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Abstract

Cities vary with regard to the characteristics of themonomic life. A formal model by
Duranton and Puga (2001) suggests a division of labour between deceesifil specialized
cities. Diversified cities (the “nursery cities”) providefertile environment for search and
innovation. Specialized cities, by contrast, are better equippkititate mass-production. In
essence, this spurs firms to re-locate as they mature fremxploratory set-up stage to mass-
production. In this article, we empirically test the assuomgibehind this model by means of
survival analysis using Swedish plant level data of over 11 O®@fispl&ore specifically, we
investigate the effects of local specialization and locardity on plant survival at different
ages of a plant and for different size categories of plants

Not all types of local diversity will be of value to a plaRather, we expect plants to benefit
especially from local diversity imelated industries. In a similar vein, cities with a large
concentration of a broad range of activities in related tradesaonfer larger benefits than
cities with a narrow specialization in the plant's own industry. giantify the degree of
relatedness between industries, we use a new measuraldteRRelatedness. This serves to
identify technological relatedness by measuring economies ofe saspimplied by the
structure of production portfolios of plants.

The findings suggest that regional characteristics stronglyenéle the chances of a plant to
survive. In general, the hypothesized specialization effeet®maly found when we look at
related specialization. Large plants at high stages tiinthaform the only exception to this.
However, diversity effects are only visible when we takdocal diversity into account, not
just diversity in related industries. Moreover, it is only yotings that benefit from regional
diversity. This indicates that the “nursery city” metaphor hadsmuch for small, prototype
plants as for large mass-production plants.
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1. Introduction

Cities are the nuclei of the productive systems of our econoriies.only do people
concentrate there. Also most economic activity can be found ifose ¢o urban centers.
Moreover, an often reported research finding is that firms mico#ar industries tend to
locate closely together. In the agglomeration externalitiesature, this clustering behavior
has commonly been ascribed to the Marshallian triplet of locamlizaxternalities: labour
market pooling, input-output linkages and specialized knowledge sp#lo¥n the other
hand, scholars have also argued that firms benefit fraanga diversity in the industrial base
of the city in which they are located. As this was famouggcribed in the works of Jane
Jacobs, such benefits have come to be known as Jacobs’ exterridditieser, as cities grow
larger, congestion effects become more prominent. It is thereéarsonable to assume that
firms experience a trade-off between local diversity andllepecialization. After all, the
only way a city can be both diversified and, at the same, tiaceumulate a large
concentration of individual industries is to grow very large.

In empirical research, authors have argued that the natuhesafrade-off may vary across
industries. In a recent article, however, Duranton and Puga (2Q@best a model in which
the outcome of the trade-off depends not on the industry, but mathiére type of activity
carried out in a firm. The authors distinguish between two tgpestivities: exploration and
mass-production. The model consists of three core building bloclst, &ifirm enters the
market with a prototype product, but without a fully developed producticintdogy. To
find a suitable production process, it can engage in a trial aodseiarch by imitating one of
the locally used production technologies. This is the exploration $\agsoon as the optimal
process is found, the firm can start mass-producing its prodwdons, localization
externalities accrue to a firm if they locate in citrggh a high concentration of firms that use
the same production process as the firm itself. Third, theathtevel of economic activity in
the city is a source of congestion effects.

The model incorporates some central beliefs about the productigessté firms and the
nature of externalities. The first is that firms moveniran exploration (search) stage to an
exploitation (mass production) stage. The second assumption is xilatation is best
conducted in diversified cities, aptly called “nursery citie$he third premise is that
exploitation is best conducted in specialized cities.

In this article, we aim to test these assumptions by iigasig plant survival rates. Using a
technique originally developed in medical sciences, we déeterthe age dependence of
agglomeration benefits for plant survival in a dataset covaimgpst 25000 manufacturing

plants. Furthermore, as plants that are built for mass-productipoges should in general

have a higher starting employment, we also split our sampgmall, medium and large

plants. In line with the nursery cities model, we find thabba’ externalities only contribute

to plant survival in the first 15 years of a plants existenagrisingly, however, this holds as
much for small plants as for large plants. As a mattercif tae benefits small plants derive
from their local environment over time are very similathte benefits for large plants.

Apart from investigating the link between age dependence arndnaggtion externalities,
we also venture to overcome the strict dichotomy of specializexus diversified economic
environments. This distinction is not only found in Duranton and Puga’s, Watlkalso in the
vast majority of the empirical papers on the topic. In the myigges model, exploring firms
simply try out randomly a random production process they find in thiir Hiowever, in



reality, we would expect that firms that are rational endoglocate in diverse cities in order
to benefit from knowledge spillovers, also are informed enoughertploy a more
sophisticated search strategy than just randomly testing anityl@ailable production
technology. We are even inclined to argue that firms can becep#® focus their research
efforts on a limited set of production processes used in the produtgomods related to their
own. In such a case, firms would not benefit from just any kind ofrglityein the city, but
from the presence of plants engaged in technologically relgetddifferent activities.
Similarly, localization externalities can be expected tavedenot only from plants in the own
industry, but also from plants engaged in technologicallyad|atet different activities.

To investigate if this is observed in reality, there ise&d to specify theelatednesdbetween
industries in terms of production technology. We will do so by usingethod that we have
developed elsewhere (Neffke and Svensson Henning 2008). This methathtesti
relatedness between industries based on co-production patteines pnotluct portfolios of
plants. This method enables us to add a go-between and overcome titiceal ar
diversification/localization dichotomy by adding information about &well of relatedness of
local industries.

The empirical consequences of this are startling. Adding m tdrat captures local
concentration of related industrial activity to our regressionigiioes any effect of pure (own
industry) localization externalities. Apparently, plants do beérafimore from being located
close to plants in related industries than being closeaioccompetitors.

The outline of the article is as follows. In section 2, wevide an overview of the literature
on agglomeration externalities and a more in depth treatmentoDfh model. Section 3
describes the link between agglomeration externalities amd plavival. Here we also put
forward some hypotheses to be tested. Section 4 covers a uisco$sthe data and a
presentation of our estimation strategy. In section 5 we tutimetoutcomes of the empirical
analyses and the robustness checks. Section 6 summarizes andssagegestfor further
research.

2. Theoretical background

In the contemporary literature, agglomeration externalitiesadten divided into two types:
localization externalities and Jacobs’ externalitiésthird type of externality is urbanization
externalities. The latter capture the effects of ditg.sBig cities can often boast high quality
amenities and infrastructure, but are also plagued by congestauntsefike pollution and
high factor costs. As a consequence, urbanization externaldgiregust as well represent
economies as diseconomies to local firms.

Localization economies refer to the situation where firms befrefn the local presence of
other firms belonging to the same industrBuilding on Marshall (1920), localization
economies result from a large pool of specialized labour, eass to local supplier and

1 A third type of externality that is sometimes désed are so-called Porter externalities. Thesereglities
derive from fierce local competition that spur inative activities in a city (see Porter 1990). Hoese
fierceness of competition would ideally be measumnetgrms of profit margins. Unfortunately, we dotave
these data at our disposal and will therefore positer these types of externalities..

