we observe positive correlations that are in line 

with our theoretical considerations we cannot resolve any issues of causality.  

Total employment and R&D employees 

In the first place there is no reason to anticipate any kind of lead-lag relationship between the 

growth rates of total employment and R&D employees. An increase in total employment is very 

likely to preserve the R&D-employment ratio. Accordingly both variables will change at the 

same time. This assumption is confirmed by our results with respect to CHEM, INSTR, and 

ELEC. None of the coefficients of lagged growth rates of R&D employees and total sectoral 

employment is significant at a reasonable level.  

However we find a lead-lag relationship between those variables in the transport equipment 

industry. Here the coefficient for the third lag of growth of total employment with respect to 

growth of R&D is positive and significant at the 5 % level. Hence growth of employment is 

associated with subsequent growth of R&D employees, or put differently a downturn in total 

employment is followed by a later reduction of R&D employees. The most plausible 

explanation refers to the latter more pessimistic point of view. R&D is one of a firm’s most 

important strategic resources. If the firms in a region are forced to reduce employment they may 

keep their R&D staff at first and only in the long run lay them off as well. Accordingly the 

correlation found for the transport equipment industry is most likely to reflect the importance of 

R&D personnel in this industry. 

VII   Conclusions 

We investigated the co-evolutionary dynamics, i.e. the lead-lag relationship between growth of 

patent applications, growth of R&D, and growth of employment for German labour market 

regions over a period of seven years. The unique panel dataset we employed comprises the 

Chemistry, Transport equipment, Medical & Optical equipment as well as Electrics & 

Electronics industry. Because of the complex and endogenous nature of the respective growth 

rates, we applied ‘reduced form’ vector autoregressions. The introduction of this methodology 

into regional innovation literature yields new insights into the development of regions. It allows 

us to describe the interdependencies between growth of employment, R&D, and innovation. We 

further relied on Least Absolute Deviation estimation for the distributions of the growth rates 

show much heavier tails than the Gaussian.  

We did not find much evidence for any co-evolutionary dynamics in the transport equipment 

and chemistry industry which we ascribe to their innovation and patenting characteristics. For 

the Medical & Optical equipment industry, however, we find a slightly positive correlation 
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between growth of patent applications and subsequent growth of total sectoral employment. 

While the coefficients are positive for all lags they are significant at the 10 % level for the 

second and the third lag. The results for the Electrics & Electronics industry instead clearly 

reflect the expected relationships. In this industry an increased patenting activity is associated 

with subsequent growth of both total sectoral employment and R&D. Explanations for both 

effects can be found at the firm level as well as at the level of the region.  

We further should mention the limitations of our results. First of all we do not claim to resolve 

any issues of causality. We rather interpret our results as a description of the interrelated 

processes concerning the growth rates of our variables as may be observed during industrial and 

regional evolution. Nevertheless the results match very well our expectations based on the 

theoretical and empirical literature on the topic. 

Regarding our data we have to admit that patent data is not equally suited as innovation 

indicator for all industries. In the case of the transport equipment industry our results support 

our previous concerns regarding this industry’s characteristics. It seems as patent applications 

do not depict the industry’s innovative activity properly. The patent propensity rate in this sector 

is much too low to allow for the usage of this kind of innovation indicator. Accordingly we fail 

in detecting the expected correlations between the growth rates of the three variables.  

With respect to the chemical industry this concern does not hold. However our panel dataset 

seems to be too short in order to detect any co-evolutionary dynamics between the variables. To 

do so we would need longer time series to account for the very long time to market in this 

industry. However our dataset is confined to a seven year period restricting us to at most three 

lags in order to build on a sufficiently high number of observations. 

Moreover, since we take labour market regions as observational units, we cannot distinguish 

between aggregate firm level effects and regional effects when agglomeration economies are 

present. A comparison of our results with those obtained by a firm level analysis of the same 

variables and the same industries would thus be enlightening. 
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Appendix 

 

Figure 1: Distribution of employment growth rates across regions, for the 

four sectors. Growth rates are normalized around zero for each year, and 

then the years are pooled together. 

 

 

Figure 2: Distribution of R&D growth rates across regions, for the four 

sectors. Growth rates are normalized around zero for each year, and then 

the years are pooled together. 
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Figure 3: Distribution of growth rates of patent applications across 

regions, for the four sectors. Growth rates are normalized around zero for 

each year, and then the years are pooled together. 

 

 

Industry Technological fields* Industries** Control*** 

Chemistry 
TF5, TF12, TF13, 

TF14, TF15 
DG24, DI26 TF6 ,TF20, DF23 

Transport equipment TF10, TF22 DM34, DM35 TF23, TF20 

Electrics & electronics 
TF27, TF28, TF29, 

TF30, TF31 
DL30, DL31, DL32 DL33 

Medical & optical 

equipment 
TF4, TF16, TF26 DL33, DF23 TF6, TF15, DL30 

* As defined in Greif & Schmiedel (2002); ** According to the GIC DESTATIS (2002);  

*** Technological fields of industries which have to be controlled for 

Table 3: Overview technological fields. 
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 CHEM  TRANS ELEC INSTR 

Mean 0.8759 0.5714 0.7541 0.7977 

Std Dev 0.3609 0.4735 0.4271 0.3667 

0.10-Quantile 0.4055 0.0554 0.1950 0.3784 

0.25-Quantile 0.6227 0.1570 0.4271 0.5131 

median 0.8499 0.4568 0.7084 0.7493 

0.75-Quantile 1.1234 0.8585 1.0599 1.0495 

0.90-Quantile 1.3788 1.2722 1.3940 1.3039 

Min 0.0954 0.0000 0.0051 0.0840 

Max 1.8801 1.8972 1.7628 1.8346 

Gini* 0.2342 0.4518 0.3245 0.2607 

obs 270 270 270 270 

* Gini coefficients obtained from 100 bootstrap replications and multiplied by n/(n-1) to 

get unbiased estimates (cf. Dixon, 1987) 

Table 4: Location coefficients in 1999, normalised as in Laursen (1998). 

 

 

 

 

Moran’s I CHEM  TRANS ELEC INSTR 

R&D -0.0178 0.0621
***

 -0.0018 0.0.03
*
 

Pat 0.058
**

 0.0313
*
 0.0114

**
 0.103

***
 

Empl -0.002 0.085
***

 0.0065 0.005 

* p-value based on Monto-Carlo simulation.  

Table 5: Check for spatial autocorrelation. 
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