2 Some authors prefer the term MAR (Marshall-ArrowriRer) externalities, appealing to a more long-tagti
dynamic effect of local specialization. However,mncally, the distinction between static and dyram
agglomeration effects is very demanding in termdaif requirements. The variation in the data rallstv an
estimate of the precise lag structure of the regmess effects. Making this distinction is therefdreyond the
scope of this paper.



client firms and to unintended local knowledge spillovers irgitith a strong concentration
of a particular industry. In formal models, localization econonaies often modeled as a
result of specialized intermediates producers that comijoetéhe demand of a specific
industry on a monopolistically competitive local market. This apgroaas pioneered by
Fujita (1988).

Jacobs’ externalities arise when firms benefit from gdanumber of different industries in
the local economy. Most prominently, Jacobs (1969) argued that mmostitions result from
“adding new work to old work” in cities. The larger the local dsity of ideas, the more new
combinations can arise from this. This led Glaeser e{1892) to coin the term Jacobs’
externalities’ A formal treatment of this mechanism was accomplishe@0®1 with the
article by Duranton and Puga.

By now, a large body of literature has addressed the measurerhelifferent types of
agglomeration externalities. In many studies (e.g. Hendersah &0895, Henderson 1997,
Combes et al. 2004) findings suggest an important role of loiatizaconomies. The role of
Jacobs’ externalities is less well established. Howehey, seem to be particularly important
for young or technologically advanced industries (e.g. Henderson #9328, Neffke et al.
2008). In a meta-analysis of the literature, however, De Gzbetl. (2008) show that the
findings on agglomeration externalities vary widely across stutMeseover, the results may
to a large extent depend on the industries and time period studedeographical area
covered and on the specific estimation framework employed. Fongea Combes (2000)
findings vary greatly across industries, even within the semoatry and time period, in an
economy wide analysis of French local industries.

In light of these divergent outcomes, it is an interesting stiggethat different activities at
the plant levelmay benefit from different types of local environments. In the eryrsities
model, firms enter the market with a prototype. Before beinig 0 mass-produce their
product, firms have to search for the optimal production process.s€arch is modeled as a
trial and error process. Firms can try out any production probasshiey observe in their city.
Although it is possible to relocate in order to discover morerratives, this is costly. In
diversified cities, firms can try out several processéhout having to bear the cost of
moving to another city. Therefore searching in diversifiedesitis cheaper compared to
searching in specialized cities. Firms will prefer etmduct their exploration in these cities.

Localization economies are present in diversified as welspeialized cities. They are
modeled as in Fujita (1988). Final goods producers source interngedliate a sector of
intermediates producers. These intermediates can not be tradsd attres. The firms in
intermediates sectors are engaged in monopolistic competitiba odiput of each sector is
only used in one specific final goods production process. Intermediatesthe final goods
producers’ production process as in a Dixit-Stiglitz production functibhe larger the
concentration of firms that make use of a particular set ofn@diates, the higher the
diversity in intermediates that can be sustained locally, #wedefore the higher the
localization externalities that accrue to the final goods praduce

To generate the localization effects of comparable sizedoh of the locally used production
processes, diversified cities must grow larger than spesthtities. However, the overall size

3 As larger cities are usually also more diversifisometimes, urbanization and Jacobs’ externakitiesot
treated as separate effects. However, in this studyfollow the convention that Jacobs externdaitiefer to a
city with a high degree of diversificatioogntrolling for overall city size.
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of a city comes at the cost of higher congestion. As soonmas find the optimal production

process, they can upscale their production volumes. Reachingabes they do no longer
benefit from local diversity. At this moment, firms are fdceith a predicament. Their

location in big cities now damages them in terms of high congestists, but without any

economies in exploration to compensate. Therefore, these fientsawvn to specialized cities
that strike a better balance between localization, urbtaiz and Jacobs externalities for
them.

The upshot of this is that diversified cities and specializédscmay co-exist, with each
focusing on a different task in the econofnylore specifically, one may expect that plants
that are set-up as small prototype plants should, especialig eatly years of their existence,
benefit from being located in diversified cities. In contralstn{s that are set-up as large-scale
mass-production plants should not benefit at all from Jacobs’ extersabut rather benefit
from specialized local environments. In other words, small pltinatt are still very young are
expected to benefit from a large local diversity, whiledaagd already quite mature are better
off in a specialized local environment.

However, the way in which firms are proposed to engage in techoal@xploration appears
to be too stylized to be helpful in empirical work. If firmse aupposed to be intelligent
enough to locate in diversified cities in order to benefit fraicobs’ externalities, surely they
must have a more sophisticated research strategy than randsetimlg &ach locally available
production process. More realistically, we would expect firms itat [their search to
production processes used in related economic activities. This waliddte the importance
of something similar to the concept of related variety, intceduby Frenken et al. (2007). A
similar kind of reasoning applies to localization externalitiess not very realistic to expect
only plants in the own industry to give rise to localization extgms One could even argue
that plants in the same industry are likely to generate Idnewledge spillovers as they
would rather try to prevent any knowledge to leak to their congpstitPlants in related
industries, in contrast, may be a source of ideas thatbreant, yet new to an industry. At
the same time, firms in related industries may be lesggre¢ about knowledge spillovers.
Nevertheless, we do not know of any study that addresses thes iss

A main empirical challenge is the measurement of relatedrmetsgeen different industries.
Most existing indicators are either rather ad hoc, like thogeaigume that two industries are
related if they are close to each other in the Standard Indulstsgification (SIC) system, or
they are biased towards technology intensive industries, lilkfpbhased measures. What is
needed is a manufacturing wide measure that assessesgtee aé relatedness in the
production processes used in different industries. In this paper we nseel approach that
does exactly this. In essence, it takes plant portfolios ax@ression of the existence of
economies of scope. More specifically, the fact that ond pladuces products belonging to
two different industries is interpreted as an indication ofteel@ess of the production
technologies employed in those industries. Using a database onothetpportfolios of a
large sample of Swedish manufacturing plants, we arti\ee ratrix containing relatedness
estimates for the vast majority of industry combinations. ileeise method is more involved
and is developed in detail in Neffke and Svensson Henning (2008). Tasiraellows us to
estimate the impact of the local concentratiorredéited industries on the performance of

4 This division of labour between cities had alreden anticipated in less formal studies. As maetiobefore,
Jacobs (1969) regards large diversified citiehastreeding ground of new ideas. In the produetdifcle
location model of Hirsch (1967), the suitabilitytbe national production environment varies witl stages of
the product life cycle.



plants. We will refer to the effects of related concerdratias related localization
externalities as opposed tpure localization externalitiesvhich we will use to indicate the
effects of a local concentration of activity in the own indus8imilarly, we will make a
distinction betweerrelated Jacobs’ externalitieand pure Jacobs’ externalitiesRelated
Jacobs’ externalities count the number of related industriesawnstignificant presence in a
city, whereas pure Jacobs’ externalities count the numbel sifjalficant industries in a city,
regardless of whether they are related or unrelated. Tneséypes of Jacobs’ externalities
capture, as it were, the qualitative differences in thd lodaistrial structure, in the sense that
they are intended to measurew many different knowleddields are represented in a city.
The both types of localization externalities focus ondbecentrationof related and same
industrial activity in a city.

3. Estimation framework

In the agglomeration externalities literature, most studiesagioenal employment growth or
regional employment levels (e.g. Glaeser et al. 1992, Hendetsah 1995). However, a
decline in employment does not always result from a declineouptivity and, therefore is
not necessarily related to weaker agglomeration extessmlith good example is labour
saving investments or a market where demand is relativelyasiiel Under these
circumstances, higher productivity simply means that fesaployees produce the same
output and, instead of rising, employment may even drop. Plant progudata (e.g.
Henderson, 2003) or plant entry data (Rosenthal and Strange 200Bemarerobably more
appealing.

Lack of capital data inhibits us to investigate the impacéggfomeration externalities in line
with these approaches. We would have to make the uncomfortahim@ss that the
capital-labour ratio is constant across plants. Instead, wdy sigglomeration externalities by
estimating their effect on the survival rates of plantser&hare preciously few papers in
agglomeration externalities that focus on survival rates.eSexneptions are Falck (2007) and
Boschma and Wenting (2007). This is surprising because the faa filaht survives, is a
crude, yet very significant performance measure. It is notoéetile as yearly productivity
figures, because plants may and build up buffers in years of goaddahd draw upon their
reserves in years of bad fortune. Moreover, a survivalysisaalso explicitly accounts for
plants that exit and can therefore be regarded as an interestimgiementary approach to the
existing analyses in the literature. We choose the plant asfuaiialysis, as plants, have one
physical location, whereas firms may have different plamtgarious cities. Such multiple
locations severely complicate the task of determining Wieatelevant local environment is.

Although it is not very common in externality studies, survaadlysis has been widely used
in the field of industrial dynamics and business studies. Mostesetbktudies have looked at
survival of firms or plants with respect to their size agé &isney et al 2003), pre-entry
experience (Thompson 2005), the structure of the market (Buenstorf 2a@ier et al
2006), the maturity of the industry (Agarwal and Gort 2002), or cortibima of these
dimensions (Klepper 2002). A common finding in this literature isttealarger the plant or
firm, the lower its survival rate. Moreover, older plantsdd¢o show lower hazard rates. In
this paper, we therefore control for these influences. Sizena@asured by the starting
employment of firms. The influence of age is removed from dh& using the semi-
parametric specification of the Cox model which allows for an unigpecelation between
survival and age. To control for market structure and industrgcesfwe use industry
dummies.



In some agglomeration externalities studies, corporate and ndatatfiestablishments have
proven to show differences that may impact the results of ady ge.g. Henderson 2003;
Rosenthal and Strange 2003). Henderson argues that corporate pladiswéewer benefits
from the local environment. The reason for this is that plaelisnging to larger corporations
can use their channels within this corporation to access knowledgagardze supplier and
client relations. In a total factor productivity study of Amenigdants, he finds that corporate
plants indeed experience lower agglomeration externalities ceohpamon-affiliated plants.
They may therefore be less inclined to engage in local stterathan their non-affiliated
counterparts. This suggests that corporate plants are fundametifi@ient with respect to
their externality needs compared to non-affiliated plants. In oalyses, we take this into
account by splitting the sample into a corporate and a non-ftiljzart.

As we are not interested in the precise shape of the hazardithtrespect to plant age, but
rather wish to focus on the externality variables, we chaoSex proportional hazard model
(henceforth referred to as the Cox model). Eétt Xi) be the hazard rate for a plant of age t

with characteristicsX; . The Cox specification now results in:

1) H(t,Xi)Zﬁo(t)edeB'Xi)

6,(t) is a function that represents the baseline hazard and wibenspecified. A common
finding is that the larger the plant, the lower its hazard. rakerefore, X, must at least

contain a measure of the size of the plant. MoreoXeralso contains variables describing the

local environment at the time of the plant’s birth. We disdhgse variables in greater detail
in the next section.

An important prerequisite for using the Cox model is that thecebf regressors is the same
for plants of all ages. This is obviously violated by our préalicthat the effect of Jacobs’
externalities diminishes as plants grow older. In fact, orghtrsay that the violation of the
proportional hazards assumption lies at the heart of our resgagskions. To solve this issue,
we use a method outlined in Hosmer and Royston (2002). This metigidaky developed
for applications in medical statistics, uses the Aalegrlirhazard (Aalen) model as a guide on
how to incorporate age-dependent effects in a Cox model.

The hazard function for an Aalen linear hazard model withregressors is specified as
follows:

2) ht, X, B(t) = o (1) + (X +...+ y, [t)x”

In other words, the effect of regressors on thealthrate is additive, and may vary with plant
age, t. The cumulative hazard function associaiédtve model is:

(3) H(t X, B(t) = Y. x'G, (t)

k=0

Instead of estimating the individugy, (t)'s, it is easier to calculate the cumulative regi@s
coefficients,G, (t) To get an impression of the time-dependenceettfect of regressok,



we plot G, (t) against plant age,. In such a plot, a proportional hazard in #fevariable

should result in a straight line for all values tof A violation of the proportional hazards
assumption would lead to a plot where the slopengés witht. From an inspection of the
plots, it is possible to derive the functional shay the time-dependence in the regressor
under scrutiny. The only functional shapes we a®grsin this model are step functions. At
the end of this procedure, we feed the informatorthe time-dependence back into the Cox
model:

(4) 6(t, X;) = 6y (t)ex Zp:lgk (t)xikjs
Where: _

- _ _J1iftOA
(5) B.(t)=afl (A ’t)’ with 1(At) = {0 elsewhere
4. Data

For the empirical investigation, we use data on d@sfe manufacturing plants that were
collected by Statistics Sweden. The dataset caniaiormation on about 15,000 individual
plants that entered between the years 1970 and d0@4total number of active plants in this
period is around 25,000. Between 1968 and 1989sdhneple covers Swedish manufacturing
plants with five employees or more that are engageshanufacturing activities. After that
(1990-2004), the data collection regime changesoter plants with more than 5 employees
belonging tofirms employing at least 10 people. In other words, frl®80 and onwards, the
only plants below 10 employees are corporate pl&tsthe sake of consistency, we focus in
the largest part of this text on non-affiliated gkathat are larger than 9 employees. We use
the complete sample for robustness exercises.

We know to which of Sweden’s 278 municipalities leatant in the dataset belony3he
data have been cleaned and checked, both manumllysing tailor made algorithmsTo
avoid problems with left-censored plants, we ortlydg the survival spells of plants that
enteredthe database after 197@Ve distinguish between corporate and non-affitigwants
using information on the organization identificatioumber. Plants that do not share their
organization number with any other plant are callexh-affiliated. All other plants are

5 As we limit ourselves to step functions, the fimctof age enters multiplicatively in the term beam the large
brackets. This allows us to transform the regresatres and estimate a Cox model with time varying
regressors.

® We have merged a few municipalities in order &ate consistent definitions over time.

’ Available on request.

8 We were able to use a plant identification vaeatbl follow plants over the course of their exisenFrom
1984 and onwards, the identification variable thed been used in the 1970s was gradually abandoriador
of a new identification system. Using the yearsvibich both the new and the old identifications tens were
available, we were able to create a consistentifitetion code for the vast majority of plantsiliSexit rates in
1983 and birth rates in 1984 were slightly highremt expected. We therefore also dropped the dpelitsging
to plants that entered in 1984 or exited in 1983hk construction of the variables describingltual
environment, we however also picked up contribugirom these plants.
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corporate plant3.All characteristics of a plant are measured atytar in which the plant
enters the database. We assume this is also thinyehich the plant was creatéd.

In order to measure the effect of agglomeratioenlities, we have to define what we mean
by the local environment of a plant more carefulig.noted above, for each plant we know in
which municipality it is located. However, Swedistunicipalities vary enormously in size. In
the vast and scarcely populated north, municigalitan cover many thousands of square
kilometers. In the much more densely populatedrsdut contrast, municipalities are limited
to a far smaller area (sometimes only small parimetropolitan areas). Moreover, surely, a
municipality that is located at a short distana@frthe center of the capital city of Stockholm
should experience some of the agglomeration eXigesathat are generated there. To cope
with these issues, we determine the position of langest population core — the largest
village, town or city — for each municipality. Tygailly, there is one clear “municipality
capital” surrounded by a couple of smaller villagdext, we assume that all economic
activity takes place in this municipality capitéh general, agglomeration effects should
attenuate gradually over distance. Therefore, v&e lmar agglomeration indices on quantities
that are generalizations of the well-known popolafpotential. For example, the employment
potential of industry in municipalitym and yeay is calculated as:

(6) Efvy = 2 {g(dmm) 2 E}

miM POR ey

Where

E,y: the employment of planpin yeary,

Py the set of plants active in industnand located in municipalityn in yeary,

M : the set of municipalities in Sweden, and

o(d,,): a function that expresses the attenuation overrtfad distance between the

capitals ofm andm' in kilometers,d__ "

We proxy pure localization externalities that aecta a plant in industry that is located in
municipality m and was founded in year by the natural logarithfi of employment
potential® of the industry minus the plant's own employment:

® The use of the organizational number is not unierohtic. Firms may change organizational numbard,use
more than one organizational number for administeadr legal reasons. The separation between catpand
non-affiliated plants by use or organization IDhisvever the most exact that these data allow.

19 Given the fact that we only have data on planistdéast five employees, this is obviously only an
approximation.

1 We use the following expression for this atterosati

g(dmm) — {exdlng_oom(dmm _10)] .if dmm >10
1 if d,, <10

This results in an attenuation for which the cdnitions of municipalities that are less than 10dway are
counted fully. At longer distances, the distanceagds exponential with parameters such that thpleyment
in a municipality at 100 km contributes for 1% he toverall employment potential ¢f .

2 The log-transformation is chosen because it seeasonable that hazard rates should react to piopat
transformation rather than to additive transformasi of our regressors.

13 Henderson (2003) argues that localization effamtsbest measured by looking at the number of liara
local industry. The rationale behind this is thatke plant represents a different experiment, whatstitutes a
variation on the industry’s production process.I&wing this line of reasoning, we measure pure i@tated
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) L, =E™ -E

L,my p.y

Related localization externalities are definednreaalogous way:

(8) RL, = > EfN,
iR

Where R represents the set of industries that are rekat@ustryi, but excludes itself.

To decide which industries should be a part of &8s, we make use of the Revealed
Relatedness index developed in Neffke and Svenstaming (2008§*'° As explained
above, this index of Revealed Relatedness captiieemtensity of the plant level economies
of scope between industries that are manifestdrptbduct portfolios of manufacturing plants
covered by a large Swedish database. Two industiiessaid to be related if they have a
relatedness index of at least 0224rhe maximum of the relatedness index is 1, whickld
suggest that the production processes used in mlRelved industries are virtually
indistinguishable.

Jacobs’ externalities should capture the numbeliftgrent production processes that are used
locally. As we cannot observe production processesgount the number of industries with a
significant local presence instead. We say thanduostry has a significant local presence if
its employment potential or, following Hendersordgsgumentation, its number-of-plants
potential exceeds a certain threshold. The employi&sed value is calculated as follows:

9 JAC,, = %:E(Ei?,ﬁfy,f)
lif E>

Where: =(E, &) =17 . ¢ and| is the set of all industries in Sweden.
Oif E<¢

Similarly, by only counting the number of relatedlustries with a significant local presence,
it is possible to construct an indicator of localbted diversity:

(10) RIAG,, = > Z(EM,.¢)

TR

To capture congestion effects we also calculateulation potential for each municipality
capital using the procedure in (6).

localization externalities using number-of-plantggmtials instead of employment potentials. Wenusaber-of-
plant based measures in our robustness checks ahthof this paper.

4 In principle, this matrix of relatedness indiceaynthange over time. However, here we choose temge
relatedness between industries in the period 190P-2wvhich most closely corresponds to our samgiexgod.
This avoids fluctuations in the set of related istdies over time.

15 \We have been able to calculate the Revealed Rlekeds index for almost all industry pairs, excepttie
ones that involved industries with very few plaffants in these industries have been ignoredisrsthdy.

18 This number corresponds to a choice of the 3,8@Mgest links that were measured between indssthe
this level, only very few isolated industries exasid most industries are related to some othersingu_eave
out all plants for which no related industries &xiBis ensures our sample does not become unratgsmall.
The choice for exactly 3000 links is therefore mable but, admittedly, ad hoc.
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5. Empirical results

Descriptives and specification details

Tables 1 and 2 contain some general descriptiveststa for our datasets. The entire sample
consists of about 14,700 observations (plants). élaw if we drop all plants smaller than 10
employees to obtain a consistent sampling defmitwer time, the number of investigated
plants decreases to about 11,500. These very gtaaiis seem to be randomly distributed
across the country. The correlation between a dumepyesenting a size between 5 and 9
employees and each of our agglomeration indicatoralways lower than 5%. In what
follows, we will focus on the results that were abed when leaving out all plants under 10
employees? Estimations using the complete sample are noepted. However, to assess the
robustness of our outcomes, we have run all analyseng the broader sample as well. We
comment on these outcomes where needed.

The set restricted to plants larger than 9 empleymmntains 2706 corporate and 8829 non-
affiliated plants.

Table 1 about here.

The cross-correlations between the regressorsharersin Table 2. Given the sample size,
we are not too concerned of multi-collinearity etee Moreover, any such problems should
turn up in our robustness checks. PLANTSIZE isdize of the plant at the time it entered the
database. LOC, RLOC, JAC and RJAC are as definedation four and refer to the values in
the foundation year of the plant. As we discussHdre, both, the localization and the Jacobs’
externalities variables, can be based either omll@mployment potentials or on local
number-of-plants potentials. However, the correlatbetween pairs of employment and
number-of-plants based variables is typically ab®y®. This prohibits the estimation of both
types of specifications simultaneously. In the mi@ixt we calculate the LOC and RLOC
indicators using employment potentials. For the &@ RJAC indicators we use the number-
of-plants potentials. This follows the spirit ofetmursery cities model most closely. Here,
localization externalities arise from a large lod®mand for intermediates specific to the
particular production process used in the indudigcalization externalities in the nursery
cities model depend therefore on the overall dengamerated by the local industry. This will
be correlated with total local employment in thdustry. Jacobs’ externalities, on the other
hand, are associated with the notion of betweeunsimg knowledge spillovers. The more
different industries that are active in a city, tgeeater the variety of locally available
production processes will be. However, for thesedpction processes to be sufficiently
visible, the industries involved must be of a dertminimum size. Therefore, for Jacobs’
externalities, we have to choose a lower limit ¥dren a local presence of an industry is
labeled “significant”. As each plant in a partiauladustry represents one experiment with the
production process associated with that indushe,rtumber of plants can be regarded as the
knowledge spillover potential of the industiyAs it is this knowledge spillover potential that

17 Obviously, this does not hold for the control edte PLANTSIZE. Furthermore, please note thatail o
regressors contain a log transformation.

8 Note that the plants below the employment thresbblLO have been used in the construction of the
agglomeration variables. Leaving such plants ouild/increase the measurement error in these vasaBls
there is no substantial correlation between the sfa plant and its local environment, we do redidve this
procedure leads to spurious results. This beliebiffirmed by regressions with agglomeration vdaalthat
only use information from plants of at least 10 &gpes. Outcomes are very similar, but standamrsare
somewhat larger.

19 See Henderson (2003).
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also generates Jacobs’ externalities, in the nednwe use a local number-of-plant potential
to decide whether an industry is significantly gmeisin a city. We set this lower limit at least
five plants. Later we use different cut-offs, batbmber-of-plant based and employment
based, to assess the robustness of our findings.

Table 2 about here.

Interpretation of the regression tables

In all regressions below, we control for initial pteemployment size, and for differences in

hazard rates across industries by adding 3-diditstry dummies. The dummies are added to
all regression analyses in this article. All valesbhave been log transformed. This implies
that we believe that the effects enter as “haztastieities”: ad % increase in the'kvariable

is supposed to raise the instantaneous probabilityxit by d[3,. This has the attractive

property that increasing the population of a town10,000 inhabitants by 1,000 has a
different effect from adding 1,000 inhabitants teity with a population of a million. The
regression tables report untransformed coefficiemith their robust® standard errors in
brackets. This means that a negative coefficienagsociated with a positive effect on
survival. In the text, we often discuss findingsténms of hazard ratios. These express the
change in hazard rate that is associated withengivcrease in the regressor value.

Outcomes

Table 3 summarizes the results of the Cox regrassiibat assume that the influence of the
local environment does not change with the age gihat. Column (1) uses the observations
on both corporate and non-affiliated plants. Wet stéth the traditional set of agglomeration
externalities and our control variable for plantesi The effect of plant employment
(PLANTSIZE) is strong and has the expected negasigm. A doubling of the initial
employment of a plant results in a reduction of tiagard ratio by 14.5%. All three local
environment variables have the expected sign. gelgropulation (POPPOT) increases the
risk for a plant to exit, with a hazard ratio ofcaib 1.25 for a doubling of the population.
Localization externalities are very small and nighgicant. Doubling the number of active
local industries (JAC) is associated with a hazatib of about 0.86. Jacobs’ externalities
therefore raise a plant’s survival probability.

In column (2), we add the related localization aethted Jacobs’ indicators. A large local
concentration ofelated industries (RLOC) turns out to significantly cahtite to a plant's
survival probability, whereagure localization externalities do not have any impact.
Moreover, whilepure Jacobs’ effects are significant and beneficialdorvival, a large local
variety of related industries (RJAC) does not matter. However, a lprabmay be that the
related Jacobs’ indicator is measuring the diveiisita subset of industries compared to the
pure Jacobs’ indicator. This means that pure Jacothsator is always at least as large as the
related Jacobs’ indicator. As a consequence, it beyard to distinguish between Jacobs’

20\we control for clustering of residuals on plant [Controlling for clustering on municipality or ingtry yields
very similar standard errors.

2L |n fact, the influence of IN(PLANTSIZE) is stroyghon-linear, with a decreasing effect for highatues of
PLANTSIZE. However, using a non-linear specificatioes not affect any of the other coefficients and
therefore we stick to the simpler linear specificat In later regressions, this non-linearity ipessed in the
different coefficients we get for plants of diffatesizes.
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and related Jacobs’ effects. We will therefore ditog related Jacobs’ externalities indicator
from further investigation&’

To check whether there are any differences betveesporate and non-affiliated plants, we
split the sample in two parts. Column (3) is basadthe sample of corporate plants and
column (4) on the sample of non-affiliated plantee results are strikingly different. The
impact of pure Jacobs’ externalities we found ituom (2) can be wholly attributed to the
non-affiliated sample. By contrast, related locatian externalities are strongest in the
corporate sample with a point estimate that is foues as large as the one in the sample of
non-affiliated plants. The negative effects of agéa local population, are again less
pronounced in the corporate plants.

Overall, these outcomes suggest that corporataspladeed interact in different ways with
the local environment compared to non-affiliatedrps. However, it is not simply the case
that corporate plants are isolated from their aumtbngs. Rather, they seem to have a smaller
capacity to exploit the inter-industry knowledgeillspers associated with Jacobs’
externalities. As, in the context of the nursetyesimodel, we are especially interested in the
dynamics of Jacobs’ externalities we will leave alitcorporate plants in the analyses from
this point onward.

One problem with the estimations we carried outsthar is that the assumption of
proportional hazard rates is violated as indicdigdhe chi-squared test statistics in the lower
part of table 3. In part, this may be caused bypm@constant effect of the industry dummies.
However, the outcomes are not only driven by theusion of these dummiés.Table 4
shows the results of a proportional hazard tesh watgressor specific test statistics when
industry dummies are excluded. The test statigtidsate that the main problem is caused by
pure Jacobs’ externalities. To investigate the pribpnal hazards issue further, we make use
of the graphs of the Aalen LH model. Figures 1 toohtain the graphs of the cumulative
regression coefficient for each variable in our glo&ach graph shows how the year-on-year
compound effect of a covariate on the survival hdgg-axis) varies with the age of the
plants (x-axis). The slope of the graph at a speafe indicates the instantaneous effect of
the covariate on plants of a particular age. Eaaplgcontains a solid line representing point
estimates over and two dotted lines corresponding 95% confidence interval. A practical
matter is that for higher ages, the number of glémat are at risk of exiting become very low.
As a consequence, in this part of the graphs, thlerAcoefficients are based on only a small
number of observations. This makes the Aalen graphsvolatile beyond, say, the age of 25.
For this reason, we do not attach much value tcliagpe of the graphs after this point.

As discussed in section three, of the effect ofgrassor changes with age, this results in a
departure from a straight line in the Aalen gragtsurting with the In(PLANTSIZE) variable,
we find a downward sloping line up to the age of THis suggests that over this period, the
size of the plant has a positive effect on a ptastirvival rate. After the age of 19, the line is
more or less horizontal, indicating that for matysants, the size at birth is no longer
relevant. Similarly, we can find changes in slopasIn(LOC), In(JAC) and In(POPPOQOT).
RLOC does not seem to undergo any significant cbsung slope. On the basis of this visual

#2|n LOC and RLOC, this problem does not arise hassets of plants over which both are calculated ar
mutually exclusive.

2 point estimates of significant coefficients shifly marginally (less than 25%) if industry dummaes
omitted. However, the effect of pure localizatiotteznalities turns significant in column (1). Inlemn (2) and
(3) p-values drop below standard significance Enhitit rise again to the 5% level in column (4).
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inspection of the Aalen graphs, we decide to allobgvcoefficients to change at the following
ages:

* In(PLANTSIZE): 19 years
* In(LOC): 16 years

* In(RLOC): no changes

* In(JAC): 15 years

* In(POPPOT): 20 years

Table 5 shows the outcomes of a Cox regression thth time-dependence structure
specified. Column (1) of table 5 is a repetitioncofumn (4) in table 3 with RJAC omitted.
The same regression but now with slopes that fowedl to change at the plant ages specified
above is reported on in Column (2). In this speatfan, the proportional hazards assumption
is still violated. However, now this can be who#tributed to non-proportionalities in the
industry dummies, which are not of immediate irgeteere’* Indeed, we find that some of
the slopes change substantially with age. Mostraesteng is the finding that Jacobs’
externalities (JAC) improve survival chances omthe early years of a plant’s existence. In
later years, the point estimate is positive (intiigaincreased failure rates), but insignificant.
A Wald test on equality of slopes shows this défeze is significant at levels below 0.1%.
The effect of initial employment is only signifidain young plants as well. However, here the
Wald test comparing young to mature plants givesvalue of 8%. The population potential
(POPPOT) has a strong and significant negativecetfe the survival of young plants and no
significant effect in mature plants. The differenneslopes is however not significant. If we
turn to localization externalities, related locatibn externalities are modelled as age
invariant and turn out to have the usual positimd aignificant effect on survival rates. The
point estimate is very close to the baseline esémaf column (1). Pure localization
externalities are never significant.

In the analysis of time dependence, we have totfeepossibility that changes in coefficients
over time are an artefact of our decision to meatie size of regressors at the time the plant
enters our database. If the local environment claoger time, these initial conditions may
be less informative for the agglomeration extetiedia plant experiences at later ages. This
would result in an artificial weakening of the obhsl externality effects. To investigate this
possibility, we also run our analyses with covasathat change over time.

The general story remains the same. There are gmfisant localization externalities and
strong related localization externalities. Pureolat externalities contribute positively in the
early years of a plant and are insignificant laier The significance of urbanization effects
show the same temporal pattern, but are harmfuhfplant’s survival in younger stages. The
main difference with our previous findings is thalant employment now has a strongly
increasing positive influence of the survival rabéplants. This is not surprising, as plants are
less likely to be closed down at the time they hanaay employees. A minor difference is
that point estimates of related localization exadities drop slightly, and are insignificant if
we take all plants into consideration. Howevertha analysis of the subsamples of small and
medium sized plants to which we turn next, theintdbution is significant again. Another
minor detail is that the drop in urbanization ertdities with rising age now is significant
according to our Wald tests.

24 Outcomes without industry dummies are very sintitethe ones shown here. In these estimations, the
proportional hazards assumption is never violatelea10% level.
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Apart from studying variations over the age of anpl we would like to distinguish somehow
between mass-production plants and prototype pl&is difficulty is that we do not have
any capital-labour ratios to base this distinctoon However, mass-production plants should
in general be set up with a larger initial numbéemployees than prototype plants. Under
this assumption the nursery cities model suggdsés the coefficients of externalities
indicators are different for plants of differenzes. To test this, we divide the sample into
three parts, small plants (below 15 employees),inmegized plants (15-24 employees) and
large plants (over 24 employeés).

Columns (3) to (5) show the outcomes of regresdi@sed on these sub-samples without age-
dependent coefficients. Taking into consideratibe standard errors, only the effect of
PLANTSIZE is significantly different for plants dfifferent sizes. The differences in the other
coefficients can only be regarded as indicativer Egample, we see pure localization
externalities to rise with an increasing size @& fiilants and even become significant for the
first time in our analyses for the largest plamtsour sample. The diseconomies associated
with large cities (POPPOT) seem to be more imporitadarge and medium plants than in
small plants. This is not entirely unexpected,eads are higher in big cities.

Columns (6) to (8) contain the results of the asedywith age-dependent coefficients. As we
split the sample into small, medium sized and lgtgmts, the sample sizes we use in our
regressions drop and results necessarily get lesssp. The most striking finding is that pure
Jacobs’ externalities are significant only for yguplants and not for mature plants. This
holds for all subsamples and significantly so ia fubsamples of medium sized and of large
plants®® This suggests that all plants benefit from Jacebsernalities in their early years
only. Another interesting outcome is that pure lzedion externalities are strong and have a
positive effect on survival only for large plantsashigh age.

Robustness

In the analyses above, we have taken a number loérraid hoc decisions. To assess the
sensitivity of our outcomes to such decisions, wa & large number of alternative
specifications. First, we alternate between speatifons where localization externalities are
measured in terms of number-of-plants potentiald specifications that use employment
based indicators. Next, in the construction of B&@d RJAC, we use six different lower limits
for the definition of what constitutes a “signifitgoresence” of an industry, corresponding to
a minimum of 1, 5 or 10 for the number-of-plantsgutial, and a minimum of 50, 100 or 250
for the employment potential. We also investigagihfluence of omitting industry dummies.
Finally, we rerun all regressions on the full sayphcluding plants under 10 employees. This
results in 2*6*2*2=48 different specifications feach regression analysis we have discussed
so far. Table 6 and 7 summarize the outcomes sfetkercise. The black numbers in the first
row of table 6 and 7 represent the percentage alyses that yield the same sign as the
corresponding columns in table 3 and 5. Below thesmbers, in grey, we report the
percentage of times the outcome was also signifisathe 5% level. For example, the entry
for In(EMP) in table 6, column (4) means that 1006f4all different robustness specifications
yield the negative sign we reported already indahl and 100% of all specifications yield
both a negative sign and were significant at adtltee 5% level. The last eight rows of table 6

25 As the vast majority of our plants is very small & sufficiently large sample to remain, we carineéstigate
the behavior of very large plants with any reasdmalbecision.

28 |f we had included the (undersampled) plants wittarting employment between 5 and 9 employeiss, th
result would also hold for the subsample of smiahfs.
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give the percentage of times at which the Wald testsignificant changes in slopes was
significant at the 5% (black) or at the 10% lexgkf).

To a very large degree, the signs and significantethe results of the alternative

specifications match the ones we present in thenrteit. In table 6, the only important

departures from our main results are found in ¢oefiits that are not significant in table 3.
For example, the RJAC estimates vary relatively elyidacross specifications. Turning to
table 7, we find again primarily corroborations tbe reported findings. Signs are for the
overwhelming majority of coefficients the same agable 5. As before, the main differences
between specifications are found when variableatesignificant. Also the outcomes of the
Wald statistics confirm our findings in table 5wig-values in table 5 correspond to high
numbers of rejections of equal coefficients, wheréégh p-values usually result in zero
percent of such rejections. The overall conclusiencan draw from this exercise is that the
main results we reported above are robust to clsaimggpecification.

Discussion

Our estimations show that the local environment &astrong influence on the survival
chances of plants. Cities with large populatiors associated with high failure rates. This
negative impact of population potential is partly strong for large plants. This is in line
with expectations, as plants with many employeesdn®e rent large buildings. Rents are
typically very high in big cities. These congestieffects seem to more than nullify any
positive impacts of being located close to largekeis. This holds for plants of all sizes.
However, at more mature stages, the net negatieetedf urbanization externalities becomes
insignificant.

The distinction betweeipure localizationeffects generated by nearby plants in the own
industry andrelated localizatioreffects which are associated with a large locakceatration

of employment in related industries, proved frditftn general, only related localization
effects generate significant benefits in terms ighér survival chances. The effects of pure
localization externalities, by contrast, are ngingficant. The only exception can be found in
large plants at a high age. Here, pure localizatexternalities are associated with
extraordinarily large increases in the survival mtes of a plant. Large plants may benefit
from long-term relationships with local client asdpplier firms that are facilitated by a
strong local embeddedness in very specialized megids these benefits take a long time to
materialize, they may indeed only be availablelam{s at a rather mature stage. The benefits
of pure localization effects in large and maturangé remind us of the non-urban industrial
complexes of lammarino and McCann (2006). The natbi@ure) localization externalities
in such hierarchical regional complexes can be etgpkto be very different from the (related)
localization externalities in small-scale indudtidlistricts that have been widely studied in
economic geography (Asheim 2000).

In the light of the nursery cities model, the masportant finding is that only young plants
benefit from pure Jacobs’ externalities. If youngmis engage more in exploration activities
than old plants, this can be seen as supportinderee for the model. However, this age-
dependence of Jacobs’ externalities is presentlantg of all different size classes. This
suggests that the role of Duranton and Puga’s nucsies is not limited to small exploratory

plants but extends as well to larger plants.

6. Conclusion
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In this article, we set out to investigate (1) hogglameration externalities impact the

survival of plants, (2) how the nature of theseactp changes with the evolving maturity of a
plant, and (3) how presence of related industriéects the survival of a plant. Overall, we

can identify two interesting sets of findings thady proof fruitful ground for further research

efforts research.

First, the assumptions of the DP model about clmanignpacts of agglomeration externalities
with plant evolution are by and large empiricallysiified. The impacts of Jacobs’
externalities do indeed change with plant age. Nuaess, contrary to the expectations, if
anything, Jacobs’ externalities vary even more \piint age for the medium sized and large
plants (that are more likely to be sites of magsdpction), than for the small plants (which
we would typically associate with exploratory pryfme plants). The ‘nursery’ role of
diversified cities is apparently not limited to tipeototype development stage, as the DP
model suggests. The evidence strongly suggestsathégpes of plants benefit from local
diversity in the years right after they were set bpthese formative stages of a plant’s life,
economic diversity may be helpful in overcoming &lhds of teething problems. An
interesting fact in this matter is that corporatangs do not seem to benefit from local
diversity at all. This is not entirely surprisings corporate plants should be able to solve their
start-up problems by drawing on the experiencecamshections of the mother firm.

Although industry dummies were used in this papeasapture differences across industries in
survival chances, we did not specifically study thiferences in externality effects across
industries. However, the impacts of externalitiesyrahange as much with the rising maturity
of plants as with the evolution of an industry. Egample the findings in Neffke et al. (2008)
show that the industry life cycle framework (Klepge997), where industries move from

exploratory to mature stages, can be used as amaiitve in the context of agglomeration

externalities. The industry life cycle frameworkoas for a richer conceptualization of

technological change than does the DP model. Hoswweueh inquiries are beyond the scope
and purpose of this article.

The second main conclusion of the article is that $trict demarcation of pure localization
and pure Jacobs’ externalities appears to be ttficat. It is useful also to consider
externalities that arise in regional environmenighwnany firms in related, but different,
activities. According to these arguments, the mwgiortant local sources of knowledge a
plant can draw on arise from the plants that agaged in activities that are not precisely the
same, yet related to, the own activity. Such plaats be a source of ideas that are different,
but still close enough to be relevant. Allowing feuch effects severely complicates the
picture of the economy, as industries get interdginn an intricate way. However, it also
allows for a deeper understanding of how inter-gtdulinkages really work. For example, in
this paper only related localization externalitsd®w a persistent positive effect on survival
chances across all different types of plants. Thditionally much more investigated pure
localization effects, by contrast, seem to bergfivival of only a small subset of large and
mature plants.

Where this article used a technological relatedrggsoach, further research may focus on
different types of relatedness, such as commoesliti use of labour skills or linkages along
the value chain. This should give complementaryghis in the relatedness structure of
economies.
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The concept of agglomeration externalities is amsige concept, both theoretically and
empirically. They are far from being stable acrdggerent types of plants, and probably also
far from being stable across different industrifkreover, the fact that industries are not
isolated units, but rather related in networksnbéiitwined activities, is a clear outcome of our
analysis of externalities of related agglomeratiBot the heterogeneity that seems to be an
inherent feature of externalities should not beardgd as problematic. Rather, it should be
taken as a challenge for researchers to learn abeutvays in which the local interplay
between industries takes place over time. As tlalahility of longitudinal micro data that
cover long time periods gradually increases, we hal able to come closer to a thorough
understanding of the true nature of varying aggl@tien externalities.
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Table 1: variable descriptives.

Obs Mean Std. Dev. Min Max

CORP 11535 2345904 4237609 0 1
In(PLANTSIZE) 11535 3.037502 8437525 2.302585 8.933532
In(LOC) 11501 4.498378 3.489024 -33.96421 9.939873
In(RLOC) 11535 7.347622 2.26436 -55.37755 10.83688
In(JAC) 11535 1.998868 1.084041 0 4.043051
In(RIAC) 11535 956228 8681275 0 3.218876
In(POPPOT) 11535 11.46406 1.235645 7.656619 13.81222
Table 2: cross-correlations between the regressors.

In(PLANTSIZE) In(LOC) In(RLOC) In(JAC) In(RIAC) In(POPPOT)
In(PLANTSIZE) 1.0000
In(LOQ) 0.1004 1.0000
In(RLOC) 0.0602 0.4367 1.0000
In(JAC) 0.0381 0.4123 0.5087 1.0000
In(RJAC) 0.0405 0.3950 0.6543 0.7130 1.0000
In(POPPOT) 0.0596 0.4011 0.5111 0.8959 0.6409 1.0000

Variables are as defined in section 3.
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Table 3: results of Cox regression where we asdhatehe influence of the local

environment does not change with the age of thetpla

(1) (2) (3) 4)
all all CORP NON-AFFILIATED

Jin(PLANTSIZE) -0.157*** -0.157*** -0.251*** -0.177***

(0.0154) (0.0154) (0.0253) (0.0235)
|IIn(LOCQ) -0.00622 -0.00268 0.0160 -0.00774

(0.00400) (0.00409) (0.00914) (0.00471)
IInQAC) -0.151*** -0.143*** -0.0207 -0.198***

(0.0249) (0.0286) (0.0626) (0.0328)
|In(POPPOT) 0.222%** 0.236*** 0.173** 0.250***

(0.0226) (0.0228) (0.0528) (0.0255)
|In(RLOC) -0.0354*** -0.0879*** -0.0234**

(0.00658) (0.0180) (0.00775)
IIn(RJIAC) 0.0169 0.00355 0.0545
(0.0256) (0.0525) (0.0299)

|Industry dummies yes yes yes yes
Model statistics
df PH stat 31 33 32 33
PH stat 38.81 40.34 52.42 47.44
Nobs 11501 11501 2698 8803
Log-likelihood -57434.7 -57424.3 -11285.6 -42426.0

Clustered (on plant identification numbers) standard errors in parentheses),

* p<0.05, **p<0.01, *** p<0.001

Variables are as defined in section 3.
PH statistic is chi-squared distributed under the null-hypothesis of proportional hazards.
All estimations include 3-digit industry dummies.
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Table 4: test of Proportional Hazards assumptiotheauit industry dummies

PLANTSIZE
LOC

RLOC

JAC
POPPOT
Global Test

rho chi2 df Prob>chi2
0.00498 0.14 1 0.7115
-0.00098 0.00 1 0.9466
-0.00358 0.06 1 0.8126
0.02674 3.48 1 0.0623
-0.00512 0.13 1 0.7187
10.95 5 0.0523

PH statistic is chi-squared distributed under the null-hypothesis of proportional hazards.
Variables are as defined in section 3.
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Table 5: results of Cox regression with age-varyiongfficients.

1) 2) 3) (4) (5) (6) ) (8)
all all small medium large small medium large
age-var. age-var. age-var. age-var.
In(PLANTSIZE) -0.177*** -0.632%** 0.0703 -0.0979*
(0.0235) (0.158) (0.171) (0.0481)
In(LOC) -0.00767 -0.00712 -0.00583 -0.0183*
(0.00472) (0.00645) (0.00948) (0.00909)
In(RLOC) -0.0214** -0.0220** -0.0191 -0.0326*** -0.0143 -0.0439%** -0.0327*** -0.0147
(0.00783) (0.00777) (0.0132) (0.00852) (0.0180) (0.0108) (0.00845) (0.0181)
In(JAC) -0.167*** -0.143%** -0.233%** -0.151*
(0.0282) (0.0389) (0.0544) (0.0643)
In(POPPOT) 0.249%** 0.198*** 0.327*** 0.294%**
(0.0255) (0.0345) (0.0491) (0.0613)
|Age-varying variables
In(PLANTSIZE) early -0.185%** -0.143%** 0.0517 -0.0993*
(0.0243) (0.0182) (0.175) (0.0500)
In(PLANTSIZE) late -0.00615 -0.170 0.441 -0.0498
(0.0994) (0.0932) (0.987) (0.183)
In(LOC) early -0.00668 -0.000948 -0.00485 -0.0116
(0.00471) (0.00537) (0.00903) (0.0101)
In(LOC) late -0.0240 0.0161 -0.0131 -0.0860***
(0.0170) (0.0225) (0.0272) (0.0199)
In(JAC) early -0.185%** -0.0896** -0.256%** -0.193**
(0.0284) (0.0327) (0.0550) (0.0656)
In(JAC) late 0.0548 -0.120 0.0292 0.162
(0.0643) (0.0775) (0.119) (0.123)
In(POPPOT) early 0.253*** 0.189*** 0.336*** 0.303***
(0.0257) (0.0289) (0.0495) (0.0619)
In(POPPOT) late 0.170 0.173 0.0513 0.224
(0.0882) (0.110) (0.170) (0.157)
Industry dummies yes yes yes yes yes yes yes yes
IModel statistics
df PH stat 32 36 31 32 32 36 36 36
PH stat 47.57 42.63 27.49 26.86 23.41 39.54 26.34 18.13
Nobs 12378 12378 5980 3436 2962 9572 3436 2962
Log-likelihood -42427.4 -42418.2 -20719.7 -9903.9 -6695.1 -34868.1 -9900.6 -6689.1
Wald test for change of slopes: p-values
PLANTSIZE 0.0802 0.783 0.701 0.796
LOC 0.298 0.459 0.747 0.000693
JAC 0.000114 0.679 0.0122 0.00237
POPPOT 0.339 0.878 0.0876 0.596

Clustered (on plant identification numbers) standard errors in parentheses), * p<0.05, **p<0.01, *** p<0.001
Variables are as defined in section 3.

In age varying , coefficients are allowed to change slope at the age of: 19 (PLANTSIZE), 16 (LOC), 15 (JAC), 20 (POPPOT).

PH statistic is chi-squared distributed under the null-hypothesis of proportional hazards.
All estimations include 3-digit industry dummies.
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Table 6: results of robustness test of table 3.

IEMP

jLoc

JRLOC

JAC

JRIAC

|POPPOT

(1) (2) (3) @)
all all CORP NON-AFFILATED
100,0% 100,0% 100,0% 100,0%
100,0% 93,8% 100,0% 100,0%
100,0% 95,8% 100,0%
91,7% 83,3% 35,4% 854%
29,2% 18,8% 50,0%
100,0% 100,0% 100,0% 100,0%

The table contains the % of times the same sign is obtained as in table 3.
The second (grey) number contains the % of times the sign is the same as in table 3,
and the outcome is also significant
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Table 7: results of robustness test of table 5.

1) (2) @) (@) (5) (6) (7) (@)
all all small medium large small medium large
age-var. age-var. age-var. age-var.
EMP 100,0% 100,0% 100,0% 100,0%
100,0% 100,0% 0,0% 66,7%
LOC 100,0% 100,0% 100,0% 100,0%
75,0% 45,8% 0,0% 33,3%
RLOC 100,0% 100,0% 100,0% 100,0%
93,8% 81,3% 91,7% 0,0%
PAC 83,3% 83,3% 75,0% 83,3%
27,1% 66,7% 50,0% 25,0%
P OPPOT 100,0% 100,0% 100,0% 100,0%
100,0% 95,8% 100,0% 100,0%
EMP_E 100,0% 100,0% 100,0% 100,0%
100,0% 100,0% 0,0% 37,5%
EMP_L 70,8% 100,0% 100,0% 100,0%
0,0% 0,0% 0,0% 0,0%
LOC_E 100,0% 100,0% 100,0% 100,0%
66,7% 47,9% 0,0% 0,0%
LOC_L 100,0% 22,9% 100,0% 100,0%
0,0% 0,0% 0,0% 95,8%
RLOC_E 100,0% 100,0% 100,0% 100,0%
93,8% 81,3% 91,7% 0,0%
DAC_E 91,7% 89,6% 83,3% 100,0%
75,0% 66,7% 58,3% 54,2%
PAC_L 95,8% 43,8% 100,0% 100,0%
37,5% 0,0% 16,7% 25,0%
POPPOT_E 100,0% 100,0% 100,0% 100,0%
100,0% 95,8% 100,0% 100,0%
POPPOT_L 100,0% 100,0% 29,2% 100,0%
18,8% 18,8% 0,0% 0,0%
EMP_el 87,5% 0,0% 0,0% 0,0%
50,0% 0,0% 0,0% 0,0%
LOC_el 0,0% 0,0% 0,0% 87,5%
0,0% 0,0% 0,0% 75,0%
DAC_el 100,0% 0,0% 83,3% 70,8%
100,0% 0,0% 83,3% 62,5%
POPPOT_el 0,0% 0,0% 41,7% 0,0%
0,0% 0,0% 0,0% 0,0%

The table contains the % of times the same sign is obtained as in table 5.

The second (grey) number contains the % of times the sign is the same as in table 3, and the outcome is also significant.

The rows for the tests on equality of slope counts the % of time significantly different at 5% (first) and at 10% (second row).
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Figures

Figure 1:
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Figure 2:
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Aalen LH model: cumulative regressionftioent for In(PLANTSIZE).
In_emp

Aalen LH model: cumulative regressionftioent for LOC.
In_k_emp_own
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Figure 3:
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Figure 4:
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Aalen LH model: cumulative regressionfioent for RLOC.
In_k_emp_RRav

Aalen LH model: cumulative regressionftioent for JAC.
In_k_divP_5
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Figure 5:
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Aalen LH model: cumulative regressionfioent for In(POPPOT).
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